
Chapter 3
Local and Global Casimir Energies:
Divergences, Renormalization,
and the Coupling to Gravity

Kimball A. Milton

Abstract From the beginning of the subject, calculations of quantum vacuum
energies or Casimir energies have been plagued with two types of divergences:
The total energy, which may be thought of as some sort of regularization of the
zero-point energy,

P
1
2 �hx; seems manifestly divergent. And local energy densi-

ties, obtained from the vacuum expectation value of the energy-momentum tensor,
hT00i; typically diverge near boundaries. These two types of divergences have little
to do with each other. The energy of interaction between distinct rigid bodies of
whatever type is finite, corresponding to observable forces and torques between the
bodies, which can be unambiguously calculated. The divergent local energy
densities near surfaces do not change when the relative position of the rigid bodies
is altered. The self-energy of a body is less well-defined, and suffers divergences
which may or may not be removable. Some examples where a unique total self-
stress may be evaluated include the perfectly conducting spherical shell first
considered by Boyer, a perfectly conducting cylindrical shell, and dilute dielectric
balls and cylinders. In these cases the finite part is unique, yet there are divergent
contributions which may be subsumed in some sort of renormalization of physical
parameters. The finiteness of self-energies is separate from the issue of the
physical observability of the effect. The divergences that occur in the local energy-
momentum tensor near surfaces are distinct from the divergences in the total
energy, which are often associated with energy located exactly on the surfaces.
However, the local energy-momentum tensor couples to gravity, so what is the
significance of infinite quantities here? For the classic situation of parallel plates
there are indications that the divergences in the local energy density are consistent
with divergences in Einstein’s equations; correspondingly, it has been shown that
divergences in the total Casimir energy serve to precisely renormalize the masses
of the plates, in accordance with the equivalence principle. This should be a
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general property, but has not yet been established, for example, for the Boyer
sphere. It is known that such local divergences can have no effect on macroscopic
causality.

3.1 Introduction

For more than 60 years it has been appreciated that quantum fluctuations can give
rise to macroscopic forces between bodies [1]. These can be thought of as the
sum, in general nonlinear, of the van der Waals forces between the constituents of
the bodies, which, in the 1930s had been shown by London [2] to arise from
dipole-dipole interactions in the nonretarded regime, and in 1947 to arise from the
same interactions in the retarded regime, giving rise to so-called Casimir-Polder
forces [3]. Bohr [4] apparently provided the incentive to Casimir to rederive the
macroscopic force between a molecule and a surface, and then derive the force
between two conducting surfaces, directly in terms of zero-point fluctuations of
the electromagnetic fields in which the bodies are immersed. But these two points
of view—action at a distance and local action—are essentially equivalent, and one
implies the other, not withstanding some objections to the latter [5].

The quantum-vacuum-fluctuation force between two parallel surfaces—be they
conductors or dielectrics [6–8] —was the first situation considered, and still the
only one accessible experimentally. (For a current review of the experimental
situation, see the chapters by Lamoreaux, Capasso et al., Decca et al., Van Zwol
et al., and De Kieviet et al. in this volume, and also [9, 10]) Actually, most
experiments measure the force between a spherical surface and a plane, but the
surfaces are so close together that the force may be obtained from the parallel plate
case by a geometrical transformation, the so-called proximity force approximation
(PFA) [11–13]. However, it is not possible to find an extension to the PFA beyond
the first approximation of the separation distance being smaller than all other
scales in the problem. In the last few years, advances in technique have allowed
quasi-analytical and numerical calculations to be carried out between bodies of
essentially any shape, at least at medium to large separation, so the limitations of
the PFA may be largely transcended. (See also the chapters by Rahi et al., by
Johnson and by Lambrecht et al. in this volume for additional discussions about
advances in numerical and analytical calculations. For earlier references, see, for
example [14].) These advances have shifted calculational attention away from
what used to be the central challenge in Casimir theory, how to define and cal-
culate Casimir energies and self-stresses of single bodies.

There are, of course, sound reasons for this. Forces between distinct bodies are
necessarily physically finite, and can, and have, been observed by experiment.
Self-energies or self-stresses typically involve divergent quantities which are
difficult to remove, and have obscure physical meaning. For example, the self-
stress on a perfectly conducting spherical shell of negligible thickness was
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calculated by Boyer in 1968 [15], who found a repulsive self-stress that has subse-
quently been confirmed by a variety of techniques. Yet it remains unclear what
physical significance this energy has. If the sphere is bisected and the two halves
pulled apart, there will be an attraction (due to the closest parts of the hemispheres)
not a repulsion. The same remarks, although exacerbated, apply to the self-stress on a
rectangular box [16–19].The situation in that case is worse because (3.1) the sharp
corners give rise to additional divergences not present in the case of a smooth
boundary (it has been proven that the self-energy of a smooth closed infinitesimally
thin conducting surface is finite [20, 21]), and (3.2) the exterior contributions cannot
be computed because the vector Helmholtz equation cannot be separated. But cal-
culational challenges aside, the physical significance of self-energy remains elusive.

The exception to this objection is provided by gravity. Gravity couples to the
local energy-momentum or stress tensor, and, in the leading quantum approxi-
mation, it is the vacuum expectation value of the stress tensor that provides the
source term in Einstein’s equations. Self energies should therefore in principle be
observable. This is largely uncharted territory, except in the instance of the classic
situation of parallel plates. There, after a bit of initial confusion, it has now been
established that the divergent self-energies of each plate in a two-plate apparatus,
as well as the mutual Casimir energy due to both plates, gravitates according to the
equivalence principle, so that indeed it is consistent to absorb the divergent self-
energies of each plate into the gravitational and inertial mass of each [22, 23]. This
should be a universal feature.

In this paper, for pedagogical reasons, we will concentrate attention on the
Casimir effect due to massless scalar field fluctuations, where the potentials
are described by d-function potentials, so-called semitransparent boundaries. In the
limit as the coupling to these potentials becomes infinitely strong, this imposes
Dirichlet boundary conditions. At least in some cases, Neumann boundary con-
ditions can be achieved by the strong coupling limit of the derivative of d-function
potentials. So we can, for planes, spheres, and circular cylinders, recover in this
way the results for electromagnetic field fluctuations imposed by perfectly con-
ducting boundaries. Since the mutual interaction between distinct semitransparent
bodies have been described in detail elsewhere [24–26], we will, as implied above,
concentrate on the self-interaction issues.

A summary of what is known for spheres and circular cylinders is given in
Table 3.1.

3.2 Casimir Effect Between Parallel Plates:
A d-Potential Derivation

In this section, we will rederive the classic Casimir result for the force between
parallel conducting plates [1]. Since the usual Green’s function derivation may be
found in monographs [38], and was for example reviewed in connection with
current controversies over finiteness of Casimir energies [36], we will here present
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a different approach, based on d-function potentials, which in the limit of strong
coupling reduce to the appropriate Dirichlet or Robin boundary conditions of a
perfectly conducting surface, as appropriate to TE and TM modes, respectively.
Such potentials were first considered by the Leipzig group [39, 40], but more
recently have been the focus of the program of the MIT group [41–44]. The
discussion here is based on a paper by the author [45]. (See also [46].) (A multiple
scattering approach to this problem has also been given in [25].)

We consider a massive scalar field (mass l) interacting with two d-function
potentials, one at x ¼ 0 and one at x ¼ a; which has an interaction Lagrange
density

Lint ¼ �
1
2
kdðxÞ/2ðxÞ � 1

2
k0dðx� aÞ/2ðxÞ; ð3:1Þ

where the positive coupling constants k and k0 have dimensions of mass. In the
limit as both couplings become infinite, these potentials enforce Dirichlet
boundary conditions at the two points:

k; k0 ! 1 : /ð0Þ;/ðaÞ ! 0: ð3:2Þ

The Casimir energy for this situation may be computed in terms of the Green’s
function G,

Gðx; x0Þ ¼ ihT/ðxÞ/ðx0Þi; ð3:3Þ

which has a time Fourier transform,

Gðx; x0Þ ¼
Z

dx
2p

e�ixðt�t0ÞGðx; x0; xÞ: ð3:4Þ

Table 3.1 Casimir energy (E) for a sphere and Casimir energy per unit length (E) for a cylinder,
both of radius a

Type ESpherea ECylindera2 References

EM þ0:04618 �0:01356 [15, 27]
D þ0:002817 þ0:0006148 [28, 29]

ðe� 1Þ2 þ0:004767 ¼ 23
1536p

0 [30, 31]

n2 þ0:04974 ¼ 5
32p

0 [32, 33]

de2 �0:0009 0 [34, 35]

k2=a2 þ0:009947 ¼ 1
32p

0 [36, 37]

Here the different boundary conditions are perfectly conducting for electromagnetic fields (EM),
Dirichlet for scalar fields (D), dilute dielectric for electromagnetic fields [coefficient of ðe� 1Þ2],
dilute dielectric for electromagnetic fields with media having the same speed of light (coefficient
of n2 ¼ ½ðe� 1Þ=ðeþ 1Þ�2), perfectly conducting surface with eccentricity de (coefficient of de2),
and weak coupling for scalar field with d-function boundary given by (3.60), (coefficient of
k2=a2). The references given are, to the author’s knowledge, the first paper in which the results in
the various cases were found
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Actually, this is a somewhat symbolic expression, for the Feynman Green’s
function (3.3) implies that the frequency contour of integration here must pass
below the singularities in x on the negative real axis, and above those on the
positive real axis [47, 48]. Because we have translational invariance in the two
directions parallel to the plates, we have a Fourier transform in those directions as
well:

Gðx; x0; xÞ ¼
Z ðdkÞ
ð2pÞ2

eik�ðr�r0Þ?gðx; x0; jÞ; ð3:5Þ

where j2 ¼ l2 þ k2 � x2:
The reduced Green’s function in (3.5) in turn satisfies

� o2

ox2
þ j2 þ kdðxÞ þ k0dðx� aÞ

� �

gðx; x0Þ ¼ dðx� x0Þ: ð3:6Þ

This equation is easily solved, with the result

gðx; x0Þ ¼ 1
2j

e�jjx�x0 j þ 1
2jD

"
kk0

ð2jÞ2
2 cosh jjx� x0j

� k
2j

1þ k0

2j

� �

e2jae�jðxþx0Þ � k0

2j
1þ k

2j

� �

ejðxþx0Þ

#

ð3:7aÞ

for both fields inside, 0\x; x0\a, while if both field points are outside, a\x; x0,

gðx; x0Þ ¼ 1
2j

e�jjx�x0 j þ 1
2jD

e�jðxþx0�2aÞ

� � k
2j

1� k0

2j

� �

� k0

2j
1þ k

2j

� �

e2ja

� �

:

ð3:7bÞ

For x; x0\0;

gðx; x0Þ ¼ 1
2j

e�jjx�x0 j þ 1
2jD

ejðxþx0Þ

� � k0

2j
1� k

2j

� �

� k
2j

1þ k0

2j

� �

e2ja

� �

: ð3:7cÞ

Here, the denominator is

D ¼ 1þ k
2j

� �

1þ k0

2j

� �

e2ja � kk0

ð2jÞ2
: ð3:8Þ

Note that in the strong coupling limit we recover the familiar results, for
example, inside
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k; k0 ! 1 : gðx; x0Þ ! � sinh jx\ sinh jðx [ � aÞ
j sinh ja

ð3:9Þ

Here x[ ; x\ denote the greater, lesser, of x; x0: Evidently, this Green’s function
vanishes at x ¼ 0 and at x ¼ a:

Let us henceforward consider l ¼ 0; since otherwise there are no long-range
forces. (There is no nonrelativistic Casimir effect—for example, see [38], p. 30.)
We can now calculate the force on one of the d-function plates by calculating
the discontinuity of the stress tensor, obtained from the Green’s function
(3.3) by

hTlmi ¼ olom0 � 1
2

glmoko0k

� �
1
i

Gðx; x0Þ
�
�
�
�
x¼x0

: ð3:10Þ

Writing a reduced stress tensor by

hTlmi ¼
Z

dx
2p

Z ðdkÞ
ð2pÞ2

tlm; ð3:11Þ

we find inside, just to the left of the plate at x ¼ a;

txx

�
�
x¼a� ¼

1
2i
ð�j2 þ oxox0 Þgðx; x0Þ

�
�
�
�
x¼x0¼a�

ð3:12aÞ

¼ � j
2i

1þ 2
kk0

ð2jÞ2
1
D

( )

: ð3:12bÞ

From this we must subtract the stress just to the right of the plate at x ¼ a;
obtained from (3.7b), which turns out to be in the massless limit

txx

�
�
x¼aþ ¼ �

j
2i
; ð3:13Þ

which just cancels the 1 in braces in (3.12b). Thus the pressure on the plate at
x ¼ a due to the quantum fluctuations in the scalar field is given by the simple,
finite expression

P ¼ hTxxi
�
�
x¼a� � hTxxi

�
�
x¼aþ

¼ � 1
32p2a4

Z1

0

dy y2 1

ðy=ðkaÞ þ 1Þðy=ðk0aÞ þ 1Þey � 1
; ð3:14Þ

which coincides with the result given in [44, 49]. The leading behavior for small
k ¼ k0 is

PTE� � k2

32p2a2
; k� 1; ð3:15aÞ
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while for large k it approaches half of Casimir’s result [1] for perfectly conducting
parallel plates,

PTE� � p2

480a4
; k	 1: ð3:15bÞ

We can also compute the energy density. Integrating the energy density over all
space should give rise to the total energy. Indeed, the above result may be easily
derived from the following expression for the total energy,

E ¼
Z

ðdrÞhT00i ¼ 1
2i

Z

ðdrÞðo0o00 �r2ÞGðx; x0Þ
�
�
�
�
x¼x0

¼ 1
2i

Z

ðdrÞ
Z

dx
2p

2x2Gðr; rÞ;
ð3:16Þ

if we integrate by parts and omit the surface term. Integrating over the Green’s
functions in the three regions, given by (3.7a–c), we obtain for k ¼ k0;

E ¼ 1
48p2a3

Z1

0

dy y2 1
1þ y=ðkaÞ �

1
96p2a3

Z1

0

dy y3 1þ 2=ðyþ kaÞ
ðy=ðkaÞ þ 1Þ2ey � 1

; ð3:17Þ

where the first term is regarded as an irrelevant constant (k is constant so the a can
be scaled out), and the second term coincides with the massless limit of the energy
first found by Bordag et al. [39], and given in [44, 49]. When differentiated with
respect to a, (3.17), with k fixed, yields the pressure (3.14). (We will see below that
the divergent constant describe the self-energies of the two plates.)

If, however, we integrate the interior and exterior energy density directly, one
gets a different result. The origin of this discrepancy with the naive energy is the
existence of a surface contribution to the energy. To see this, we must include the
potential in the stress tensor,

Tlm ¼ ol/om/� 1
2

glm ok/ok/þ V/2� �
; ð3:18Þ

and then, using the equation of motion, it is immediate to see that the energy
density is

T00 ¼ 1
2

o0/o0/� 1
2
/ðo0Þ2/þ 1

2
r � ð/r/Þ; ð3:19Þ

so, because the first two terms here yield the last form in (3.16), we conclude that
there is an additional contribution to the energy,

Ê ¼ � 1
2i

Z

dS � rGðx; x0Þ
�
�
�
�
x0¼x

ð3:20aÞ
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¼ � 1
2i

Z1

�1

dx
2p

Z ðdkÞ
ð2pÞ2

X d
dx

gðx; x0Þ
�
�
�
�
x0¼x

; ð3:20bÞ

where the derivative is taken at the boundaries (here x ¼ 0; a) in the sense of the
outward normal from the region in question. When this surface term is taken into
account the extra terms incorporated in (3.17) are supplied. The integrated formula
(3.16) automatically builds in this surface contribution, as the implicit surface term
in the integration by parts. That is,

E ¼
Z

ðdrÞhT00i þ Ê: ð3:21Þ

(These terms are slightly unfamiliar because they do not arise in cases
of Neumann or Dirichlet boundary conditions.) See Fulling [50] for further dis-
cussion. That the surface energy of an interface arises from the volume energy of a
smoothed interface is demonstrated in [45], and elaborated in Sect. 3.2.2

In the limit of strong coupling, we obtain

lim
k!1

E ¼ � p2

1440a3
; ð3:22Þ

which is exactly one-half the energy found by Casimir for perfectly conducting
plates [1]. Evidently, in this case, the TE modes (calculated here) and the TM
modes (calculated in the following subsection) give equal contributions.

3.2.1 TM Modes

To verify this last claim, we solve a similar problem with boundary conditions that
the derivative of g is continuous at x ¼ 0 and a,

o

ox
gðx; x0Þ

�
�
�
�
x¼0;a

is continuous; ð3:23aÞ

but the function itself is discontinuous,

gðx; x0Þ
�
�
�
�

x¼aþ

x¼a�
¼ k

o

ox
gðx; x0Þ

�
�
�
�
x¼a

; ð3:23bÞ

and similarly at x ¼ 0. (Here the coupling k has dimensions of length.) These
boundary conditions reduce, in the limit of strong coupling, to Neumann boundary
conditions on the planes, appropriate to electromagnetic TM modes:

k!1 :
o

ox
gðx; x0Þ

�
�
�
�
x¼0;a

¼ 0: ð3:23cÞ
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It is completely straightforward to work out the reduced Green’s function in this
case. When both points are between the planes, 0\x; x0\a;

gðx; x0Þ ¼ 1
2j

e�jjx�x0 j þ 1

2j~D

(
kj
2

� �2

2 cosh jðx� x0Þ

þ kj
2

1þ kj
2

� �

ejðxþx0Þ þ e�jðxþx0�2aÞ
h i

)

; ð3:24aÞ

while if both points are outside the planes, a\x; x0;

gðx; x0Þ ¼ 1
2j

e�jjx�x0j

þ 1

2j~D

kj
2

e�jðxþx0�2aÞ 1� kj
2

� �

þ 1þ kj
2

� �

e2ja

� �

; ð3:24bÞ

where the denominator is

~D ¼ 1þ kj
2

� �2

e2ja � kj
2

� �2

: ð3:25Þ

It is easy to check that in the strong-coupling limit, the appropriate Neumann
boundary condition (3.23c) is recovered. For example, in the interior region,
0\x; x0\a;

lim
k!1

gðx; x0Þ ¼ cosh jx\ cosh jðx[ � aÞ
j sinh ja

: ð3:26Þ

Now we can compute the pressure on the plane by computing the xx component
of the stress tensor, which is given by (3.12a), so we find

txx

�
�
x¼a� ¼

1
2i
�j� 2j

~D

kj
2

� �2
" #

; ð3:27aÞ

txx

�
�
x¼aþ ¼ �

1
2i

j; ð3:27bÞ

and the flux of momentum deposited in the plane x ¼ a is

txx

�
�
x¼a� � txx

�
�
x¼aþ ¼

ij
2
kjþ 1
� �2

e2ja � 1
; ð3:28Þ
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and then by integrating over frequency and transverse momentum we obtain the
pressure:

PTM ¼ � 1
32p2a4

Z1

0

dyy3 1

4a
ky þ 1
	 
2

ey � 1
: ð3:29Þ

In the limit of weak coupling, this behaves as follows:

PTM� � 15
64p2a6

k2; ð3:30Þ

which is to be compared with (3.15a). In strong coupling, on the other hand, it has
precisely the same limit as the TE contribution, (3.15b), which confirms the
expectation given at the end of the previous subsection. Graphs of the two func-
tions are given in Fig. 3.1.

For calibration purposes we give the Casimir pressure in practical units between
ideal perfectly conducting parallel plates at zero temperature:

P ¼ � p2

240a4
�hc ¼ � 1:30 mPa

ða=1 lmÞ4
: ð3:31Þ

0.0 20.0 40.0 60.0 80.0 100.0
λ

-0.020

-0.015

-0.010

-0.005

0.000

P
 a

4

P
TE

P
TM

Fig. 3.1 TE and TM Casimir pressures between d-function planes having strength k and
separated by a distance a. In each case, the pressure is plotted as a function of the dimensionless
coupling, ka or k=a, respectively, for TE and TM contributions
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3.2.2 Self–energy of Boundary Layer

Here we show that the divergent self-energy of a single plate, half the divergent
term in (3.17), can be interpreted as the energy associated with the boundary layer.
We do this in a simple context by considering a scalar field interacting with the
background

Lint ¼ �
k
2
/2r; ð3:32Þ

where the background field r expands the meaning of the d function,

rðxÞ ¼ h; � d
2 \x\ d

2 ;

0; otherwise;

(

ð3:33Þ

with the property that hd ¼ 1: The reduced Green’s function satisfies

� o2

ox2
þ j2 þ krðxÞ

� �

gðx; x0Þ ¼ dðx� x0Þ: ð3:34Þ

This may be easily solved in the region of the slab, � d
2 \x\ d

2 ;

gðx; x0Þ ¼ 1
2j0

�

e�j0 jx�x0 j þ 1

D̂

�

kh cosh j0ðxþ x0Þ

þ ðj0 � jÞ2e�j0d cosh j0ðx� x0Þ
��

:

ð3:35Þ

Here j0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2 þ kh
p

; and

D̂ ¼ 2jj0 cosh j0dþ ðj2 þ j02Þ sinh j0d: ð3:36Þ

This result may also easily be derived from the multiple reflection formulas
given in [46], and agrees with that given by Graham and Olum [51].

Let us proceed here with more generality, and consider the stress tensor with an
arbitrary conformal term [52],

Tlm ¼ ol/om/� 1
2

glmðok/ok/þ kh/2Þ � nðolom � glmo2Þ/2; ð3:37Þ

in d þ 2 dimensions, d being the number of transverse dimensions, and n is an
arbitrary parameter, sometimes called the conformal parameter. Applying the
corresponding differential operator to the Green’s function (3.35), introducing
polar coordinates in the ðf; kÞ plane, with f ¼ j cos h; k ¼ j sin h; and

hsin2 hi ¼ d

d þ 1
; ð3:38Þ

we get the following form for the energy density within the slab.
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hT00i ¼ 2�d�2p�ðdþ1Þ=2

Cððd þ 3Þ=2Þ

Z1

0

djjd

j0D̂

�

kh ð1� 4nÞð1þ dÞj02 � j2
� �

cosh 2j0x

� ðj0 � jÞ2e�j0dj2

�

; �d=2\x\d=2: ð3:39Þ

We can also calculate the energy density on the other side of the boundary,
from the Green’s function for x; x0\� d=2;

gðx; x0Þ ¼ 1
2j

e�jjx�x0 j � ejðxþx0þdÞkh
sinh j0d

D̂

� �

; ð3:40Þ

and the corresponding energy density is given by

hT00i ¼ � dð1� 4nðd þ 1Þ=dÞ
2dþ2pðdþ1Þ=2Cððd þ 3Þ=2Þ

Z1

0

djjdþ1 1

D̂
khe2jðxþd=2Þ sinh j0d; ð3:41Þ

which vanishes if the conformal value of n is used. An identical contribution
comes from the region x [ d=2:

Integrating hT00i over all space gives the vacuum energy of the slab

Eslab ¼ �
1

2dþ2pðdþ1Þ=2Cððd þ 3Þ=2Þ

Z1

0

djjd 1

j0D̂

�

ðj0 � jÞ2j2e�j0dd

þ ðkhÞ2 sinh j0d
j0

�

: ð3:42Þ

Note that the conformal term does not contribute to the total energy. If we now
take the limit d! 0 and h!1 so that hd ¼ 1; we immediately obtain the self-
energy of a single d-function plate:

Ed ¼ lim
h!1

Eslab ¼
1

2dþ2pðdþ1Þ=2Cððd þ 3Þ=2Þ

Z1

0

djjd k
kþ 2j

: ð3:43Þ

which for d ¼ 2 precisely coincides with one-half the constant term in (3.17).
There is no surface term in the total Casimir energy as long as the slab is of finite
width, because we may easily check that d

dx g
�
�
x¼x0

is continuous at the boundaries

� d
2 : However, if we only consider the energy internal to the slab we encounter not

only the integrated energy density but a surface term from the integration by
parts—see (3.21). It is the complement of this boundary term that gives rise to Ed;
(3.43),in this way of proceeding. That is, as d! 0;

�
Z

slab

ðdrÞ
Z

df f2 Gðr; rÞ ¼ 0; ð3:44Þ
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so

Ed ¼ Ê
�
�
x¼�d=2

þ Ê
�
�
x¼d=2

; ð3:45Þ

with the normal defining the surface energies pointing into the slab. This means
that in this limit, the slab and surface energies coincide.

Further insight is provided by examining the local energy density. In this we
follow the work of Graham and Olum [51, 53]. From (3.39) we can calculate
the behavior of the energy density as the boundary is approached from the
inside:

hT00i� Cðd þ 1Þkh

2dþ4pðdþ1Þ=2Cððd þ 3Þ=2Þ
1� 4nðd þ 1Þ=d

ðd� 2jxjÞd
; jxj ! d=2: ð3:46Þ

For d ¼ 2 for example, this agrees with the result found in [51] for n ¼ 0 :

hT00i� kh

96p2

ð1� 6nÞ
ðd=2� jxjÞ2

; jxj ! d
2
: ð3:47Þ

Note that, as we expect, this surface divergence vanishes for the conformal
stress tensor [52], where n ¼ d=4ðd þ 1Þ: (There will be subleading divergences if
d [ 2:) The divergent term in the local energy density from the outside, (3.41), as
x! �d=2; is just the negative of that found in (3.46). This is why, when the total
energy is computed by integrating the energy density, it is finite for d\2; and
independent of n: The divergence encountered for d ¼ 2 may be handled by
renormalization of the interaction potential [51].

Note, further, that for a thin slab, close to the exterior but such that the slab still
appears thin, x	 d; the sum of the exterior and interior energy density diver-
gences combine to give the energy density outside a d-function potential:

ud ¼ �
k

96p2
ð1� 6nÞ h

ðx� d=2Þ2
� h

ðxþ d=2Þ2

" #

¼ � k
48p2

1� 6n
x3

; ð3:48Þ

for small x. Although this limit might be criticized as illegitimate, this result is
correct for a d-function potential, and we will see that this divergence structure
occurs also in spherical and cylindrical geometries, so that it is a universal surface
divergence without physical significance, barring gravity.

For further discussion on surface divergences, see Sect. 3.3

3.3 Surface and Volume Divergences

It is well known as we have just seen that in general the Casimir energy density
diverges in the neighborhood of a surface. For flat surfaces and conformal theories
(such as the conformal scalar theory considered above [36], or electromagnetism)
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those divergences are not present.1 In particular, Brown and Maclay [58] calcu-
lated the local stress tensor for two ideal plates separated by a distance a along the
z axis, with the result for a conformal scalar

hTlmi ¼ � p2

1440a4
½4ẑlẑm � glm�: ð3:49Þ

This result was given more recent rederivations in [59, 36]. Dowker and
Kennedy [60] and Deutsch and Candelas [61] considered the local stress tensor
between planes inclined at an angle a; with the result, in cylindrical coordinates
ðt; r; h; zÞ;

hTlmi ¼ � f ðaÞ
720p2r4

1 0 0 0

0 �1 0 0

0 0 3 0

0 0 0 �1

0

B
B
B
@

1

C
C
C
A
; ð3:50Þ

where for a conformal scalar, with Dirichlet boundary conditions,

f ðaÞ ¼ p2

2a2

p2

a2
� a2

p2

� �

; ð3:51Þ

and for electromagnetism, with perfect conductor boundary conditions,

f ðaÞ ¼ p2

a2
þ 11

� �
p2

a2
� 1

� �

: ð3:52Þ

For a! 0 we recover the pressures and energies for parallel plates, (3.15b) and
(3.31). (These results were later discussed in [62].)

Although for perfectly conducting flat surfaces, the energy density is finite, for
electromagnetism the individual electric and magnetic fields have divergent RMS
values,

hE2i� � hB2i� 1
�4
; �! 0; ð3:53Þ

a distance � above a conducting surface. However, if the surface is a dielectric,
characterized by a plasma dispersion relation, these divergences are softened

hE2i� 1
�3
; �hB2i� 1

�2
; �! 0; ð3:54Þ

so that the energy density also diverges [63, 64]

1 In general, this need not be the case. For example, Romeo and Saharian [54] show that with
mixed boundary conditions the surface divergences need not vanish for parallel plates. For
additional work on local effects with mixed (Robin) boundary conditions, applied to spheres and
cylinders, and corresponding global effects, see [55–57, 50]. See also Sect. 3.2.2 and [51, 53].
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hT00i� 1
�3
; �! 0: ð3:55Þ

The null energy condition (nlnl ¼ 0)

Tlmnlnm
 0 ð3:56Þ

is satisfied, so that gravity still focuses light.
Graham [65, 66] examined the general relativistic energy conditions required

by causality. In the neighborhood of a smooth domain wall, given by a hyperbolic
tangent, the energy density is always negative at large enough distances. Thus the
weak energy condition is violated, as is the null energy condition (3.56). However,
when (3.56) is integrated over a complete geodesic, positivity is satisfied. It is not
clear if this last condition, the Averaged Null Energy Condition, is always obeyed
in flat space. Certainly it is violated in curved space, but the effects always seem
small, so that exotic effects such as time travel are prohibited.

However, as Deutsch and Candelas [61] showed many years ago, in the
neighborhood of a curved surface for conformally invariant theories, hTlmi
diverges as ��3; where � is the distance from the surface, with a coefficient pro-
portional to the sum of the principal curvatures of the surface. In particular they
obtain the result, in the vicinity of the surface,

hTlmi� ��3T ð3Þlm þ ��2T ð2Þlm þ ��1T ð1Þlm ; ð3:57Þ

and obtain explicit expressions for the coefficient tensors T ð3Þlm and T ð2Þlm in terms of
the extrinsic curvature of the boundary.

For example, for the case of a sphere, the leading surface divergence has the
form, for conformal fields, for r ¼ aþ �; �! 0

hTlmi ¼
A

�3

2=a 0 0 0

0 0 0 0

0 0 a 0

0 0 0 a sin2 h

0

B
B
B
@

1

C
C
C
A
; ð3:58Þ

in spherical polar coordinates, where the constant is A ¼ 1=720p2 for a scalar field
satisfying Dirichlet boundary conditions, or A ¼ 1=60p2 for the electromagnetic
field satisfying perfect conductor boundary conditions. Note that (3.58) is properly
traceless. The cubic divergence in the energy density near the surface translates
into the quadratic divergence in the energy found for a conducting ball [67].
The corresponding quadratic divergence in the stress corresponds to the absence of
the cubic divergence in hTrri:

This is all completely sensible. However, in their paper Deutsch and Candelas
[61] expressed a certain skepticism about the validity of the result of [68] for the
spherical shell case (described in part in Sect. 3.4.2) where the divergences cancel.
That skepticism was reinforced in a later paper by Candelas [31], who criticized
the authors of [68] for omitting d function terms, and constants in the energy.
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These objections seem utterly without merit. In a later critical paper by the same
author [70], it was asserted that errors were made, rather than a conscious removal
of unphysical divergences.

Of course, surface curvature divergences are present. As Candelas noted
[69, 70], they have the form

E ¼ ES
Z

dSþ EC
Z

dSðj1 þ j2Þ þ EC
I

Z

dSðj1 � j2Þ2 þ EC
II

Z

dSj1j2 þ � � � ;

ð3:59Þ

where j1 and j2 are the principal curvatures of the surface. The question is to what
extent are they observable. After all, as has been shown in [38, 36] and in
Sect. 3.2.2, we can drastically change the local structure of the vacuum expectation
value of the energy-momentum tensor in the neighborhood of flat plates by merely
exploiting the ambiguity in the definition of that tensor, yet each yields the same
finite, observable (and observed!) energy of interaction between the plates. For
curved boundaries, much the same is true. A priori, we do not know which energy-
momentum tensor to employ, and the local vacuum-fluctuation energy density is to
a large extent meaningless. It is the global energy, or the force between distinct
bodies, that has an unambiguous value. It is the belief of the author that diver-
gences in the energy which go like a power of the cutoff are probably unobserv-
able, being subsumed in the properties of matter. Moreover, the coefficients of the
divergent terms depend on the regularization scheme. Logarithmic divergences, of
course, are of another class [40]. Dramatic cancellations of these curvature terms
can occur. It might be thought that the reason a finite result was found for the
Casimir energy of a perfectly conducting spherical shell [15, 20, 68] is that the
term involving the squared difference of curvatures in (3.59) is zero only in that
case. However, it has been shown that at least for the case of electromagnetism the
corresponding term is not present (or has a vanishing coefficient) for an arbitrary
smooth cavity [21], and so the Casimir energy for a perfectly conducting ellipsoid
of revolution, for example, is finite.2 This finiteness of the Casimir energy (usually
referred to as the vanishing of the second heat-kernel coefficient [71]) for an ideal
smooth closed surface was anticipated already in [20], but contradicted by [61].
More specifically, although odd curvature terms cancel inside and outside for any
thin shell, it would be anticipated that the squared-curvature term, which is present
as a surface divergence in the energy density, would be reflected as an unre-
movable divergence in the energy. For a closed surface the last term in (3.59) is a
topological invariant, so gives an irrelevant constant, while no term of the type of
the penultimate term can appear due to the structure of the traced cylinder
expansion [50].

2 The first steps have been made for calculating the Casimir energy for an ellipsoidal boundary
[34, 35], but only for scalar fields since the vector Helmholtz equation is not separable in the
exterior region.
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3.4 Casimir Forces on Spheres via d-Function Potentials

This section is an adaptation and an extension of calculations presented in [45, 46].
This investigation was carried out in response to the program of the MIT group
[41–44, 49]. They first rediscovered irremovable divergences in the Casimir energy
for a circle in 2þ 1 dimensions first discovered by Sen [72, 73], but then found
divergences in the case of a spherical surface, thereby casting doubt on the validity
of the Boyer calculation [15]. Some of their results, as we shall see, are spurious,
and the rest are well known [40]. However, their work has been valuable in sparking
new investigations of the problems of surface energies and divergences.

We now carry out the calculation we presented in Sect. 3.2 in three spatial
dimensions, with a radially symmetric background

Lint ¼ �
1
2

k
a2

dðr � aÞ/2ðxÞ; ð3:60Þ

which would correspond to a Dirichlet shell in the limit k!1: The scaling of the
coupling, which here has dimensions of length, is demanded by the requirement
that the spatial integral of the potential be independent of a. The time-Fourier
transformed Green’s function satisfies the equation (j2 ¼ �x2)

�r2 þ j2 þ k
a2

dðr � aÞ
� �

Gðr; r0Þ ¼ dðr� r0Þ: ð3:61Þ

We write G in terms of a reduced Green’s function

Gðr; r0Þ ¼
X

lm

glðr; r0ÞYlmðXÞY�lmðX0Þ; ð3:62Þ

where gl satisfies

� 1
r2

d
dr

r2 d
dr
þ lðlþ 1Þ

r2
þ j2 þ k

a2
dðr � aÞ

� �

glðr; r0Þ ¼
1
r2

dðr � r0Þ: ð3:63Þ

We solve this in terms of modified Bessel functions, ImðxÞ; KmðxÞ; where
m ¼ lþ 1=2; which satisfy the Wronskian condition

I0mðxÞKmðxÞ � K 0mðxÞImðxÞ ¼
1
x
: ð3:64Þ

The solution to (3.63) is obtained by requiring continuity of gl at each singu-
larity, at r0 and a, and the appropriate discontinuity of the derivative. Inside the
sphere we then find (0\r; r0\a)

glðr; r0Þ ¼
1

jrr0
elðjr [ Þslðjr\Þ �

k
ja2

slðjrÞslðjr0Þ e2
l ðjaÞ

1þ k
ja2 slðjaÞelðjaÞ

" #

:

ð3:65Þ
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Here we have introduced the modified Riccati-Bessel functions,

slðxÞ ¼
ffiffiffiffiffi
px

2

r

Ilþ1=2ðxÞ; elðxÞ ¼
ffiffiffiffiffi
2x

p

r

Klþ1=2ðxÞ: ð3:66Þ

Note that (3.65) reduces to the expected Dirichlet result, vanishing as r ! a; in
the limit of strong coupling:

lim
k!1

glðr; r0Þ ¼
1

jrr0
elðjr[ Þslðjr\Þ �

elðjaÞ
slðjaÞ slðjrÞslðjr0Þ

� �

: ð3:67Þ

When both points are outside the sphere, r; r0[ a; we obtain a similar result:

glðr; r0Þ ¼
1

jrr0
elðjr [ Þslðjr\Þ �

k
ja2

elðjrÞelðjr0Þ s2
l ðjaÞ

1þ k
ja2 slðjaÞelðjaÞ

" #

:

ð3:68Þ

which similarly reduces to the expected result as k!1:
Now we want to get the radial–radial component of the stress tensor to extract

the pressure on the sphere, which is obtained by applying the operator

oror0 �
1
2
ð�o0o00 þr � r0Þ ! 1

2
oror0 � j2 � lðlþ 1Þ

r2

� �

ð3:69Þ

to the Green’s function, where in the last term we have averaged over the surface
of the sphere. Alternatively, we could notice that [74]

r � r0Plðcos cÞ
�
�
�
�
c!0

¼ lðlþ 1Þ
r2

; ð3:70Þ

where c is the angle between the two directions. In this way we find, from the
discontinuity of hTrri across the r ¼ a surface, the net stress

S ¼ � k
2pa3

X1

l¼0

ð2lþ 1Þ
Z1

0

dx
elðxÞslðxÞð Þ0� 2elðxÞslðxÞ

x

1þ kaelðxÞslðxÞ
x

: ð3:71Þ

(Notice that there was an error in the sign of the stress, and of the scaling of the
coupling, in [45, 46].)

The same result can be deduced by computing the total energy (3.16). The free
Green’s function, the first term in (3.65) or (3.68), evidently makes no significant
contribution to the energy, for it gives a term independent of the radius of the
sphere, a, so we omit it. The remaining radial integrals are simply

Zx

0

dy s2
l ðyÞ ¼

1
2x

x2 þ lðlþ 1Þ
� �

s2
l ðxÞ þ xslðxÞs0lðxÞ � x2s02l ðxÞ

� �
; ð3:72aÞ
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Z1

x

dy e2
l ðyÞ ¼ �

1
2x

x2 þ lðlþ 1Þ
� �

e2
l ðxÞ þ xelðxÞe0lðxÞ � x2e02l ðxÞ

� �
: ð3:72bÞ

Then using the Wronskian (3.64), we find that the Casimir energy is

E ¼ � 1
2pa

X1

l¼0

ð2lþ 1Þ
Z1

0

dx x
d
dx

ln 1þ k
a

ImðxÞKmðxÞ
� �

: ð3:73Þ

If we differentiate with respect to a we immediately recover the force (3.71).
This expression, upon integration by parts, coincides with that given by Barton
[75], and was first analyzed in detail by Scandurra [76]. This result has also been
rederived using the multiple-scattering formalism [25]. For strong coupling, it
reduces to the well-known expression for the Casimir energy of a massless scalar
field inside and outside a sphere upon which Dirichlet boundary conditions are
imposed, that is, that the field must vanish at r ¼ a :

lim
k!1

E ¼ � 1
2pa

X1

l¼0

ð2lþ 1Þ
Z1

0

dx x
d
dx

ln ImðxÞKmðxÞ½ �; ð3:74Þ

because multiplying the argument of the logarithm by a power of x is without
effect, corresponding to a contact term. Details of the evaluation of (3.74) are
given in [36], and will be considered in Sect. 3.4.2 below. (See also [77–79].)

The opposite limit is of interest here. The expansion of the logarithm is
immediate for small k: The first term, of order k; is evidently divergent, but
irrelevant, since that may be removed by renormalization of the tadpole graph.
In contradistinction to the claim of [42–44, 49], the order k2 term is finite, as
established in [36]. That term is

Eðk
2Þ ¼ k2

4pa3

X1

l¼0

ð2lþ 1Þ
Z1

0

dx x
d
dx
½Ilþ1=2ðxÞKlþ1=2ðxÞ�2: ð3:75Þ

The sum on l can be carried out using a trick due to Klich [80]: The sum rule

X1

l¼0

ð2lþ 1ÞelðxÞslðyÞPlðcos hÞ ¼ xy

q
e�q; ð3:76Þ

where q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 � 2xy cos h

p
; is squared, and then integrated over h; according

to

Z1

�1

dðcos hÞPlðcos hÞPl0 ðcos hÞ ¼ dll0
2

2lþ 1
: ð3:77Þ
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In this way we learn that

X1

l¼0

ð2lþ 1Þe2
l ðxÞs2

l ðxÞ ¼
x2

2

Z4x

0

dw
w

e�w: ð3:78Þ

Although this integral is divergent, because we did not integrate by parts in
(3.75), that divergence does not contribute:

Eðk
2Þ ¼ k2

4pa3

Z1

0

dx
1
2

x
d
dx

Z4x

0

dw
w

e�w ¼ k2

32pa3
; ð3:79Þ

which is exactly the result (4.25) of [36].
However, before we are too euphoric, we recognize that the order k3 term

appears logarithmically divergent, just as [44, 49] claim. This does not signal a
breakdown in perturbation theory. Suppose we subtract off and add back in the two
leading terms,

E ¼� 1
2pa

X1

l¼0

ð2lþ 1Þ
Z1

0

dx x
d
dx

ln 1þ k
a

ImKm

� �

� k
a

aImKm þ
k2

2a2
ðImKmÞ2

� �

þ k2

32pa3
:

ð3:80Þ

To study the behavior of the sum for large values of l, we can use the uniform
asymptotic expansion (Debye expansion), for m!1;

ImðxÞ�
ffiffiffiffiffiffiffiffi

t

2pm

r

emg 1þ
X

k

ukðtÞ
mk

 !

;

KmðxÞ�
ffiffiffiffiffi
pt

2m

r

e�mg 1þ
X

k

ð�1Þk ukðtÞ
mk

 !

;

ð3:81Þ

where

x ¼ mz; t ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ z2

p
; gðzÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ z2

p
þ ln

z

1þ
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ z2
p

� �

;
dg
dz
¼ 1

zt
:

ð3:82Þ

The polynomials in t appearing in (3.81) are generated by

u0ðtÞ ¼ 1; ukðtÞ ¼
1
2

t2ð1� t2Þu0k�1ðtÞ þ
1
8

Z t

0

dsð1� 5s2Þuk�1ðsÞ: ð3:83Þ

We now insert these expansions into (3.80) and expand not in k but in m; the
leading term is
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Eðk
3Þ � k3

24pa4

X1

l¼0

1
m

Z1

0

dz

ð1þ z2Þ3=2
¼ k3

24pa4
fð1Þ: ð3:84Þ

Although the frequency integral is finite, the angular momentum sum is
divergent. The appearance here of the divergent fð1Þ seems to signal an insu-
perable barrier to extraction of a finite Casimir energy for finite k: The situation is
different in the limit k!1 —See Sect. 3.4.2.

This divergence has been known for many years, and was first calculated
explicitly in 1998 by Bordag et al. [40], where the second heat kernel coefficient
gave an equivalent result,

E� k3

48pa4

1
s
; s! 0: ð3:85Þ

A possible way of dealing with this divergence was advocated in [76]. More
recently, Bordag and Vassilevich [81] have reanalyzed such problems from the
heat kernel approach. They show that this Oðk3Þ divergence corresponds to a
surface tension counterterm, an idea proposed by me in 1980 [82, 83] in con-
nection with the zero-point energy contribution to the bag model. Such a surface
term corresponds to k fixed, which then necessarily implies a divergence of
order k3: Bordag argues that it is perfectly appropriate to insert a surface tension
counterterm so that this divergence may be rendered finite by renormalization.

3.4.1 TM Spherical Potential

Of course, the scalar model considered in the previous subsection is merely a toy
model, and something analogous to electrodynamics is of far more physical rel-
evance. There are good reasons for believing that cancellations occur in general
between TE (Dirichlet) and TM (Robin) modes. Certainly they do occur in the
classic Boyer energy of a perfectly conducting spherical shell [15, 20, 68], and the
indications are that such cancellations occur even with imperfect boundary con-
ditions [75]. Following the latter reference, let us consider the potential

Lint ¼
1
2
k

1
r

o

or
dðr � aÞ/2ðxÞ: ð3:86Þ

Here k again has dimensions of length. In the limit k!1 this corresponds to
TM boundary conditions. The reduced Green’s function is thus taken to satisfy

� 1
r2

o

or
r2 o

or
þ lðlþ 1Þ

r2
þ j2 � k

r

o

or
dðr � aÞ

� �

glðr; r0Þ ¼
1
r2

dðr � r0Þ: ð3:87Þ

At r ¼ r0 we have the usual boundary conditions, that gl be continuous, but that
its derivative be discontinuous,
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r2 o

or
gl

�
�
�
�

r¼r0þ

r¼r0�
¼ �1; ð3:88Þ

while at the surface of the sphere the derivative is continuous,

o

or
rgl

�
�
�
�

r¼aþ

r¼a�
¼ 0; ð3:89aÞ

while the function is discontinuous,

gl

�
�
�
�

r¼aþ

r¼a�
¼ � k

a

o

or
rgl

�
�
�
�
r¼a

: ð3:89bÞ

Equations (3.89a) and (3.89b) are the analogues of the boundary conditions
(3.23a, b) treated in Sect. 3.2.1.

It is then easy to find the Green’s function. When both points are inside the
sphere,

r; r0\a : glðr; r0Þ ¼
1

jrr0
slðjr\Þelðjr[ Þ �

kj½e0lðjaÞ�2slðjrÞslðjr0Þ
1þ kje0lðjaÞs0lðjaÞ

" #

;

ð3:90aÞ

and when both points are outside the sphere,

r; r0[ a : glðr; r0Þ ¼
1

jrr0
slðjr\Þelðjr [ Þ �

kj½s0lðjaÞ�2elðjrÞelðjr0Þ
1þ kje0lðjaÞs0lðjaÞ

" #

:

ð3:90bÞ

It is immediate that these supply the appropriate Robin boundary conditions in
the k!1 limit:

lim
k!0

o

or
rgl

�
�
�
�
r¼a

¼ 0: ð3:91Þ

The Casimir energy may be readily obtained from (3.16), and we find, using the
integrals (3.72a, b)

E ¼ � 1
2pa

X1

l¼0

ð2lþ 1Þ
Z1

0

dx x
d
dx

ln 1þ k
a

xe0lðxÞs0lðxÞ
� �

: ð3:92Þ

The stress may be obtained from this by applying �o=oa; and regarding k as
constant, or directly, from the Green’s function by applying the operator,

trr ¼
1
2i
rrrr0 � j2 � lðlþ 1Þ

r2

� �

gl

�
�
�
�
r0¼r

; ð3:93Þ
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which is the same as that in (3.69), except that

rr ¼
1
r
orr; ð3:94Þ

appropriate to TM boundary conditions (see [84], for example). Either way, the
total stress on the sphere is

S ¼ � k
2pa3

X1

l¼0

ð2lþ 1Þ
Z1

0

dx x2

h
e0lðxÞs0lðxÞ

i0

1þ k
a xe0lðxÞs0lðxÞ

: ð3:95Þ

The result for the energy (3.92) is similar, but not identical, to that given by
Barton [75].

Suppose we now combine the TE and TM Casimir energies, (3.73) and (3.92):

ETE þ ETM ¼ � 1
2pa

X1

l¼0

ð2lþ 1Þ
Z1

0

dx x
d
dx

ln 1þ k
a

elsl

x

� �

1þ k
a

xe0ls
0
l

� �� �

:

ð3:96Þ

In the limit k!1 this reduces to the familiar expression for the perfectly
conducting spherical shell [68]:

lim
k!1

E ¼ � 1
2pa

X1

l¼1

ð2lþ 1Þ
Z1

0

dx x
e0l
el
þ e00l

e0l
þ s0l

sl
þ s00l

s0l

� �

: ð3:97Þ

Here we have, as appropriate to the electrodynamic situation, omitted the l ¼ 0
mode. This expression yields a finite Casimir energy, as we will see in Sect. 3.4.2.
What about finite k? In general, it appears that there is no chance that the diver-
gence found in the previous section in order k3 can be cancelled. But suppose the
coupling for the TE and TM modes are different. If kTEkTM ¼ 4a2; a cancellation
appears possible, as discussed in [46].

3.4.2 Evaluation of Casimir Energy for a Dirichlet
Spherical Shell

In this section we will evaluate the above expression (3.74) for the Casimir energy
for a massless scalar in three space dimensions, with a spherical boundary on which
the field vanishes. This corresponds to the TE modes for the electrodynamic situ-
ation first solved by Boyer [15, 20, 68]. The purpose of this section (adapted from
[36, 46]) is to emphasize anew that, contrary to the implication of [42–44, 49], the
corresponding Casimir energy is also finite for this configuration.

The general calculation in D spatial dimensions was given in [77]; the pressure
is given by the formula
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P ¼ �
X1

l¼0

ð2lþ D� 2ÞCðlþ D� 2Þ
l!2DpðDþ1Þ=2CðD�1

2 ÞaDþ1

Z1

0

dx x
d
dx

ln ImðxÞKmðxÞx2�D
� �

: ð3:98Þ

Here m ¼ l� 1þ D=2: For D ¼ 3 this expression reduces to

P ¼ � 1
8p2a4

X1

l¼0

ð2lþ 1Þ
Z1

0

dx x
d
dx

ln Ilþ1=2ðxÞKlþ1=2ðxÞ=x
� �

: ð3:99Þ

This precisely corresponds to the strong limit k!1 given in (3.74), if we
recall the comment made about contact terms there. In [77] we evaluated
expression (3.98) by continuing in D from a region where both the sum and
integrals existed. In that way, a completely finite result was found for all positive
D not equal to an even integer.

Here we will adopt a perhaps more physical approach, that of allowing the
time-coordinates in the underlying Green’s function to approach each other,
temporal point-splitting, as described in [68]. That is, we recognize that the
x integration above is actually a (dimensionless) imaginary frequency integral, and
therefore we should replace

Z1

0

dx f ðxÞ ¼ 1
2

Z1

�1

dy eiydf ðjyjÞ; ð3:100Þ

where at the end we are to take d! 0: Immediately, we can replace the x�1 inside
the logarithm in (3.99) by x, which makes the integrals converge, because the
difference is proportional to a d function in the time separation, a contact term
without physical significance.

To proceed, we use the uniform asymptotic expansions for the modified Bessel
functions, (3.81). This is an expansion in inverse powers of m ¼ lþ 1=2; low terms
in which turn out to be remarkably accurate even for modest l. The leading terms
in this expansion are, using (3.81),

ln xIlþ1=2ðxÞKlþ1=2ðxÞ
� �

� ln
zt

2
þ 1

m2
gðtÞ þ 1

m4
hðtÞ þ � � � ; ð3:101Þ

gðtÞ ¼ 1
8
ðt2 � 6t4 þ 5t6Þ; ð3:102aÞ

hðtÞ ¼ 1
64
ð13t4 � 284t6 þ 1062t8 � 1356t10 þ 565t12Þ: ð3:102bÞ

The leading term in the pressure is therefore

P0 ¼ �
1

8p2a4

X1

l¼0

ð2lþ 1Þm
Z1

0

dz t2 ¼ � 1
8pa4

X1

l¼0

m2 ¼ 3
32pa4

fð�2Þ ¼ 0; ð3:103Þ
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where in the last step we have used the formal zeta function evaluation3

X1

l¼0

m�s ¼ ð2s � 1ÞfðsÞ: ð3:104Þ

Here the rigorous way to argue is to recall the presence of the point-splitting
factor eimzd and to carry out the sum on l using

X1

l¼0

eimzd ¼ � 1
2i

1
sin zd=2

ð3:105Þ

so
X1

l¼0

m2eimzd ¼ � d2

dðzdÞ2
i

2 sin zd=2
¼ i

8
� 2

sin3 zd=2
þ 1

sin zd=2

� �

: ð3:106Þ

Then P0 is given by the divergent expression

P0 ¼
i

4p2a4d3

Z1

�1

dz
z3

1
1þ z2

; ð3:107Þ

which we argue is zero because the integrand is odd, as justified by averaging over
contours passing above and below the pole at z ¼ 0:

The next term in the uniform asymptotic expansion (3.101), that involving g,
likewise gives zero pressure, as intimated by (3.104), which vanishes at s ¼ 0.
The same conclusion follows from point splitting, using (3.105) and arguing that
the resulting integrand � z2t3g0ðtÞ=zd is odd in z. Again, this cancellation does not
occur in the electromagnetic case because there the sum starts at l ¼ 1:

So here the leading term which survives is that of order m�4 in (3.101), namely

P2 ¼
1

4p2a4

X1

l¼0

1
m2

Z1

0

dz hðtÞ; ð3:108Þ

where we have now dropped the point-splitting factor because this expression is
completely convergent. The integral over z is

Z1

0

dz hðtÞ ¼ 35p
32768

ð3:109Þ

and the sum over l is 3fð2Þ ¼ p2=2; so the leading contribution to the stress on the
sphere is

S2 ¼ 4pa2P2 ¼
35p2

65536a2
¼ 0:00527094

a2
: ð3:110Þ

3 Note that the corresponding TE contribution the electromagnetic Casimir pressure would not
be zero, for there the sum starts from l ¼ 1.
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Numerically this is a terrible approximation.
What we must do now is return to the full expression and add and subtract the

leading asymptotic terms. This gives

S ¼ S2 �
1

2pa2

X1

l¼0

ð2lþ 1ÞRl; ð3:111Þ

where

Rl ¼ Ql þ
Z1

0

dx ln zt þ 1
m2

gðtÞ þ 1
m4

hðtÞ
� �

; ð3:112Þ

where the integral

Ql ¼ �
Z1

0

dx ln½2xImðxÞKmðxÞ� ð3:113Þ

was given the asymptotic form in [77, 38] (l	 1):

Ql�
mp
2
þ p

128m
� 35p

32768m3
þ 565p

1048577m5
� 1208767p

2147483648m7

þ 138008357p
137438953472m9

þ � � � : ð3:114Þ

The first two terms in (3.114) cancel the second and third terms in (3.112), of
course. The third term in (3.114) corresponds to hðtÞ; so the last three terms
displayed in (3.114) give the asymptotic behavior of the remainder, which we call
wðmÞ: Then we have, approximately,

S �S2 �
1

pa2

Xn

l¼0

mRl �
1

pa2

X1

l¼nþ1

mwðmÞ: ð3:115Þ

For n ¼ 1 this gives S � 0:00285278=a2; and for larger n this rapidly
approaches the value first given in [77], and rederived in [78, 79, 85]

STE ¼ 0:002817=a2; ð3:116Þ

a value much smaller than the famous electromagnetic result [15, 86, 68, 20],

SEM ¼ 0:04618
a2

; ð3:117Þ

because of the cancellation of the leading terms noted above. Indeed, the TM
contribution was calculated separately in [84], with the result

STM ¼ �0:02204
1
a2
; ð3:118Þ

and then subtracting the l ¼ 0 modes from both contributions we obtain (3.117),
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SEM ¼ STE þSTM þ p
48a2

¼ 0:0462
a2

: ð3:119Þ

3.4.3 Surface Divergences in the Energy Density

The following discussion is based on [74]. Using (3.70), we immediately find the
following expression for the energy density inside or outside the sphere:

hT00i ¼
Z1

0

dj
2p

X1

l¼0

2lþ 1
4p

�j2 þ oror0 þ
lðlþ 1Þ

r2

� �

glðr; r0Þ
�
�
�
�
r0¼r

�

� 2n
1
r2

o

or
r2 o

or
glðr; rÞ

�

; ð3:120Þ

where n is the conformal parameter as seen in (3.37). To find the energy density in
either region we insert the appropriate Green’s functions (3.65) or (3.68), but
delete the free part,

g0
l ¼

1
jrr0

slðjr\Þelðjr [ Þ; ð3:121Þ

which corresponds to the bulk energy which would be present if either medium
filled all of space, leaving us with for r [ a

uðrÞ ¼ �ð1� 4nÞ
Z1

0

dj
2p

X1

l¼0

2lþ 1
4p

k
ja2 s2

l ðjaÞ
1þ k

ja2 elðjaÞslðjaÞ

�
e2

l ðjrÞ
jr2

�j21þ 4n
1� 4n

�

þ lðlþ 1Þ
r2

þ 1
r2

�

� 2
r3

elðjrÞe0lðjrÞ þ j
r2

e02l ðjrÞ
�

: ð3:122Þ

Inside the shell, r\a; the energy is given by a similar expression obtained from
(3.122) by interchanging el and sl:

We want to examine the singularity structure as r ! a from the outside. For
this purpose we use the leading uniform asymptotic expansion, l!1; obtained
from (3.81)

elðxÞ�
ffiffiffiffi
zt
p

e�mg; slðxÞ�
1
2

ffiffiffiffi
zt
p

emg;

e0lðxÞ� �
1
ffiffiffiffi
zt
p e�mg; s0lðxÞ�

1
2

1
ffiffiffiffi
zt
p emg;

ð3:123Þ

where m ¼ lþ 1=2; and z, t, and g are given in (3.82). The coefficient of
elðjrÞelðjr0Þ occurring in the d-function potential Green’s function (3.68), in
strong and weak coupling, becomes
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k
a
!1 :! slðjaÞ

elðjaÞ ð3:124aÞ

k
a
! 0 :! k

ja2
s2

l ðjaÞ: ð3:124bÞ

In either case, we carry out the asymptotic sum over angular momentum using
(3.123) and the analytic continuation of (3.105)

X1

l¼0

e�mv ¼ 1
2 sinh v

2

ð3:125Þ

Here (r � a)

v ¼ 2 gðzÞ � g z
a

r

	 
h i
� 2z

dg
dz
ðzÞr � a

r
¼ 2

t

r � a

r
: ð3:126Þ

The remaining integrals over z are elementary, and in this way we find that the
leading divergences in the energy density are as r ! aþ;

k
a
!1 : u� � 1

16p2

1� 6n

ðr � aÞ4
ð3:127aÞ

k
a
! 0 : uðnÞ � � k

a

� �nCð4� nÞ
96p2a4

ð1� 6nÞ a

r � a

	 
4�n
; n\4; ð3:127bÞ

where the latter is the leading divergence in order n. These results clearly seem to
demonstrate the virtue of the conformal value of n ¼ 1=6; but see below. (The
value for the Dirichlet sphere (127a) first appeared in [61]; it more recently was
rederived in [87], where, however, the subdominant term, the leading term if
n ¼ 1=6; namely (3.130), was not calculated. Of course, this result is the same
as the surface divergence encountered for parallel Dirichlet plates [36, 38].)
The perturbative divergence for n ¼ 1 in (3.127b) is exactly that found for a
plate—see (3.48).

Thus, for n ¼ 1=6 we must keep subleading terms. This includes keeping the
subdominant term in v;4

v � 2
t

r � a

r
þ t

r � a

r

	 
2
; ð3:128Þ

the distinction between tðzÞ and ~t ¼ tð~z ¼ za=rÞ;

~z~t � zt � t3z
r � a

r
; ð3:129Þ

4 Note there is a sign error in (4.8) of [74].
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as well as the next term in the uniform asymptotic expansion of the Bessel
functions (3.81). Including all this, it is straightforward to recover the well-known
result (3.58) [61] for strong coupling (Dirichlet boundary conditions):

k
a
!1 : u� 1

360p2

1

aðr � aÞ3
; ð3:130Þ

Following the same process for weak coupling, we find that the leading
divergence in order n, 1 n\3; is (r ! a�)

k! 0 : uðnÞ � k
a2

� �n 1
1440p2

1

aða� rÞ3�n ðn� 1Þðnþ 2ÞCð3� nÞ: ð3:131Þ

Note that the subleading OðkÞ term again vanishes. Both (3.130, 3.131) apply
for the conformal value n ¼ 1=6:

3.4.4 Total Energy and Renormalization

As discussed in [74] we may consider the potential, in the spirit of (3.32),

Lint ¼ �
k

2a2
/2rðrÞ; ð3:132aÞ

where

rðrÞ ¼
0; r\a�;
h; a�\r\aþ;
0; aþ\r:

8
<

:
ð3:132bÞ

Here a� ¼ a� d=2; and we set hd ¼ 1: That is, we have expanded the
d-function shell so that it has finite thickness.

In particular, the integrated local energy density inside, outside, and within the
shell is Ein; Eout; and Esh; respectively. The total energy of a given region is the
sum of the integrated local energy and the surface energy (3.20a) bounding that
region (n ¼ 1=6):

~Ein ¼ Ein þ Ê�; ð3:133aÞ

~Eout ¼ Eout þ Êþ; ð3:133bÞ

~Esh ¼ Esh þ Ê0þ þ Ê0�; ð3:133cÞ

where Ê� is the outside (inside) surface energy on the surface at r ¼ a�; while Ê0�
is the inside (outside) surface energy on the same surfaces. Ein; Eout; and Esh
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represent
R
ðdrÞhT00i in each region. Because for a nonsingular potential the

surface energies cancel across each boundary,

Êþ þ Ê0þ ¼ 0; Ê� þ Ê0� ¼ 0; ð3:134Þ

the total energy is

E ¼ ~Ein þ ~Eout þ ~Esh ¼ Ein þ Eout þ Esh: ð3:135Þ

In the singular thin shell limit, the integrated local shell energy is the total
surface energy of a thin Dirichlet shell:

Esh ¼ Êþ þ Ê� 6¼ 0: ð3:136Þ

See the remark at the end of Sect. 3.2.2. This shell energy, for the conformally
coupled theory, is finite in second order in the coupling (in at least two plausible
regularization schemes), but diverges in third order. We showed in [74] that the
latter precisely corresponds to the known divergence of the total energy in this
order. Thus we have established the suspected correspondence between surface
divergences and divergences in the total energy, which has nothing to do with
divergences in the local energy density as the surface is approached. This precise
correspondence should enable us to absorb such global divergences in a renor-
malization of the surface energy, and should lead to further advances of our
understanding of quantum vacuum effects. We will elaborate on this point in the
following.

3.5 Semitransparent Cylinder

This section is based on [37]. We consider a massless scalar field / in a d-cylinder
background,

Lint ¼ �
k

2a
dðr � aÞ/2; ð3:137Þ

a being the radius of the ‘‘semitransparent’’ cylinder. The massive case was earlier
considered by Scandurra [88]. We will continue to assume that the dimensionless
coupling k [ 0 to avoid the appearance of negative eigenfrequencies. The time-
Fourier transform of the Green’s function satisfies

�r2 � x2 þ kdðr � aÞ
� �

Gðr; r0Þ ¼ dðr� r0Þ: ð3:138Þ

Adopting cylindrical coordinates, we write

Gðr; r0Þ ¼
Z

dk
2p

eikðz�z0Þ
X1

m¼�1

1
2p

eimðu�u0Þgmðr; r0; kÞ; ð3:139Þ
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where the reduced Green’s function satisfies

� 1
r

o

or
r
o

or
þ j2 þ m2

r2
þ k

a
dðr � aÞ

� �

gmðr; r0; kÞ ¼ 1
r
dðr � r0Þ; ð3:140Þ

where j2 ¼ k2 � x2. Let us immediately make a Euclidean rotation,

x! if; ð3:141Þ

where f is real, so j is likewise always real. Apart from the d functions, this is the
modified Bessel equation.

Because of the Wronskian (3.64) satisfied by the modified Bessel functions, we
have the general solution to (3.140) as long as r 6¼ a to be

gmðr; r0; kÞ ¼ Imðjr\ÞKmðjr [ Þ þ Aðr0ÞImðjrÞ þ Bðr0ÞKmðjrÞ; ð3:142Þ

where A and B are arbitrary functions of r0: Now we incorporate the effect of the d
function at r ¼ a in (3.140). It implies that gm must be continuous at r ¼ a; while it
has a discontinuous derivative,

o

or
gmðr; r0; kÞ

�
�
�
�

r¼aþ

r¼a�
¼ k

a
gmða; r0; kÞ; ð3:143Þ

from which we rather immediately deduce the form of the Green’s function inside
and outside the cylinder:

r; r0\a : gmðr; r0; kÞ ¼ Imðjr\ÞKmðjr[ Þ

� kK2
mðjaÞ

1þ kImðjaÞKmðjaÞImðjrÞImðjr0Þ; ð3:144aÞ

r; r0[ a : gmðr; r0; kÞ ¼ Imðjr\ÞKmðjr[ Þ

� kI2
mðjaÞ

1þ kImðjaÞKmðjaÞKmðjrÞKmðjr0Þ: ð3:144bÞ

Notice that in the limit k!1 we recover the Dirichlet cylinder result, that is,
that gm vanishes at r ¼ a:

3.5.1 Cylinder Pressure and Energy

The easiest way to calculate the total energy is to compute the pressure on the
cylindrical walls due to the quantum fluctuations in the field. This may be com-
puted, at the one-loop level, from the vacuum expectation value of the stress
tensor,
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hTlmi ¼ olo0m � 1
2

glmoko0k

� �
1
i

Gðx; x0Þ
�
�
�
�
x¼x0
� nðolom � glmo2Þ 1

i
Gðx; xÞ; ð3:145Þ

which we have written in a Cartesian coordinate system. Here we have again
included the conformal parameter n; which is equal to 1/6 for the stress tensor that
makes conformal invariance manifest. The conformal term does not contribute to
the radial-radial component of the stress tensor, however, because then only
transverse and time derivatives act on Gðx; xÞ; which depends only on r. The
discontinuity of the expectation value of the radial-radial component of the stress
tensor is the pressure of the cylindrical wall:

P ¼ hTrriin � hTrriout

¼ � 1
16p3

X1

m¼�1

Z1

�1

dk

Z1

�1

df
kj2

1þ kImðjaÞKmðjaÞ

� K2
mðjaÞI02m ðjaÞ � I2

mðjaÞK 02m ðjaÞ
� �

¼ � 1
16p3

X1

m¼�1

Z1

�1

dk

Z1

�1

df
j
a

d
dja

ln 1þ kImðjaÞKmðjaÞ½ �; ð3:146Þ

where we have again used the Wronskian (3.64) . Regarding ka and fa as the two

Cartesian components of a two-dimensional vector, with magnitude x � ja ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2a2 þ f2a2

p
; we get the stress on the cylinder per unit length to be

S ¼ 2paP ¼ � 1
4pa3

Z1

0

dx x2
X1

m¼�1

d
dx

ln 1þ kImðxÞKmðxÞ½ �; ð3:147Þ

which possesses the expected Dirichlet limit as k!1: The corresponding
expression for the total Casimir energy per unit length follows by integrating

S ¼ � o

oa
E; ð3:148Þ

that is,

E ¼ � 1
8pa2

Z1

0

dx x2
X1

m¼�1

d
dx

ln 1þ kImðxÞKmðxÞ½ �: ð3:149Þ

This expression, the analog of (3.73) for the spherical case, is, of course,
completely formal, and will be regulated in various ways, for example, with an
analytic or exponential regulator as we will see in the following, or by using zeta-
function regularization [37].

Alternatively, we may compute the energy directly from the general formula
(3.16). To evaluate (3.16) in this case, we use the standard indefinite integrals over
squared Bessel functions. When we insert the above construction of the Green’s
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function (3.144a, b), and perform the integrals over the regions interior and
exterior to the cylinder we obtain (3.149) immediately.

3.5.2 Weak-coupling Evaluation

Suppose we regard k as a small parameter, so let us expand (3.149) in powers of k:
The first term is

Eð1Þ ¼ � k
8pa2

X1

m¼�1

Z1

0

dx x2 d
dx

KmðxÞImðxÞ: ð3:150Þ

The addition theorem for the modified Bessel functions is

K0ðkPÞ ¼
X1

m¼�1
eimð/�/0ÞKmðkqÞImðkq0Þ; q[ q0; ð3:151Þ

where P ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ q02 � 2qq0 cosð/� /0Þ

p
: If this is extrapolated to the limit

q0 ¼ q we conclude that the sum of the Bessel functions appearing in (3.150) is
K0ð0Þ; that is, a constant, so there is no first-order contribution to the energy. For a
rigorous derivation of this result, see [37].

We can proceed the same way to evaluate the second-order contribution,

Eð2Þ ¼ k2

16pa2

Z1

0

dx x2 d
dx

X1

m¼�1
I2
mðxÞK2

mðxÞ: ð3:152Þ

By squaring the sum rule (3.151), and taking the limit q0 ! q; we evaluate the
sum over Bessel functions appearing here as

X1

m¼�1
I2
mðxÞK2

mðxÞ ¼
Z2p

0

du
2p

K2
0ð2x sin u=2Þ: ð3:153Þ

Then changing the order of integration we find that the second-order energy can
be written as

Eð2Þ ¼ � k2

64p2a2

Z2p

0

du

sin2 u=2

Z1

0

dz z K2
0ðzÞ; ð3:154Þ

where the Bessel-function integral has the value 1/2. However, the integral over u
is divergent. We interpret this integral by adopting an analytic regularization based
on the integral [31]

Z2p

0

du sin
u
2

	 
s
¼

2
ffiffiffi
p
p

C 1þs
2

� �

C 1þ s
2

� � ; ð3:155Þ

3 Local and Global Casimir Energies 71



which holds for Re s [ � 1: Taking the right-side of this equation to define the u
integral for all s, we conclude that the u integral in (3.154), and hence the second-

order energy Eð2Þ; is zero.

3.5.2.1 Numerical Evaluation

Given that the above argument evidently formally omits divergent terms, it may be

more satisfactory, as in [31], to offer a numerical evaluation of Eð2Þ. (The corre-

sponding argument for Eð1Þ is given in [37].) We can very efficiently do so using
the uniform asymptotic expansions (3.81). Thus the asymptotic behavior of the
product of Bessel functions appearing in (3.152) is

I2
mðxÞK2

mðxÞ�
t2

4m2
1þ

X1

k¼1

rkðtÞ
m2k

 !

: ð3:156Þ

The first three polynomials occurring here are

r1ðtÞ ¼
t2

4
ð1� 6t2 þ 5t4Þ; ð3:157aÞ

r2ðtÞ ¼
t4

16
ð7� 148t2 þ 554t4 � 708t6 þ 295t8Þ; ð3:157bÞ

r3ðtÞ ¼
t6

16
ð36� 1666t2 þ 13775t4 � 44272t6

þ 67162t8 � 48510t10 þ 13475t12Þ:
ð3:157cÞ

We now write the second-order energy (3.152) as

Eð2Þ ¼ � k2

8pa2

(Z1

0

dx x I2
0ðxÞK2

0ðxÞ �
1

4ð1þ x2Þ

� �

� 1
4

lim
s!0

1
2
þ
X1

m¼1

m�s

 !Z1

0

dz z2�s d
dz

1
1þ z2

þ 2
Z1

0

dz z
t2

4

X1

m¼1

X3

k¼1

rkðtÞ
m2k

þ 2
X1

m¼1

Z1

0

dx x I2
mðxÞK2

mðxÞ �
t2

4m2
1þ

X3

k¼1

rkðtÞ
m2k

 !" #)

: ð3:158Þ
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In the final integral z ¼ x=m: The successive terms are evaluated as

Eð2Þ � � k2

8pa2

"
1
4
ðcþ ln 4Þ � 1

4
ln 2p� fð2Þ

48
þ 7fð4Þ

1920
� 31fð6Þ

16128

þ 0:000864þ 0:000006

#

¼ � k2

8pa2
ð0:000000Þ; ð3:159Þ

where in the last term in (3.158) only the m = 1 and 2 terms are significant.
Therefore, we have demonstrated numerically that the energy in order k2 is zero to
an accuracy of better than 10�6:

The astute reader will note that we used a standard, but possibly questionable,
analytic regularization in defining the second term in (3.158), where the initial sum
and integral are only defined for 1\s\2; and then the result is continued to s = 0.
Alternatively, we could follow [31] and insert there an exponential regulator in
each integral of e�xd; with d to be taken to zero at the end of the calculation.
For m 6¼ 0 x becomes mz, and then the sum on m becomes

X1

m¼1

e�mzd ¼ 1
ezd � 1

: ð3:160Þ

Then when we carry out the integral over z we obtain for that term

p
8d
� 1

4
ln 2p: ð3:161Þ

Thus we obtain the same finite part as above, but in addition an explicitly
divergent term

E
ð2Þ
div ¼ �

k2

64a2d
: ð3:162Þ

If we think of the cutoff in terms of a vanishing proper time s; d ¼ s=a; this
divergent term is proportional to 1=a; so the divergence in the energy goes like
L=a; if L is the (very large) length of the cylinder. This is of the form of the shape
divergence encountered in [31].

3.5.2.2 Divergences in the Total Energy

In this subsection we are going to use heat-kernel knowledge to determine the
divergence structure in the total energy. We consider a general cylinder of the
type C ¼ R� Y ; where Y is an arbitrary smooth two dimensional region rather
than merely being the disc. As a metric we have ds2 ¼ dz2 þ dY2 from which
we obtain that the zeta function (density) associated with the Laplacian on C is
(Re s [ 3=2)
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fðsÞ ¼ 1
2p

Z1

�1

dk
X

kY

ðk2 þ kYÞ�s ¼ 1
2p

ffiffiffi
p
p

C s� 1
2

� �

CðsÞ
X

kY

k1=2�s
Y

¼ 1
2p

ffiffiffi
p
p

C s� 1
2

� �

CðsÞ fY s� 1
2

� �

ð3:163Þ

Here kY are the eigenvalues of the Laplacian on Y, and fYðsÞ is the zeta function
associated with these eigenvalues. In the zeta-function scheme the Casimir energy
is defined as

ECas ¼
1
2
l2sf s� 1

2

� ��
�
�
�
s¼0

; ð3:164Þ

which, in the present setting, turns into

ECas ¼
1
2

l2s Cðs� 1Þ
2
ffiffiffi
p
p

C s� 1
2

� � fYðs� 1Þ
�
�
�
�
�
s¼0

: ð3:165Þ

Expanding this expression about s ¼ 0; one obtains

ECas ¼
1

8ps
fYð�1Þ þ 1

8p
fYð�1Þ 2 lnð2lÞ � 1½ � þ f0Yð�1Þ
� �

þ OðsÞ: ð3:166Þ

The contribution associated with fYð�1Þ can be determined solely from the
heat-kernel coefficient knowledge, namely

fYð�1Þ ¼ �a4; ð3:167Þ

in terms of the standard 4th heat-kernel coefficient. The contribution coming from
f0Yð�1Þ can in general not be determined. But as we see, at least the divergent term
can be determined entirely by the heat-kernel coefficient.

The situation considered in the Casimir energy calculation is a d-function shell
along some smooth line R in the plane (here, a circle of radius a). The manifolds
considered are the cylinder created by the region inside of the line, and the region
outside of the line; from the results the contribution from free Minkowski space
has to be subtracted to avoid trivial volume divergences (the representation in
terms of the Bessel functions already has Minkowski space contributions sub-
tracted). The d-function shell generates a jump in the normal derivative of the
eigenfunctions; call the jump U (here, U ¼ k=a). The leading heat-kernel coeffi-
cients for this situation, namely for functions which are continuous across the
boundary but which have a jump of the first normal derivative at the boundary,
have been determined in [89]; the relevant a4 coefficient is given in Theorem 7.1,
p. 139 of that reference. The results there are very general; for our purpose there is
exactly one term that survives, namely

a4 ¼ �
1

24p

Z

R

dlU3; ð3:168Þ
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which shows that

Ediv
Cas ¼

1
192p2s

Z

R

dlU3: ð3:169Þ

So no matter along which line the d-function shell is concentrated, the first two
orders in a weak-coupling expansion do not contribute any divergences in the total
energy. But the third order does, and the divergence is given above.

For the example considered, as mentioned, U ¼ k=a is constant, and the inte-
gration leads to the length of the line which is 2pa: Thus we get for this particular
example

Ediv
Cas ¼

1
96ps

k3

a2
: ð3:170Þ

[Compare this with the corresponding divergence for a sphere, (3.85).] This can
be easily checked from the explicit representation we have for the energy. We have
already seen that the first two orders in k identically vanish, while the part of the
third order that potentially contributes a divergent piece is

Eð3Þ ¼ � 1
8pa2

X1

m¼�1

Z1

0

dx x2�2s d
dx

1
3
k3K3

mðxÞI3
mðxÞ: ð3:171Þ

The m = 0 contribution is well behaved about s = 0; while for the remaining
sum using

K3
mðmzÞI3

mðmzÞ� 1
8m3

1

ð1þ z2Þ3=2
; ð3:172Þ

we see that the leading contribution is

Eð3Þ � � k3

12pa2

X1

m¼1

m2�2s
Z1

0

dz z2�2s d
dz

1
8m3

1

ð1þ z2Þ3=2

¼� k3

96pa2
fRð1þ 2sÞ

Z1

0

dz z2�2s d
dz

1

ð1þ z2Þ3=2

¼ k3

96pa2
fRð1þ 2sÞ

Cð2� sÞC sþ 1
2

� �

Cð3=2Þ ¼ k3

96pa2s
þ Oðs0Þ;

ð3:173Þ

in perfect agreement with the heat-kernel prediction (3.170).
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3.5.3 Strong Coupling

The strong-coupling limit of the energy (3.149), that is, the Casimir energy of a
Dirichlet cylinder,

ED ¼ � 1
8pa2

X1

m¼�1

Z1

0

dx x2 d
dx

ln ImðxÞKmðxÞ; ð3:174Þ

was worked out to high accuracy by Gosdzinsky and Romeo [29],

ED ¼ 0:000614794033
a2

: ð3:175Þ

It was later redone with less accuracy by Nesterenko and Pirozhenko [90].
For completeness, let us sketch the evaluation here. We carry out a numerical

calculation (very similar to that of [90]) in the spirit of Sect. 3.5.2.1. We add and
subtract the leading uniform asymptotic expansion (for m ¼ 0 the asymptotic
behavior) as follows:

ED ¼� 1
8pa2

(

� 2
Z1

0

dx x ln 2xI0ðxÞK0ðxÞð Þ � 1
8

1
1þ x2

� �

þ 2
X1

m¼1

Z1

0

dx x2 d
dx

ln 2xImðxÞKmðxÞð Þ � ln
xt

m

	 

� 1

2
r1ðtÞ
m2

� �

� 2
1
2
þ
X1

m¼1

 !Z1

0

dx x2 d
dx

ln 2xþ 2
X1

m¼1

Z1

0

dx x2 d
dx

ln xt

þ
X1

m¼1

Z1

0

dx x2 d
dx

r1ðtÞ
m2
� 1

4
1

1þ x2

� �

þ 1
4

1
2
þ
X1

m¼1

 !Z1

0

dx x2 d
dx

1
1þ x2

)

: ð3:176Þ

In the first two terms we have subtracted the leading asymptotic behavior so the
resulting integrals are convergent. Those terms are restored in the fourth, fifth, and
sixth terms. The most divergent part of the Bessel functions are removed by
the insertion of 2x in the corresponding integral, and its removal in the third term.
(As we’ve seen above, such terms have been referred to as ‘‘contact terms,’’
because if a time-splitting regulator, eifs, is inserted into the frequency integral, a
term proportional to dðsÞ appears, which is zero as long as s 6¼ 0.) The terms
involving Bessel functions are evaluated numerically, where it is observed that the
asymptotic value of the summand (for large m) in the second term is 1=32m2. The
fourth term is evaluated by writing it as
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2 lim
s!0

X1

m¼1

m2�s
Z1

0

dz
z1�s

1þ z2
¼ 2f0ð�2Þ ¼ �fð3Þ

2p2
; ð3:177Þ

while the same argument, as anticipated, shows that the third ‘‘contact’’ term is
zero,5 while the sixth term is

� 1
2

lim
s!0

fðsÞ þ 1
2

� �
1
s
¼ 1

4
ln 2p: ð3:178Þ

The fifth term is elementary. The result then is

ED ¼ 1
4pa2

0:010963� 0:0227032þ 0þ 0:0304485þ 0:21875� 0:229735ð Þ

¼ 1
4pa2

ð0:007724Þ ¼ 0:0006146
a2

;

ð3:179Þ

which agrees with (3.175) to the fourth significant figure.

3.5.3.1 Exponential Regulator

As in Sect. 3.5.2.1, it may seem more satisfactory to insert an exponential regulator
rather than use analytic regularization. Now it is the third, fourth, and sixth terms
in (3.176) that must be treated. The latter is just the negative of (3.161). We can
combine the third and fourth terms to give using (3.160)

� 1

d2 �
2

d2

Z1

0

dz z3

z2 þ d2

d2

dz2

1
ez � 1

: ð3:180Þ

The latter integral may be evaluated by writing it as an integral along the entire
z axis, and closing the contour in the upper half plane, thereby encircling the poles
at id and at 2inp; where n is a positive integer. The residue theorem then gives for
that integral

� 2p

d3 �
fð3Þ
2p2

; ð3:181Þ

so once again we obtain the same finite part as in (3.177). In this way of pro-
ceeding, then, in addition to the finite part in (3.179), we obtain divergent terms

5 This argument is a bit suspect, since the analytic continuation that defines the integrals has no
common region of existence. Thus the argument in the following subsection may be preferable.
However, since that term is properly a contact term, it should in any event be spurious.
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ED
div ¼

1
64a2d

þ 1

8pa2d2 þ
1

4a2d3 ; ð3:182Þ

which, with the previous interpretation for d; implies divergent terms in the
energy proportional to L=a (shape), L (length), and aL (area), respectively.
Such terms presumably are to be subsumed in a renormalization of parameters
in the model. Had a logarithmic divergence occurred [as does occur in weak
coupling in Oðk3Þ] such a renormalization would apparently be impossible—
however, see [37].

3.5.4 Local Energy Density

We compute the energy density from the stress tensor (3.145), or

hT00i ¼ 1
2i

o0o00 þ r � r0
� �

Gðx; x0Þ
�
�
�
�
x0¼x

� n
i
r2Gðx; xÞ

¼ 1
16p3i

Z1

�1

dk

Z1

�1

dx
X1

m¼�1

"

x2 þ k2 þ m2

r2
þ oror0

� �

gðr; r0Þ
�
�
�
�
r0¼r

� 2n
1
r
orrorgðr; rÞ

#

: ð3:183Þ

We omit the free part of the Green’s function, since that corresponds to the
energy that would be present in the vacuum in the absence of the cylinder. When
we insert the remainder of the Green’s function (3.144b), we obtain the following
expression for the energy density outside the cylindrical shell:

uðrÞ ¼hT00 � T00
ð0Þi ¼ �

k
16p3

Z1

�1

df
Z1

�1

dk
X1

m¼�1

I2
mðjaÞ

1þ kImðjaÞKmðjaÞ

� 2x2 þ j2 þ m2

r2

� �

K2
mðjrÞ þ j2K 02m ðjrÞ � 2n

1
r

o

or
r

o

or
K2

mðjrÞ
� �

;

r [ a: ð3:184Þ

The factor in square brackets can be easily seen to be, from the modified Bessel
equation,

2x2K2
mðjrÞ þ 1� 4n

2
1
r

o

or
r

o

or
K2

mðjrÞ: ð3:185Þ

For the interior region, r\a; we have the corresponding expression for the
energy density with Im $ Km:
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3.5.5 Total and Surface Energy

We first need to verify that we recover the expression for the energy found in
Sect. 3.5.1. So let us integrate expression (3.184) over the region exterior of
the cylinder, and the corresponding interior expression over the inside region. The
second term in (3.185) is a total derivative, while the first is exactly the one
evaluated in Sect. 3.5.1. The result is

2p
Z1

0

dr r uðrÞ ¼ � 1
8pa2

X1

m¼�1

Z1

0

dx x2 d
dx

ln 1þ kImðxÞKmðxÞ½ �

� ð1� 4nÞ k
4pa2

Z1

0

dx x
X1

m¼�1

ImðxÞKmðxÞ
1þ kImðxÞKmðxÞ

: ð3:186Þ

The first term is the total energy (3.149), but what do we make of the second
term? In strong coupling, it would represent a constant that should have no
physical significance (a contact term—it is independent of a if we revert to the
physical variable j as the integration variable). In general, however, there is
another contribution to the total energy, residing precisely on the singular surface.
This surface energy is given in general by [60, 91, 92, 55, 50, 45]

Ê ¼ �1� 4n
2i

I

S
dS � rGðx; x0Þ

�
�
�
�
x0¼x

; ð3:187Þ

as given for n ¼ 0 in (3.20a), where the normal to the surface is out of the region in
question. In this case it is easy to see that Ê exactly equals the negative of the
second term in (3.186). This is an example of the general theorem (3.21)

Z

ðdrÞuðrÞ þ Ê ¼ E; ð3:188Þ

that is, the total energy E is the sum of the integrated local energy density and the
surface energy. The generalization of this theorem, (3.187, 3.188), to curved space
is given in [57]. A consequence of this theorem is that the total energy, unlike the
local energy density, is independent of the conformal parameter n: (Note that this
surface energy vanishes when n ¼ 1=4 as Fulling has stressed [93].)

3.5.6 Surface Divergences

We now turn to an examination of the behavior of the local energy density (3.184)
as r approaches a from outside the cylinder. To do this we use the uniform
asymptotic expansion (3.81). Let us begin by considering the strong-coupling
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limit, a Dirichlet cylinder. If we stop with only the leading asymptotic behavior,
we obtain the expression

uðrÞ� � 1
8p3

Z1

0

djj2
X1

m¼1

e�mv

(

�j2 þ ð1� 4nÞ j2 þ m2

r2

� �� �
pt

2m

þ ð1� 4nÞj2 p
2mt

1
z2

)

; ðk!1Þ; ð3:189Þ

where

v ¼ �2 gðzÞ � g z
a

r

	 
h i
; ð3:190Þ

and we have replaced the integral over k and f by one over the polar variable j as
before. Here we ignore the difference between r and a except in the exponent, and
we now replace j by mz=a: Close to the surface,

v� 2
t

r � a

r
; r � a� r; ð3:191Þ

and we carry out the sum over m according to

2
X1

m¼1

m3e�mv� � 2
d3

dv3

1
v
¼ 12

v4
� 3

4
t4r4

ðr � aÞ4
: ð3:192Þ

Then the energy density behaves, as r ! aþ;

uðrÞ� � 3
64p2

1

ðr � aÞ4
Z1

0

dz z½t5 þ t3ð1� 8nÞ�

¼ � 1
16p2

1

ðr � aÞ4
ð1� 6nÞ: ð3:193Þ

This is the universal surface divergence first discovered by Deutsch and
Candelas [61] and seen for the sphere in (3.127a) [74]. It therefore occurs, with
precisely the same numerical coefficient, near a Dirichlet plate [36]. Unless gravity
is considered, it is utterly without physical significance, and may be eliminated
with the conformal choice for the parameter n; n ¼ 1=6:

We will henceforth make this conformal choice. Then the leading divergence
depends upon the curvature. This was also worked out by Deutsch and Candelas
[61]; for the case of a cylinder, that result is

uðrÞ� 1
720p2

1

rðr � aÞ3
; r ! aþ; ð3:194Þ

exactly 1/2 that for a Dirichlet sphere of radius a (3.130) [74], as anticipated
from the general analysis summarized in (3.59). Here, this result may be
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straightforwardly derived by keeping the 1=m corrections in the uniform asymp-
totic expansion (3.81), as well as the next term in the expansion of v; (3.128).

3.5.6.1 Weak Coupling

Let us now expand the energy density (3.184) for small coupling,

uðrÞ ¼ � k
16p3

Z1

�1

df
Z1

�1

dk
X1

m¼�1
I2
mðjaÞ

X1

n¼0

ð�kÞnIn
mðjaÞKn

mðjaÞ

� �j2 þ ð1� 4nÞ j2 þ m2

r2

� �� �

K2
mðjrÞ þ ð1� 4nÞj2K 02m ðjrÞ

� �

:

ð3:195Þ

If we again use the leading uniform asymptotic expansions for the Bessel func-
tions, we obtain the expression for the leading behavior of the term of order kn;

uðnÞðrÞ� 1
8p2r4

� k
2

� �nZ1

0

dz z
X1

m¼1

m3�ne�mvtn�1ðt2 þ 1� 8nÞ: ð3:196Þ

The sum on m is asymptotic to

X1

m¼1

m3�ne�mv�ð3� nÞ! tr

2ðr � aÞ

� �4�n

; r ! aþ; ð3:197Þ

so the most singular behavior of the order kn term is, as r ! aþ;

uðnÞðrÞ� ð�kÞn ð3� nÞ!ð1� 6nÞ
96p2rnðr � aÞ4�n : ð3:198Þ

This is exactly the result found for the weak-coupling limit for a d-sphere
(3.127b) [74] and for a d-plane (3.48) [45], so this is also a universal result,
without physical significance. It may be made to vanish by choosing the conformal
value n ¼ 1=6:

With this conformal choice, once again we must expand to higher order. We use
the corrections noted above, in (3.81) and (3.128, 3.129). Then again a quite
simple calculation gives

uðnÞ � ð�kÞnðn� 1Þðnþ 2ÞCð3� nÞ
2880p2rnþ1ðr � aÞ3�n ; r ! aþ; ð3:199Þ

which is analytically continued from the region 1Ren\3: Remarkably, this is
exactly one-half the result found in the same weak-coupling expansion for the
leading conformal divergence outside a sphere (3.131) [74]. Therefore, like
the strong-coupling result (3.194), this limit is universal, depending on the sum of
the principal curvatures of the interface.
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In [37] we considered a annular shell of finite thickness, which as the thickness
d tended to zero gave a finite residual energy in the annulus, in terms of the energy
density u in the annulus,

Eann ¼ 2pdau�ð1� 4nÞ k
4pa2

X1

m¼�1

Z1

0

dja ja
ImðjaÞKmðjaÞ

1þ kImðjaÞKmðjaÞ ¼ Ê; ð3:200Þ

which is exactly the form of the surface energy given by the negative of the second

term in (3.186). In particular, note that the term in Ê of order k3 is, for the conformal
value n ¼ 1=6; exactly equal to that term in the total energy E (3.149): [see (3.171)]

Êð3Þ ¼ Eð3Þ: ð3:201Þ

This means that the divergence encountered in the global energy (3.170) is
exactly accounted for by the divergence in the surface energy, which would seem
to provide strong evidence in favor of the renormalizablity of that divergence.

3.6 Gravitational Acceleration of Casimir Energy

We will here show that a body undergoing uniform acceleration (hyperbolic motion)
imparts the same acceleration to the quantum vacuum energy associated with this
body. This is consistent with the equivalence principle that states that all forms of
energy should gravitate equally. A general variational argument, which, however,
did not deal with the divergent parts of the energy, was given in [22]. This section is
based on [23].

3.6.1 Green’s Functions in Rindler Coordinates

Relativistically, uniform acceleration is described by hyperbolic motion,

z ¼ n cosh s and t ¼ n sinh s: ð3:202Þ

Here the proper acceleration of the particle described by these equations is n�1;
and we have chosen coordinates so that at time t = 0, zð0Þ ¼ n: Here we are going
to consider the corresponding metric

ds2 ¼ �dt2 þ dz2 þ dx2 þ dy2 ¼ �n2ds2 þ dn2 þ dx2 þ dy2: ð3:203Þ

In these coordinates, the d’Alembertian operator takes on cylindrical form

� o

ot

� �2

þ o

oz

� �2

þr2
? ¼ �

1

n2

o

os

� �2

þ 1
n

o

on
n

o

on

� �

þr2
?; ð3:204Þ

where ? refers to the x-y plane.
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3.6.1.1 Green’s Function for One Plate

For a scalar field in these coordinates, subject to a potential VðxÞ; the action is

W ¼
Z

d4x
ffiffiffiffiffiffiffiffiffiffiffiffi
�gðxÞ

p
Lð/ðxÞÞ; ð3:205Þ

where x � ðs; x; y; nÞ represents the coordinates, d4x ¼ ds dn dx dy is the coordi-
nate volume element, glmðxÞ ¼ diagð�n2;þ1;þ1;þ1Þ defines the metric, gðxÞ ¼
det glmðxÞ ¼ �n2 is the determinant of the metric, and the Lagrangian density is

Lð/ðxÞÞ ¼ �1
2

glmðxÞol/ðxÞom/ðxÞ � 1
2

VðxÞ/ðxÞ2; ð3:206Þ

where for a single semitransparent plate located at n1

VðxÞ ¼ kdðn� n1Þ; ð3:207Þ

and k[ 0 is the coupling constant having dimensions of mass. More explicitly we
have

W ¼
Z

d4x
n
2

1

n2

o/
os

� �2

� o/
on

� �2

� r?/ð Þ2�VðxÞ/2

" #

: ð3:208Þ

Stationarity of the action under an arbitrary variation in the field leads to the
equation of motion

� 1

n2

o2

os2
þ 1

n
o

on
n

o

on
þr2

? � VðxÞ
� �

/ðxÞ ¼ 0: ð3:209Þ

The corresponding Green’s function satisfies the differential equation

� � 1

n2

o2

os2
þ 1

n
o

on
n

o

on
þr2

? � VðxÞ
� �

Gðx; x0Þ ¼ dðn� n0Þ
n

dðs� s0Þdðx? � x0?Þ:

ð3:210Þ

Since in our case VðxÞ has only n dependence we can write this in terms of the
reduced Green’s function gðn; n0Þ;

Gðx; x0Þ ¼
Z1

�1

dx
2p

Z
d2k?

ð2pÞ2
e�ixðs�s0Þeik?�ðx�x0Þ?gðn; n0Þ; ð3:211Þ

where gðn; n0Þ satisfies

� 1
n

o

on
n

o

on
þ x2

n2 � k2
? � VðxÞ

� �

gðn; n0Þ ¼ dðn� n0Þ
n

: ð3:212Þ
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We recognize this equation as defining the semitransparent cylinder problem
discussed in Sect. 3.5 [37], with the replacements

a! n1; m! f ¼ �ix; j! k ¼ k?; k! kn1; ð3:213Þ

so that from (3.144a, b) we may immediately write down the solution in terms of
modified Bessel functions,

gðn; n0Þ ¼ Ifðkn\ÞKfðkn[ Þ �
kn1K2

f ðkn1ÞIfðknÞIfðkn0Þ
1þ kn1Ifðkn1ÞKfðkn1Þ

; n; n0\n1; ð3:214aÞ

¼ Ifðkn\ÞKfðkn[ Þ �
kn1I2

f ðkn1ÞKfðknÞKfðkn0Þ
1þ kn1Ifðkn1ÞKfðkn1Þ

; n; n0[ n1: ð3:214bÞ

Note that in the strong-coupling limit, k!1; this reduces to the Green’s
function satisfying Dirichlet boundary conditions at n ¼ n1:

3.6.1.2 Minkowski-space Limit

To recover the Minkowski-space Green’s function for the semitransparent plate,
we use the uniform asymptotic expansion (Debye expansion), based on the limit

n!1; n1 !1; n� n1 finite ; f!1; f=n1 finite : ð3:215Þ

For large f we use (3.81) with x ¼ fz ¼ kn; for example. Expanding the above
expressions (3.214a, b) around some arbitrary point n0; chosen such that the dif-
ferences n� n0; n0 � n0; and n1 � n0 are finite, we find for the leading term, for
example,

ffiffiffiffiffiffi
nn0

p
IfðknÞKfðkn0Þ �

1
2j

ejðn�n0Þ; ð3:216Þ

where j2 ¼ k2 þ f̂2; f̂ ¼ f=n0: In this way, taking for simplicity n0 ¼ n1; we find
the Green’s function for a single plate in Minkowski space,

n1gðn; n0Þ ! gð0Þðn; n0Þ ¼ 1
2j

e�jjn�n0 j � k
kþ 2j

1
2j

e�jjn�n1je�jjn0�n1j: ð3:217Þ

3.6.1.3 Green’s Function for Two Parallel Plates

For two semitransparent plates perpendicular to the n-axis and located at n1; n2;
with couplings k1 and k2; respectively, we find the following form for the Green’s
function:

gðn; n0Þ ¼ I\K [ �
k1n1K2

1 þ k2n2K2
2 � k1k2n1n2K1K2ðK2I1 � K1I2Þ

D
II0; n; n0\n1;

ð3:218aÞ
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¼ I\K[ �
k1n1I2

1 þ k2n2I2
2 þ k1k2n1n2I1I2ðI2K1 � I1K2Þ

D
KK0; n; n0[ n2;

ð3:218bÞ

¼ I\K[ �
k2n2K2

2ð1þ k1n1K1I1Þ
D

II0 � k1n1I2
1ð1þ k2n2K2I2Þ

D
KK0

þ k1k2n1n2I2
1K2

2

D
ðIK0 þ KI0Þ; n1\n; n0\n2;

ð3:218cÞ

where

D ¼ ð1þ k1n1K1I1Þð1þ k2n2K2I2Þ � k1k2n1n2I2
1K2

2 ; ð3:219Þ

and we have used the abbreviations I1 ¼ Ifðkn1Þ; I ¼ IfðknÞ; I0 ¼ Ifðkn0Þ; etc.
Again we can check that these formulas reduce to the well-known Minkowski-

space limits. In the n0 !1 limit, the uniform asymptotic expansion (3.81) gives,
for n1\n; n0\n2

n0gðn; n0Þ ! gð0Þðn; n0Þ ¼ 1
2j

e�jjn�n0j þ 1

2j~D

�
k1k2

4j2
2 cosh jðn� n0Þ

� k1

2j
1þ k2

2j

� �

e�jðnþn0�2n2Þ � k2

2j
1þ k1

2j

� �

ejðnþn0�2n1Þ
�

;

ð3:220Þ

where (a ¼ n2 � n1)

~D ¼ 1þ k1

2j

� �

1þ k2

2j

� �

e2ja � k1k2

4j2
; ð3:221Þ

which is exactly the expected result (3.7a, 3.8). The correct limit is also obtained in
the other two regions.

3.6.2 Gravitational Acceleration of Casimir Apparatus

We next consider the situation when the plates are forced to ‘‘move rigidly’’ [94]
in such a way that the proper distance between the plates is preserved. This is
achieved if the two plates move with different but constant proper accelerations.

The canonical energy-momentum or stress tensor derived from the action
(3.205) is

TabðxÞ ¼ oa/ðxÞob/ðxÞ þ gabðxÞLð/ðxÞÞ; ð3:222Þ

where the Lagrange density includes the d-function potential. The components
referring to the pressure and the energy density are

T33ðxÞ ¼
1
2

1

n2

o/
os

� �2

þ 1
2

o/
on

� �2

� 1
2
r?/ð Þ2� 1

2
VðxÞ/2; ð3:223aÞ
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1

n2 T00ðxÞ ¼
1
2

1

n2

o/
os

� �2

þ 1
2

o/
on

� �2

þ 1
2
r?/ð Þ2þ 1

2
VðxÞ/2: ð3:223bÞ

The latter may be written in an alternative convenient form using the equations
of motion (3.209):

T00 ¼
1
2

o/
os

� �2

� 1
2

/
o2

os2
/þ n

2
o

on
/n

o

on
/

� �

þ n2

2
r? � ð/r?/Þ; ð3:224Þ

which is the appropriate version of (3.19) here. The force density is given by [95]
�rmTm

k; or

fk ¼ �
1
ffiffiffiffiffiffiffi�g
p omð

ffiffiffiffiffiffiffi�g
p

Tm
kÞ þ

1
2

Tlmokglm; ð3:225Þ

or in Rindler coordinates

fn ¼ �
1
n
onðnTnnÞ � nT00: ð3:226Þ

When we integrate over all space to get the force, the first term is a surface term
which does not contribute6:

F ¼
Z

dn nfn ¼ �
Z

dn

n2T00: ð3:227Þ

This could be termed the Rindler coordinate force per area, defined as the
change in momentum per unit Rindler coordinate time s per unit cross-sectional
area. If we multiply F by the gravitational acceleration g we obtain the gravita-
tional force per area on the Casimir energy. This result (3.227) seems entirely
consistent with the equivalence principle, since n�2T00 is the energy density. Using
the expression (3.224) for the energy density, taking the vacuum expectation

value, and rescaling f ¼ f̂n; we see that the gravitational force per cross sectional
area is merely

6 Note that in previous works, such as [45, 46], the surface term was included, because the
integration was carried out only over the interior and exterior regions. Here we integrate over the
surface as well, so the additional so-called surface energy is automatically included. This is
described in the argument leading to (3.20a). Note, however, if (3.226) is integrated over a small
interval enclosing the d-function potential,

Zn1þ�

n1��

dnnfn ¼ �n1DTnn;

where DTnn is the discontinuity in the normal-normal component of the stress density. Dividing
this expression by n1 gives the usual expression for the force on the plate.
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F ¼
Z

dnn
Z

df̂d2k

ð2pÞ3
f̂2gðn; nÞ: ð3:228Þ

This result for the energy contained in the force equation (3.228) is an
immediate consequence of the general formula for the Casimir energy (3.16) [38].

Alternatively, we can start from the following formula for the force density for
a single semitransparent plate, following directly from the equations of motion
(3.209),

fn ¼
1
2
/2onkdðn� n1Þ: ð3:229Þ

The vacuum expectation value of this yields the force in terms of the Green’s
function,

F ¼ �k
1
2

Z
df d2k

ð2pÞ3
on½ngðn; nÞ�

�
�
�
�
n¼n1

: ð3:230Þ

3.6.2.1 Gravitational Force on a Single Plate

For example, the force on a single plate at n1 is given by

F ¼ �on1

1
2

Z
df d2k

ð2pÞ3
ln½1þ kn1Ifðkn1ÞKfðkn1Þ�; ð3:231Þ

Expanding this about some arbitrary point n0; with f ¼ f̂n0; using the uniform

asymptotic expansion (3.81), we get (j2 ¼ k2 þ f̂2)

n1Ifðkn1ÞKfðkn1Þ�
n1

2f
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðkn1=fÞ2

q � n1

2jn0
1� k2

j2

n1 � n0

n0

� �

: ð3:232Þ

From this, if we introduce polar coordinates for the k-f̂ integration, the coor-
dinate force is

F ¼� 1
2

on1

n0

2p2

Z1

0

dj j2 k
2jþ k

1þ n1 � n0

n0

� �

1� hk
2i

j2

n1 � n0

n0

� �

¼� k
4p2

on1
ðn1 � n0Þ

Z1

0

dj
2jþ k

hf̂2i

¼ � 1
96p2a3

Z1

0

dyy2

1þ y=ka
; ð3:233Þ
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where for example

hf̂2i ¼ 1
2

Z1

�1

d cos h cos2 hj2 ¼ 1
3

j2: ð3:234Þ

The divergent expression (3.233) is just the negative of the quantum vacuum
energy of a single plate, seen in (3.17) and (3.43).

3.6.2.2 Parallel Plates Falling in a Constant Gravitational Field

In general, we have two alternative forms for the gravitational force on the
two-plate system:

F ¼ �ðon1
þ on2

Þ 1
2

Z
df d2k

ð2pÞ3
ln D; ð3:235Þ

D given in (3.219), which is equivalent to (3.228). (In the latter, however, bulk
energy, present if no plates are present, must be omitted.) From either of the above
two methods, we find the coordinate force [as defined below (3.227)] is given by

F ¼ � 1
4p2

Z1

0

djj2 ln D0; ð3:236Þ

where D0 ¼ e�2ja ~D; ~D given in (3.221). The integral may be easily shown to be

F ¼ 1
96p2a3

Z1

0

dyy3
1þ 1

yþk1aþ 1
yþk2a

y
k1aþ 1
	 


y
k2aþ 1
	 


ey � 1

� 1
96p2a3

Z1

0

dyy2 1
y

k1aþ 1
þ 1

y
k2aþ 1

" # ð3:237aÞ

¼ �ðEc þ Ed1 þ Ed2Þ; ð3:237bÞ

which is just the negative of the Casimir energy of the two semitransparent plates
including the divergent pieces—See (3.17) [45, 46]. Note that Edi; i ¼ 1; 2; are
simply the divergent energies (3.233) associated with a single plate.

3.6.2.3 Renormalization

The divergent terms in (3.237b) simply renormalize the masses (per unit area) of
each plate:
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Etotal ¼ m1 þ m2 þ Ed1 þ Ed2 þ Ec

¼ M1 þM2 þ Ec;
ð3:238Þ

where mi is the bare mass of each plate, and the renormalized mass is Mi ¼
mi þ Edi: Thus the gravitational force on the entire apparatus obeys the equiva-
lence principle

gF ¼ �gðM1 þM2 þ EcÞ: ð3:239Þ

The minus sign reflects the downward acceleration of gravity on the surface of the
earth. Note here that the Casimir interaction energy Ec is negative, so it reduces
the gravitational attraction of the system.

3.6.3 Summary

We have found, in conformation with the result given in [22], an extremely simple
answer to the question of how Casimir energy accelerates in a weak gravitational
field: Just like any other form of energy, the gravitational force F divided by the
area of the plates is

F

A
¼ �gEc: ð3:240Þ

This is the result expected by the equivalence principle, but is in contradiction
to some earlier disparate claims in the literature [95–99]. Bimonte et al. [100] now
agree completely with our conclusions. This result perfectly agrees with that found
by Saharian et al. [101] for Dirichlet, Neumann, and perfectly conducting plates
for the finite Casimir interaction energy. The acceleration of Dirichlet plates fol-
lows from our result when the strong coupling limit k!1 is taken. What makes
our conclusion particularly interesting is that it refers not only to the finite part of
the Casimir interaction energy between semitransparent plates, but to the divergent
parts as well, which are seen to simply renormalize the gravitational mass of each
plate, as they would the inertial mass. The reader may object that by equating
gravitational force with uniform acceleration we have built in the equivalence
principle, and so does any procedure based on Einstein’s equations; but the real
nontriviality here is that quantum fluctuations obey the same universal law. The
reader is also referred to the important work on this subject by Jaekel and Reynaud
[102], and extensive references therein.

3.7 Conclusions

In this review, I have illustrated the issues involved in calculating self-energies in
the simple context of massless scalar fields interacting with d-function potentials,
so-called semitransparent boundaries. This is not as unrealistic as it might sound,
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since in the strong coupling limit this yields Dirichlet boundary conditions, and by
using derivative of d-function boundaries, we can recover Neumann boundary
conditions. Thus, where the boundaries admit the separation into TE and TM
modes, we can recover perfect-conductor boundaries imposed on electromagnetic
fields.

We have examined both divergences occurring in the total energy, and diver-
gences which appear in the local energy density as boundaries are approached. The
latter divergences often have little to do with the former, because the local
divergences may cancel across the boundaries, and they typically depend on the
form (canonical or conformal, for example) of the local stress-energy tensor. The
global divergences apparently can always be uniquely isolated, leaving a unique
finite self-energy; in some cases at least the divergent parts can be absorbed into a
renormalization of properties of the boundaries, such as their masses. It is expected
that if the ideal boundaries were represented as a solitonic structure arising from a
background field, this ‘‘renormalization’’ idea could be put on a more rigorous
footing.

Evidence for the consistency of this view occurs in the parallel plate configu-
ration, where we show that the finite interaction energy and the divergent self-
energies of each plate exhibit the same inertial and gravitational properties, that is,
are each consistent with the equivalence principle. Thus it is indeed consistent to
absorb the self-energies into the masses of each plate. We hope to prove in the
future that this renormalization consistency is a general feature.

In spite of the length of this review, we have barely scratched the surface. In
particular, we have not discussed how the divergent contributions of the local
stress tensor are consistent with Einstein’s equations [103]. We have also only
discussed simple separable geometries, where the equations for the Green’s
functions can be solved on both the inside and the outside of the boundaries. This
excludes the extensive work on rectangular cavities, where only the sum over
interior eigenvalues can be carried out [16–19, 104]. There are some numerical
coincidences, for example between the energy for a sphere and a cube, but since
divergences have been simply omitted by zeta-function regularization, the sig-
nificance of the latter results remains unclear. There are a few other examples
where the interior Casimir contribution can be computed exactly, while the
exterior problem cannot be solved, an example being a cylinder with cross section
of an equilateral triangle. Such results seem more problematic than those we have
discussed here.

We also have not discussed semiclassical and numerical techniques. For
example, there is the extremely interesting work of Schaden [105], who computes
a very accurate approximation for the Casimir energy of a spherical shell using
optical path techniques. The same technique gives zero for the cylindrical shell,
not the attractive value found in [27], which is not surprising. Not unrelated to this
technique is the exact worldline method of Gies and collaborators [106–108],
which is able to capture edge effects. The optical path work of Scardicchio and
Jaffe [109–111] should also be cited, although it is largely restricted to examining
the forces between distinct bodies. This review also does not refer to the
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remarkable progress in numerical techniques, some of which are related to the
multiple scattering approach—for some recent references see [112, 113], (See also
the chapters by Rahi et al., by Johnson and by Lambrecht et al. in this volume for
additional discussions about the multiple scattering approach)—, which however,
have not yet been turned to examining self-interactions.

The central issue is the meaning of Casimir self-energy, and how, in principle,
it might be observed. Probably the right direction to address such issues is in terms
of quantum corrections to solitons—for example, see [114–116]. The issues being
considered go to the very heart of renormalized quantum field theory, and likely to
the meaning and origin of mass, a subject about which we in fact know very little.
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