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1 Introduction

The purpose of the document is to provide basic equations and ideas for fast design
of magnetic coils for use as magneto-optical traps, magnetic traps, and field adjust-
ment coils. It was originally written for the author’s own reference while designing a
QUIC trap for the Raizen Lab’s rubidium BEC experiment. Please send comments,
questions, and corrections to meyrath@physics.utexas.edu.

2 Some Theory of Electromagnets

In this section, I is written for the current in Amp-turns. That is, I = NI0 where N
is the number of turns in the electromagnet and I0 is the actual current in Amps.

2.1 Exact Field of a Circular Current Loop

The field for a circular current loop of current I with radius R displaced from the
origin by a distance D as shown in Figure 1 has magnetic field components given by
[1]:
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where

k2 =
4Rρ

(R + ρ)2 + (z − D)2
, (2)

and K(k2) and E(k2) are the complete elliptic integrals for the first and second kind
respectively [2].
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Figure 1: Cylindrical coordinates for the magnetic field of a single circular current
loop centered at axial position z.

2.2 Approximations for Circular Current Loops

Figure 1 shows a current loop displaced from the origin, here and in the next sections,
we look for approximate field equations near the origin. This corresponding to the
case where the coils are somewhere outside a vacuum chamber and all the action is
near the origin.

Near the origin (ρ = 0, x = 0), we can write a power series expansion for the field
components to second order:
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(3)

These equations may be used for estimations of fields produced by a single coil. For
example, earth field biasing without a Helmholtz pair, one may estimate the single
coil field and the deviations from constant field over the region of interest.

2.3 Coil pairs

For actual Helmholtz and anti-Helmholtz pairs we have equations for fields near the
origin as follows. The distance between the coils is d = 2D.
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Figure 2: (a) coil pair in Helmholtz configuration. For most ideal constant field, the
configuration needs R = 2D, i.e. the distance between the coils is the same as coil
radius. (b) anti-Helmholtz configuration.

In Figure 2(a), a Helmholtz coil configuration is shown, the equations for the field
near the origin to third order are:

Bz = µI
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(4)

There are no third order terms in for these fields, the next terms are fourth order. In
the ideal case with R = 2D, the second order terms vanish giving

Bz = µI
8
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+ . . . ,

Bρ = 0 + . . . .

(5)

to third order. Naturally, one could simply use the zeroth order term in Equation (4)
as a field estimation in case of an imperfect Helmholtz pair which may frequently be
the case, such as in earth field nulling coils. For the anti-Helmholtz case shown in
Figure 2(b), the equations for the field to third order are:
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Most notably, the gradient (first order term) in the axial and radial directions differ
only by a factor of 2. It is also noted that the third order terms in both directions
vanish for R =

√

4/3D, however this is generally not as important as in the Helmholtz
case. A more important figure is that the gradient is maximized for 2D = R, which
gives a gradient

dBz

dz
= µI

48

25
√

5R2
= 2

dBρ

dρ
. (7)

This is to say it is sensible in both cases of Helmholz or anti-Helmholz configuration
to space the coils by the coil radius, spacing = 2D = R = radius. For most purposes
the first order term may be used to estimate the gradient of practical coils in this
configuration:

Bz
∼= µI3

DR2

(D2 + R2)5/2
z, (8)

Bρ
∼= −µI

3

2

DR2

(D2 + R2)5/2
ρ. (9)

3 Numerical Calculations of Fields

It is relatively easy to do a brute-force calculation of the magnetic fields of a more
realistic configuration using something like MATLAB. The basic problem with the
equations given in the previous section is that they are for infinitesimally thin wires.
When one is interested in the fields far from the coil, such a thickness is not relevant,
such as when designing typical MOT coils or earth bias coils. However, in the case
of a magnetic trap, where the coils may be very close to the region of interest and
careful field compensation is required, the size and shape of the coils can make a huge
difference. In this situation, it is more critical to calculate the fields carefully for coil
sizes as realistic as possible. MATLAB code for exact calculation of the field due
to a single circular loop is given in the Appendix. In the function, B field loop, one
specifies the size, location, and orientation of the loop, and the field is calculated at
a point. To do a brute-force calculation for an arbitrarily thick circular coil, one can
break that coil into N2 loops of radius Rn at position r0

n and sum the results for each
coil. We actually did this for our QUIC trap. For details on this, see the document
[3].

4 Power and Cooling

When designing magnetic coils, one important consideration is how to keep them
cool. In some instances, when the input power is low (under a few watts) no cooling
is needed, tens of watts may be air cooled or water cooled. It really depends on the
coil holder structure (metal or plastic) and airflow available. There are other concerns
with air-cooling coils in optics experiments, i.e. dust and air index variations. Larger
power loads (more than 50 W) are generally water cooled. One comment on heating,
is that what I am really discussing here is for rms joule heating. Coils that are pulsed
infrequently for short periods may not need to be cooled.
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4.1 Power into a Coil

The field of a coil or set at some point in space is

B = CI0N, (10)

where C is a constant determined by geometry, I0 is the current delivered to the coil,
and N is the number of turns. Consider this the coil shown in Figure 3. Suppose the
coil consists of a length l of magnet wire of some gauge with cross sectional area A0 and
the coil has bulk cross sectional area A = πa2 = NA0. The length is approximately
l ∼= 2πR̄N , where R̄ is the average coil radius (the radius to the center of the bulk).
For copper wire with resistivity, ρ, the net resistance of the coil is R = ρl/A0 ∝ N/A0.
Therefore the power delivered to the coil is P = I2

0R ∝ 1/NA0 = 1/A. Which is to
say, for a given desired magnetic field, the power required to be delivered to the coil
depends only on the cross sectional area of the coil bulk. So, in order to reduce
the amount of joule heating in the coil and produce the same magnetic field, it is
necessary to make the coil as thick as possible. This, of course, neglects the changes
in field due to geometry changes of thinner or thicker coils. For a coil with given cross
section, changing size of wire switches the power needed, P = IV , between current
and voltage. More useful than this philosophy is the approximate power:

P =
2πR̄ρ(NI0)

2

NA0

, (11)

the resistivity of copper at room temperature is ρ ∼= 1.70 × 10−8 Ω · m, I = NI0, of
course, is the the number of amp-turns, and A = NA0 is the total coil cross sectional
area. If tossing in the area, A, which is to contain the wires, one must, of course,
consider the packing fraction, that is, the area of copper is A → απa2, where α is the
packing fraction, and a is the coil cross sectional radius.

4.2 Water Cooling

Water has heat capacity C = 4186 J/kg oC and a mass density ρ = 1.0 kg/l. The
change in temperature of water flowing with rate f (in l/s) sinking power P is

∆T =
P

ρCf
. (12)

This equation gives the change in temperature from the incoming to the outgoing
water which of course depends on the power. The load itself (coil) and the water may
have a temperature difference between them. The better the thermal contact between
the water and the load the smaller this difference. In the case of our QUIC trap, with
flow rate of about 6 l/min = 0.1 l/a and total power of nearly 900 W the change in
temperature is only about 2oC. Since the water to wire contact is so outstanding
the wire heats only these few degrees. This temperature change is not a source of
instability since it heats the same each cycle. Another comment, in general, is that
more surface area of wire contact with water improves heat transfer. This lends
something to the philosophy of using smaller diameter and more of it to obtain the
same coil cross section.
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4.3 Stability of a Magnetic Trap

The stability of magnetic fields is extremely important in a magnetic trap that is
used to produce a BEC. The stability depends on three things: current fluctuations,
mechanical movements, external field fluctuations. The latter, we don’t discuss here,
see your local µ-metal distributor. We have not used µ-metal shielding for our mag-
netic trap. Current fluctuations are due to changes in current supplied to the coil
over time. This can be very well controlled as discussed in the document [4]. An
important source of fluctuations in magnetic field are due to thermal effects in the
coils. This is due to a small amount of thermal expansion of the coil itself on the
tens of microns scale for degree changes in temperature which may amount to shifts
in field minimum, B0, of order 1 mG or more. This is important for a BEC but ir-
relivant for a MOT or other less sensitive application. For our magnetic trap, to get
best stability we found it necessary to make sure that the incoming cooling water was
stable to under 0.1oC. This has given us very solid BECs, see [3].

5 Some Standard American Wire Types

Power requirements were discussed in the previous section in general, but ultimately,
one must choose a specific wire type for the coils. The table gives typical wire sizes
and specifications for standard American wire types. The diameter given is for the
bare wire. Insulation, required for any magnet wire, may add between 0.05 and
0.2 mm to the diameter. The given values for resistivity are for copper at 20oC and

Diameter Coated † Possible †† Line Resistance
Gauge mm (in) Diam. mm (in) Current A (ρ/A0) Ω/km

8 3.251 (0.128) 3.353 (0.132) 50 2.060
10 2.591 (0.102) 2.642 (0.104) 30 3.278
12 2.057 (0.081) 2.108 (0.083) 25 5.210
14 1.626 (0.064) 1.702 (0.067) 20 8.284
16 1.295 (0.051) 1.346 (0.053) 10 13.18
18 1.016 (0.040) 1.067 (0.042) 5 20.95
20 0.813 (0.032) 0.864 (0.034) 3.2 33.30
22 0.635 (0.025) 0.686 (0.027) 2.0 52.95
24 0.508 (0.020) 0.559 (0.022) 1.25 84.22
26 0.406 (0.016) 0.432 (0.017) 0.8 133.9

Table 1: Some Standard American Wire Types [5]. † approximate, depends on the
coating type, number of layers, etc. †† depends on cooling, these numbers are for
relatively uncooled wires, i.e. they get quite warm.

the currents are a guideline. In general, the allowed current really depends on cooling
efficiency. For large coils sinking order 10 W it is relatively unnecessary to cool with
water. In a situation with very high current in a very small wire, extremely good
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water cooling is needed. For example, in our QUIC trap, the Ioffe coil uses 22 gauge
wire and is routinely operated at about 30 A with around 400 W to this tiny coil.
During early testing of the design, it had been operated at up to 50 A (about 1 kW),
but this is no problem for the wire since contact with the flowing water is so good.
See the document [3].

6 Inductance and Switching

6.1 Inductance and Parasitics

All coils have inductance, this is the principle limit for switch off time. For a coil of
radius R̄, thickness 2a, and number of turns N , shown in Figure 3 the inductance
may be approximated by [6]

L ∼= N2R̄µ

[

ln

(
8R̄

a

)

− 2

]

. (13)

This equation assumes R̄ ≫ a, which is frequently not the case, but is adequate
to estimate for most practical purposes. Figure 4 shows the an equivalent circuit

a

R̄

N turns

Figure 3: Inductor coil geometry for Equation (13).

for a practical inductor. The resistance is obviously due to the line resistance of
the wire used. The capacitance is between the closely spaced turns and depends
highly on the wire thickness used, spacing, etc. We have found that the capacitance
is typically of order 100 pF down to 1 pF for coils that we have used. These may
typically give resonance frequencies in the range of 500 kHz to 10 MHz depending
on the coil inductance. For our QUIC trap, the quadrupole coils have R = 0.29 Ω
(measured), L ∼= 1 mH (estimated), a resonance frequency f = 720 kHz (measured),
and a capcitance C = 1/4π2Lf 2 ∼= 50 pF. The Ioffe coil has R = 0.40 Ω (measured),
L ∼= 0.1 mH (estimated), a resonance frequency f = 5.4 MHz (measured), and a
capcitance C = 1/4π2Lf 2 ∼= 10 pF. In general, the important numbers are R and L
for power estimations and switch off time. The resonance frequency of the coils is its
principle natural frequency and is only really important if, when using a magnetic
trap, it is found to resonate with evaporative cooling RF or produce its own RF. This
may depend on the circuit using to drive the coils, but interesting to keep in mind for

7



LR

C

Figure 4: Inductor coil equivalent circuit.

LR

C

RF

Generator

Spectrum

Analyzer

Figure 5: How to measure resonance frequency of a practical coil [7]

system debugging. The resonance frequency may be measured as follows [7]. Pass an
RF signal through the coil as shown in Figure 5 to a spectrum analyzer. The signal
detected will drop in height at the resonance (to virtually nothing). More practically,
the coil will exhibit many resonances, most much weaker.

6.2 Switching

The switching time is mostly limited by the inductance of the coil. A standard
switching scheme used for virtually all of our coils is shown in Figure 6. The basic
idea is that when the current is suddenly disconnected the voltage across the inductor
is clamped at a constant value until all the current is gone. Sudden disconnections are
typically done by a Power MOSFET of IGBT, in either case having a zener clamp.
In any case, we have a clamping voltage Vso (switch off voltage) and an inductance
L, this gives the equation Vso = −LdI/dt so the current in time is

I(t) = I0(1 − t/τ), (14)

where the switch off time is
τ = LI0/Vso. (15)

So it is true that, as inductance goes up switch off time goes up. But it is not as bad
as it appears, although L ∝ N2, I0 ∝ 1/N , so in fact τ ∝ N not N2. That is, for
a coil with a large number of turns, although it takes longer to switch, there is less
current to switch, for a given field.
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Figure 6: Switching concept circuits. In (a), Vso is the reverse breakdown voltage of
the MOSFET, typically 100 V to 500 V. Most modern power MOSFETs are internally
connected with the zener as shown. IGBTs frequently are not, whereas one connects
an external zener diode which may typically more than 1 kV depending on the IGBT.
The concept circuit in (b) is basically equivalent to that in (a) with Vso as the zener
diode voltage.

For our QUIC trap, with an inductance of about 2.1 mH and switch off voltage of
500 V, switching time for a typical current of 28 A is about 120µs.

6.3 Comment on Steel Chambers

Most steel chambers have µ very close to the free space µ0, so the chamber itself does
not cause a major change in the coil inductance. However, the presence of complete
rings with finite resistance will result in eddy currents in the metal when the field is
switched off. This causes the eddy currents to support the magnetic field after the
coil currents have dropped which means that the fields turn off more slowly. In the
case of our QUIC trap, we use a glass chamber between the coils, which gives, very
well, the above switching time. In general, this can be a problem if coils are outside
a steel chamber. If mounting hardware is made of metal, it can be slotted to reduce
this effect. In some cases, plastic hardware can do the job, as in our QUIC trap.

7 Some Philosophy

Most MOT or bias coils are made with standard wires gauges 16 to 24. This is easy
and straight forward. In designing a magnetic trap, things are more sensitive. It
seems two different approaches are used: (1) use thick wires, few turns, high currents,
(2) use thin wires, many turns, low currents. In (1), the thick ’wires’ are frequently
copper tubes with very small (1/8 inch) inner diameter. This method of cooling
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has the advantage of good water contact to the (inside of) the conductors. But has
the disadvantage of being difficult to work with and requiring booster pumps to get
reasonable amount of flow (a few liters per minute for 300 to 400 psi pressures).
Booster pumps are noisy and make vibrations. These traps may frequently also
require several kilowatts of power, may have order 10 to 50 turns of wire, and take
up to 500 A of current. In (2), such as our QUIC trap, thin wire is used in far more
turns (150 to 200), lower current (20 to 50 A), powers from 600 W to over a kilowatt.
The principle advantage of (1) is the fewer number of turns – the switch off time
is shorter. The principle advantage of (2) is likely stability since lower currents are
easier to control, and lower powers are easier to tame.
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Appendix

A Matlab Code for Field Simulation

function B = B_field_loop(n,r,r0,R);

%returns the magnetic field from an arbitrary current loop calculated from

% eqns (1) and (2) in Phys Rev A Vol. 35, N 4, pp. 1535-1546; 1987.

%

%arguments:

% * r is a position vector where the Bfield is evaluated: [x y z]

% r is in units of d

% * n is normal vector to the plane of the loop at the center, current

% is oriented by the right-hand-rule.

% * r0 is the location of the center of the loop in units of d

% * R is the radius of the loop

%

%return:

% * B is a vector for the B field at point r in inverse units of

% (mu I) / (2 pi d)

% for I in amps and d in meters and mu = 4 pi * 10^-7 we get Tesla

%

% Todd Meyrath

% Atom Optics Lab, University of Texas

% Dec 2001

%

n = n / sqrt( sum(n.*n) ); %normalize n

%choose two vectors perpendicular to n

% choice is arbitrary since the coil is symetric about n

if (abs(n(1))==1)

l = [n(3) 0 -n(1)];

else

l = [0 n(3) -n(2)];

end

l = l / sqrt( sum(l.*l) ); %normalize l

m = cross(n,l);

Trans = [l’ m’ n’]; % transformation matrix coil frame to lab frame

InvTrans = inv(Trans); % transformation matrix to lab frame to coil frame

r1 = r-r0; %point location from center of coil

r2 = InvTrans * r1’; %transform vector to coil frame

%%%%calculate field

x = r2(1);

y = r2(2);

z = r2(3);

rho = sqrt( x^2 + y^2 );

if ( (rho==0) & (z==0) )

Bz = 0;

Brho = 0;

co = 0;

si = 0;

else

k = sqrt( (4 * R * rho)/( (R + rho)^2 + z^2) );

[K,E] = ellipke(k^2);

Bz = ( 1/sqrt((R + rho)^2 + z^2) )*( K + E*(R^2-rho^2-z^2)/((R-rho)^2+z^2) );

if (rho==0)

Brho = 0;

co = 0;

si = 0;

else

Brho = ( z/(rho*sqrt((R + rho)^2 + z^2)) )*( -K + E*(R^2+rho^2+z^2)/((R-rho)^2+z^2) );
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co=(x/sqrt(x^2+y^2));

si=(y/sqrt(x^2+y^2));

end

end

B(1)=co*Brho;

B(2)=si*Brho;

B(3) = Bz;

B = Trans * B’;
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