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Part I

Classical and Semiclassical
Light–Matter Interactions





Chapter 1

Classical Atom–Field Interactions

We will now model the interaction between light and atoms, using a classical model of the atom. This will
allow us to treat a variety of phenomena from the refractive index of atomic vapors to the conductivity of
metals to laser cooling and trapping of atoms.

We will model the atom as a classical harmonic oscillator, an electron bound to the nucleus by a
harmonic force (linear spring):

mẍ +mω 2
0 x = 0. (1.1)

Here, x represents the average position of the electron, since quantum-mechanically, the electron is not
localized, and ω0 is the resonant frequency of the harmonic potential. The above equation is also in center-
of-mass coordinates, so that we can ignore the motion of the nucleus. Thus, m is the reduced mass of the
electron, given by

m =
memn

me +mn
, (1.2)

where me is the electron mass, and mn is the nuclear mass. Generally me � mn, so

m ≈ me

(
1− me

mn

)
, (1.3)

and generally, it is a good approximation to use m ≈ me.
Why use a classical calculation, when an atom is a manifestly quantum-mechanical object? It turns out

that the classical calculation gets many phenomena correct, and these results can be justified by quantum
calculations. Essentially, the classical calculation is good for weak atomic excitations, when the harmonic
potential, the lowest-order approximation to an arbitrary potential, is an accurate model. (It is even a good
approximation to treat the quantum electromagnetic field classically as long as many photons are present,
since the field turns out to be a set of harmonic oscillators, which are ‘‘not very quantum-mechanical.’’ Then
our requirement of weak excitation of the atom implies an atom–field coupling that is in some sense very
weak; we will see that this is true when discussing the atomic cross section in Section 1.2.1.) In particular,
the classical model does not predict any saturation effects, and as we will see, it requires a bit of patching
to make it quantitatively correct, even in the limit of small intensity.

1.1 Polarizability

We will now consider the interaction of the atom with a monochromatic field of the form

E(+)(t) = ε̂E
(+)
0 e−iωt, (1.4)
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where ε̂ is the unit polarization vector. Here, we are using the complex notation for the field, where we
separate according to the positive- and negative-frequency components:

E(r, t) = E(r) cos(ωt+ φ)

= E(r)e
−iφ

2
e−iωt + E(r)e

iφ

2
eiωt

=: E(+)(r)e−iωt + E(−)(r)eiωt.

(1.5)

Recall that we are defining E(±) to go with e∓iωt, since by convention e−iωt corresponds to the positive
frequency ω and eiωt = e−i(−ω)t corresponds to the negative frequency (−ω). The physical field is just the
sum of the positive- and negative-frequency parts. But notice that these parts are complex conjugates, as is
required to get a real (physical) field. Thus, we can always write the physical field as E(+) with its conjugate:

E(r, t) = E(+)(r)e−iωt + c.c. = 2Re
{

E(+)(r)e−iωt
}
. (1.6)

Of course, we apply this notation to all other quantities driven by the field, such as the displacement of the
electron that we consider below. Mathematically, it is simpler to keep only one part of the solution, but to
obtain the physical result, you always need to add the complex conjugate (assuming that all the calculations
are linear). Note that classically, this decomposition arises as a mathematical convenience. As we will see
much later, in the quantum treatment of the field this decomposition is more fundamental and significant,
since the two components will play the roles of photon creation and annihilation operators.

In writing down the expression (1.4), we are making the dipole approximation: we are assuming
that the size of the atom is much smaller than the optical wavelength, so that the electron only sees the field
at the nuclear position. Thus, we need not consider the spatial dependence or propagation direction of the
field. The force on the electron due to the field is

F(+) = −eE(+), (1.7)

where e is the fundamental charge, the magnitude of the electron charge (so that the electron charge is
−e).

Then the equation of motion for the electron becomes

mẍ(+) +mω 2
0 x(+) = −ε̂eE(+)

0 e−iωt. (1.8)

We need only worry about the electron motion in the direction of the electric field; we will ignore any motion
except that induced by the field, as we will justify when considering the damped version of the harmonic
oscillator.

We will now make the ansatz that the solution has the same time dependence as the field:

x(+)(t) = ε̂x
(+)
0 e−iωt. (1.9)

With this solution, Eq. (1.8) becomes

−mω2x
(+)
0 +mω 2

0 x
(+)
0 = −eE(+)

0 , (1.10)

which we can solve for x(+)
0 to obtain the solution

x
(+)
0 =

eE
(+)
0 /m

ω2 − ω 2
0

. (1.11)

Again, we are breaking the electron displacement into its positive and negative components x(t) = x(+)(t)+
x(−)(t).

The dipole moment of the atom is
d(+) = −ex(+), (1.12)
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where x = ε̂x. Since the dipole moment is induced by the field (the electron displacement is zero in
equilibrium), we can define the polarizability α to describe how easily the field induces the dipole moment
by

d(+) = α(ω)E(+).
(1.13)

(polarizability definition)
From Eqs. (1.11) and (1.12), we can write the polarizability as

α(ω) =
e2/m

ω 2
0 − ω2

.
(1.14)

(classical polarizability)

The polarizability completely characterizes the response of the atom to the applied field. Of course, this
is the frequency-space response function, which we have obtained via an implicit Fourier transform of the
applied field.

1.1.1 Connection to Dielectric Media

Recall that the polarization density P is the dipole moment per unit volume. Thus, for an atomic vapor of
number density N ,

P(+) = Nd(+) = Nα(ω)E(+) = ε̂
Ne2/m

ω 2
0 − ω2

E
(+)
0 e−iωt. (1.15)

This expression is valid for a rarefied medium, where the interactions between the atoms are negligible.
In dense media, correlations between dipoles cause deviations from these results. We can thus write the
susceptibility for the vapor as

χ(ω) =
Ne2/mε0
ω 2
0 − ω2

,
(1.16)

(classical susceptibility)

in view of the defining relation P = ε0χE. Keeping the polarizability as the fundamental microscopic
quantity, we can of course also write

χ(ω) =
N

ε0
α(ω)

(1.17)
(susceptibility–polarizability relation)

for the susceptibility of a vapor of number density N in terms of the polarizability.

1.2 Damping: Lorentz Model

A better model of the atom is a damped harmonic oscillator. This improved model is known as the Lorentz
model of the atom, and the equation of motion is

mẍ(+) +mγẋ(+) +mω 2
0 x(+) = −ε̂eE(+)

0 e−iωt.
(1.18)

(Lorentz model)

The damping (‘‘friction’’) term models radiation reaction due to the charge acceleration (the classical ana-
logue of spontaneous emission) and collisions with other atoms. A quantum-mechanical calculation shows
that for an isolated atom, the damping rate is the same as the Einstein A coefficient (spontaneous emission
rate): γ = A21.

Again, we assume a solution of the form x(+)(t) = ε̂x
(+)
0 e−iωt. Following the method above, the

solution is

x
(+)
0 =

eE
(+)
0 /m

ω2 − ω 2
0 + iγω

. (1.19)

Now the displacement is complex, reflecting a phase lag of the displacement behind the field, with phase
angle

δ = tan−1
(

γω

ω 2
0 − ω2

)
. (1.20)
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The phase lag approaches zero for ω � ω0 and π for ω � ω0 (δ = π/2 exactly on resonance). Then for this
case, the polarizability becomes

α(ω) =
e2/m

ω 2
0 − ω2 − iγω

.
(1.21)

(polarizability with damping)

The susceptibility likewise becomes

χ(ω) =
Ne2/mε0

ω 2
0 − ω2 − iγω

.
(1.22)

(susceptibility with damping)

It is worth reiterating here that α and χ are complex quantities defined for the positive-rotating fields via
d(+) = α(ω)E(+) and P(+) = ε0χE(+), and therefore must be treated appropriately.

If χ is small (as for a dilute vapor), the complex refractive index is

ñ(ω) =
√

1 + χ(ω) ≈ 1 +
χ(ω)

2
= 1 +

Ne2

2mε0

(ω 2
0 − ω2)

(ω 2
0 − ω2)2 + γ2ω2

+ i
Ne2

2mε0

γω

(ω 2
0 − ω2)2 + γ2ω2

. (1.23)

The real and imaginary parts of the complex index have distinct interpretations. Recall that a plane wave
propagates with a phase factor according to

E(z) = E0 exp(ikz) = E0 exp(iñk0z) = E0 exp(iRe[ñ]k0z) exp(−Im[ñ]k0z), (1.24)

and so we can define the phase index and absorption coefficient respectively as

n(ω) := Re[ñ(ω)]
a(ω) := 2k0Im[ñ(ω)],

(1.25)
(phase index and absorption coefficient)

where k is the wave number in the medium and k0 is the vacuum wave number, so that n(ω) represents the
phase shift of the propagating wave, while a(ω) represents attenuation of the field due to absorption. Note
that the absorption coefficient is defined such that the intensity I of a wave propagating in the z direction
decays according to

dI

dz
= −aI =⇒ I(z) = I0e

−az, (1.26)

which explains the factors of 2 and k0. We can thus read off the phase index as the real part,

n(ω) ≈ 1 +
Ne2

2mε0

(ω 2
0 − ω2)

(ω 2
0 − ω2)2 + γ2ω2

,
(1.27)

(classical refractive index)

while the (intensity) absorption coefficient becomes

a(ω) ≈ Ne2ω2

mε0c

γ

(ω 2
0 − ω2)2 + γ2ω2

.

(classical absorption coefficient) (1.28)
Significant absorption occurs in the region of small detunings of the field from the atomic resonance, |ω −
ω0| � ω0. Then

ω 2
0 − ω2 = (ω0 − ω)(ω0 + ω) ≈ 2ω(ω0 − ω). (1.29)

This is effectively equivalent to the rotating-wave approximation that we discuss later (Section 5.1.2).
With this approximation, the phase index and absorption become

n(ω) ≈ 1 +
Ne2

2mε0

(ω0 − ω)/2ω
(ω0 − ω)2 + (γ/2)2

a(ω) ≈ Ne2

mε0cγ

(γ/2)2

(ω0 − ω)2 + (γ/2)2
.

(1.30)
(Lorentzian absorption profile)
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Thus, we recover the Lorentzian absorption profile (hence the name) with full width at half maximum γ and
resonant absorption coefficient a0 = a(ω0) = Ne2/mε0cγ. Also, we see that in the same regime,

n− 1 =
2(ω0 − ω)

γ

[
Ne2

2mε0γω

(γ/2)2

(ω0 − ω)2 + (γ/2)2

]
=

2(ω0 − ω)
γ

Im[ñ(ω)], (1.31)

as required by the Kramers–Kronig relations (Section 14.1.4.2).

Im[n ~(w)]

Re[n~(w)]o-o1

w

This gives the dispersive form for the phase index, as shown here.
In general, we can have atoms with multiple electrons that we need to sum over. Then the polarizability

and susceptibility become

α(ω) =
∑
j

e2

m

f0j(
ω 2
j0 − ω2 − iγjω

)
χ(ω) =

∑
j

Ne2

mε0

f0j(
ω 2
j0 − ω2 − iγjω

) .
(1.32)

(corrected response functions)

Here, f0j is the absorption oscillator strength, which acts as a weighting factor for each electron, or possibly
something like a probability for an electron to behave as different possible harmonic oscillators. The quantum-
mechanical (and correct) interpretation of these expressions is that each term in the sum represents a
transition from the ground level 0 to excited level j. The oscillator strength can only be obtained from a
quantum calculation, and is necessary to make the classical calculation quantitatively correct. Because of
the quantitative importance of this factor, we will explore it in more detail.

1.2.1 Oscillator Strength

Since the absorption coefficient scales as the susceptibility and thus the oscillator strength (for a dilute gas),
the oscillator strength also scales with the cross section. On resonance, the cross section for absorption is
defined by

a(ω0) = σ(ω0)N = σ0N. (1.33)

Thus, using Eq. (1.28), we can write the classical absorption cross section as

σclassical(ω0) =
e2ω2

mε0c

γ

(ω 2
0 − ω2)2 + γ2ω2

∣∣∣∣
ω=ω0

=
e2

mε0cγ
.

(1.34)
(classical cross section)

This cross section is not quantitatively correct, as the correct quantum-mechanical expression for the cross
section for the transition to level j [see Eq. (3.21)] is

σ0j = σj(ω0) =
λ 2
j0

2π
=

2πc2

ω 2
j0

.
(1.35)

(quantum cross section)
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Note that this cross section assumes an orientational average (and thus a factor of 1/3) that is generally
appropriate for our purposes. We can then define the absorption oscillator strength to be the ‘‘fudge factor’’
to fix the classical cross section:

f0j :=
σ0j

σ0, classical
=

2πε0mc
3γj

e2ω 2
j0

.
(1.36)

(oscillator strength)

We can also write the cross section as
σ0j = f0j

e2

mε0cγj
, (1.37)

which will be useful later. More commonly, the absorption oscillator strength is defined to include the
degeneracy of the level structure,1

f0j =
2πε0mc

3γj
e2ω 2

j0

gj
g0
, (1.38)

where gα is the degeneracy of level α (i.e., the number of ways to have energy Eα), with a separate expression
defined for the emission oscillator strength f0j (which just flips the degeneracy ratio).

Also, in the limit of large frequency, the susceptibility of Eqs. (1.32) becomes

χ(ω) −→ − Ne2

mε0ω2

∑
j

f0j . (1.39)

In this limit, the induced electron displacements are small, and thus the damping and harmonic-potential
forces are not important. We thus expect to recover the behavior of the free-electron plasma in the high-
frequency limit (i.e., the conductor without damping). This corresponds to Eq. (1.16) in the limit ω0 −→ 0,
since the electrons are not bound. Thus, we can write

χ(ω) = − Ne2

mε0ω2
. (1.40)

Comparing these two expressions for the susceptibility, we find the Thomas–Reiche–Kuhn sum rule for
the oscillator strength: ∑

j

f0j = 1.
(1.41)

(Thomas–Reiche–Kuhn sum rule)

Since f0j > 0, the sum rule tells us that f0j < 1. The interpretation is that the classical cross section
represents the maximum possible cross section, which turns out to be distributed over all the possible transi-
tions from the ground level. Note that transitions to unbound (ionized) states are also included in this sum,
making it difficult to verify this with atomic transition data.2

1.3 Dipole Radiation

The electric and magnetic fields for an oscillating dipole are3

E(+)(r, t) = 1

4πε0
[3(ε̂ · r̂)r̂ − ε̂]

[
d(+)(tr)

r3
+
ḋ(+)(tr)

cr2

]
+

1

4πε0
[(ε̂ · r̂)r̂ − ε̂] d̈

(+)(tr)

c2r

H(+)(r, t) = c

4π
(ε̂× r̂)

[
ḋ(+)(tr)

cr2
+
d̈(+)(tr)

c2r

]
,

(dipole radiation fields) (1.42)
1Alan Corney, Atomic and Laser Spectroscopy (Oxford, 1987).
2See Peter W. Milonni and Joseph H. Eberly, Lasers (Wiley, 1988), p. 239.
3See John David Jackson, Classical Electrodynamics, 3rd ed. (Wiley, 1999), p. 411 or Peter W. Milonni and Joseph H.

Eberly, Lasers (Wiley, 1988), p. 44.
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where tr = t−r/c is the retarded time, and ε̂ is the polarization unit vector of the applied field (and thus the
dipole orientation vector). Only the 1/r terms actually transport energy to infinity (i.e., they correspond to
radiation), so we can drop the rest to obtain

E(+)(r, t) ≈ 1

4πε0c2
[(ε̂ · r̂)r̂ − ε̂] d̈

(+)(tr)

r

H(+)(r, t) ≈ 1

4πc
(ε̂× r̂) d̈

(+)(tr)

r
.

(1.43)

The energy transport is governed by the Poynting vector, which we can write as

〈S〉 = E(+) ×H(−) + c.c.

=
1

16π2ε0c3
|d̈(+)|2

r2
[(ε̂ · r̂)r̂ − ε̂]× (ε̂∗ × r̂) + c.c.

=
r̂

16π2ε0c3
|d̈(+)|2

r2

(
1− |r̂ · ε̂|2

)
+ c.c.,

(1.44)

where we have used
[(ε̂ · r̂)r̂ − ε̂]× (ε̂∗ × r̂) =

(
1− |r̂ · ε̂|2

)
r̂ (1.45)

for the angular dependence.
There are two main possibilities for the polarization vector: the incident light can be linearly or

circularly polarized.

1. Linear polarization (ε̂ = ẑ): 1 − |r̂ · ε̂|2 = sin2 θ. This is the usual ‘‘doughnut-shaped’’ radiation
pattern for an oscillating dipole.

2. Circular polarization (ε̂ = ε̂± := ∓(x̂ ± iŷ)/
√
2): 1 − |r̂ · ε̂|2 = (1 + cos2 θ)/2. This is a ‘‘peanut-

shaped’’ radiation pattern for a rotating dipole.

Here, θ is the angle from the z-axis, while φ is the angle around the azimuth. Note that any arbitrary polar-
ization can be represented as a superposition of these three basis vectors. The (intensity/power) radiation
patterns for the linear and circular dipole cases are shown here.

circular dipole

linear
dipole

x

z
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The three-dimensional distributions are generated by sweeping these patterns around the z-axis.
The corresponding electric fields for the dipole radiation are polarized. From Eq. (1.43), we can see

that the polarization vector is proportional to (ε̂ · r̂)r̂− ε̂. For linear polarization (ε̂ = ẑ), this factor turns out
to be sin θ θ̂, while for circular polarization (ε̂ = ε̂± = ∓(x̂± iŷ)/

√
2), the polarization vector is proportional

to (cos θ θ̂ ∓ iφ̂)e∓iφ/
√
2.

Now let’s define the angular-distribution function via

fε̂(θ, φ) :=
3

8π

(
1− |r̂ · ε̂|2

)
.

(1.46)
(radiative angular distribution)

For linear and circular polarization, this takes the form

fẑ(θ, φ) =
3

8π
sin2(θ)

f±(θ, φ) =
3

16π

[
1 + cos2(θ)

]
.

(1.47)

This function has the nice property that it is normalized, and thus represents a probability distribution for
photon emission in quantum mechanics: ∫

fε̂(θ, φ) dΩ = 1. (1.48)

Here, dΩ = sin θ dθ dφ is the usual solid-angle element.
Now we can write the Poynting vector in terms of the angular-distribution function as

〈S〉 = r̂

3πε0c3
|d̈(+)|2

r2
fε̂(θ, φ). (1.49)

The power radiated per unit solid angle is then

dPrad

dΩ
= r2〈S〉 · r̂ = |d̈

(+)|2

3πε0c3
fε̂(θ, φ), (1.50)

and the total radiated power is

Prad =

∫
dΩ

dPrad

dΩ
=
|d̈(+)|2

3πε0c3
=
e2|ẍ(+)|2

3πε0c3
. (1.51)

Of course, the incident intensity is contained implicitly in the electron acceleration ẍ.

1.3.1 Damping Coefficient

Now we can connect the radiated power to the damping term in the Lorentz model,4 Eq. (1.8). Note that
the radiated power in Eq. (1.51) is the time-averaged power, since we used the complex representation. In
terms of the real displacement, we can make the replacement

|ẍ(+)|2 −→ 〈ẍ
2〉
2
, (1.52)

where the angle brackets denote the time average. Then the average work done by radiation reaction must
balance the energy emitted into the field:∫ x

x0

Frr · dx′ =
∫ t

t0

Frr ẋ(t
′) dt′ = − e2

6πε0c3

∫ t

t0

(ẍ)2 dt′

= − e2

6πε0c3

[
ẋẍ

∣∣∣∣t
t0

−
∫ t

t0

ẋ
___
x dt′

]
.

(1.53)

4This argument follows Alan Corney, Atomic and Laser Spectroscopy (Oxford, 1987), p. 230.
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Here Frr refers to the radiation-reaction force. If we pick t−t0 to be an integer multiple of the optical period,
the boundary term vanishes (it is also negligible for large t− t0). Then the radiation-reaction force is

Frr =
e2

6πε0c3
___x . (1.54)

This is, in fact, the Abraham–Lorentz model of radiation reaction, which has problems involving un-
physical runaway solutions.5 We can avoid such problems by going back to the complex representation and
noting that the displacement is a harmonic function, so we can make the approximation

F(+)
rr =

e2

6πε0c3
___x (+) ≈ − e2ω 2

0

6πε0c3
ẋ(+), (1.55)

which assumes the atom is driven close to resonance. If we define

γ =
e2ω 2

0

6πmε0c3
,

(1.56)
(classical damping rate)

then we recover the damping term in the harmonic oscillator:

F(+)
rr = −mγẋ(+). (1.57)

Note that the oscillator is highly underdamped here, since Eq. (1.56) can be written as γ/ω0 = (4π/3)re/λ,
where re ≈ 2.8 × 10−15 m is the classical electron radius and λ is the optical wavelength. For example,
122 nm is the lowest-lying hydrogen line, which gives γ/ω0 ∼ 10−7. For real quantum transitions, this ratio
is slightly smaller (due to the addition of the oscillator strength as we mention below), on the order of 10−8.

We now have the classical result for the spontaneous emission rate, which isn’t quite correct. Again,
we can patch this with the substitution e2/m −→ (e2/m)f0j , with the result

γj =
e2ω 2

0jf0j

6πmε0c3
.

(1.58)
(quantum damping rate)

This is consistent with Eq. (1.36) if we take σ0j = 3λ 2
j0/2π (i.e., no orientational average for the dipole).

Again, there are some subtleties here regarding the cross sections and orientational averages that are better
handled by angular-momentum algebra.

1.4 Atom Optics: Mechanical Effects of Light on Atoms

Now we will have a brief look at the field of atom optics, or optics with matter (de Broglie) waves. We will
only be looking here at how to trap and cool atoms with laser light using the classical Lorentz model of the
atom, so in a sense we will be doing ‘‘geometrical atom optics.’’

Broadly speaking, there are two types of mechanical forces that light can have on atoms.6 The first,
the dipole force, is related to the potential energy of the induced dipole in the electric field, and is thus
related to the real part of α(ω) [see Eq. (1.66)]. The second is radiation pressure due to absorption and
rescattering of the incident light, which is thus related to the imaginary part of α(ω) [see Eq. (1.85)].

5See David J. Griffiths, Introduction to Electrodynamics, 4th ed. (Prentice-Hall, 2013), p. 489, and John David Jackson,
Classical Electrodynamics, 3rd ed. (Wiley, 1999), Chapter 16, p. 748.

6Strictly speaking, this decomposition into two forces is only true for scalar atoms—atoms with no orientation. This is
appropriate for the form of the polarizability we have assumed here, but in the case of atoms with nonvanishing vector or tensor
polarizabilities, as in Eq. (7.472), other forces associated with polarization gradients arise. See, for example, G. Nienhuis, P.
van der Straten, and S-Q. Shang, Physical Review A 44, 462 (1991) (doi: 10.1103/PhysRevA.44.462 ).

http://dx.doi.org/10.1103/PhysRevA.44.462 
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1.4.1 Dipole Force

The dipole moment of the atom is induced by the external field, so we can write the potential energy of the
induced dipole (with d = αE) as

Vdipole = − d ·E
2

= − dE

2
. (1.59)

The extra factor of 1/2 compared to the usual dipole energy is because the dipole is induced, and thus

Vdipole = −
∫ E

0

(d) dE = −
∫ E

0

αE dE = −1

2
αE2. (1.60)

Since we found the solution for the positive-frequency component of the field, we should write out the
potential in terms of the same components:

Vdipole = − 1

2

(
d(+) + d(−)

)
·
(

E(+) + E(−)
)
. (1.61)

Noting that
d(±) ∼ e∓iωt, E(±) ∼ e∓iωt, (1.62)

we can see that the terms of the form
d(±) ·E(±) ∼ e∓i2ωt (1.63)

rotate at twice the optical frequency, which is too fast for the atoms to respond mechanically. So we will
drop these terms in the time average (the same average that leads to the intensity). The terms of the form

d(±) ·E(∓) ∼ 1 (1.64)

are dc, so we can keep these. Thus,

Vdipole = − 1

2
d(+) ·E(−) − 1

2
d(−) ·E(+)

= −1

2

[
α(ω)E(+)

]
·E(−) − 1

2

[
α(ω)E(−)

]
·E(+)

= −Re[α(ω)]
∣∣∣E(+)

∣∣∣2
= −η0

2
Re[α(ω)]I(r).

(1.65)

and in terms of the intensity,

Vdipole = −η0
2

Re[α(ω)]I(r). (1.66)
(dipole potential)

Here, η0 is the vacuum wave impedance

η0 :=

√
µ0

ε0
= µ0c =

1

ε0c
≈ 377 Ω,

(1.67)
(wave impedance of vacuum)

and we are regarding the electric-field envelope E(+)(r) to be a slowly varying function of position. Recall
that the intensity in vacuum is given in terms of the real and complex field amplitudes E0 and E

(+)
0 by

I = |E0|2/2η0 = 2|E(+)
0 |2/η0.

(1.68)
(intensity related to field amplitude)

Putting in the explicit form for the polarizability, we can write the dipole potential as

Vdipole =
−e2

2mε0c

ω 2
0 − ω2

(ω 2
0 − ω2)2 + γ2ω2

I(r). (1.69)
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Thus, the atom sees a spatial potential proportional to I(r) and to (n − 1). This potential-shift effect
(also known as the ac Stark shift) is the atomic counterpart of the phase shift (due to n − 1) of a beam
propagating through a vapor. Both effects follow from the coupling of the field to the atom.

The corresponding force is given by the potential gradient

Fdipole = −∇Vdipole ∝ ∇I(r). (1.70)

Thus, the dipole force responds to intensity gradients. If the dipole is viewed as two slightly separated,
opposite charges, there is only a net force if the two charges see a different electric field, which is only
possible in the ideal dipole limit if the field has a gradient.

The sign of the dipole potential is set solely by the detuning of the field from the atomic resonance.
Defining the detuning ∆ := ω − ω0, we can write the dipole potential as

Vdipole =
e2

2mε0c

(ω0 + ω)∆

[(ω0 + ω)∆]2 + γ2ω2
I(r). (1.71)

Everything in this expression is positive except for the factor of ∆ in the numerator. Thus, for positive ∆
(ω > ω0, or blue detuning), Vdipole > 0, while for negative ∆ (ω < ω0, or red detuning), Vdipole < 0. That is,
a bright spot in space (e.g., due to a tightly focused Gaussian beam) will repel an atom for blue detunings,
forming a potential barrier, while for red detunings, the spot attracts atoms and forms a potential well.

The sign dependence of Vdipole makes sense in terms of the phase lag (1.20). Recall that for small
frequencies (∆ < 0), the phase lag of the dipole behind the field is smaller than π/2, while for large
frequencies (∆ > 0), the phase lag is between π/2 and π. Since Vdipole ∝ −d ·E, the phase lag is important
because then d and E are mostly aligned or mostly opposed for ∆ < 0 and ∆ > 0, respectively. Thus,
Vdipole ≷ 0 for ∆ ≷ 0.

1.4.1.1 Dipole Potential: Standard Form

By writing the dipole potential in a more standard form, we can see that it matches the result of a quantum
calculation, at least in the limit of low intensity. To do this, we first need to patch the classical result of
Eq. (1.69) as before by including the oscillator strength and summing over all transitions:

Vdipole = −
∑
j

e2f0j
2mε0c

ω 2
j0 − ω2

(ω 2
j0 − ω2)2 + γ 2

j ω
2
I(r). (1.72)

(corrected dipole potential)

Now to put this in more standard form, we need to define the saturation intensity for the atom. When we
encounter rate equations in the next chapter, we will see that it is sensible to define an intensity scale known
as the saturation intensity, given by

Isat :=
h̄ω0γ

2σ0
.

(1.73)
(saturation intensity)

(The damping rate γ here will correspond to the Einstein A coefficient in the rate-equation treatment.)
Briefly, the saturation intensity is relevant here in that this classical model is valid—that is, it agrees with
quantum predictions—if either the driving intensity is small (I � Isat) or the detuning from any resonance
is large (|ω − ωj0| � γj). For the maximum possible resonant cross section of σ0 = 3λ2/2π (where there
is no average over the dipole orientation), the saturation intensity is Isat = 1.10 mW/cm2 for 133Cs on
the D2 transition (852 nm), while for 87Rb on the same transition (780 nm), the saturation intensity is
Isat = 1.67 mW/cm2. We can also write the saturation intensity in terms of the oscillator strength by using
Eq. (1.37), with the result

Isat,j =
h̄ω0jmε0cγ

2
j

2e2f0j
. (1.74)

Even though the above numerical values are often quoted for the saturation intensity, this is actually a
context-dependent quantity. A safe but cumbersome approach is to use the quantum-mechanical formalism
for angular momentum to directly calculate the cross section and thus saturation intensity.7

7Daniel A. Steck, ‘‘Cesium D Line Data,’’ 2003. Available online at http://steck.us/alkalidata.

http://steck.us/alkalidata
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Using Eq. (1.74), we can write the dipole potential (1.72) as

Vdipole = −
∑
j

h̄ωj0γ
2
j

4

ω 2
j0 − ω2

(ω 2
j0 − ω2)2 + γ2jω

2

I(r)
Isat,j

.

(quantum dipole potential, small intensity) (1.75)
This is the general expression for any frequency, so long as the intensity is small. To simplify this, we can
look at the functional form far away from all resonances (|ωj0 − ω| � γj for all j) so that

Vdipole =
∑
j

h̄ωj0γ
2
j

4

1(
ω2 − ω 2

j0

) I(r)
Isat,j

=
∑
j

h̄γ 2
j

8

(
1

ω − ωj0
− 1

ω + ωj0

)
I(r)
Isat,j

.

(1.76)
(far off resonance)

The first term in the parentheses is the inverse of the detuning, and represents the Stark shift due to the
atomic resonances. The second term can be interpreted as the weak, additional Stark shift due to resonances
at the corresponding negative frequencies. This secondary shift is always negative (like a red detuning), and
accounts for part of the Bloch–Siegert shift (Section 5.9), as well as other effects such as the Lamb shift
(Section 13.12) and the Casimir–Polder effect (Chapters 13-14). Note that this expression also recovers
the dc Stark shift (or equivalently, the dc polarizability up to some universal factor) when ω = 0, when both
terms contribute equal, negative energy shifts.

If one resonance is dominant (that is, the laser is tuned far away from resonance, but much closer to
one than all the others), then we can make the rotating-wave approximation and neglect the second term in
the parentheses of Eq. (1.76) to obtain

Vdipole =
h̄γ 2

8∆

I(r)
Isat

,
(1.77)

(far off single dominant resonance)

where again ∆ = ω−ω0 is the detuning from resonance. Note that for a far-detuned, linearly polarized laser
creating this potential, it turns out that σ0 = λ 2

0 /2π is the appropriate resonant cross section, so the above
saturation intensity values should be multiplied by 3 before being used in this formula.

Typically, a focused, red-detuned, Gaussian laser beam is used to make a dipole trap or far-off
resonance trap (FORT)8 for atoms via the dipole force.9 Below is an example image of about 105 87Rb
atoms confined in a dipole trap formed by a 10 W, 1090 nm Gaussian laser beam (far below the 780 and
794 nm main resonances) focused to a 31 µm beam waist (1/e2 radius), implying a Rayleigh length (depth
of focus along the beam direction) of 2.8 mm.

The dipole trap clearly runs from left to right with a slight downward angle; the dimensions of the image
are 270 × 29 CCD pixels (6.59 × 0.71 mm). This is an absorption image, where the shadow cast by the
atoms in a brief, resonant laser probe is imaged and recorded on a CCD camera. (The image greyscale is
inverted so the atoms appear bright rather than dark.)

But now the important question to address is under what conditions the trap is stable, since as the
atom scatters photons, it heats up until it boils out of the trap. So we will need to take a closer look at the
radiation of the Lorentz atom.

8Steven L. Rolston, Christoph Gerz, Kristian Helmerson, P. S. Jessen, Paul D. Lett, William D. Phillips, R. J. Spreeuw, and
C. I. Westbrook, ‘‘Trapping atoms with optical potentials,’’ Proceedings of SPIE 1726, 205 (1992) (doi: 10.1117/12.130392).

9The first observation of atoms trapped in a dipole-force potential was Steven Chu, J. E. Bjorkholm, A. Ashkin, and A.
Cable, ‘‘Experimental Observation of Optically Trapped Atoms,’’ Physical Review Letters 57, 314 (1986) (doi: 10.1103/Phys-
RevLett.57.314).

http://dx.doi.org/10.1117/12.130392
http://dx.doi.org/10.1103/PhysRevLett.57.314
http://dx.doi.org/10.1103/PhysRevLett.57.314
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1.4.1.2 Photon Scattering Rate

Now we can compute the rate of photon scattering as a way to get to the rate of momentum transfer. We
can write the total radiated power from Eq. (1.51) in terms of the polarizability as

Prad =
ω4|α(ω)|2

6πε 20 c
4

I,
(1.78)

(total radiated power)

where we used d(+) = α(ω)E
(+)
0 e−iωt.

As a brief aside, though, we can write down the scattering cross section from the total radiated power,
given the defining relation Prad = σI:

σRayleigh =
ω4|α(ω)|2

6πε 20 c
4
.

(1.79)
(Rayleigh scattering cross section)

The overall scaling is as ω4 (neglecting the small modification due to the polarizability). This is the usual
explanation for why the sky is blue and sunsets are red: blue wavelengths are preferentially scattered by the
atmosphere, while red wavelengths are preferentially transmitted.

We can continue by writing out explicitly the polarizability in Eq. (1.78), using Eq. (1.32):

Prad =
e2ω4

6πm2ε 20 c
2

∣∣∣∣∣∣
∑
j

f0j
ω 2
j0 − ω2 − iγjω

∣∣∣∣∣∣
2

I. (1.80)

Using Eq. (1.58) to eliminate the oscillator strengths,

Prad = 6πc2

∣∣∣∣∣∣
∑
j

ω2

ω 2
j0

γj
ω 2
j0 − ω2 − iγjω

∣∣∣∣∣∣
2

I

=
h̄

2

∣∣∣∣∣∣
∑
j

ω2

√
ωj0

γ
3/2
j

ω 2
j0 − ω2 − iγjω

√
I

Isat,j

∣∣∣∣∣∣
2

,

(1.81)

where we used σ0j = 3λ 2
0 /2π to write the saturation intensity as

Isat,j =
h̄ωj0γj
2σ0j

=
h̄ω 3

j0γj

4πc2
. (1.82)

The photon scattering rate Rsc is the radiated power divided by the photon energy h̄ω:

Rsc =
Prad

h̄ω
=

∣∣∣∣∣∣
∑
j

ω3/2√
2ωj0

γ
3/2
j

ω 2
j0 − ω2 − iγjω

√
I

Isat,j

∣∣∣∣∣∣
2

.
(1.83)

(photon scattering rate)

Again, this expression simplifies greatly for certain detunings. Near one resonance, we can ignore the
contribution of the others:

Rsc ≈
ω3

2ω0

γ3

|ω 2
0 − ω2 − iγω|2

I

Isat

=
ω3

2ω0

γ3

(ω 2
0 − ω2)2 + γ2ω2

I

Isat

(1.84)

Using Eq. (1.32) restricted to a single resonance, we find

Rsc =
η0
h̄

ω2

ω 2
0

Im[α]I(r), (1.85)
(single dominant resonance)

which shows the connection of the scattering rate (and hence the radiation pressure force below) to the
absorptive part of the polarizability. But as we have seen, this is only true near a single resonance.
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1.4.1.3 Optical Theorem

Actually, what we just said isn’t quite true: the scattering rate can be generally written in terms of the
imaginary part of the polarizability. The problem is actually with the Lorentz model, when we tried to
mock it up to model multiple transitions. To see this, we start with the susceptibility expression (1.17),
χ(ω) = (N/ε0)α(ω). Now for a rarefied vapor, we can use Eq. (1.23) for the complex refractive index to
write

ñ(ω) ≈ 1 +
χ(ω)

2
= 1 +

N

2ε0
α(ω). (1.86)

Then the absorption coefficient from (1.28) for the vapor is

a(ω) =
2ω

c
Im[ñ(ω)] =

Nω

ε0c
Im[α(ω)]. (1.87)

The power absorbed from an incident, monochromatic field of intensity I(ω) by the atomic vapor is given
by Pabs(ω) = σ(ω)I(ω) in terms of the cross-section σ, which is related to the absorption coefficient by
a(ω) = σ(ω)N . (Note how the units work out in these two expressions.) Putting these together, the power
absorbed is

Pabs(ω) =
a(ω)I(ω)

N
=

ω

ε0c
Im[α(ω)] I(ω). (1.88)

For energy to be conserved, the power emitted from Eq. (1.78) must match this expression for the power
absorbed. Equating these, we arrive at the optical theorem

Im[α(ω)] =
1

4πε0

2ω3

3c3
|α(ω)|2. (1.89)

(optical theorem)

Of course, this statement of energy conservation in principle only applies in steady state (since we neglect
energy stored in the atom), but we have already implied we are considering steady-state behavior just by
writing down the polarizability. Thus, the result above from Eq. (1.85),

Rsc =
η0
h̄

ω2

ω 2
0

Im[α]I(r), (1.90)
(general scattering rate)

is generally true, and it emphasizes that the imaginary part of the polarizability represents absorption or
loss, and equivalently scattering. We will return to this statement later in Section 14.1.4.1 and see that the
imaginary parts of generalized response functions always represent loss.

However, as we have already noted, the Lorentz polarizability for multiple transitions (‘‘electrons’’)
does not satisfy the optical theorem.10 We can see this by looking at Eq. (1.83), where the terms in the sum
[representing the same sum in α(ω)] are combined and then squared, so that there are cross terms involving
different resonances. But when considering the equivalent expression in terms of Im[α(ω)], this scattering
rate involves a sum over terms of the form of Eq. (1.84), which always involve a single resonance. There
are no cross terms in this case. In the first case, the cross terms reflect the fact that the fields radiated
on each transition can interfere, which is why field amplitudes are added and then squared in Eq. (1.83).
This is apparently not captured in the imaginary part of α(ω), which indicates a defect in our polarizability
expression. This problem is somewhat academic, however, since optical atomic resonances have separations
much larger than their widths, and the difference between the two expressions is usually negligible. For
practical purposes, the Lorentz polarizability (1.32) is just fine.

10For a discussion of quantum-mechanical polarizabilities and their compatibility with the optical theorem, see Paul R.
Berman, Robert W. Boyd, and Peter W. Milonni, ‘‘Polarizability and the optical theorem for a two-level atom with radiative
broadening,’’ Physical Review A 74, 053816 (2006) (doi: 10.1103/PhysRevA.74.053816).

http://dx.doi.org/10.1103/PhysRevA.74.053816
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1.4.1.4 Scaling

Far away from the dominant resonance (|∆| � γ), but still close enough for the resonance to still dominate,
we find that

Rsc ≈
γ3

8∆2

I

Isat
=

γ

h̄∆
Vdipole,

(1.91)
(far off single dominant resonance)

where in the last formula we have used Eq. (1.77) for the dipole potential. This is a fundamentally important
scaling law for making productive use of dipole forces, as we will now discuss.

The result (1.91) for Rsc, along with (1.77) for Vdipole, are of prime importance in the design of an
optical dipole trap. The photon scattering rate represents heating of the atoms, as we will discuss, because
of the random nature of photon emission. But the scattering rate and dipole potential scale as

Rsc ∝
I

∆2
; Vdipole ∝

I

∆
.

(1.92)
(far off single dominant resonance)

These scaling laws are actually interrelated by a nice qualitative argument. From the scaling of Rsc, we
conclude that the radiated field is proportional to

√
I/∆. Now recall that the dipole potential scales as the

phase refractive index n− 1, which at a microscopic level arises due to the interference of the radiated field
with the forward field (thus changing the phase velocity of the transmitted field), whose amplitude is

√
I.

Hence n− 1 and thus the dipole potential scale as (
√
I/∆)

√
I, or as I/∆.

So, for a given desired potential depth, the scattering (heating) rate can be made very small by making
the detuning ∆ large. The resulting decrease in trap depth is compensated by increasing the intensity. Thus,
dipole traps with small heating rates and hence long lifetimes (up to minutes for dipole traps created by
CO2 laser light) can be created in this way. For example, a CO2-laser dipole trap has been realized for
Cs atoms,11 where a beam waist of 110 µm with 25 W of power gives a trap 120 µK deep, deep enough
to confine laser-cooled atoms. The intensities here are incredibly high compared to the saturation intensity
(1 mW/cm2) because the laser is so far off resonance (λ = 10.6 µm vs. a resonance wavelength λ0 = 852 nm).
In this regime the above scaling laws are invalid, and in fact the laser field can be treated as static to good
approximation.

Note that for a linearly polarized, far-detuned dipole trap where these scalings are valid, the same
saturation intensities are to be used to calculate the dipole force and scattering rate, as discussed above.

1.4.2 Radiation Pressure

Now we will examine the forces due to absorption and reemission of the incident light. Each photon carries
a momentum of h̄k. Thus, the photon scattering rate (1.84) implies a rate of momentum transfer and thus
a force due to radiation pressure of

Frad = h̄kRsc, (1.93)
Note that even though we have invoked the concept of the photon here, which will be convenient when
discussing the heating rate, everything here is really classical, since the classical field momentum is related
to the absorbed beam power: F = dp/dt = Pabs/c = σI/c.

To get a sense of scale of the momenta involved, we can compute the recoil velocity vr, defined as
the velocity corresponding to one photon recoil momentum h̄k:

vr =
h̄k

m
. (1.94)

For 133Cs at 852 nm, vr = 3.5 mm/s, and for 87Rb at 780 nm, vr = 5.9 mm/s, so the recoil velocity is orders
of magnitude smaller than typical room-temperature velocities.

Close to a single resonance, the scattering rate from Eq. (1.84) is

Rsc =
(γ/2)3

∆2 + (γ/2)2
I

Isat
, (1.95)

11H. Engler, T. Weber, M. Mudrich, R. Grimm, and M. Weidemüller, ‘‘Very long storage times and evaporative cooling of
cesium atoms in a quasielectrostatic dipole trap,’’ Physical Review A 62, 031402 (2000) (doi: 10.1103/PhysRevA.62.031402).

http://dx.doi.org/10.1103/PhysRevA.62.031402
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so that the force due to radiation pressure becomes

Frad =
h̄k0(γ/2)

3

∆2 + (γ/2)2
I

Isat
.

(1.96)
(radiation pressure)

Again, depending on the polarization and exactly how close the detuning is (i.e., whether or not the hyperfine
structure is resolved), the appropriate value of the saturation intensity might be very different, so some
caution is necessary in applying these formulae.

1.4.3 Laser Cooling: Optical Molasses

Now let’s explore how we can use the radiation-pressure force to cool atoms. The simplest setup we can
consider is an atom moving with velocity v, exposed to identical but counterpropagating laser fields along
the velocity direction.

laser 1 laser 2v

The radiation-pressure force on the atom due to the two fields from Eq. (1.96) is

Frad = h̄k(γ/2)3
(

1

∆ 2
1 + (γ/2)2

− 1

∆ 2
2 + (γ/2)2

)
I

Isat
, (1.97)

where ∆1,2 are the effective detunings of the two lasers. The detunings of the two lasers are the same in the
laboratory frame, but the idea behind Doppler cooling is to tune the lasers below the atomic resonance, so that
the beam that opposes the atomic velocity is Doppler-shifted into resonance, thus tending to stop the atom.
With the pictured setup, the frequency of laser 1 is Doppler shifted (red shifted) by −kv, while the frequency
of laser 2 is Doppler shifted (blue shifted) by +kv. Since the detunings are given by ∆1,2 = ω1,2 − ω0, we
can write

∆1 = ∆− kv
∆2 = ∆+ kv,

(1.98)

where ∆ = ω − ω0 is the detuning in the laboratory frame. Then the force is

Frad = h̄k(γ/2)3
(

1

(∆− kv)2 + (γ/2)2
− 1

(∆ + kv)2 + (γ/2)2

)
I

Isat
. (1.99)

Regarded as a function of velocity, this expression is the difference of two Lorentzians, each displaced by
|∆|/k from zero velocity. This force is plotted for ∆ = −γ/2, and the two offset Lorentzians are shown as
dashed lines.

F

±|D|/kº

rad

v
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For small velocity [v � max(|∆|, γ)/k], we can expand to lowest order in v to obtain the viscous damping
(‘‘friction’’) force:

Frad =
h̄k 2γ3

2

∆

[∆2 + (γ/2)2]2
I

Isat
v.

(1.100)
(optical molasses, small v)

Because this force is damping for ∆ < 0, typically leading to heavily overdamped motion for trapped atoms,
this light configuration is called optical molasses.12 The maximum damping rate occurs for ∆ = −γ/2

√
3,

although it turns out that the optimal detuning is actually something else for reasons we will soon discuss.
The velocity capture range is the range in velocity for which the force is appreciable. Thus, the capture

range is on the order of

±|∆|
k
∼ ± γ

2k
= ±γλ

4π
,

(1.101)
(capture velocity range)

assuming ∆ ∼ −γ/2. For both 133Cs (γ = 32.8 × 106 s−1, λ0 = 852 nm) and 87Rb (γ = 38.1 × 106 s−1,
λ0 = 780 nm), the capture range is about ±2 m/s. Thus, only fairly slowly moving atoms can be cooled
at all with this method. Traditionally to load atomic traps, atoms were slowed by other methods from hot
atomic beams to below the capture velocity and then trapped. However, it is possible to load a trap from
room-temperature vapor with this method by capturing only the small fraction of the atoms with small
enough velocity.

1.4.3.1 Doppler Cooling Limit

For laser cooling in three dimensions, it is sufficient to simply combine three of the above one-dimensional
setups, one along each axis.13

Then we can write the force vector for small velocities as,

Frad =
h̄k 2γ3

2

∆

[∆2 + (γ/2)2]2
I

Isat
v. (1.102)

where I is still the intensity of a single beam.
Our treatment so far makes it appear as though the atomic velocity may be damped completely away.

However, we have only considered the average cooling force. There are also fluctuations of the cooling force
that lead to a temperature limit. We will now derive this temperature limit, the Doppler limit, for the
cooling mechanism presented here.

Let’s look at the variance of the velocity distribution:

d

dt

〈
v2
〉
= 2

〈
v · dv

dt

〉
=

2

mA

〈
v · dp

dt

〉
=

2

mA
〈v · Frad〉 . (1.103)

12Steven Chu, J. E. Bjorkholm, A. Ashkin, and A. Cable, ‘‘Experimental Observation of Optically Trapped Atoms,’’ Physical
Review Letters 57, 314 (1986) (doi: 10.1103/PhysRevLett.57.314).

13Graphics by Windell Oskay.

http://dx.doi.org/10.1103/PhysRevLett.57.314
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Here, mA is the atomic mass, and the angle brackets denote an ensemble average. With the small-velocity
expression (1.100) for the average cooling force, this equation of motion becomes

d

dt
〈v2〉 = h̄k 2γ3

mA

∆

[∆2 + (γ/2)2]2
I

Isat
〈v2〉. (1.104)

Again, according to this differential equation, the velocity damps to zero for ∆ < 0.
Now we will include the force fluctuations heuristically, since the fluctuations are quantum–mechan-

ical in origin (although there is a more general connection between damping and fluctuations known as the
fluctuation–dissipation relation; see Problem 5.26 and Section 14.3.8.1). In the course of scattering a
photon from one of the laser beams, there is a photon absorption and a photon emission. Each absorption
leads to a momentum ‘‘kick’’ of magnitude h̄k, and the direction is random but along one of the six beams.
The emission is also in a random direction (not in a dipole-radiation pattern if we assume all polarizations
to be equally present), leading to a second kick of magnitude h̄k in a random direction. Thus, a scattering
event is effectively equivalent to two steps in a random walk in velocity space, where the step size is h̄k/mA.
These scattering events happen at the scattering rate

Rsc =
(γ/2)3

∆2 + (γ/2)2
6I

Isat
, (1.105)

since there are six beams present. Recall that for a random walk (see Section 17.1, p. 693), each step increases
〈v2〉 by a fixed amount, given by the variance after one step starting from the origin. The three-dimensional
probability distribution for a single scattering event is confined to a shell of radius h̄k/mA in velocity space
for either the absorption or emission event. The probability distribution is also inversion symmetric in either
case. Thus if the atom is initially at rest, then after one step in the random walk, we can write

〈v2initial〉 = 0 −→ 〈v2final〉 =
(
h̄k

mA

)2

, (1.106)

so that 〈v2〉 increases at the rate

2Rsc

(
h̄k

mA

)2

. (1.107)

Including the heating rate in Eq. (1.104), we find

d

dt
〈v2〉 = h̄k 2γ3

mA

∆

[∆2 + (γ/2)2]2
I

Isat
〈v2〉+ 3γ3

2

1

∆2 + (γ/2)2
I

Isat

(
h̄k

mA

)2

. (1.108)

In steady state, we can set the right-hand side to zero, with the result

〈v2〉 = 3h̄γ

4mA

1 + (2∆/γ)2

(−2∆/γ)
. (1.109)

This is an expression for the equilibrium kinetic energy, which we can convert to a temperature via

1

2
mA〈v2〉 =

3

2
kBT, (1.110)

where kB is the Boltzmann constant. This gives

kBT =
h̄γ

4

1 + (2∆/γ)2

(−2∆/γ)
. (1.111)

The temperature is minimized for the detuning ∆ = −γ/2, giving the Doppler temperature TD:

kBTD =
h̄γ

2
.

(1.112)
(Doppler limit)
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This temperature is the best expected for Doppler cooling. For 133Cs at 852 nm, TD = 125 µK, and for 87Rb
at 780 nm, TD = 146 µK. These temperatures are extremely low. We can compare these temperatures to
the recoil temperature Tr, which is the temperature corresponding to atoms with an average momentum
of one photon recoil h̄k (i.e., a one-dimensional rms momentum of one photon recoil):

kBTr =
(h̄k)2

mA
.

(1.113)
(recoil temperature)

For 133Cs, Tr = 198 nK, and for 87Rb, Tr = 362 nK, so the Doppler limit is TD = 631Tr for 133Cs and
TD = 403Tr for 87Rb. Since the (one-dimensional) rms velocity is

vrms =

√
TD

Tr

(
h̄k

mA

)
, (1.114)

which is 8.8 cm/s for 133Cs and 12 cm/s for 87Rb. These velocities are about three orders of magnitude
slower than room-temperature rms velocities.

It turns out that for alkali vapors, typical laser-cooled samples exhibit temperatures well below the
Doppler limit. Such ‘‘sub-Doppler’’ cooling is due to the degenerate level structure of alkali atoms.14 For
example, 133Cs can be laser cooled with the same general setup described above to about 2.5 µK.15

1.4.3.2 Magneto-Optical Trap

Optical molasses tends to stop atoms, making them ‘‘stuck,’’ but it does not confine atoms to a particular
place. A slight modification to the three-dimensional optical molasses is to impose the magnetic field due to
two opposed current loops in the ‘‘anti-Helmholtz’’ configuration. This arrangement is called the magneto-
optical trap (MOT).16

The magnetic field vanishes at the center point of the trap, thus defining a point for atoms to accumulate.
We will not go into the operation of the trap in detail yet, but essentially the idea is very similar to laser
cooling. The additional complication is that the laser beams must all be correctly (circularly) polarized to
address magnetic substates in the degenerate excited level. The magnetic field gives a position-dependent
‘‘Zeeman’’ shift of the transition frequency, such that if the atom is away from the center of the trap, the
appropriate beam comes into resonance and pushes it towards the trap center.17

14Sub-Doppler temperature were observed in some of the first laser cooling experiments. The first reported observation is P.
D. Lett, W. D. Phillips, S. L. Rolston, C. E. Tanner, R. N. Watts, and C. I. Westbrook, ‘‘Optical molasses,’’ Journal of the
Optical Society of America B 6, 2084 (1989). A classic treatment of sub-Doppler cooling mechanisms is J. Dalibard and C.
Cohen-Tannoudji, ‘‘Laser cooling below the Doppler limit by polarization gradients: simple theoretical models,’’ Journal of the
Optical Society of America B 6, 2023 (1989).

15C. Salomon, J. Dalibard, W. D. Phillips, A. Clairon, and S. Guellati, ‘‘Laser Cooling of Cesium Atoms below 3 µK,’’
Europhysics Letters 12, 683 (1990).

16Graphics by Windell Oskay.
17Jean Dalibard proposed the idea for the magneto-optical trap, and the MOT was first demonstrated by E. L. Raab, M.

Prentiss, Alex Cable, Steven Chu, and D. E. Pritchard, ‘‘Trapping of Neutral Sodium Atoms with Radiation Pressure,’’ Physical
Review Letters 59, 2631 (1987) (doi: 10.1103/PhysRevLett.59.2631).

http://dx.doi.org/10.1103/PhysRevLett.59.2631
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1.5 Cooperative Radiation

We will close our classical treatment with ‘‘cooperative effects,’’ where the radiation of an atom is influenced
by other atoms. The two examples here serve as prototypes for the quantum-mechanical problems and to
show how far one can get with classical arguments, as in the atom optics presentation above.

1.5.1 Atom–Mirror Interaction

The first effect we consider is the influence of a perfectly conducting plane on a radiating dipole.18 This is
a classical prototype for both cavity QED and the Casimir–Polder effect, which we will study much later.

The setup is a dipole located a distance z from a mirror. The field due to the boundary is equivalent
to that of an image dipole at position −z; due to the relative locations of the constituent charges, the image
dipole is reflected in the direction transverse to the plane, but the orientation is the same in the orthogonal
direction.

z

For a dipole oscillating at frequency ω, the field amplitude is

E(+)(r, ω) = 1

4πε0
[3(ε̂ · r̂)r̂ − ε̂]

[
1

r3
− i k

r2

]
d(+)(ω)eikr − 1

4πε0
[(ε̂ · r̂)r̂ − ε̂] k

2

r
d(+)(ω)eikr,

(monochromatic dipole field) (1.115)
with ω = ck. If we regard the image as the radiating dipole, we are interested in the field at the position of
the atom, so that r = 2z and r̂ = ẑ. Also, it is useful to consider separately the cases of a dipole parallel to
the surface, [

3(ε̂‖ · r̂)r̂ − ε̂‖
]
= −ε̂‖[

(ε̂‖ · r̂)r̂ − ε̂‖
]
= −ε̂‖,

(1.116)

and a dipole perpendicular to the surface,

[3(ε̂⊥ · r̂)r̂ − ε̂⊥] = 2ε̂⊥ = 2ẑ

[(ε̂⊥ · r̂)r̂ − ε̂⊥] = 0,
(1.117)

where recall that ε̂, the polarization vector of the applied field, is also the unit vector representing the dipole
direction. Since we are concerned with the image and not the original dipole, we make the replacements
ε̂‖ −→ −ε̂‖ and ε̂⊥ −→ ε̂⊥, as we can see from the above diagram. Thus, the field due to the surface at the
atom is

E(+)
mirror(z, ω) =

k3

4πε0

[
1

(2kz)3
− i 1

(2kz)2

] [
2d(+)
⊥ (ω) + d(+)

‖ (ω)
]
ei2kz − k3

4πε0

1

2kz
d(+)
‖ (ω)ei2kz

= −3

2
γ
k3

k 2
0

mc

e

{[
1

z′3
− i 1

z′2

] [
2x(+)
⊥ (ω) + x(+)

‖ (ω)
]
− 1

z′
x(+)
‖ (ω)

}
eiz

′
,

(1.118)

18See, e.g., H. Morawitz, ‘‘Self-Coupling of a Two-Level System by a Mirror,’’ Physical Review 187, 1792 (1969) (doi:
10.1103/PhysRev.187.1792).

http://dx.doi.org/10.1103/PhysRev.187.1792
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where recall that d = −ex,
z′ := 2kz, (1.119)

k0 = ω0/c, and we have used the classical formula (1.56) for the damping rate γ.
Now we put this field back into the the Lorentz model (1.18) as the driving field:

ẍ(+) + γẋ(+) + ω 2
0 x(+) = − e

m
E(+)

mirror(z, ω)e
−iωt. (1.120)

We consider no other driving field, since we are simply interested in how the atom damps to equilibrium.
Assuming again a solution of the form

x(+)(t) = ε̂x
(+)
0 e−iωt, (1.121)

we have

ω 2
0 − ω2 = iωγ − eε̂ ·E(+)

mirror(z, ω0)

mx
(+)
0

. (1.122)

Assuming a small perturbation (|ω−ω0| � ω0), so that ω 2
0 −ω2 = (ω0 +ω)(ω0−ω) ≈ 2ω0(ω0−ω) (and we

can write ω0 for ω when it is isolated), we find

ω = ω0 − i
γ

2
+
eε̂ ·E(+)

mirror(z, ω0)

2mω0x
(+)
0

. (1.123)

Since ω is the rotation frequency of the dipole, the real part corresponds to the actual rotation (energy),
while the imaginary part corresponds to damping. We can thus see that the mirror field induces shifts δω0

and δγ in the oscillator frequency and damping rate, respectively, according to

ω = (ω0 + δω0)− i
(γ + δγ)

2
, (1.124)

so that

δω0 = Re

[
eε̂ ·E(+)

mirror(z, ω)

2mω0x
(+)
0

]

δγ = −Im

[
eε̂ ·E(+)

mirror(z, ω)

mω0x
(+)
0

]
.

(1.125)

Evaluating these expressions for a perpendicular dipole, we find

δω0⊥ = −3

2
γ

(
sin z′

z′2
+

cos z′

z′3

)
δγ⊥ = −3γ

(
cos z′

z′2
− sin z′

z′3

)
.

(1.126)
(dipole-mirror shifts)

For the parallel dipole,

δω0‖ =
3

4
γ

[(
1

z′
− 1

z′3

)
cos z′ − sin z′

z′2

]
δγ‖ = −

3

2
γ

[(
1

z′
− 1

z′3

)
sin z′ + cos z′

z′2

]
.

(1.127)
(dipole-mirror shifts)

Note that here that in the near-resonant approximation,

z′ = 2k0z. (1.128)

The frequency shift (corresponding to a transition-frequency shift of a quantum-mechanical atom), is plotted
here.
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This effect can be interpreted as an ac Stark shift of the atom due to its own radiated field. Note that only
the parallel component has a radiative (1/z′) component. In the near field, the frequency shift becomes very
large until the dipole approximation breaks down. The decay rate has similar oscillatory behavior, but the
prediction is not divergent as the atom approaches the wall.
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g

Notice that the decay rate drops to zero as z −→ 0 for the parallel component; for this component, the dipole
and its image are out of phase when the dipole is close to the mirror, and so there is complete destructive
interference of the radiated field. For the perpendicular component, the decay rate increases to twice the
free-space value as z −→ 0; for this component the dipole and image are in phase near the mirror surface,
and there is constructive interference of the radiated and image fields, leading to a sort of superradiance.

It is possible to combine the expressions (1.126) and (1.127) into a more compact form that will be
useful for later comparison as follows. Noting that

1

2
δω0⊥ − δω0‖ = −

3

4
γ

cos z′

z′

1

2
δω0⊥ + δω0‖ =

3

4
γ

[(
1

z′
− 2

z′3

)
cos z′ − 2

sin z′

z′2

]
= −3

4
γ∂ 2

z′
cos z′

z′
,

(1.129)

we see that we can write the total shift as

δω0 =
3

4
γ
[(
ε̂ 2
‖ /2− ε̂

2
⊥

)
−
(
ε̂ 2
‖ /2 + ε̂ 2

⊥

)
∂ 2
z′

] cos z′

z′
.

(transition frequency shift) (1.130)
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Similarly, since
1

2
δγ⊥ − δγ‖ =

3

2
γ

sin z′

z′

1

2
δγ⊥ + δγ‖ = −

3

2
γ

[(
1

z′
− 2

z′3

)
sin z′ − 2

cos z′

z′2

]
=

3

2
γ∂ 2

z′
sin z′

z′
,

(1.131)

we have

δγ = −3

2
γ
[(
ε̂ 2
‖ /2− ε̂

2
⊥

)
−
(
ε̂ 2
‖ /2 + ε̂ 2

⊥

)
∂ 2
z′

] sin z′

z′
.

(1.132)
(damping-rate shift)

The polarization combinations have the following interpretation. Note that the combination ε̂ 2
‖ /2− ε̂

2
⊥ van-

ishes if the dipole has all three components equally excited (i.e., isotropic excitation), since it is proportional
to (x̂2+ ŷ2)/2− ẑ2 = 0. On the other hand, the combination ε̂ 2

‖ /2+ ε̂
2
⊥ is proportional to (x̂2+ ŷ2)/2+ ẑ2 = 2.

Thus, ε̂ 2
‖ /2− ε̂

2
⊥ gives the anisotropic part of the dipole excitation, while ε̂ 2

‖ /2 + ε̂ 2
⊥ gives the isotropic con-

tribution to the dipole excitation (isotropic here is with respect to the parallel and perpendicular parts).
The above forms (1.130) and (1.132) are somewhat nonsensical in the classical framework, since the

different shifts in the different directions lead to precession of the dipole vector; however, the interpretation is
more sensible when we go over to quantum mechanics and interpret the polarization combinations as dipole
matrix elements (Chapter 14). But for now, we can use these forms to arrive at the compact expressions

δω0‖ =
3

8
γ
(
1− ∂ 2

z′
) cos z′

z′

δω0⊥ = − 3

4
γ
(
1 + ∂ 2

z′
) cos z′

z′

δγ‖ = −
3

4
γ
(
1− ∂ 2

z′
) sin z′

z′

δγ⊥ =
3

2
γ
(
1 + ∂ 2

z′
) sin z′

z′

(1.133)

for the separate shifts.

1.5.2 Two-Atom Radiation

A similar problem to the atom-wall interaction is the problem of two coupled atoms. (See Problem 6.7 for
the quantum version of this problem.)

r = rzo^

x y

z

2

It is convenient again here to decompose the dipoles into parts that are perpendicular or parallel to the
z = 0 plane that separates to the two atoms. This is because the field due to the parallel part of one dipole
couples only to the parallel part of the other, and the same is true for the perpendicular parts. This follows
from the polarization properties of the radiated field. The field of dipole 1 at the location of dipole 2 has a
form similar to that of (1.118), but now without the reversal of ε̂‖, and with a separation of r.

E(+)
dipole 1(z, ω) = −

3

2
γ
mω0

e

{[
1

(k0r)3
− i 1

(k0r)2

] [
2x̃(+)
⊥ (t) + x̃(+)

‖ (t)
]
− 1

k0r
x̃(+)
‖ (t)

}
eik0r, (1.134)



54 Chapter 1. Classical Atom–Field Interactions

Here, we have assumed that the dipoles are oscillating at approximately their common resonance frequency
ω0, justifying the decomposition

x(+)
⊥,‖(t) = x̃(+)

⊥,‖(t)e
−iω0t, (1.135)

where x̃(+)
⊥,‖(t) is a slowly varying amplitude, so that

|∂tx̃(+)
⊥,‖(t)| � |ω0x̃(+)

⊥,‖(t)|. (1.136)

Then we can note that the approximate derivatives have the form

ẋ(+) ≈ −iω0x̃
(+)e−iω0t

ẍ(+) + ω 2
0 x

(+) ≈ −i2ω0
˙̃x(+)e−iω0t.

(1.137)

Using the Lorentz model (1.18) again, with the above expressions for the time derivatives, we can write the
equations of motion for the components of the second dipole reacting to the first dipole as

˙̃z
(+)
2 +

γ

2
z̃
(+)
2 = −i3

2
γ

[
1

(k0r)3
− i 1

(k0r)2

]
eik0r z̃

(+)
1 =: −iΩz(r)z̃(+)

1

˙̃x
(+)
2 +

γ

2
x̃
(+)
2 = −i3

2
γ

[
1

(k0r)3
− i 1

(k0r)2
− 1

k0r

]
eik0rx̃

(+)
1 =: −iΩx(r)x̃(+)

1 .

(1.138)

Here, we are writing out the explicit displacement components in coordinates, so that z is the perpendicular
component, and x and y are the parallel components. Of course, ỹ(+)

2 satisfies an equation of the same form
as x̃(+)

2 . Similarly, the equations of motion for the first dipole become

˙̃z
(+)
1 +

γ

2
z̃
(+)
1 = −iΩz(r)z̃(+)

2

˙̃x
(+)
1 +

γ

2
x̃
(+)
1 = −iΩx(r)x̃(+)

2 ,

(1.139)

leading to pairs of coupled equations for each vector component of the displacement.19

For any component, we thus have a pair of coupled equations of the form

α̇+
γ

2
α = −iΩβ

β̇ +
γ

2
β = −iΩα.

(1.140)

We can solve these by the method of Laplace transforms. The Laplace transforms of the equations are

(s+ γ/2)L [α]− α0 = −iΩL [β]

(s+ γ/2)L [β]− β0 = −iΩL [α],
(1.141)

which we can decouple and solve. For example, the solution for α is

L [α] =
(s+ γ/2)α0

(s+ γ/2)2 +Ω2
− i Ωβ0

(s+ γ/2)2 +Ω2
. (1.142)

19Note that we are ignoring the time delay in the propagating waves between the two dipoles, which leads to ‘‘signaling’’
behavior between the two atoms. This amounts to a coarse-graining on time scales of order γ−1, and is valid as long as
r � c/γ. For alkali atoms, γ−1 ∼ 30 ns, so this approximation is good as long as r � 10 m. See P. W. Milonni and P. L.
Knight, ‘‘Retardation in coupled dipole–oscillator systems, American Journal of Physics 44, 741 (1976) (doi: 10.1119/1.10122).

http://dx.doi.org/10.1119/1.10122
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The inverse transform gives the solution in terms of the initial values α0 and β0:

α(t) = α0e
−γt/2 cosΩt− iβ0e−γt/2 sinΩt

=
α0 − β0

2
e−(γ/2−iΩ)t +

α0 + β0
2

e−(γ/2+iΩ)t.
(1.143)

The first term here represents an antisymmetric or out-of-phase component in the initial excitation, while
the second term represents the symmetric or in-phase component.

In view of the decomposition (1.135), we can see that the real and imaginary parts of the exponential
frequencies are significant as shifts in the frequency and damping rate, as in the atom–mirror problem. In
particular,

δω0± = ±Re[Ω]
δγ± = ∓2Im[Ω].

(1.144)

Here, the + subscript refers to the in-phase part, and the − subscript refers to the out-of-phase part. From
Eq. (1.138), we can write the shifts as

δω0z± = ∓3

2
γ

[
sin k0r
(k0r)2

+
cos k0r
(k0r)3

]
= ∓3

4
γ
(
1 + ∂ 2

r′
) cos r′

r′

δγz± = ∓3γ
[

cos k0r
(k0r)2

− sin k0r
(k0r)3

]
= ±3

2
γ
(
1 + ∂ 2

r′
) sin r′

r′

(1.145)

for the perpendicular components, and

δω0x± = ∓3

4
γ

[(
1

k0r
− 1

(k0r)3

)
cos k0r −

sin k0r
(k0r)2

]
= ∓3

8
γ
(
1− ∂ 2

r′
) cos r′

r′

δγx± = ±3

2
γ

[(
1

k0r
− 1

(k0r)3

)
sin k0r +

cos k0r
(k0r)2

]
= ±3

4
γ
(
1− ∂ 2

r′
) sin r′

r′

(1.146)

for the parallel components. To shorten the notation, we have used r′ = k0r here. Also, the y component
again satisfies an equation of this same form. These relations have the same form as the atom–mirror shifts
of Eqs. (1.126) and (1.127), in the sense that for the perpendicular component, the + solution matches the
atom–mirror result, while for the parallel component, the − solution matches the atom–mirror case. This is
what we expect from the phases of the image-dipole components relative to the source dipole. The shifts for
both components and both relative phases are plotted below.
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For the frequency (energy) shift, we can see that for small distances and in-phase dipoles, the perpendicular
(z-z) orientation produces an attractive potential, while the parallel (x-x) orientation produces a repulsive
potential, as we expect for static dipoles.
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For the decay-rate shift, we see superradiant behavior for either orientation when the dipoles are in phase
and subradiant behavior when the dipoles are out of phase. This is what we expect from the respective
constructive or destructive interference of the emitted waves.

Note that again we can write all components together with both the symmetric and antisymmetric
phases, here in coordinate-free form:

δω = − 3

8
γ
{
[3(ε̂1 · r̂)(ε̂2 · r̂)− ε̂1 · ε̂2]

(
1 + ∂ 2

r′
)
− [(ε̂1 · r̂)(ε̂2 · r̂)− ε̂1 · ε̂2]

(
1− ∂ 2

r′
)} cos r′

r′

δγ =
3

4
γ
{
[3(ε̂1 · r̂)(ε̂2 · r̂)− ε̂1 · ε̂2]

(
1 + ∂ 2

r′
)
− [(ε̂1 · r̂)(ε̂2 · r̂)− ε̂1 · ε̂2]

(
1− ∂ 2

r′
)} sin r′

r′
.

(two-atom resonance and damping-rate shifts) (1.147)
In the far-field (the radiation zone), these simplify to

δω =
3

4
γ [(ε̂1 · r̂)(ε̂2 · r̂)− ε̂1 · ε̂2]

cos r′

r′

δγ = − 3

2
γ [(ε̂1 · r̂)(ε̂2 · r̂)− ε̂1 · ε̂2]

sin r′

r′
,

(1.148)

since in this regime, only the 1/r′ terms are important.
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1.6 Exercises

Problem 1.1

Estimate the absorption coefficient of room-temperature rubidium (87Rb) on the D2 resonance at
780 nm as follows.
(a) Write down an expression for the one-dimensional atomic velocity distribution in the direction
of the pumping laser beam. What is the rms velocity? Recalling that the Doppler shift is given by
∆ω = k0v, where v is the velocity component opposite to the pumping-beam direction, what is the
corresponding full width at half maximum ∆ωD in frequency (the Doppler width)?
(b) Now write down an expression for the absorption coefficient that accounts for the Doppler broad-
ening effect. The result involves a convolution of the frequency distribution from (a) with the natural
lineshape, but you only need the result at one frequency. Noting that 1/γ = 26.2 ns, you should argue
that γ � ∆ωD to simplify your calculation.
(c) Use the above values for γ and λ0 to compute the absorption oscillator strength fD2 for this
transition. Note that this is a J = 1/2 −→ J ′ = 3/2 transition, so that the degeneracy ratio g′/g = 2
(the prime here refers to the excited level).
(d) Now give a numerical value for the absorption coefficient. Assume a vapor pressure for Rb of
3× 10−7 torr at room temperature. Note that the relative abundance of 87Rb is about 28% (the rest
being 85Rb).
(e) The answer to (d) does not predict the absorption coefficient well, because it assumes that the
Doppler width is much larger than the splittings of the various hyperfine levels. In fact, this is only
marginally true for the excited states, which span an effective range of 400 MHz. The ground-state
doublet is in fact resolved at room temperature, since the splitting is 6.8 GHz. For what temperature
range would you expect the above treatment to become valid?
We will return to the room-temperature case when we have the formalism to properly handle the
hyperfine structure.

Problem 1.2
The radiation of an atom is collected and collimated by a lens of radius a and focal length f , reflected
by a planar mirror, and imaged back onto the atom by the lens.

f 
 

 

As in the direct atom–mirror interaction, the interaction of the atom with the distant mirror here
causes a shift of the energy level that changes sinusoidally as the mirror is translated. This leads to
potential wells for the atom due to its interaction with its own radiated field.20

(a) Give a qualitative explanation for why the sign of the potential varies with the distance to the
mirror, and from your explanation predict the period of the variation.
(b) Using the classical model of the atom, give an expression for the depth of the potential wells near
the focus (the maximum energy shift, in this case). Also assume for simplicity that the atom radiates

20This mechanical effect of a distant mirror on an atom has been observed experimentally with a trapped Ba ion. See Pavel
Bushev, Alex Wilson, Jürgen Eschner, Christoph Raab, Ferdinand Schmidt-Kaler, Christoph Becher, and Rainer Blatt, ‘‘Forces
between a Single Atom and Its Distant Mirror Image,’’ Physical Review Letters 92 223602 (2004).
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in a spherically symmetric pattern, and that the lens is small enough that the radiation intensity is
uniform in the plane of the lens. It will help to know the following result from diffraction theory:
suppose a converging, spherical wave has radius of curvature f and a uniform intensity Iaperture over
some aperture of radius a; then the maximum intensity is given by

I0 =
π2a4

λ2f2
Iaperture (1.149)

where the wave converges.21

(c) Use parameters appropriate to 87Rb and assume the lens has a numerical aperture of 0.4 to give a
numerical value to your answer in (b). Report your answer as a temperature.

Problem 1.3
Compute the frequency and decay-rate shifts for a Lorentz atom situated between two parallel mirrors
separated by distance L and located a distance a from the closest mirror. You may assume that the
dipole is oriented perpendicular to the mirrors. Make plots of your results for the case a = L/2.
Hint: how many image dipoles do you need to use? (The answer isn’t two.)

Problem 1.4
Consider a vapor of atoms (with number density N), where the atoms are described by the Lorentz
polarizability

α(ω) =
e2/m

ω 2
0 − ω2 − iγω

. (1.150)

We will use this model to explore the physics of free-electron gases, as in plasmas or metals, which
corresponds to the limit ω0 −→ 0. (Note that metals have density-induced correlations that are missed
by the models here.)
(a) First ignoring any damping (γ −→ 0), show that the complex refractive index for the free electron
gas is

ñ(ω) =

√
1−

(ωp

ω

)2
, (1.151)

where ωp :=
√
Ne2/mε0 is the plasma frequency. This is the plasma model for the refractive

index.
(b) At an interface of the electron gas with vacuum (say, a metal–vacuum interface), the intensity
(Fresnel) reflection coefficient for monochromatic light incident from the vacuum on the interface is

R(ω) =

∣∣∣∣1− ñ(ω)1 + ñ(ω)

∣∣∣∣2 , (1.152)

assuming normal incidence to the interface. This expression can be derived by imposing appropriate
boundary conditions on the electromagnetic fields, but here you may take this expression to be given.
According to the plasma model, what is R(ω) for ω < ωp? What is R(ω) for ω � ωp? What do these
results imply for the reflectances of metal mirrors in the infrared and the deep UV, assuming a plasma
frequency in the UV range?
(c) Now put the damping back in, to account for radiation reaction, electron collisions, and so on, and
show that the complex refractive index becomes

ñ(ω) =

√
1−

ω 2
p

ω2 + iγω
. (1.153)

21See Max Born and Emil Wolf, Principles of Optics, 7th (expanded) ed. (Cambridge, 1999), Eq. (22), p. 489.
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This is the Drude–Lorentz model for the refractive index.
(d) Consider the limit of small frequency. In terms of the reflectance, how is the Drude–Lorentz model
more physically sensible than the plasma model? Show as well that the Drude–Lorentz model reduces
to the plasma model at high frequencies.
(e) The current density induced by the field is

j = −Neẋ. (1.154)

Defining the conductivity of the free-electron gas by the relation j = σE, show that the conductivity
is given according to the Drude–Lorentz model by

σ(ω) =
σ0

1− iω/γ
, (1.155)

where σ0 is the dc conductivity. What is σ0?

Problem 1.5
We used the Lorentz model to describe the linear response of an atom to the field, but it can be modified
to describe nonlinear optical media. Anharmonic terms added to the electron binding potential, for
example, can describe basic nonlinear optics, but here we will explore nonlinear responses in free-
electron gases.
(a) In the Lorentz model, we assumed a force induced by the electric field of the form F = −eE.
However, the full Lorentz force, including the magnetic-field interaction, is F = −eE − ev × B. The
extra magnetic-field interaction is responsible for a nonlinear response at very large intensities. The
classical equation of motion for a free electron (ignoring damping) is thus

mv̇ = −eE− ev×B. (1.156)

Assume the electron is driven by a linearly polarized, monochromatic plane wave

E(+)(r, t) = ε̂E
(+)
0 ei(k·r−ωt), (1.157)

with B = k̂ ×E/c as required by Maxwell’s equations. Now make a Fourier-series ansatz of the form

v(+)(t) =

∞∑
j=1

ε̂(j)v
(+)
(j) (jω) e

−ijωt. (1.158)

Put this form for v(t) into the electron equation of motion, ignoring the effect of the magnetic field,
and obtain a zeroth-order perturbative solution for v(+)(t).
(b) Put the zeroth-order solution back into the right-hand side of the equation of motion, and obtain
the next-order solution for v(+)(t), this time including the effect of the magnetic-field coupling. Write
down the corresponding induced dipole moment at frequency 2ω. The nonlinear response thus allows
second-harmonic generation from the driving field. In which direction is there no second-harmonic
radiation? (Note that you should be able to interpret your solution as an electron tracing out a ‘‘figure
eight.’’)
(c) Estimate the intensity at which the second-harmonic dipole moment becomes comparable to the
dipole moment at the fundamental frequency.
(d) Now instead of the magnetic-field interaction, consider the relativistic interaction with the electric
field, given by

ṗ =
d

dt
(γmv) =

d

dt

 mv√
1− v2

c2

 = −eE, (1.159)
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where γ is the usual relativistic factor and the driving field is the same as before. Show that the second
harmonic vanishes in this case.
(e) Obtain a perturbative expression for the relativistic dipole moment at frequency 3ω.
(f) At what intensity is the third-harmonic relativistic dipole comparable to the fundamental dipole?

Problem 1.6
We have already seen how the field responds to an atomic vapor, given the Lorentz model for the atoms:
the real part of the polarizability results in a phase shift (dispersion), while the imaginary part leads
to absorption. In this problem, you will explore a general classical model for how the electromagnetic
field responds to the polarization field P(r, t) of a medium. The polarization, or the dipole moment
per unit volume, is the macroscopic generalization of the atomic dipole moment.
(a) Use Maxwell’s equations in a source-free, dielectric medium,

∇ ·D = 0

∇ ·B = 0

∇×E = −∂tB
∇×H = ∂tD,

(1.160)

where
B = µ0H, (1.161)

and the electric fields are related by
D = ε0E + P, (1.162)

to derive the polarization-driven wave equation

∇2E− 1

c2
∂ 2
t E =

1

ε0c2
∂ 2
t P. (1.163)

You may assume the polarization field to be transverse, i.e., ∇ · P = 0. Generally speaking, the
polarization is induced by the field, but here we may view it as an independent object acting to modify
the field.
(b) Now assume the fields have the form

E(r, t) = ε̂
E0

2
ei(kz−ωt+φ) + c.c.

P(r, t) = ε̂P
(+)
0 ei(kz−ωt+φ) + c.c.,

(1.164)

where φ(z, t) is a slowly varying phase, E0(z, t) is a slowly varying (real) field amplitude, and P
(+)
0 (t)

is a slowly varying (complex, varying in time only) polarization amplitude. Of course, due to a possible
phase lag of the medium, the polarization phase may have a phase different from that of the field. In
this case, ‘‘slowly varying’’ means

|∂tE0| � ωE0; |∂zE0| � kE0, (1.165)

with similar relations holding for φ and |P (+)
0 |. Put the fields into the above wave equation, making

the approximation of slowly varying amplitude and phase, to derive the equations

∂zE0 +
1

c
∂tE0 = − k

ε0
Im
[
P

(+)
0

]
E0

(
∂zφ+

1

c
∂tφ

)
=

k

ε0
Re
[
P

(+)
0

] (1.166)
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for the effect of the polarization on the field. We again see the imaginary part causes absorption (or
gain), and the real part causes a phase shift. These relations are important, for example, in laser
physics in treating the effect of the gain medium on the laser field.
Note: in the slowly varying approximation, you should throw away second derivatives of E0 and φ, as
well as other second-derivative terms, e.g., of the form (∂tE0)(∂tφ). This problem treats the lowest-
order modification of the field due to the polarization field, so you should discard all derivatives of
P

(+)
0 . Finally, since we are after a perturbative result, you may assume that E0 approximately satisfies

the homogeneous equation

−k2E0 +
ω2

c2
E0 ≈ 0. (1.167)

That is, ignoring the variation, E0 represents a valid solution in the absence of the medium.





Chapter 2

Classical Coherence

Coherence theory is concerned with characterizing light, especially its fluctuation properties that influence
how it will act in an interference-type experiment. This is covered to some extent by the spectral profile of
the field, which is one of the themes here, but isn’t the full story. Obviously things will get more interesting in
the quantum case, but it is important to establish some classical results immediately so we can characterize
atomic radiation.

Let’s now consider an interference experiment that involves a range of frequencies. Recalling the
interference of two monochromatic plane waves, we can write the superposition of the two waves as

E(+)
sum(r, t) = E

(+)
10 ei(kz−ωt) + E

(+)
20 ei(kz−ωt)eiφ. (2.1)

Here, φ is a relative phase difference between the two waves. Recall that we are just writing the positive-
frequency components, so that the physical fields also must include the negative-frequency parts.

The intensity of the superposition is

Isum = 〈|Esum ×Hsum|〉 =
1

η

〈
(Esum)

2
〉
. (2.2)

Writing this out explicitly in terms of the component fields,

Isum =
1

η

〈(
E

(+)
10 ei(kz−ωt) + E

(+)
20 ei(kz−ωt)eiφ + E

(−)
10 e−i(kz−ωt) + E

(−)
20 e−i(kz−ωt)e−iφ

)2〉
. (2.3)

The optical terms of the form exp(±i2ωt) vanish in the time average, so we obtain

Isum =
2

η
E

(−)
10 E

(+)
10 +

2

η
E

(−)
20 E

(+)
20 +

2

η
E

(−)
10 E

(+)
20 eiφ +

2

η
E

(−)
20 E

(+)
10 e−iφ

= I1 + I2 +

[
2

η
E

(−)
10 E

(+)
20 eiφ + c.c.

]
.

(2.4)

Again, the interference is in the terms with the relative phase φ.
Suppose that the phase difference represents a difference in optical path length, in the form of a time

delay τ . Then φ = −ωτ , and so

Isum = I1 + I2 +

[
2

η
E

(−)
10 E

(+)
20 e−iωτ + c.c.

]
. (2.5)

Now let’s handle the case of multiple frequencies. To simplify things, we’ll assume that the two waves have
equal amplitude and come from a common source. Then the intensity density at frequency ω is

Isum(ω) = 2I(ω) +

[
2

η
|E(+)

0 (ω)|2e−iωτ + c.c.
]
. (2.6)
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Note that the notation here is a little funny; the frequency-dependent quantities I(ω) and E(+)(ω) don’t have
the respective dimensions of intensity and electric field; rather, I(ω) dω and |E(+)(ω)|2 dω are the intensity
and (squared) electric field, respectively, in the frequency interval between ω and ω + dω.

Now we can sum over all frequencies to find the total intensity:

Itotal =

∫ ∞
0

Isum(ω) dω

= 2

∫ ∞
0

I(ω) dω +

[
2

η

∫ ∞
0

|E(+)
0 (ω)|2e−iωτ dω + c.c.

]
.

(2.7)

Note that the frequency integral ranges only over positive frequencies; we’ve already accounted for the
negative frequencies by including the complex conjugate terms. Thus the intensity spectrum Isum(ω) is a
one-sided spectrum, which is common when working with intensities and powers. We can now recognize the
second integral in the last expression as a ‘‘one-sided’’ Fourier transform of |E(+)

0 (ω)|2, where we recall the
normalization convention for ω-t Fourier transforms:

f(t) =
1

2π

∫ ∞
−∞

f̃(ω) e−iωt dω, f̃(ω) =

∫ ∞
−∞

f(t) eiωt dt.
(2.8)

(ω-t Fourier transform)

But what is this, when we don’t know the general form of the electric field?

2.1 Wiener–Khinchin Theorem

Recall the convolution theorem for functions f and g (see Section 17.1.2):

F [f ∗ g] = F [f ]F [g]. (2.9)

Writing out the convolution integral explicitly,

(f ∗ g)(t) =
∫ ∞
−∞

f(t′) g(t− t′) dt′ = F−1 [F [f ]F [g]] . (2.10)

If we make the particular choice g(t) = f∗(−t), then

F [g(t)] = F [f∗(−t)] =
∫ ∞
−∞

f∗(−t) eiωt dt =
∫ ∞
−∞

f∗(t) e−iωt dt = (F [f(t)])
∗
. (2.11)

Thus, Eq. (2.10) becomes ∫ ∞
−∞

f(t′) f∗(t′ − t) dt′ = F−1
[∣∣F [f ]

∣∣2] . (2.12)

Inverting the transform and letting t′ −→ t′ + t, we obtain the Wiener–Khinchin theorem:

F

[∫ ∞
−∞

f∗(t′) f(t+ t′) dt′
]
= |F [f ]|2 . (2.13)

(Wiener–Khinchin theorem)

The function on the left-hand side, ∫ ∞
−∞

f∗(t) f(t+ τ) dt,
(2.14)

(autocorrelation function)

is the autocorrelation function of f(t). Essentially, it compares f to itself but shifted by an amount τ by
computing an overlap integral. We can understand the right-hand side by noting that F [f ] is the spectrum
of f , and so |F [f ]|2 is the energy spectral density of f . Essentially, the energy spectrum is the square of
the usual spectrum, with the phase information removed. This is consistent with the notion of energy going
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as the square of a signal amplitude. Thus, the Wiener–Khinchin theorem states that the Fourier transform
of the autocorrelation function gives the energy spectrum.

There is one subtle point to these definitions: for some signals, such as steady optical signals, the
correlation integral diverges: ∫ ∞

−∞
f∗(t) f(t+ τ) dt −→∞. (2.15)

In this case, we should consider a time average instead of the normal integral. For an averaging time of T ,

〈f∗(t) f(t+ τ)〉T :=
1

T

∫ T/2

−T/2

f∗(t) f(t+ τ) dt. (2.16)

For bounded signals, this integral is guaranteed to converge. To be physically sensible, T should be a suitably
long observation time (e.g., long enough to resolve the frequency spectrum). For such signals, we can write
the Wiener–Khinchin theorem as

F [〈f∗(t) f(t+ τ)〉T ] = F ∗[f ]FT [f ]. (2.17)

Here we have defined a finite-time Fourier transform by

FT [f ] :=
1

T

∫ T/2

−T/2

f(t) eiωt dt. (2.18)

Defining this seems a bit funny, but it avoids problems with singular spectra. Now the Wiener–Khinchin
theorem says that the Fourier transform of the (time-averaged) correlation function is the power spectral
density, or the energy spectral density per unit time. For a stationary process, the correlation function is
independent of t (generally for a sufficiently long averaging time T ). Then we can extend the averaging time
T −→∞. Denoting this long-time averaging limit as

〈f∗(t) f(t+ τ)〉 = 〈f∗(t) f(t+ τ)〉T→∞ , (2.19)

we can thus write the Wiener–Khinchin theorem as

F [〈f∗(t) f(t+ τ)〉] = lim
T→∞

1

T

∣∣∣∣∣
∫ T/2

−T/2

f(t) eiωt dt

∣∣∣∣∣
2

.

(Wiener–Khinchin theorem, time-average form) (2.20)
Again, the right-hand side is the power spectral density, and in this form it is more clear that this is the
energy density per unit time.

2.2 Optical Wiener–Khinchin Theorem

In terms of stationary optical fields, the Wiener–Khinchin theorem (2.20) becomes∫ ∞
0

I(ω) e−iωτ dω =
2

η
〈E(−)(t)E(+)(t+ τ)〉.

(optical Wiener–Khinchin theorem) (2.21)
This is because the intensity density I(ω) = 〈|S|〉 is the time-averaged power spectral density of the optical
field. Note that from the inverse Fourier transform, there is conventionally a factor of 1/2π, but it is missing
here because it is already implicitly included in I(ω). We can see this from the boundary condition at τ = 0,
which gives the total intensity:∫ ∞

0

I(ω) dω =
2

η
〈E(−)(t)E(+)(t)〉 = 2

η

〈
|E(+)(t)|2

〉
. (2.22)
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In optics, as in statistics and other fields, it is conventional to define a normalized correlation function

g(1)(τ) :=
〈E(−)(t)E(+)(t+ τ)〉
〈E(−)(t)E(+)(t)〉

,

(degree of first-order temporal coherence) (2.23)
so that

2

η
〈E(−)(t)E(+)(t+ τ)〉 =

(∫ ∞
0

I(ω) dω

)
g(1)(τ). (2.24)

The normalization is such that g(1)(τ = 0) = 1. That is, a correlation value of unity indicates perfect
correlation. Note that we could just as well have written the correlation function as 〈E(+)(t+ τ)E(−)(t)〉,
but it turns out that the order of E(+) and E(−) matters in quantum mechanics, so we’ll be careful to stick
to the form in Eq. (2.23). Notice also that from the definition of g(1)(τ), the correlation function is subject
to the constraint

g(1)(−τ) = [g(1)(τ)]∗.
(2.25)

(time symmetry of correlation function)

In quantum optics, g(1)(τ) is called the degree of first-order temporal coherence. The light is said to
be coherent if |g(1)(τ)|2 = 1, incoherent if |g(1)(τ)|2 = 0, and partially coherent otherwise (for τ 6= 0).
This function can be generalized to include spatial correlation by

g(1)(r1, t1, r2, t2) :=
〈E(−)(r1, t1)E(+)(r2, t2)〉√
〈|E(+)(r1, t1)|2〉〈|E(+)(r2, t2)|2〉

,

(degree of first-order coherence) (2.26)
which is the degree of first-order coherence. We will focus on the case (2.23) of temporal coherence.

Returning to the interference result of Eq. (2.7), we find

Itotal = 2

∫ ∞
0

Isum(ω) dω +

[
2

η

∫ ∞
0

|E(−)
0 (ω)|2e−iωτ dω + c.c.

]
=

(∫ ∞
0

I(ω) dω

){
2 +

[
g(1)(τ) + c.c.

]}
,

(2.27)

and thus

Itotal = 2

(∫ ∞
0

I(ω) dω

){
1 + Re

[
g(1)(τ)

]}
.

(interferometer signal in terms of g(1)(τ)) (2.28)
It is worth keeping in mind that the form (2.13) is still relevant for pulsed fields, in which case the result
here is modified so that the coefficient in front is the integrated power rather than intensity.

2.2.1 Michelson Interferometer

One example where the interference result (2.28) arises directly—and thus where the optical Wiener–Khinchin
theorem is very useful—is in the Michelson interferometer. The interferometer splits and interferes the beam
with itself, and the path-length difference τ varies with the displacement of one of the mirrors.

Eo(+)o(t)

detector

·Eo(-)o(t)ooEo(+)o(to+ot)‚ + c.c.

vary t



2.2 Optical Wiener–Khinchin Theorem 67

The photodetector at the output measures the time average of the product of the fields, up to an overall
constant, and thus measures g(1)(τ), just as in Eq. (2.28).

The Michelson interferometer thus gives a method for measuring the spectrum of an optical field. The
idea is then to digitize the output of the photodetector as a function of the mirror displacement, effectively
recording Re[g(1)(τ)]. Computing the Fourier transform of the signal on the computer gives the spectrum
I(ω). (Note that I(ω) is real, and so the imaginary parts of g(1)(τ) don’t contribute to the spectrum.) This
is the technique behind, for example, Fourier-transform infrared (FTIR) spectroscopy.

2.2.2 Example: Monochromatic Light

As a simple example, let’s compute the correlation function for monochromatic light and verify that the
Wiener–Khinchin theorem makes sense. Let’s take a monochromatic wave of the form

E(+)(t) = E
(+)
0 e−iω0t. (2.29)

The correlation function is 〈
E(−)(t)E(+)(t+ τ)

〉
=
∣∣∣E(+)

0

∣∣∣2 e−iω0τ . (2.30)

In normalized form, this function becomes

g(1)(τ) = e−iω0τ . (2.31)

Thus, a wave with harmonic time dependence leads to a harmonic correlation function. This is true inde-
pendent of the phase of the input field; that is, the correlation function does not reflect any extra phase in
E

(+)
0 .

The power spectrum is easy to calculate via the Wiener–Khinchin theorem:

F
[〈
E(−)(t)E(+)(t+ τ)

〉]
=
∣∣∣E(+)

0

∣∣∣2 F
[
e−iω0τ

]
=
∣∣∣E(+)

0

∣∣∣2 δ(ω − ω0). (2.32)

Again, the harmonic time dependence produces a single frequency in the power spectrum. Of course, with
our convention of positive and negative frequencies, there would be a matching δ(ω + ω0) component, but
this is already included in the one-sided spectrum I(ω).

Let’s now compute the power spectrum directly, using Eq. (2.17). The normal spectrum is

F
[
E(+)(t)

]
= E

(+)
0 δ(ω − ω0). (2.33)

The finite-time transform is

FT

[
E(+)(t)

]
=

1

T

∫ T/2

−T/2

E
(+)
0 ei(ω−ω0)t dt = E

(+)
0 sinc [(ω − ω0)T/2] . (2.34)

Note that the value of the sinc function is 1 at ω = ω0. Thus, the spectrum is

F ∗
[
E(+)(t)

]
FT

[
E(+)(t)

]
= E

(−)
0 δ(ω − ω0)E

(+)
0 sinc [(ω − ω0)T/2] =

∣∣∣E(+)
0

∣∣∣2 δ(ω − ω0). (2.35)

This result is consistent with Eq. (2.32). Note that without being careful with finite-time transforms, we
would run into something bad involving the square of a δ-function.

2.2.3 Spectrum of Atomic Radiation

With this formalism, it is straightforward to analyze the spectrum of the scattered light from the Lorentz
atom. If the atom is briefly excited, then the amplitude of the field decays exponentially with time. The
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autocorrelation function does the same, and the Fourier transform of a decaying exponential is a Lorentzian
lineshape (see Problem 2.1). Thus, the radiated spectrum has the form

s(ω) =
γ/2π

(ω0 − ω)2 + (γ/2)2
. (2.36)

(Actually, this turns out to be the spectrum s+(ω) that we will define below, corresponding to a coherence
function g(1)(τ) = e−iω0τe−γτ/2.) On the other hand, if the atom is driven by a monochromatic field, the
dipole oscillates sinusoidally in steady state at the driving frequency ωL (say of the driving laser), rather than
the atomic resonance frequency. In this case, the radiated spectrum is monochromatic: s(ω) = δ(ω − ωL).
The above broadened spectrum is a transient effect that is swamped by this ‘‘elastic’’ peak (elastic since the
scattered light has the same frequency as the incident light).

2.2.4 Normalized One- and Two-Sided Spectra

Now we will be a bit more precise about the nature of the spectrum, to avoid confusion with different possible
conventions for the power spectrum. First, it’s convenient to define a normalized spectral density (lineshape
function)

s(ω) :=
I(ω)∫ ∞

0

I(ω) dω

.
(2.37)

(normalized spectral density)

Note that this spectrum extends only over positive frequencies, as the intensity spectrum I(ω) corresponded
to physical frequency components. Examining the inverse Fourier transform, we combine Eqs. (2.21) and
(2.24) to obtain

g(1)(τ) =

∫ ∞
0

s(ω) e−iωτ dω.

(first-order coherence in terms of normalized, one-sided spectral density) (2.38)
However, the usual inverse Fourier transform has an integral extending over both positive and negative
frequencies. We can obtain something of this form by considering the real part of the correlation function,

Re
[
g(1)(τ)

]
=
g(1)(τ) +

[
g(1)(τ)

]∗
2

=
g(1)(τ) + g(1)(−τ)

2

=
1

2

∫ ∞
0

s(ω) e−iωτ dω +
1

2

∫ ∞
0

s(ω) eiωτ dω,
(2.39)

so that if we define a two-sided spectrum s↔(ω) (for all ω ∈ R) via

s↔(ω) :=

 s(ω)/2 (ω > 0)
s(ω) (ω = 0)
s(−ω)/2 (ω < 0),

(two-sided spectrum in terms of one-sided spectrum) (2.40)
which satisfies

s↔(−ω) = s↔(ω),
(2.41)

(symmetry of two-sided spectrum)

we obtain

Re
[
g(1)(τ)

]
=

∫ ∞
−∞

s↔(ω) e−iωτ dω.

(first-order coherence in terms of two-sided spectrum) (2.42)
We have lost the imaginary part, but only the real part can contribute to a physical result: g(1)(τ) must
always be accompanied by its conjugate, as we saw in the interference experiment.
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Inverting this last relation, we have

s↔(ω) =
1

2π

∫ ∞
−∞

Re
[
g(1)(τ)

]
eiωτ dτ

=
1

2π

∫ ∞
−∞

g(1)(τ) cosωτ dτ

=
1

2π

∫ ∞
0

g(1)(τ) cosωτ dτ + c.c. (ω ∈ R).

(two-sided spectral density in terms of first-order coherence) (2.43)
The one-sided spectrum can then be written in terms of the double-sided spectrum as

s(ω) =

 s↔(ω) + s↔(−ω) = 2s↔(ω) (ω > 0)
s↔(ω) (ω = 0)
0 (ω < 0),

(two-sided spectrum in terms of one-sided spectrum) (2.44)
so that the one-sided spectrum simply concentrates all the power at positive and negative frequencies on
the positive side. Of course, this cannot be done for any spectrum, but the power spectral density—the
Fourier transform of the coherence function—has a special structure due to the symmetry of the correlation
function. Thus, we can write the one-sided spectrum as

s(ω) =
1

π

∫ ∞
−∞

Re
[
g(1)(τ)

]
eiωτ dτ

=
1

π

∫ ∞
−∞

g(1)(τ) cosωτ dτ

=
1

π

∫ ∞
0

g(1)(τ) cosωτ dτ + c.c. (ω ≥ 0)

(one-sided spectral density in terms of first-order coherence) (2.45)
in terms of the coherence function. Combining Eqs. (2.42) and (2.44), we then find

Re
[
g(1)(τ)

]
=

∫ ∞
0

s(ω) cosωτ dω

(first-order coherence in terms of one-sided spectrum) (2.46)
for the reverse transformation.

Finally, note that it can be more convenient to associate spectra separately with g(1)(τ) and its con-
jugate, by defining

s±(ω) :=
1

4π

∫ ∞
−∞

g(1)(τ) e±iωτ dτ =
1

4π

∫ ∞
0

g(1)(τ) e±iωτ dτ + c.c. (ω ∈ R),

(component spectral densities in terms of first-order coherence) (2.47)
so that

s+(ω) = s−(−ω).
(2.48)

(symmetry of component spectra)

Then the relations

s↔(ω) = s+(ω) + s−(ω) = s+(ω) + s+(−ω) (ω ∈ R)

s(ω) = 2[s+(ω) + s−(ω)] = 2[s+(ω) + s+(−ω)] (ω ≥ 0)

(component spectral densities in terms of first-order coherence) (2.49)
recover the total spectra (2.43) and (2.45), respectively.
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2.3 Visibility

The example in Eq. (2.31) of the correlation function for a monochromatic wave is special in the sense that
the correlation function does not decay with τ . This is important, because the correlation function is the
magnitude of the interference terms. To quantify this better, we can define the fringe visibility as

V :=
Imax − Imin

Imax + Imin
,

(2.50)
(fringe visibility)

where Imax and Imin are the maximum and minimum intensities achieved for phase variations on the order
of several π. For example, complete interference results in intensity variation from 0 to some maximum, and
so V = 1. For no interference, the intensity does not vary with phase and so V = 0. Partial coherence is
represented by intermediate values of the visibility.

Writing out the explicit phase of the correlation function,

g(1)(τ) = |g(1)(τ)|eiφ(τ), (2.51)

and so Eq. (2.28) becomes

Itotal = 2

(∫ ∞
0

I(ω) dω

)[
1 + |g(1)(τ)| cosφ(τ)

]
. (2.52)

The cosine varies from −1 to 1, so the visibility is just the magnitude of the correlation function:

V = |g(1)(τ)|. (2.53)
(visibility in terms of coherence)

For monochromatic light, V = 1. Actually, this is only true if the amplitudes of the input waves are equal.
For two monochromatic waves of unequal amplitude, the visibility becomes

V =
2
√
I1I2

I1 + I2
.

(2.54)
(monochromatic, unbalanced interference)

The important thing to note is that for interference of monochromatic light, the visibility is independent of
τ .

2.4 Coherence Time, Coherence Length, and Uncertainty Measures

As we have just seen, a peculiarity of monochromatic light is that the coherence does not decay with τ . In
the generic case, where light is composed of a range of frequencies, the visibility drops as the phase difference
increases, since g(1)(τ) −→ 0 as τ −→∞. Intuitively, this is because as light waves with different wavelengths
propagate, the monochromatic components tend to dephase. Mathematically, we can express this as an
uncertainty relationship. Recall from Section 2.2.4 that the coherence Re[g(1)(τ)] and the normalized (two-
sided) spectral density (lineshape function) form a Fourier-transform pair. Actually, 2πs↔(ω) is the second
half of the pair, due to the form of the transforms (2.42) and (2.43): recall that in the ω-t convention, there
is normally a factor of 1/2π in front of the inverse-transform integral, as in Eqs. (2.8).

Thus, if we define the root-mean-square (rms) widths of these two functions, regarding Re[g(1)(τ)]2
and [s↔(ω)]2 as (unnormalized) probability distributions, we can write down an uncertainty relation, as
in quantum mechanics:

δωrms δτrms ≥
1

2
.

(2.55)
(rms uncertainty relation)

For many distributions, we can say that the equality is more or less satisfied to

δωrms δτrms ∼
1

2
, (2.56)
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and thus see that the ‘‘widths’’ of g(1)(τ) and s↔(ω) are inversely related. The problem is that for some
useful functions in optics, these uncertainties can diverge (e.g., for Lorentzian functions) or vary by orders
of magnitude. The uncertainty inequality is always satisfied, of course, but as a practical relation for the
temporal and frequency widths, this is less useful.

Thus we will adopt other uncertainty conventions in time and frequency1 We can define the coherence
time as the power-equivalent width of the correlation function:

δτ :=

∫ ∞
−∞

∣∣∣Re
[
g(1)(τ)

]∣∣∣2 dτ.
(coherence time, power-equivalent width) (2.57)

The idea here is to first note that g(1)(τ = 0) = 1. Thus the width δτ is the width of a box of unit height,
with the same area as |Re[g(1)(τ)]|2. That is, δτ is the width of a unit-height box signal with the same power
as |Re[g(1)(τ)]|2.

t

Reo[go(1)o(t)]2

dt

1

same area

We’ll take a slightly different convention for the width of the frequency spectrum. Let’s define the average
value of the one-sided normalized spectrum as

s̄ =

∫ ∞
0

s2(ω) dω = 2

∫ ∞
−∞

s 2
↔(ω) dω. (2.58)

That is, we’re regarding s(ω) as a probability distribution (because it has the appropriate normalization),
and then we’re calculating the expectation value of s(ω) with respect to itself. Then we’ll define the effective
frequency width by the reciprocal of the average value:

δω := (s̄)
−1

=

[∫ ∞
0

s2(ω) dω

]−1
.

(2.59)
(spectral width)

Thus, δω is the width of the box function of unit area and height s̄.

w

so(w)

dw

s-
unit area

Note that we have constructed the diagram as if s(ω) is two-sided, but the argument carries through for the
one-sided case as well, being careful to keep track of factors of 2. The definitions for δτ and δω look like
inverses, but they’re really quite different because of the different normalizations of the two functions.

The big advantage of these definitions is that they are related in a simple way. We can write

δτ δω =

∫ ∞
−∞

∣∣∣Re
[
g(1)(τ)

]∣∣∣2 dτ
2

∫ ∞
−∞

s 2
↔(ω) dω

. (2.60)

1as in Max Born and Emil Wolf, Principles of Optics, 7th (expanded) ed. (Cambridge, 1999).
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We can use Parseval’s theorem to evaluate this ratio, which states that the signal power is equivalently
measured in either the time or frequency basis:∫ ∞

−∞
|f(t)|2 dt = 1

2π

∫ ∞
−∞

∣∣∣f̃(ω)∣∣∣2 dω. (2.61)
(Parseval’s theorem)

Noting again that Re[g(1)(τ)] and 2πs↔(ω) form a Fourier-transform pair, and recalling the factor of two
for using the one-sided spectrum, we can use this to write

δτ δω = π.
(2.62)

(uncertainty relation)

This ‘‘uncertainty relation’’ is a strict equality, valid for any functions as long as the measures exist and are
finite. Neat, eh?

The point of all this is, for time (optical path length) delays larger than the coherence time δτ , the
fringe visibility is mostly gone. This coherence time corresponds to a physical path length difference

`c := c δτ,
(2.63)

(coherence length)

which is called the coherence length.
Here are some examples. For a He-Ne laser, the laser line width is δν = δω/2π ∼ 1 GHz. This

corresponds to a coherence time of δτ ∼ 1 ns, or a coherence length `c ∼ 30 cm. On the other hand for a
light bulb that spans the visible wavelength range of 400-700 nm, the line width is

δν ∼ ν δλ

λ
=
c δλ

λ2
= 300 THz. (2.64)

This gives a coherence time δτ ∼ 3 fs and a coherence length `c ∼ 1 µm. So in fact it is possible to see
interference of white light in a Michelson, but it’s very difficult because the path lengths must be matched
to µm accuracy. On the other hand, it’s much easier to observe interference or record a hologram with light
from a He-Ne laser, because it remains coherent on the scale of about a foot.

2.5 Interference Between Two Partially Coherent Sources

In general, we can now look at the interference pattern between two partially coherent sources, represented
by the two fields E(+)

1 (t) and E(+)
2 (t). The second field has an adjustable time delay of τ . Then the intensity

of the superposition of these waves is

I =
2

η

〈∣∣∣E(+)
1 (t) + E

(+)
2 (t+ τ)

∣∣∣〉
=

2

η

〈∣∣∣E(+)
1 (t)

∣∣∣〉+
2

η

〈∣∣∣E(+)
2 (t+ τ)

∣∣∣〉+

[
2

η

〈∣∣∣E(−)
1 (t)E

(+)
2 (t+ τ)

∣∣∣〉+ c.c.
]

= I1 + I2 + 2
√
I1I2 Re

[
g
(1)
12 (τ)

]
,

(2.65)

where g(1)12 (τ) is the normalized cross-correlation function:

g
(1)
12 (τ) :=

〈∣∣∣E(−)
1 (t)E

(+)
2 (t+ τ)

∣∣∣〉〈∣∣∣E(−)
1 (t)E

(+)
2 (t)

∣∣∣〉 .
(2.66)

(normalized cross-correlation)

Again, the visibility is

V =
2
√
I1I2

I1 + I2

∣∣∣g(1)12 (τ)
∣∣∣ . (2.67)

(visibility for two different fields)

This tells us that very different beams, resulting in little correlation, don’t interfere very well.
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2.6 Second-Order Coherence

The degree of second-order coherence is the autocorrelation function for the intensity, rather than the
field. We can define this function as

g(2)(τ) :=
〈E(−)(t)E(−)(t+ τ)E(+)(t+ τ)E(+)(t)〉

〈E(−)(t)E(+)(t)〉2
.

(degree of second-order coherence) (2.68)
Classically, this expression becomes

g(2)(τ) =
〈I(t)I(t+ τ)〉

〈I〉2
. (2.69)

For the first-order coherence, we had that 0 ≤ |g(1)(τ)| ≤ 1, since E(+)(t) is always at least as correlated with
E(+)(t) as with E(+)(t+ τ), but this constraint is somewhat different for g(2)(τ), because the normalization
convention is somewhat different.

First let’s consider the variance of I(t), which is manifestly nonnegative:〈(
I(t)−〈I(t)〉

)2〉
≥ 0. (2.70)

Multiplying this out, this constraint becomes

〈I2(t)〉 ≥ 〈I(t)〉2, (2.71)

which implies the boundary condition

g(2)(0) =
〈I2〉
〈I〉2

≥ 1
(2.72)

(classical bunching constraint)

for the second-order coherence. There is no corresponding upper bound, and this argument fails for τ 6= 0.
This inequality is classical, and we will see that it is possible for a quantum field to violate this condition
(see Section 5.7.5 or Problem 8.12). This inequality effectively provides a boundary between quantum and
classical statistical behavior.

We can also start with the inequality[
I(t)− I(t+ τ)

]2
≥ 0, (2.73)

which when multiplied out yields

I2(t) + I2(t+ τ) ≥ 2I(t) I(t+ τ). (2.74)

Taking the time average of this relation then gives

〈I2(t)〉 ≥ 〈I(t)I(t+ τ)〉. (2.75)

This implies

g(2)(0) ≥ g(2)(τ), (2.76)
(classical constraint)

so the second-order coherence is a nonincreasing function, at least in the vicinity of τ = 0.
The second-order coherence is related to how ‘‘concentrated’’ or ‘‘bunched’’ the intensity function is.

For example, a monochromatic wave has I(t) = I, which gives g(2) = 1. Again, the monochromatic wave
is coherent at second order. Note that we can generalize the correlation functions in an obvious way to
arbitrarily high order, where it turns out that a monochromatic wave always takes on the value unity and is
thus coherent to all orders. However, the first- and second-order degrees of coherence are the most important
and relevant for experiments.
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For the opposite extreme of a periodic train of short pulses,

I(t) = A
∑
n

δ(t− nT ), (2.77)

we can see that
〈I〉 = A

T
(2.78)

and
〈I2〉 = A2

T

∑
n

δ(τ − nT ), (2.79)

so that
g(2)(τ) = T

∑
n

δ(τ − nT ). (2.80)

Note that in deriving Eq. (2.79), we have used the relation∫
δ(t)δ(t+ τ) dt = lim

m→∞

∫
me−πm

2t2δ(t+ τ) dt = lim
m→∞

me−πm
2τ2

= δ(τ), (2.81)

where we have used the definition of the delta function as a limit of a sequence of normalized Gaussians of
decreasing width. This relation also makes sense as a convolution, since the delta function is the identity
kernel of the convolution operation. Thus, we see that very large values of g(2)(τ) correspond to temporally
concentrated intensity. This is the classical manifestation of photon bunching.

2.6.1 Thermal Light

To model light from a thermal source, we will assume that E(+)(t) fluctuates as a stationary Gaussian random
process. That is, E(+)(t) is a complex Gaussian random variable whose statistics are time-independent, and
E(+)(t) is correlated with the itself at other times as required by the power spectrum.

Gaussian random processes are fundamental in modeling noisy systems, as they allow for tremendous
simplifications. We will call Z a complex Gaussian random variable if Z = X + iY , where X and Y
are independent and identically distributed Gaussian random variables. The joint probability density of X
and Y is

f(x, y) =
1

2πσ2
e−(x

2+y2)/2σ2

, (2.82)

if we assume that 〈X〉 = 〈Y 〉 = 0. Then we can write the probability density of Z as

f(z) =
1

2πσ2
e−|z|

2/2σ2

=
1

πσ 2
z

e−|z|
2/σ 2

z ,

(2.83)

where
σ 2
z = 〈|Z|2〉 = 2σ2 (2.84)

is the variance of Z. Generalizing this to N complex Gaussian variables Z1, . . . , ZN , the probability density
becomes

f(zα) =
1

πN detSαβ
e−z

∗
α(S−1)αβzβ , (2.85)

where summations are implied by repeated indices, and

Sαβ := 〈ZαZ∗β〉 (2.86)
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is the covariance matrix. For such complex Gaussian variables, one can show that high-order moments
factor as2

〈Z∗α1
Z∗α2
· · ·Z∗αN

ZβM
· · ·Zβ1

〉 =
∑

all N !
pairings

〈Z∗α1
Zβ1
〉〈Z∗α2

Zβ2
〉 · · · 〈Z∗αN

ZβN
〉

(Gaussian moment factorization) (2.87)
if M = N , with the moment vanishing otherwise. We can always factor high-order moments because the
Gaussian distribution (2.85) itself only depends on the quadratic moments. In particular, we need the
factorization for the fourth-order moment

〈Z∗1Z∗2Z2Z1〉 = 〈Z∗1Z1〉〈Z∗2Z2〉+ 〈Z∗1Z2〉〈Z∗2Z1〉

= 〈|Z1|2〉〈|Z2|2〉+ |〈Z∗1Z2〉|2.
(2.88)

Applying this to the second-order coherence function (2.68), we find the important relation

g(2)(τ) = 1 + |g(1)(τ)|2, (2.89)
(thermal-field coherence constraint)

which again is valid for light with Gaussian fluctuations in the field. Recalling that g(1)(0) = 1, we now
have the boundary condition g(2)(0) = 2 for thermal light. Additionally, g(1)(τ) −→ 0 as τ −→ ∞, so
g(2)(τ) −→ 1 as τ −→∞.

t

go(2)o(t)

0

1

2

The correlation function thus drops from 2 to 1 with τ , as shown here for light with a Gaussian power
spectrum (in addition two the Gaussian fluctuations). Thus, thermal light exhibits some degree of bunching.

2.6.2 Experiment of Hanbury Brown and Twiss

One important feature of the second-order coherence function is that it can be measured with a reasonably
simple setup, the famous Hanbury-Brown–Twiss apparatus.3 A simplified schematic of this type of
apparatus is shown here.

delay
t

Eo(+)o(t)

detector

detector

An input field is divided by a beam splitter, and the two components are monitored by two photodetectors.
The two detector signals are fed into a signal multiplier (mixer), though only after a variable time delay is
added to one of the signals. The mixer signal is fed through a low-pass filter, which can be thought of as a
integrator with a running time average.

2see Leonard Mandel and Emil Wolf, Optical Coherence and Quantum Optics (Cambridge, 1995), p. 38.
3R. Hanbury Brown and R. Q. Twiss, ‘‘Correlation Between Photons in Two Coherent Beams of Light,’’ Nature 177, 27

(1956).



76 Chapter 2. Classical Coherence

This setup, because it effectively correlates the two intensities, seems to give the g(2)(τ) function as its
output signal directly. But the detectors are generally ac-coupled, so that the detectors monitor I(t)− 〈I〉.
Then the output signal of the mixer is

Vmixer ∝ [I(t)− 〈I〉][I(t+ τ)− 〈I〉], (2.90)

and the output signal of the low-pass filter is

Vlow-pass ∝ 〈[I(t)− 〈I〉][I(t+ τ)− 〈I〉]〉 = 〈I(t)I(t+ τ)〉 − 〈I〉2. (2.91)

After proper normalization, we can see that the output is just g(2)(τ)− 1. Thus, for thermal light this setup
should give some signal for τ = 0 that decays to zero for large delays.

The setup here makes it somewhat intuitive how the quantum field will violate the inequality (2.72).
If the quantum field arrives as a stream of separated, individual photons, then at any given time, only one
of the photodetectors can ‘‘click.’’ That is, a single photon causes a detection event on one detector or the
other, but necessarily not both. This implies that g(2)(τ = 0) can go to zero in such a situation. This is the
phenomenon of antibunching.

The treatment here is simplified, since taking into account the response time of the detectors compli-
cates things considerably. The original experiment used the same idea to measure the spatial correlation of
intensities, which can be used to measure the size of the optical source. This has important applications,
for example, in astronomy, where the signals from two separated telescopes can be mixed in the same way.
In such a stellar interferometry arrangement, the measured correlation function gives a measure of the
diameter of the distant star. For our purposes, the quantum-mechanical version of this experiment that we
will return to later demonstrates some of the uniquely quantum-mechanical features of light.

2.7 Phase Noise

2.7.1 Spectra of Phase and Frequency Fluctuations

An important form of noise in oscillators and lasers is phase noise, for example where the time dependence
of a signal has the form

f(t) ∼ cos[ω0t+ φ(t)], (2.92)

where φ(t) is a stochastic process. The total phase of this signal is φtotal = ω0t+φ(t), and the instantaneous
frequency is just the time derivative of the phase:

ω(t) =
dφtotal

dt
= ω0 +

dφ(t)

dt
. (2.93)

Thus, the phase noise translates into frequency noise as well.
Given a signal with time dependence of the form exp[−iφ(t)], let us define an unnormalized, one-sided

spectral density of phase fluctuations via

Sφ(ω) :=

∫ ∞
−∞
〈φ(t)φ(t+ τ)〉 cosωτ dτ (ω ≥ 0),

(spectral density of phase fluctuations (one-sided)) (2.94)
in analogy with Eq. (2.45). Correspondingly, if we are instead interested in the spectral density of frequency
fluctuations

Sω(ω) :=

∫ ∞
−∞

〈
φ̇(t) φ̇(t+ τ)

〉
cosωτ dτ (ω ≥ 0).

(spectral density of frequency fluctuations (one-sided)) (2.95)
These spectra are related by

Sω(ω) = ω2Sφ(ω)

(phase to frequency spectrum conversion) (2.96)
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(see Problem 2.4). Thus, for example, if φ(t) is a random-walk process, then φ̇ is a white-noise process, so
that Sω(ω) is independent of frequency (i.e., φ(t) ∝ W (t) is a Wiener process, whose derivative gives white
noise, as in Chapter 17). Inverting the above relations, we find

〈φ(t)φ(t+ τ)〉 = 1

π

∫ ∞
0

Sφ(ω) cosωτ dω,

(phase correlation in terms of phase spectral density) (2.97)
as we find by analogy to Eqs. (2.45) and (2.46), noting the difference in the 2π factor. Also,

〈φ(t)φ(t+ τ)〉 = 1

π

∫ ∞
0

Sω(ω)
cosωτ
ω2

dω,

(phase correlation in terms of freqency spectral density) (2.98)
as follows from Eq. (2.96)

2.7.2 Variance of Phase Fluctuations

A useful quantity to consider is the variance of the phase fluctuation in a time τ . Thus, we define

∆φ(τ) := φ(t+ τ)− φ(t), (2.99)

which we may regard as independent of t in a statistical sense, under the assumption of a stationary process.
Then 〈

[∆φ(τ)]
2
〉
= 2
〈
φ2(t)

〉
− 2〈φ(t)φ(t+ τ)〉

=
2

π

∫ ∞
0

Sω(ω)
(1− cosωτ)

ω2
dω,

(2.100)

where we used Eq. (2.98). Thus, we have the result

〈
[∆φ(τ)]

2
〉
=

4

π

∫ ∞
0

Sω(ω)
sin2(ωτ/2)

ω2
dω.

(variance of phase fluctuations related to frequency-noise spectrum) (2.101)
Note that this integral gives a finite result even for white noise, which has an unnormalized spectrum, due
to the 1/ω2 factor, but it diverges for a ‘‘1/f ’’ spectrum.

2.7.3 Spectrum of the Signal

Supposing the phase of a signal fluctuates, with a particular spectrum of frequency fluctuations. What is
the effect on the spectrum of the signal itself?4 Suppose that we have an optical signal of the form

E(+)(t) ∼ e−iω0te−iφ(t) (2.102)

(technically, we could be mixing positive- and negative-frequency components, but this doesn’t really matter).
We then want the correlation function

g(1)(τ) ∼
〈
E(−)(t)E(+)(t+ τ)

〉
, (2.103)

which when normalized looks like
g(1)(τ) = e−iω0τ

〈
e−i∆φ(τ)

〉
. (2.104)

Making the assumption that ∆φ(τ) represents Gaussian noise (which, from the central-limit theorem, is
guaranteed essentially provided that the variance of ∆φ(τ) is finite), we can rewrite this as

g(1)(τ) = e−iω0τe−
〈
[∆φ(τ)]2

〉
/2. (2.105)

4D. S. Elliott, Rajarshi Roy, and S. J. Smith, ‘‘Extracavity laser band-shape and bandwidth modification,’’ Physical Review
A 26, 12 (1982) (doi: 10.1103/PhysRevA.26.12).

http://dx.doi.org/10.1103/PhysRevA.26.12
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(See Problem 2.5 for the intermediate steps here.) Now using Eqs. (2.45) for the one-sided, normalized
spectrum,

s(ω) =
1

π

∫ ∞
−∞

g(1)(τ) cosωτ dτ

=
1

π

∫ ∞
−∞

dτ cosω0τ cosωτ e−
〈
[∆φ(τ)]2

〉
/2

=
2

π

∫ ∞
0

dτ cosω0τ cosωτ e−
〈
[∆φ(τ)]2

〉
/2,

(2.106)

and so

s(ω) =
2

π

∫ ∞
0

dτ cosω0τ cosωτ exp
[
− 2

π

∫ ∞
0

Sω(ω
′)

sin2(ω′τ/2)

ω′2
dω′
]

(ω ≥ 0).

(spectrum of the signal) (2.107)
Thus, we have the spectral density for the signal itself, in terms of the spectral density for the frequency
fluctuations. This is the spectrum that is more likely to be analyzed, e.g., on a spectrum analyzer (the
phase- or frequency-fluctuation spectra would be observed directly only with a phase or frequency detector,
for example, using a phase-locked loop to track the signal).

2.7.3.1 Example: White Noise

Suppose we take the simple case of a flat, white-noise frequency-fluctuation spectrum:

Sω(ω
′) = γ. (2.108)

Then the exponent in Eq. (2.107) is

− 2

π

∫ ∞
0

Sω(ω
′)

sin2(ω′τ/2)

ω′2
dω′ = −2γ

π

∫ ∞
0

dω′
sin2(ω′τ/2)

ω′2
= −γ|τ |

2
. (2.109)

So

s(ω) =
2

π

∫ ∞
0

dτ cosω0τ cosωτ e−γ|τ |/2

=
1

π

∫ ∞
0

dτ [cos(ω − ω0)τ + cos(ω + ω0)τ ] e
−γτ/2

=

[
1

2π

∫ ∞
0

dτ ei(ω−ω0)τ−γτ/2 + c.c.
]
+ (ω0 −→ −ω0)

=
1

2π

[
1

−i(ω − ω0) + γ/2
+ c.c.

]
+ (ω0 −→ −ω0),

(2.110)

and thus

s(ω) =
γ/2π

(ω − ω0)2 + (γ/2)2
+

γ/2π

(ω + ω0)2 + (γ/2)2
,

(heterodyne spectrum, white frequency noise) (2.111)
which is a properly normalized, one-sided Lorentzian spectrum with a full width at half maximum of

γ (the second term being the negative-frequency ‘‘mirror image’’ of the positive-frequency Lorentzian).

2.8 Optical Linewidth Measurements

2.8.1 Photodetection Spectrum

The spectrum analyzer measures the power spectrum of the detector photocurrent Idet(t), which by the
Wiener–Khinchin theorem is the Fourier transform of the autocorrelation function

Ganalyzer(τ) =
1

Zin
〈Idet(t) Idet(t+ τ)〉 , (2.112)
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where Zin is the input impedance of the spectrum analyzer (typically 50 Ω), which yields the appropriate
units of power. The photocurrent is related to the optical intensity at the detector by

Idet(t) = ηIAdetI(t), (2.113)

where I(t) is the optical intensity, averaged over the detector surface, Adet is the detector area, and ηI is the
detector response (with units of A/W ). Recalling that intensity is related to field by I = 2|E(+)|/η0, where
η0 = 1/ε0c is the impedance of free space (377 Ω), we can thus write

Ganalyzer(τ) =
4η 2
I A

2
det

η 2
0 Zin

〈
E

(−)
det (t)E

(−)
det (t+ τ)E

(+)
det (t+ τ)E

(+)
det (t)

〉
, (2.114)

where E(+)
det (t) is the optical field at the detector. Thus, we find

Sanalyzer(ω) =
4η 2
I A

2
det

πη 2
0 Zin

∫ ∞
−∞

dτ
〈
E

(−)
det (t)E

(−)
det (t+ τ)E

(+)
det (t+ τ)E

(+)
det (t)

〉
eiωτ (2.115)

for the spectrum-analyzer signal, where we introduce the factor of π to match the normalization convention
of Eq. (2.45). This ensures that the integrated spectrum gives the total measured electrical power (at least
the ac part, since we dropped the dc components), which is just Ganalyzer(τ = 0). We can then also write

Sanalyzer(ω) =
8η 2
I A

2
det

πη 2
0 Zin

∫ ∞
0

dτ
〈
E

(−)
det (t)E

(−)
det (t+ τ)E

(+)
det (t+ τ)E

(+)
det (t)

〉
cosωτ,

(detected signal on spectrum analyzer) (2.116)
due to the even symmetry of the correlation function. Spectrum analyzers typically use normal (not angular)
frequencies, so we can write

Sanalyzer(ν) =
16η 2

I A
2
det

η 2
0 Zin

∫ ∞
−∞

dτ
〈
E

(−)
det (t)E

(−)
det (t+ τ)E

(+)
det (t+ τ)E

(+)
det (t)

〉
cos 2πντ,

(detected signal on spectrum analyzer) (2.117)
where using the transformation S(ω) dω = S(ν) dν (with ω = 2πν) introduces an overall factor of 2π here.

2.8.2 Heterodyne Spectroscopy

In a heterodyne measurement, we beat two independent lasers together, but assume they are statistically
identical—otherwise, it is not possible to attribute unbalanced fluctuations to the proper laser.

laser 1

la
s
e
r
 2

detector

Then the signal field is the superposition of the two fields,

E
(+)
det (t) =

√
η1E

(+)
1 (t) +

√
η2E

(+)
2 (t), (2.118)

where η1 and η2 are the intensity transmission coefficients through the beam splitter and any other optical
components from the respective laser source to the detector. Then we may write the fields as

E
(+)
1 (t) = E

(+)
01 e−iω1t−iφ1(t), E

(+)
2 (t) = E

(+)
02 e−iω2t−iφ2(t), (2.119)
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where again the phase noises on the two lasers are independent but statistically identical. We also assume
the two lasers have nearly the same center frequency, so we define the detuning

∆ := ω2 − ω1, |∆| � ω1, ω2. (2.120)

However, we also assume that the frequency width induced by the phase fluctuations is small compared to
|∆|. Now we must substitute this expression into the correlation function (2.114), noting that of the 16 total
terms, the 10 that rotate in time with frequencies that are optical or |∆| will simply average to zero in the
relatively slow spectrum-analyzer response time. Thus, we have

Ganalyzer(τ) ∝ η 2
1 |E

(+)
01 |4 + η 2

2 |E
(+)
02 |4 + 2η1η2|E(+)

01 E
(+)
02 |2 + η1η2|E(+)

01 E
(+)
02 |2

〈
e−i∆τ+i∆φ1(τ)−i∆φ2(τ) + c.c.

〉
,

(2.121)
where the phase increments ∆φ1,2(τ) = φ1,2(t+ τ)− φ1,2(t) are defined as before. We will also assume the
dc components to be blocked (not to mention far enough away from the spectrum of interest that we can
ignore them, since we have assumed ∆ to be a sufficiently large radio frequency), so that

Ganalyzer(τ) ∝
η20η1η2I1I2

4

〈
e−i∆τ+i∆φ1(τ)−i∆φ2(τ) + c.c.

〉
, (2.122)

where I1,2 are the (stationary) output intensities of the two lasers. We can again use the relation for Gaussian
phase increments, 〈

e−i∆φ(τ)
〉
= e−

〈
[∆φ(τ)]2

〉
/2, (2.123)

as in Eq. (2.105), so that

Ganalyzer(τ) ∝
η20η1η2I1I2

4

(
e−i∆τe−

〈
[∆φ1(τ)−∆φ2(τ)]

2
〉
/2 + c.c.

)
=
η20η1η2I1I2

4

(
e−i∆τe−

〈
[∆φ(τ)]2

〉
+ c.c.

)
=
η20η1η2I1I2

2
cos∆τ e−

〈
[∆φ(τ)]2

〉
,

(2.124)

where we have used the independence of ∆φ1(τ) and ∆φ2(τ), and used the statistical identity to write
∆φ1(τ) = ∆φ2(τ) =: ∆φ(τ). Then the spectrum-analyzer signal is

Sanalyzer(ω) =
4η1η2η

2
I A

2
detI1I2

πZin

∫ ∞
0

dτ cos∆τ cosωτ exp
[
− 4

π

∫ ∞
0

Sω(ω
′)

sin2(ω′τ/2)

ω′2
dω′
]
,

(heterodyne beat signal on spectrum analyzer) (2.125)
where we have used Eq. (2.101) for the mean-square phase increment. Note that this spectrum has the same
form as the spectrum of the optical signal in Eq. (2.107), except that ω0 is replaced by ∆, and there is a
factor of two in the exponent, meaning that the spectral part of the Fourier transform is squared. This
means that the spectrum on the analyzer is the actual optical spectrum, but convolved with itself. This
broadens the apparent line to a degree that depends on the precise form of the line shape.

We can rewrite the main result here as

Sanalyzer(ν) =
8η1η2η

2
I A

2
detI1I2

Zin

∫ ∞
0

dτ cos 2πδντ cos 2πντ exp
[
− 1

π3

∫ ∞
0

Sν(ν
′)

sin2(πν′τ)

ν′2
dν′
]
,

(heterodyne beat signal on spectrum analyzer) (2.126)
in terms of the more experimentally relevant frequency ν. Here, we have rewritten the spectrum of frequency
fluctuations as Sω(ω) dω = Sν(ν) dν, and the frequency difference as ∆ = 2πδν. In either case, we may also
obtain the normalized forms of the (one-sided) spectra by dividing byGanalyzer(τ = 0) = 2η1η2η

2
I A

2
detI1I2/Zin

(again, after removing dc terms).
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2.8.2.1 Example: White Noise in Heterodyne Spectroscopy

Returning to the white-noise example in Section 2.7.3.1,

Sω(ω
′) = γ, (2.127)

the exponent in Eq. (2.125) is

− 4

π

∫ ∞
0

Sω(ω
′)

sin2(ω′τ/2)

ω′2
dω′ = −4γ

π

∫ ∞
0

dω′
sin2(ω′τ/2)

ω′2
= −γ|τ |. (2.128)

This is the same result as in Section 2.7.3.1, with the replacement γ −→ γ/2. Then the normalized form of
Eq. (2.125) is

sanalyzer(ω) =
2

π

∫ ∞
0

dτ cos∆τ cosωτ e−γ|τ |, (2.129)

carries through to the same result with the same rescaling of γ, so that

sanalyzer(ω) =
γ/π

(ω − ω0)2 + γ2
+

γ/π

(ω + ω0)2 + γ2
,

(heterodyne spectrum, white frequency noise) (2.130)
which is a properly normalized, one-sided Lorentzian spectrum with a full width at half maximum of 2γ.
This is what we expect for a self-convolution of a Lorentzian distribution.

2.8.3 Self-Heterodyne Spectroscopy

Heterodyne spectroscopy is conceptually simple, but it may be that two identical copies of a laser are
not available. An alternative approach in this case is to beat the output of a laser with a time-delayed
and frequency-shifted version of itself.5 If the delay is long compared to the coherence time, then this is
something like a heterodyne of two independent sources. The setup is shown here; the beam is split by an
acousto-optic modulator (AOM), with the zeroth order beam coupling into a fiber for a delay, and the first
order being shifted by the AOM frequency ωm.
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The fiber is assumed to cause a well-defined time delay of the undiffracted beam, of around 5 µs for a 1 km
fiber. (A fiber delay of the first-order beam just amounts to taking a negative τd.) For delays achievable in

5The results derived here were developed, e.g., in P. Gallion, F. J. Mendieta, and R. Leconte, ‘‘Single-frequency laser phase-
noise limitation in single-mode optical-fiber coherent-detection systems with correlated fields,’’ Journal of the Optical Society
of America 72, 1167 (1982) (doi: 10.1364/JOSA.72.001167); Philippe B. Gallion and Guy Debarge, ‘‘Quantum Phase Noise
and Field Correlation in Single Frequency Semiconductor Laser Systems,’’ IEEE Journal of Quantum Electronics QE-20,
343 (1984) (doi: 10.1109/JQE.1984.1072399); Linden B. Mercer, ‘‘1/f Frequency Noise Effects on Self-Heterodyne Linewidth
Measurements,’’ Journal of Lightwave Technology 9, 485 (1991) (doi: 10.1109/50.76663); Hanne Ludvigsen, Mika Tossavainen,
and Matti Kaivola, ‘‘Laser linewidth measurements using self-homodyne detection with short delay,’’ Optics Communications
155, 180 (1998) (doi: 10.1016/S0030-4018(98)00355-1).

http://dx.doi.org/10.1364/JOSA.72.001167
http://dx.doi.org/10.1109/JQE.1984.1072399
http://dx.doi.org/10.1109/50.76663
http://dx.doi.org/10.1016/S0030-4018(98)00355-1
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a fiber (∼km), though, there will in general be some residual level of correlation to deal with, which will be
reflected in the spectrum. The combined field at the detector is

E
(+)
det (t) =

√
η1E

(+)(t) +
√
η2E

(+)(t− τd), (2.131)

where τd is the delay due to the fiber (we will ignore the other small delays in the optical system). We will
assume the undelayed field to be shifted in frequency by the acousto-optic modulator by an amount ωm, and
the delayed field to be unshifted. Thus, writing out the explicit field phases, we have

E
(+)
det (t) =

√
η1E

(+)
0 e−i(ω0+ωm)t−iφ(t) +

√
η2E

(+)
0 e−iω0(t−τd)−iφ(t−τd). (2.132)

Comparing to Eq. (2.119), we see that this problem is equivalent to the heterodyne case, but with the
replacements E(+)

01,02 −→ E
(+)
0 , φ1(t) −→ φ(t), φ2(t) −→ φ(t− τd)− iω0τd, ω1 −→ ω0 + ωm, and ω2 −→ ω0.

Thus, adapting Eq. (2.122) for the correlation signal after the dc block, we have for the present case

Ganalyzer(τ) ∝
η20η1η2I

2
0

4

〈
eiωmτ+i[φ(t+τ)−φ(t)]−i[φ(t−τd+τ)−φ(t−τd)] + c.c.

〉
. (2.133)

Again using Eq. (2.123), we have

Ganalyzer(τ) ∝
η20η1η2I

2
0

4

(
eiωmτe−

〈
{[φ(t+τ)−φ(t)]−[φ(t−τd+τ)−φ(t−τd)]}2

〉
/2 + c.c.

)
. (2.134)

The phase expectation value can then be transformed (Problem 2.6) so that

Ganalyzer(τ) ∝
η20η1η2I

2
0

4

(
eiωmτe−

〈
[∆φ(τ)]2

〉
−
〈
[∆φ(τd)]

2
〉
+
〈
[∆φ(τ+τd)]

2
〉
/2+

〈
[∆φ(τ−τd)]

2
〉
/2 + c.c.

)
=
η20η1η2I

2
0

2
cosωmτ e

−
〈
[∆φ(τ)]2

〉
−
〈
[∆φ(τd)]

2
〉
+
〈
[∆φ(τ+τd)]

2
〉
/2+

〈
[∆φ(τ−τd)]

2
〉
/2.

(2.135)

Using Eq. (2.101), we then find (see Problem 2.7)

Ganalyzer(τ)∝
η20η1η2I

2
0

2
cosωmτ exp

[
− 8

π

∫ ∞
0

Sω(ω
′)

sin2(ω′τ/2) sin2(ω′τd/2)

ω′2
dω′
]
. (2.136)

Thus, the spectrum (2.116) is

Sanalyzer(ω) =
4η1η2η

2
I A

2
detI

2
0

πZin

∫ ∞
0

dτ cosωmτ cosωτ exp
[
− 8

π

∫ ∞
0

Sω(ω
′)

sin2(ω′τ/2) sin2(ω′τd/2)

ω′2
dω′
]
,

(self-heterodyne beat signal on spectrum analyzer) (2.137)
which is essentially the same as the heterodyne signal (2.125), if we identify ωm = ∆ and note the extra
factor of 2 sin2(ωτd/2) in the integrand, due to the extra coherence in beating the signal with a time-delayed
version of itself. Note that this factor reduces to unity if it is replaced by its average value, which we expect
if this coherence is lost. For example, in the limit of large τd, this factor is a rapidly oscillating function of ω.
So long as the oscillations are rapid on the scale of the structure of the spectrum and of the relevant values
of τ (i.e., τd is much larger than the coherence time of the signal), it is a good approximation to replace this
factor by unity, so that this expression collapses to the pure heterodyne result. Finally, we can again write
the main result as

Sanalyzer(ν) =
8η1η2η

2
I A

2
detI

2
0

Zin

∫ ∞
0

dτ cos 2πνmτ cos 2πντ exp
[
− 2

π3

∫ ∞
0

Sν(ν
′)

sin2(πν′τ) sin2(πν′τd)

ν′2
dν′
]
,

(self-heterodyne beat signal on spectrum analyzer) (2.138)
in terms of the more experimentally relevant frequency ν = ω/2π.
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2.8.3.1 Example: White Noise in Self-Heterodyne Spectroscopy

Returning once again to the white-noise example in Section 2.7.3.1,

Sω(ω
′) = γ, (2.139)

the exponent in Eq. (2.137) is

− 8

π

∫ ∞
0

Sω(ω
′)

sin2(ω′τ/2) sin2(ω′τd/2)

ω′2
dω′ = −8γ

π

∫ ∞
0

dω′
sin2(ω′τ/2) sin2(ω′τd/2)

ω′2

= −γ
(
|τ |+ |τd| −

|τ − τd|
2

− |τ + τd|
2

)
.

(2.140)

which follows most easily by comparing Eq. (2.135) with Eq. (2.124), noting that we adapt the result
simply by making several time-offset copies of the heterodyne-exponent result. Then the normalized form of
Eq. (2.137) is

sanalyzer(ω) =
2

π

∫ ∞
0

dτ cosωmτ cosωτ exp
[
−γ
(
|τ |+ |τd| −

|τ − τd|
2

− |τ + τd|
2

)]
. (2.141)

Now since τ ≥ 0 and the exponent is an even function of τd, we can write

τ + |τd| −
|τ − τd|

2
− |τ + τd|

2
=

{
τ + |τd| − (|τd| − τ)/2− (τ + |τd|)/2 = τ (τ < |τd|)
τ + |τd| − (τ − |τd|)/2− (τ + |τd|)/2 = |τd| (τ > |τd|).

(2.142)

Thus,

sanalyzer(ω) =
2

π

∫ |τd|

0

dτ cosωmτ cosωτ e−γτ + 2

π
e−γ|τd|

∫ ∞
|τd|
dτ cosωmτ cosωτ

=
2

π

∫ |τd|

0

dτ cosωmτ cosωτ
(
e−γτ − e−γ|τd|

)
+

2

π
e−γ|τd|

∫ ∞
0

dτ cosωmτ cosωτ

=
1

π

∫ τd

0

dτ [cos(ω − ωm)τ + cos(ω + ωm)τ ]
(
e−γτ − e−γ|τd|

)
+

1

π
e−γ|τd|

∫ ∞
0

dτ [cos(ω − ωm)τ + cos(ω + ωm)τ ]

=
1

π

∫ τd

0

dτ cos(ω − ωm)τ
(
e−γτ − e−γ|τd|

)
+

1

π
e−γ|τd|

∫ ∞
0

dτ cos(ω − ωm)τ

+ (ωm −→ −ωm).

(2.143)
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Then using the integral representation of the delta function for the second integral and evaluating the first
integral,

sanalyzer(ω) =

[
1

2π

∫ |τd|

0

dτ
(
ei(ω−ωm)τ−γτ − ei(ω−ωm)τ−γ|τd|

)
+ c.c.

]
+ e−γ|τd|δ(ω − ωm) + (ωm −→ −ωm)

=
1

2π

[
ei(ω−ωm)|τd|−γ|τd| − 1

i(ω − ωm)− γ
−
(
ei(ω−ωm)|τd| − 1

)
e−γ|τd|

i(ω − ωm)
+ c.c.

]
+ e−γ|τd|δ(ω − ωm) + (ωm −→ −ωm)

=
γ/π

(ω − ωm)2 + γ2
+

1

2π

[
ei(ω−ωm)|τd|−γ|τd|

i(ω − ωm)− γ
− ei(ω−ωm)|τd|−γ|τd|

i(ω − ωm)
+ c.c.

]
+ e−γ|τd|δ(ω − ωm) + (ωm −→ −ωm)

=
γ/π

(ω − ωm)2 + γ2
+
e−γ|τd|

2π

[
ei(ω−ωm)|τd|

i(ω − ωm)− γ
+ c.c.

]
− e−γ|τd| sin[(ω − ωm)|τd|]

π(ω − ωm)

+ e−γ|τd|δ(ω − ωm) + (ωm −→ −ωm)

=
γ/π

(ω − ωm)2 + γ2

[
1− e−γ|τd|

(
cos[(ω − ωm)|τd|]−

(ω − ωm)

γ
sin[(ω − ωm)|τd|]

)]
− e−γ|τd| sin[(ω − ωm)|τd|]

π(ω − ωm)
+ e−γ|τd|δ(ω − ωm)

+ (ωm −→ −ωm),

(2.144)

and so

sanalyzer(ω) =
γ/π

(ω − ωm)2 + γ2

[
1− e−γ|τd|

(
cos[(ω − ωm)|τd|] +

γ

(ω − ωm)
sin[(ω − ωm)|τd|]

)]
+ e−γ|τd|δ(ω − ωm)

+ (ωm −→ −ωm).

(self-heterodyne spectrum, white frequency noise) (2.145)
The first term here is a modified Lorentzian spectrum, where oscillations in frequency are superimposed on
the Lorentzian envelope. These oscillations become finer and smaller with increasing |τd|, and vanish in the
limit |τd| −→ ∞, when we recover the heterodyne result (Lorentzian with a full width at half maximum of
2γ). The other terms likewise vanish in this limit. The delta-function term is the most obvious result of
residual correlations between the optical signal and its time-delayed copy. Recalling that the correlation
goes away exponentially with the delay, this is equivalent to an ensemble of optical signals that are exactly
monochromatic and phase coherent, except for a phase jump at a time τ to a completely random phase, where
τ is a random time with exponential probability distribution. Then the light tends to correlate perfectly at
short time delays, and not at all for long ones; the exponential function here is just what we expect in the
ensemble average, so the correlation decays away exponentially on the time scale of the coherence time.

The spectrum is plotted below for several coherence times, including the heterodyne (τd −→ ∞)
Lorentzian limit. The oscillations in the tails are only slightly visible, but what is clearly evident is a strong
impact on the apparent width of the line.
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On a logarithmic vertical scale, the effects near the line center are mitigated, but the oscillations in the tails
are more apparent.
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Both plots were made under the assumption of a narrow line, γ � ωm, so that we can ignore the contribution
of the component centered at −ωm (γ should also implicitly be small compared to the optical frequency).

2.8.3.2 Calculation of General Self-Heterodyne Spectra

In both the heterodyne and self-heterodyne setups, the Fourier-tranform integral to obtain the measured
spectrum cannot be done analytically for arbitrary frequency-noise spectra, and thus they must be carried
out numerically. For narrow spectral (laser) lines, the width of the line is much smaller than the optical
frequency, and thus we can ignore any counterrotating terms in the spectrum (that is, any terms in the
self-heterodyne spectrum centered about −ωm). For example, we can then rewrite the (normalized) self-
heterodyne spectrum (2.137) as

sanalyzer(ω) =
1

π

∫ ∞
0

dτ cos[(ω − ωm)τ ] exp
[
− 8

π

∫ ∞
0

Sω(ω
′)

sin2(ω′τ/2) sin2(ω′τd/2)

ω′2
dω′
]

=
1

2π

∫ ∞
−∞

dτ ei∆τ exp
[
− 8

π

∫ ∞
0

Sω(ω
′)

sin2(ω′τ/2) sin2(ω′τd/2)

ω′2
dω′
]
,

(2.146)
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where ∆ := ω−ωm. In general, the mean-square phase integral in the exponent must be computed (analyt-
ically, in the ideal case), and then the resulting exponential function must be transformed in the remaining
integral, which is just a Fourier transform, giving a centered spectrum about ω = ωm.

2.8.3.3 Self-Heterodyne Spectrum of 1/f Noise

As an example, consider a frequency-noise spectrum consisting of white-noise and 1/f -noise components:

Sω(ω) = γ +
k

ω
.

(model for semiconductor-laser frequency noise) (2.147)
This spectrum can accurately model phase noise in semiconductor lasers, for example.6 Let’s start by
calculating the mean-square phase increment, from Eq. (2.101):〈

[∆φ(τ)]
2
〉
=

4

π

∫ ∞
0

Sω(ω)
sin2(ωτ/2)

ω2
dω

=
4

π

∫ ∞
0

(
γ +

k

ω

)
sin2(ωτ/2)

ω2
dω.

(2.148)

We have already seen [Eq. (2.109)] that the white-noise part leads to γ|τ |. Now we still need to evaluate the
1/f part, however: 〈

[∆φ(τ)]
2
〉
= γ|τ |+ 4k

π

∫ ∞
0

dω
sin2(ωτ/2)

ω3
. (2.149)

Unfortunately, though, this integral has a 1/ω divergence at ω = 0. This essentially means we have non-
Gaussian statistics, and our assumption of Gaussian noise has broken down. Nevertheless, we will proceed
with the self-homodyne spectrum, which involves an extra factor of sin2(ωτd/2) and thus has no divergence.
Recall from Eq. (2.135) that the presence of this extra factor is equivalent to considering the combination

〈
[∆φ(τ)]2

〉
+
〈
[∆φ(τd)]

2
〉
−
〈
[∆φ(τ + τd)]

2
〉

2
−
〈
[∆φ(τ − τd)]

2
〉

2
. (2.150)

Note in particular that the delta function we saw in the Lorentzian spectrum is a general feature of self-
heterodyne spectra: as τ −→∞, this combination tends to reduce to

〈
[∆φ(τd)]

2
〉
, which is a constant offset

that yields a delta function at ω = ωm in the Fourier transform.
In the self-heterodyne case, the integral in the exponential can be carried out, with the result

8

π

∫ ∞
0

Sω(ω
′)

sin2(ω′τ/2) sin2(ω′τd/2)

ω′2
dω′

= γ

(
|τ |+ |τd| −

|τ − τd|
2

− |τ + τd|
2

)
− k

4π

[
2τ2 log τ2 + 2τ2d log τ2d − (τ + τd)

2 log(τ + τd)
2 − (τ − τd)

2 log(τ − τd)
2
]
.

(2.151)

6Linden B. Mercer, ‘‘1/f Frequency Noise Effects on Self-Heterodyne Linewidth Measurements,’’ Journal of Lightwave
Technology 9, 485 (1991) (doi: 10.1109/50.76663).

http://dx.doi.org/10.1109/50.76663
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Here, we have used ∫ ∞
x

dω
sin2(ωτ/2)

ω3
=

1

2

∫ ∞
x

dω
1− cosωτ

ω3

=
1

4x2
− τ2

2

∫ ∞
xτ

dω
cosω
ω3

=
1

4x2
− cosxτ

4x2
+
τ2

2

∫ ∞
xτ

dω
sinω
ω2

=
1

4x2
− cosxτ

4x2
+
τ sinxτ

4x
+
τ2

4

∫ ∞
xτ

dω
cosω
ω

=
1

4x2
− cosxτ

4x2
+
τ sinxτ

4x
− τ2

4
Ci(xτ)

= cτ2 − τ2

4
logxτ +O(x2),

(2.152)

where Ci(x) is the cosine integral [see Eq. (13.27)], and c is a constant whose value is unimportant. In the
combination of terms we have in (2.150), both the c terms and the x-dependence of the logarithms cancel,
avoiding any dc divergences. Putting the exponent (2.151) into Eq. (2.146), we have

sanalyzer(ω) =
1

2π

∫ ∞
−∞

dτ ei∆τe−γmin{|τ |,|τd|}|τ |kτ
2/π|τd|kτ

2
d/π|τ + τd|−k(τ+τd)

2/2π|τ − τd|−k(τ−τd)
2/2π.

(self heterodyne signal for white and 1/f noise) (2.153)
This is a Fourier transform, which is straightforward to calculate numerically. Note again that as τ −→∞,
the correlation function becomes the constant value e−γτd |τd|kτ

2
d/π. It may be convenient to subtract this

away before the Fourier transform to avoid dealing with the delta function in the spectrum. But note that this
amplitude diverges with τd—the heterodyne limit is problematic, as we have already discussed. Physically,
the 1/f spectrum must be cut off at low frequencies, as we will discuss in the next section. An alternative
strategy for handling the delta function is to include an explicit cutoff of the tail of the integrand:

sanalyzer(ω)

=
1

2π

∫ ∞
−∞

dτ ei∆τe−γmin{|τ |,|τd|}−δωRBτ/2|τ |kτ
2/π|τd|kτ

2
d/π|τ + τd|−k(τ+τd)

2/2π|τ − τd|−k(τ−τd)
2/2π.

(self heterodyne signal for white and 1/f noise, with Lorentzian resolution bandwidth) (2.154)
Here, δωRB is the resolution bandwidth (full width at half maximum) of the spectrum analyzer, assuming a
Lorentzian bandpass filter. For a Gaussian filter shape to model the resolution bandwidth, we instead have

sanalyzer(ω)

=
1

2π

∫ ∞
−∞

dτ ei∆τe−γmin{|τ |,|τd|}−(δωRBτ)
2/16 log 2|τ |kτ

2/π|τd|kτ
2
d/π|τ + τd|−k(τ+τd)

2/2π|τ − τd|−k(τ−τd)
2/2π,

(self heterodyne signal for white and 1/f noise, with Gaussian resolution bandwidth) (2.155)
where now δωRB is the Gaussian resolution bandwidth (full width at half maximum). In the frequency
domain, these cutoffs convolve the spectrum with a Lorentzian or Gaussian, respectively, of width δωRB,
eliminating the delta function and most closely emulating the results of a physical measurement.

2.8.3.4 Observation Time and Linewidth of 1/f Noise

For 1/f noise, we have seen that the self-heterodyne spectrum can be calculated, but there is a divergence
in the heterodyne limit. In fact, the width of the self-heterodyne line increases with the delay time τd.
Effectively, this is the time over which the self-heterodyne apparatus monitors the frequency fluctuations of
the laser, and this is why the 1/f divergence is cut off in the self-heterodyne spectrum (2.137), where there is
an extra factor of sin2(ω′τd/2) in the exponent, compared with the heterodyne spectrum (2.125). The point
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is that over any finite observation time Tobs, the lowest (problematic) frequencies in the 1/f spectrum cannot
contribute; roughly speaking, only frequencies above the cutoff frequency ωc = 2π/Tobs can contribute to the
observed line width.

To understand the problem more specifically here, consider again the case of white frequency noise,

Sω(ω) = γ. (2.156)

Recall that this noise causes the frequency of the laser to fluctuate about its center value ω0 with a Lorentzian
distribution. But recall that the spectrum of phase fluctuations diverges at zero frequency,

Sφ(ω) =
γ

ω2
. (2.157)

The phase, being the integral of the frequency, diffuses in a random walk, and does not remain near a
particular phase, and is thus not a stationary noise process. The arbitrarily large dc noise essentially
means that the time-averaged phase is not a well-defined quantity. In the same way, for 1/f noise, the
divergence indicates that the time-averaged frequency is not a well-defined quantity: the center frequency
itself can wander, and it wanders farther the longer it is observed. Physically, this is the case for lasers
whose frequencies can drift over long times due to pressure and temperature fluctuations, relaxing material
stresses, and mechanical vibration and creep. Thus, it may not be surprising that the spectral linewidth of a
laser depends on the time scale over which it is observed, and we are seeing that this is the case when there
is a 1/f component to the frequency-noise spectrum.

To account for the time of observation,7 we must revise the calculation of Section 2.7.2 of the variance
of the phase fluctuations. There, we computed the mean-square phase fluctuation 〈[∆φ(τ)]2〉, with the
measurement (time average) taken over all times (this is equivalent to the variance since 〈∆φ(τ)〉 = 0).
Here, we will take the angle brackets to denote a time average taken over a finite time T . We will also now
explicitly compute the variance, since 〈∆φ(τ)〉 is not necessarily zero when the average is taken over a finite
time interval:

Var [∆φ(τ)]t =
〈
[∆φ(t, t+ τ)]

2
〉
T
−〈∆φ(t, t+ τ)〉2T

=
1

T

∫ T/2

−T/2

dt [∆φ(t, t+ τ)]
2 −

(
1

T

∫ T/2

−T/2

dt∆φ(t, t+ τ)

)2
.

(2.158)

Here, we are using the more general notation ∆φ(t, t+ τ) := φ(t+ τ)−φ(t) for the phase increment, and the
subscript t indicates that the time-averaging interval (measurement interval) is centered around time t. The
subscript T on the angle brackets denote the finite-time average, which we will write out explicitly below
(the absence of this subscript still denotes the limit T −→ ∞). However, this finite-time average should
be averaged over all time (or equivalently, averaged over the ensemble of all possible noise realizations), to
obtain the finite-time statistical variance:

Var [∆φ(τ)] = 1

T

〈∫ t+T/2

t−T/2

dt′ [∆φ(t′, t′ + τ)]
2

〉
− 1

T 2

〈(∫ t+T/2

t−T/2

dt′∆φ(t′, t′ + τ)

)2〉

=
1

T

∫ t+T/2

t−T/2

dt′
〈
[∆φ(t, t+ τ)]

2
〉
− 1

T 2

〈∫ t+T/2

t−T/2

dt′
∫ t+T/2

t−T/2

dt′′∆φ(t′, t′ + τ)∆φ(t′′, t′′ + τ)

〉
=
〈
[∆φ(τ)]

2
〉
− 1

T 2

〈∫ ∞
−∞

dt′
∫ ∞
−∞

dt′′ fT (t
′ − t)∆φ(t′, t′ + τ)∆φ(t′′, t′′ + τ)fT (t

′′ − t)
〉
.

(2.159)
Here, we have defined fT (t) to be the unit-pulse function of duration T (i.e., fT (t) = 1 for t between −T/2
and T/2, and fT (t) = 0 otherwise). Thus, fT (t)/T is a unit-area pulse function. Computing the Fourier

7L. S. Cutler and C. L. Searle, ‘‘Some aspects of the theory and measurement of frequency fluctuations in frequency stan-
dards,’’ Proceedings of the IEEE 54, 136 (1966) (doi: 10.1109/PROC.1966.4627).

http://dx.doi.org/10.1109/PROC.1966.4627
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transform of this pulse function, we find∫ ∞
−∞

dt′
fT (t

′ − t)
T

eiωt
′
=

1

T

∫ t+T/2

t−T/2

dt′ eiωt
′

=
1

iωT

(
eiω(t+T/2) − eiω(t−T/2)

)
=
eiωt sin(ωT/2)

ωT/2
= eiωt sinc(ωT/2),

(2.160)

where sincx := (sinx)/x. Then inverting the Fourier transform, we find

fT (t
′ − t)
T

=
1

2π

∫ ∞
−∞

dω e−iω(t
′−t) sinc(ωT/2), (2.161)

Then we can use this result twice in Eq. (2.159):

Var [∆φ(τ)] =
〈
[∆φ(τ)]

2
〉
− 1

(2π)2

〈∫ ∞
−∞

dω

∫ ∞
−∞

dω′
∫ ∞
−∞

dt′
∫ ∞
−∞

dt′′∆φ(t′, t′ + τ)∆φ(t′′, t′′ + τ)

× e−iω(t
′−t)sinc(ωT/2) e−iω

′(t′′−t)sinc(ω′T/2)
〉

=
〈
[∆φ(τ)]

2
〉
− 1

(2π)2
lim
T ′→∞

1

T ′

∫ ∞
−∞

dω

∫ ∞
−∞

dω′
∫ ∞
−∞

dt′
∫ ∞
−∞

dt′′
∫ T ′/2

−T ′/2

dt∆φ(t′, t′ + τ)

×∆φ(t′′, t′′ + τ) e−iω(t
′−t)sinc(ωT/2) e−iω

′(t′′−t)sinc(ω′T/2)

=
〈
[∆φ(τ)]

2
〉
− 1

(2π)2
lim
T ′→∞

1

T ′

∫ ∞
−∞

dω

∫ ∞
−∞

dω′
∫ T ′/2

−T ′/2

dt′
∫ ∞
−∞

dt′′
∫ ∞
−∞

dt∆φ(t′, t′ + τ)

×∆φ(t′′, t′′ + τ) ei(ω+ω
′)t e−iωt

′
e−iω

′t′′ sinc(ωT/2) sinc(ω′T/2).
(2.162)

We now get a factor of 2πδ(ω + ω′) from the t integration, which takes care of the ω′ integral:

Var [∆φ(τ)] =
〈
[∆φ(τ)]

2
〉
− 1

2π
lim
T ′→∞

1

T ′

∫ ∞
−∞

dω

∫ T ′/2

−T ′/2

dt′
∫ ∞
−∞

dt′′∆φ(t′, t′ + τ)∆φ(t′′, t′′ + τ)

× e−iω(t
′−t′′) sinc2(ωT/2)

=
〈
[∆φ(τ)]

2
〉
− 1

2π

∫ ∞
−∞

dω lim
T ′→∞

∣∣∣∣∣ 1T ′
∫ T ′/2

−T ′/2

dt′∆φ(t′, t′ + τ) e−iωt
′

∣∣∣∣∣
2

sinc2(ωT/2).

(2.163)

Now we use the Wiener–Khinchin theorem in the form of Eq. (2.20),

Var [∆φ(τ)] =
〈
[∆φ(τ)]

2
〉
− 1

2π

∫ ∞
−∞

dω

[∫ ∞
−∞

dt′〈∆φ(t, t+ τ)∆φ(t+ t′, t+ t′ + τ)〉 eiωt
′
]

sinc2(ωT/2),

(2.164)
where S∆φ(ω) is the (one-sided) power spectral density corresponding to the signal ∆φ(τ). We can work out
the phase expectation value here as

〈∆φ(t, t+ τ)∆φ(t+ t′, t+ t′ + τ)〉 = 2〈φ(t)φ(t+ t′)〉 −〈φ(t)φ(t+ t′ + τ)〉 −〈φ(t)φ(t− t′ + τ)〉

=
1

π

∫ ∞
0

Sω(ω)
2 cosωt′ − cos[ω(τ + t′)]− cos[ω(τ − t′)]]

ω2
dω

=
2

π

∫ ∞
0

Sω(ω)
cosωt′ − cosωt′ cosωτ

ω2
dω

=
4

π

∫ ∞
0

Sω(ω)
cosωt′ sin2(ωτ/2)

ω2
dω

=
2

π

∫ ∞
−∞

Sω(|ω|)
sin2(ωτ/2)

ω2
e−iωt

′
dω,

(2.165)
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where we have used Eq. (2.98) to evaluate the correlation functions. Then the variance becomes

Var [∆φ(τ)] =
〈
[∆φ(τ)]

2
〉
− 1

π2

∫ ∞
−∞

dω

∫ ∞
−∞

dt′
∫ ∞
−∞

dω′Sω(|ω′|)
sin2(ω′τ/2)

ω′2
ei(ω−ω

′)t′sinc2(ωT/2)

=
〈
[∆φ(τ)]

2
〉
− 2

π

∫ ∞
−∞

dω Sω(|ω|)
sin2(ωτ/2)

ω2
sinc2(ωT/2)

=
〈
[∆φ(τ)]

2
〉
− 4

π

∫ ∞
0

dω Sω(ω)
sin2(ωτ/2)

ω2
sinc2(ωT/2).

(2.166)

Finally, using Eq. (2.101) for the infinite-time variance 〈[∆φ(τ)]2〉, we obtain

Var [∆φ(τ)]T =
4

π

∫ ∞
0

dω Sω(ω)
sin2(ωτ/2)

ω2

[
1− sinc2

(
ωT

2

)]
(2.167)

as its generalization for finite observation times.
Now we must be a bit more careful in interpreting the observation time. In an observation time Tobs,

the field is measured over this time interval and then used to construct the correlation function (and thus the
spectrum). To construct the correlation function at delay τ , only a time of Tobs − |τ | is actually useable in the
correlation-function time average, and delays |τ | > Tobs are nonsensical. Thus, we should take T = Tobs − τ
in Eq. (2.167), with the rsult

Var [∆φ(τ)]Tobs
=

4

π

∫ ∞
0

dω Sω(ω)
sin2(ωτ/2)

ω2

[
1− sinc2

(
ω(Tobs − |τ |)

2

)]
.

(variance of phase fluctuations related to frequency-noise spectrum) (2.168)
Note that this is the same as Eq. (2.101), except for the replacement

Sω(ω) −→ Sω(ω)

[
1− sinc2

(
ω(Tobs − |τ |)

2

)]
,

(replacement to account for observation time) (2.169)
where the sinc2 part came from the square of the finite-time-mean fluctuation. This correction factor scales
as ω2 as ω −→ 0, and so also serves to cut off the dc divergence due to the 1/f noise spectrum.

The normalized, one-sided spectrum of the laser, including the observation time Tobs, is thus given by
Eq. (2.107) as

s(ω) =
1

2π

∫ Tobs

−Tobs

dτ ei∆τ
(
1− |τ |

Tobs

)
exp

{
− 2

π

∫ ∞
0

Sω(ω
′)

sin2(ω′τ/2)

ω′2

[
1− sinc2

(
ω′(Tobs − |τ |)

2

)]
dω′
}
,

(spectrum of the signal, including observation time) (2.170)
where ∆ = ω − ω0, and we are assuming a narrow spectral line compared to the central frequency ω0, and
we are only interested in small detunings ∆ � ω0, in analogy with Eq. (2.146). We have also introduced a
factor of 1− |τ |/Tobs in the integral here, which bears some explanation. When we construct the temporal
correlation function (2.114) for the intensity power spectrum, this is a finite-time average over the observation
time Tobs, as in Eq. (2.16). But the intensity signal I(t) itself is windowed within the observation time, so the
overlap I(t)I(t+τ) is only nonzero over the time interval Tobs−|τ |. Thus, the correlation function itself should
be modified for the finite observation time by multiplying by (Tobs − |τ |)/Tobs, with the 1/Tobs coming from
the time average, and the correlation function is zero if |τ | > Tobs. In terms of the spectrum, the observation
time imposes a rectangular temporal window, which is equivalent to convolution with sinc (ωTobs/2) in the
spectrum. However, we have just argued that in the correlation function, the windowing function is the
triangular pulse (Tobs − |τ |)/Tobs, which is essentially the self-convolution of the rectangular pulse (since the
pulse is symmetric under time reversal). The effect of this in the power spectrum is a convolution with
the Fourier transform of the triangle pulse, which is sinc2(ωTobs/2). For very short observation times, the
correlation function is constant over the observation time, and thus the spectrum is just sinc (ωTobs/2).
Asymptotically, then for small Tobs, we expect the spectrum to have an angular FWHM of 4α/Tobs, where
α ≈ 1.39156 is the positive solution of sincx = 1/2.
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As a simple example, consider once again the case of white noise, Sω(ω) = γ, with a finite observation
time:

s(ω) =
1

2π

∫ Tobs

−Tobs

dτ ei∆τ
(
1− |τ |

Tobs

)
exp

{
−2γ

π

∫ ∞
0

dω′
sin2(ω′τ/2)

ω′2

[
1− sinc2

(
ω′(Tobs − |τ |)

2

)]}
=

1

2π

∫ Tobs

−Tobs

dτ ei∆τ
(
1− |τ |

Tobs

)
× exp

[
− γ

12 (Tobs − |τ |)2
[
(2|τ | − Tobs)

3 − |2|τ | − Tobs|3 + 2(Tobs − |τ |)3
]]
.

(2.171)

Notice that the exponent reduces to exp(−γτ/2) as Tobs −→∞, as it should. The width of this spectrum is
plotted here.
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Note that for γTobs < 1, the Fourier-broadened asymptotic result for small observation times is a good
approximation. For large observation times, the width converges to γ as appropriate for the long-time
Lorentzian shape of the line. For intermediate observation times, there is a more complicated step-like
dependence on the width, due to the fringes of varying width in the spectrum from the convolution with
sinc2(ωTobs/2). Note that the fringes cause some apparent narrowing of the spectrum for intermediate
observation times, compared to the Lorentzian result.

As a second example, consider 1/f noise, Sω(ω) = k/ω, with a finite observation time:

s(ω) =
1

2π

∫ Tobs

−Tobs

dτ ei∆τ
(
1− |τ |

Tobs

)
exp

{
−2k

π

∫ ∞
0

dω′
sin2(ω′τ/2)

ω′3

[
1− sinc2

(
ω′(Tobs − |τ |)

2

)]}
=

1

2π

∫ Tobs

−Tobs

dτ ei∆τ
(
1− |τ |

Tobs

)
exp

{
− 2k

π

[
− 7τ2

48
− τ2

24

(
τ2

(Tobs − |τ |)2
+ 6

)
log |τ |

+
(2τ − Tobs)

4

48(Tobs − |τ |)2
log
∣∣∣2|τ | − Tobs

∣∣∣
− (Tobs − |τ |)2

24
log (Tobs − |τ |) +

T 4
obs

48(Tobs − |τ |)2
logTobs

]}
=

1

2π

∫ Tobs

−Tobs

dτ ei∆τ
(
1− |τ |

Tobs

)
e7kτ

2/24π |τ |kτ
2(6+τ2/(Tobs−|τ |)2)/12π

×
∣∣∣2|τ | − Tobs

∣∣∣−k(2|τ |−Tobs)
4/24π(Tobs−|τ |)2

(Tobs − |τ |)k(Tobs−|τ |)2/12π T
−kT 4

obs/24π(Tobs−|τ |)2
obs .

(2.172)
The width of this spectrum is plotted below as Tobs varies:
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The behavior here is similar to the white-noise case, but as Tobs increases, the spectral width continues to in-
crease. Again, for small Tobs, the width matches the Fourier-broadened asymptotic result. For large Tobs, the
heuristic arguments (for a different model of the cutoff) lead to the asymptotic scaling8 of (logβk1/2Tobs)

1/2

(for some constant β), which is very slow divergence in the line width.
We have essentially used the convolution theorem in deriving the finite-observation-time spectrum,

where the windowing function fT (t)/T appeared as its Fourier transform as a high-pass filter in the frequency-
noise spectrum, as well as in the form of its self-convolution as a windowing function for the correlation
function. Of course, any other windowing function f(t) may be used here, so long as it represents a unit-area
pulse, and then, for example, the square of its Fourier transform will appear in place of sinc2. Since f(t) is
normalized, the correction factor will always vanish at ω = 0, taking care of the divergence due to the 1/f
noise. A non-square windowing function could better model the observation time inherent in the scanning
of a spectrum analyzer, for example, where f(t) would be a scaled version of the response function of the
final low-pass filter. For example, for a Gaussian window ∝ exp[−(4 log 2)t2/T 2

obs] with a full width at half
maximum of Tobs, Eq. (2.170) is modified to read

s(ω) =
1

2π

∫ ∞
−∞

dτ ei∆τ exp
(
− (2 log 2)t2

T 2
obs

)
× exp

{
− 2

π

∫ ∞
0

Sω(ω
′)

sin2(ω′τ/2)

ω′2

[
1− exp

(
−T

2
obsω

′2

16 log 2

)]
dω′
}
.

(spectrum of the signal, including Gaussian-window observation time) (2.173)
The windowing function exp[−(4 log 2)t2/2T 2

obs] that appears here has exp[−T 2
obsω

2/8 log 2] as its Fourier
transform. If we compare this to the spectral resolution function exp[−(4 log 2)ω2/δω2] of the spectrum
analyzer, where δω is the (full width at half maximum) resolution bandwidth, then the resolution bandwidth
is given in terms of the observation time by δω =

√
2(4 log 2)/Tobs ≈ 4/Tobs. For white noise, we can write

this as a Fourier transform,

s(ω) =
1

2π

∫ ∞
−∞

dτ ei∆τ exp
(
− (2 log 2)t2

T 2
obs

)
× exp

{
−γ
2

[
|τ | erfc

(√
4 log 2 |τ |
Tobs

)
− Tobs√

4π log 2

(
2−4τ

2/T 2
obs − 1

)]}
,

(spectrum of the signal, Gaussian-window observation time, white noise) (2.174)
where γ is as usual the long-time Lorenztian width. The behavior of this width is similar to the rectangular-
window observation case, except that the function is smoother (there are no fringes associated with the

8Gianni Di Domenico, Stéphane Schilt, and Pierre Thomann, ‘‘Simple approach to the relation between laser frequency noise
and laser line shape,’’ Applied Optics 49, 4801 (2010) (doi: 10.1364/AO.49.004801).

http://dx.doi.org/10.1364/AO.49.004801
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Gaussian convolution) and has a less pronounced dip. The short-time asymptotic form also has a slightly
different coefficient: 4

√
2 log 2/Tobs.
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For 1/f noise, the expression is

s(ω) =
1

2π

∫ ∞
−∞

dτ ei∆τ exp
(
− (2 log 2)τ2

T 2
obs

)
× exp

{
− kτ2

3πT 2
obs

[
(log 2)τ2 2F2

(
1, 1;

5

2
, 3;− (4 log 2)τ2

T 2
obs

)
− 3T 2

obs
4

(
γ − 3 + log (16 log 2)τ2

T 2
obs

)]}
,

(spectrum of the signal, Gaussian-window observation time, 1/f noise) (2.175)
where here γ is Euler’s constant, and 2F2(a1, a2; b1, b2; z) is a generalized hypergeometric function. The be-
havior is similar to the rectangular-window observation case, but again smoother and with a less pronounced
minimum.
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The asymptotic scaling for small Tobs is the same as for the white-noise case, and the scaling for large Tobs
appears to match the rectangular-window observation case.
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2.9 Exercises

Problem 2.1
In the classical model of spontaneous emission, an atom impulsively excited at t = 0 gives rise to
radiation in the far-field of

E(+)(r, t) = E
(+)
0

r
[(ε̂ · r̂)r̂ − ε̂]e−(γ/2)t−iω0trΘ(tr), (2.176)

where tr = t−r/c is the retarded time, and Θ(t) is the Heaviside step function. Compute the first- and
second-order degrees of temporal coherence for this field, and then show that the radiated spectrum
s(ω) is a Lorentzian lineshape with a full width at half maximum of γ.

Problem 2.2
In molecular spectroscopy, Fourier-transform infrared (FTIR) spectroscopy is an important technique.
The basic idea is to use a Michelson interferometer to measure the correlation function g(1)(τ) of
some input (infrared) field on a detector, which is then digitized. The experimenter takes the Fourier
transform on the computer to give the spectrum. This in principle gives the same spectral information
as a grating spectrometer, which uses a diffraction grating and an aperture to limit the light so that
only a certain range of frequencies hits the detector at any time; scanning the grating position gives
the direct spectrum.
(a) Give a (qualitative) argument to justify the following statement: in the infrared, thermal detector
noise is significant, so for a given measurement time the FTIR method gives an improved signal/noise
ratio compared to the grating method. Assume the same detector is used in both setups.
(b) Give a different (qualitative) argument to justify the following statement: for small detector noise,
a grating spectrometer system is superior to an FTIR-type system if it is important to have a large
dynamic range in the measured spectrum.

Problem 2.3
Consider the Young double-slit experiment, where two slits are illuminated with classical, coherent
light. The setup produces interference fringes on a distant screen due to the variation in path-length
difference to the two slits. The fringe visibility V for a single detector is the one we defined in class, and
V = 1 for coherent light. We can define a two-detector fringe visibility for simultaneous detection
by

V (2) :=
G

(2)
max −G(2)

min

G
(2)
max +G

(2)
min

, (2.177)

where
G(2)(x1, x2, τ = 0) :=〈I(x1, t)I(x2, t)〉 (2.178)

is the unnormalized intensity correlation function for simultaneous detection at two points x1 and x2
on the screen (x is the direction across the fringes).
(a) What is V (2) for this double-slit experiment?
(b) Suppose a ‘‘phase scrambler’’ is placed in front of one slit to randomize the phase of its transmitted
wave. How are V and V (2) changed?

Problem 2.4
Given a signal with time dependence of the form exp[−iφ(t)], a (one-sided) phase-fluctuation spectrum
defined by

Sφ(ω) :=

∫ ∞
−∞
〈φ(t)φ(t+ τ)〉 cosωτ dτ, (2.179)
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and a (one-sided) frequency-fluctuation spectrum defined by

Sω(ω) :=

∫ ∞
−∞

〈
φ̇(t) φ̇(t+ τ)

〉
cosωτ dτ, (2.180)

show that the spectra are related by
Sω(ω) = ω2Sφ(ω). (2.181)

Qualitatively, what conditions must be satisfied for this relation to hold?

Problem 2.5

Given a Gaussian random variable X with zero mean and variance σ2, show that〈
e−iX

〉
= e−σ

2/2. (2.182)

Problem 2.6
Suppose we define the exponent A of Eq. (2.134) by

A :=
〈
[φ(t)− φ(t+ τ)− φ(t− τd) + φ(t+ τ − τd)]

2
〉
. (2.183)

Show that
A = 2

〈
[∆φ(τ)]2

〉
+ 2
〈
[∆φ(τd)]

2
〉
−
〈
[∆φ(τ + τd)]

2
〉
−
〈
[∆φ(τ − τd)]

2
〉
. (2.184)

Do not make any assumptions about whether ∆φ(τ) is correlated at different times t, or about the
probability density of ∆φ(τ), other than the fact that the variances above are well-defined and that
〈∆φ(τ)〉 = 0.

Problem 2.7
Fill in the steps between Eq. (2.135),

Ganalyzer(τ)∝
η20η1η2I

2
0

2
cosωmτ e

−
〈
[∆φ(τ)]2

〉
−
〈
[∆φ(τd)]

2
〉
+
〈
[∆φ(τ+τd)]

2
〉
/2+

〈
[∆φ(τ−τd)]

2
〉
/2, (2.185)

and Eq. (2.136),

Ganalyzer(τ)∝
η20η1η2I

2
0

2
cosωmτ exp

[
− 8

π

∫ ∞
0

Sω(ω
′)

sin2(ω′τ/2) sin2(ω′τd/2)

ω′2
dω′
]
. (2.186)





Chapter 3

Rate-Equation Model

Before using a proper quantum model of the atom, we will use a simple model of the atom that includes
discrete energy levels. However, we will not include any coherence effects, so the resulting rate equations
constitute a sort of ‘‘semi-quantum’’ model of the atom. At the same time, we must treat the field with
a discrete model, invoking the idea of photons, so that energy exchange between an atom and the field
occurs only in multiples of h̄ω. Even with the language of photons, we will stick to a strictly semiclassical
treatment, not really treating the atoms or the field quantum mechanically. With this rudimentary model
and some simple arguments, we can derive a number of important results without the full apparatus of
quantum mechanics.

3.1 Quantization

To elaborate, we will start with the observation that the energy in an electromagnetic field is quantized. This
means that a monochromatic field of frequency ω (typically restricted to some ‘‘quantization volume’’ such
as an optical cavity) has possible energies given by

E =

(
n+

1

2

)
h̄ω, (3.1)

where n is a nonnegative integer, representing the number of photons in the field. This may be familiar as
the energy-level structure of the quantum harmonic oscillator. The photon number is always defined with
respect to a particular mode (fixing the direction, polarization, and frequency characteristics).

The energies for atoms and molecules are also quantized, although the exact energy-level structure
depends on the specific atom or molecule. If we denote the quantized energies by En, then the differences
in energy levels correspond to frequencies via

∆Emn := Em − En = h̄ωmn. (3.2)

The idea is that atoms with an energy difference ∆Emn prefer to interact with resonant fields of frequency
ωmn. In this case, the energy of a single photon matches the atomic energy difference, and energy is
conserved. There are different types of transitions, generally corresponding to different types of radiation.
Electronic transitions in atoms are the most energetic of the type we will consider, and they correspond
to visible optical frequencies. Vibrational transitions in a molecule correspond to different amplitudes and
types of motion internal to the molecule, and generally correspond to radiation in the infrared. Rotational
transitions in molecules have yet lower energy, and they correspond to microwave radiation (which enables
the maser, the microwave predecessor to the laser).
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3.2 Fundamental Light–Atom Interactions

There are three fundamental interactions between light and atoms. In all cases we will consider only a two-
level atom with ground-state energy E1 and excited-state energy E2. We will also assume resonant light,
ω = (E2 − E1)/h̄.

1. Absorption (stimulated). In the absorption process, a photon is destroyed and the atom is promoted
to the excited state. More generally, if there are n photons to start with in some resonant mode, then
there are n− 1 photons after the absorption process.

E1

E2

photon
E1

E2

(no photon)

2. Stimulated Emission. This process involves the atom initially being in the excited state, in the
presence of n photons in some resonant mode. After the stimulated-emission event, the atom is
demoted to the ground state and the field is left with n + 1 photons. In some sense, this process is
the opposite of stimulated absorption, although absorption ending with 0 photons is possible while
stimulated emission beginning with 0 photons is not.

E1

E2

n photons
E1

E2

no+o1 photons

3. Spontaneous Emission. This process is much like stimulated emission, but when the atom is de-
moted, a photon is created in some mode that is initially unpopulated. Thus, a photon can go into a
wide range of possible modes by spontaneous emission. It is possible to view spontaneous emission as
stimulated emission due to quantum vacuum fluctuations in addition to classical radiation reaction.

E1

E2

(no photons)

E1

E2

1 photon

Generally, we can associate stimulated absorption and emission with a single mode that is already populated,
or singled out by some other means, such as an optical cavity. We can associate spontaneous emission
additionally with all other modes.

3.3 Einstein Rate Equations

Now let’s consider an ensemble of two-level atoms interacting with light. Let N1,2 denote the number density
of atoms with energy E1,2. Then the Einstein rate equation for the excited state is1

dN2

dt
= −A21N2 −B21ρ(ω)N2 +B12ρ(ω)N1.

(3.3)
(Einstein rate equation)

Here, ρ(ω) is the energy density of the electromagnetic field (the energy density in the frequency interval
ω to ω + dω). The first term corresponds to spontaneous emission, and we can see that it reduces the
excited-state population, even in the absence of any field. The second and third terms are proportional to

1A. Einstein, ‘‘Zur Quantentheorie der Strahlung,’’ Physikalische Zeitschrift 18, 121 (1917), translation ‘‘On the Quantum
Theory of Radiation’’ by Alfred Engel appears in The Collected Papers of Albert Einstein, Volume 6, The Berlin Years:
Writings, 1914-1917 (Princeton University Press, 1997) p. 200 (ISBN: 0691017344).

http://www.amazon.com/gp/search/?field-isbn=0691017344
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ρ(ω), and correspond to stimulated emission and absorption, respectively, as we can see from their overall
signs. By convention, the constant A21 is called the Einstein A coefficient, while B21 and B12 are called
the Einstein B coefficients. At this point we are simply postulating that the three processes contribute
to the atomic evolution in this form, with the rate coefficients yet to be determined.

The Einstein A coefficient here represents the rate at which energy is lost from the atom. We can thus
identify A21 = γ, where γ is the damping rate from the Lorentz atom. The connection of the Lorentz atom
with the B coefficients is less clear, in part because the classical model gets this wrong (hence the necessity
of patching the classical solution with the oscillator strength). We will defer this comparison until we derive
the cross section for the two-level atom.

To be consistent, N1+N2 must add up to some constant, assuming that we really have two-level atoms
and that the atoms stay in place (something that even works fairly well for gas lasers as long as we modify
A21 appropriately). Thus, dN2/dt = −dN1/dt, and so it is easy to write down the rate equation

dN1

dt
= A21N2 +B21ρ(ω)N2 −B12ρ(ω)N1

(3.4)
(steady-state solution)

for the ground-state population N1.
We can gain some valuable insight by looking at the equilibrium behavior of the rate equations. Steady

state occurs when dN2/dt = 0, whence it follows from Eq. (3.3) that

N2

N1
=

B12ρ(ω)

A21 +B21ρ(ω)
. (3.5)

If the energy levels are not degenerate, it turns out that B12 = B21, as we will see shortly. That is, stimulated
emission and absorption are exactly symmetric from the rate-equation point of view. Then we can rewrite
the steady-state solution as

N2

N1
=

1
A21

B21ρ(ω)
+ 1

. (3.6)

We can see from this that N2 < N1 in steady state. This result has an important result for using atoms as
a gain medium for a laser: there is no steady-state population inversion in a two-level system, and hence
there is no net gain of light transmitted through a medium composed of two-level atoms. This is because on
average, absorption (attenuation) occurs more often than stimulated emission (amplification).

In the limit of large intensity, ρ(ω) −→ ∞, the populations equalize. This points to an important
effect that is missed by the Lorentz model: atomic saturation. For small excitation, N2/N1 is proportional
to ρ(ω), but as the excitation increases, the slope of N2/N1 decreases, dropping to zero for large intensities.
We will treat this point more carefully after establishing some more results regarding the rate coefficients.

3.4 Relations Between the Einstein Coefficients

Now we briefly outline Einstein’s derivation of the relation between the A and B coefficients. If the energy
levels are degenerate, we can define the degeneracy factors g1,2 as the number of ways of having energy E1,2.
For example g1,2 = 2J1,2 + 1 for atomic angular-momentum states. Then the steady-state population ratio
from Eq. (3.4) can be written also via Boltzmann statistics as

N2

N1
=
g2
g1
e−h̄ω/kBT =

B12ρ(ω)

A21 +B21ρ(ω)
. (3.7)

Solving for ρ(ω),

ρ(ω) =
A21

B21

1(
B12g1
B21g2

eh̄ω/kBT − 1

) . (3.8)
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This is equivalent to the Planck blackbody distribution2

ρ(ω) =
8πh

λ3
1

eh̄ω/kBT − 1
(3.9)

if we make the identifications
g2B21 = g1B12

(3.10)
(relation between B coefficients)

and
A21

B21
=

8πh

λ3
.

(3.11)
(relation between A and B coefficients)

Recall that λ here is the wavelength within the atomic medium.
Remarkably, this simple thermodynamic argument reproduces the full quantum result that we will

derive later. Essentially, this is because the Planck distribution is valid for a particular set of quantum
(thermal) states (at some level, a proper summation over field modes is buried in the Planck distribution, as
evidenced by the correct frequency dependence of ω3). This is sufficient to establish the relationship between
the coefficients, since they are independent of the quantum state.

3.5 Line Shape and Spectral Distributions

So far, we’ve considered only monochromatic light and two-level atoms with sharply defined energy levels.
Now it’s time to improve our model of the two-level atom and its interaction with light.

We will first introduce a line-shape function s(ω) to model the fact that the energy levels have
some width. The line shape is defined such that s(ω) dω is the probability that a spontaneously emitted
photon will have frequency between ω and ω + dω. We can also interpret this as the relative probability of
stimulated emission or absorption of a photon with frequency between ω and ω + dω. Since s(ω) represents
a probability density, it is appropriately normalized:∫ ∞

0

s(ω) dω = 1. (3.12)

Note that as in our discussion of coherence in Chapter 2, we are using a ‘‘one-sided spectrum’’ that ranges
only over positive frequencies. In terms of the ‘‘two-sided spectrum’’ s±(ω) with both positive and negative
frequencies, the one-sided spectrum satisfies s(ω) := s±(ω) + s±(−ω) for ω ≥ 0 and s(ω) = 0 for ω < 0.

When we apply the line shape and sum over all frequencies, the rate equation becomes

dN2

dt
= −A21N2 −B21N2

∫ ∞
0

ρ(ω)s(ω) dω +B12N1

∫ ∞
0

ρ(ω)s(ω) dω. (3.13)

Qualitatively, we can picture the line shape function as a relatively sharply peaked distribution centered
around the resonant optical frequency ω0.

dw/2p ~ 10oo -10 o Hz

wº/2p ~ 10oo  -10 o Hz

7

14 15

12

w

s(w)

Often, s(ω) turns out to be a Lorentzian, a Gaussian, or a convolution of the two (a Voigt profile). The
line-shape function models transition width due to spontaneous emission, collisions, Doppler shifts in gas
lasers, and local crystal structure effects on the dopant atoms. Note that in the absence of radiation,

2P. W. Milonni and M.-L. Shih, ‘‘Zero-point energy in early quantum theory,’’ American Journal of Physics 59, 684 (1991)
(doi: 10.1119/1.16772).

http://dx.doi.org/10.1119/1.16772
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the rate equation is dN2/dt = −A21N2, which has an exponentially damping solution. As we discussed
before, the Fourier transform of an exponential is a Lorentzian, so the line shape for spontaneous emission
(the ‘‘natural line shape’’) is Lorentzian, with a half-width at half maximum of A21. Collisions are often
modeled by a spontaneous-emission-like term, and thus also lead to Lorentzian line shapes. Doppler shifts
lead to Gaussian line shapes because the Maxwell–Boltzmann velocity distribution is Gaussian. If multiple,
independent broadening effects contribute, their combined effect can be modeled by the convolution of the
individual line shapes.

Now we will consider two limiting cases for the light spectrum. Both are important in understanding
laser operation, but the second is the more useful case for comparing to coherent quantum light–atom
interactions.

3.5.1 Broadband Light

Light is broadband (relative to the transition) if ρ(ω) is much broader than s(ω). Then we can evaluate the
integral in Eq. (3.13) by noting that ρ(ω) varies slowly over the width of s(ω), so that we can pull it out of
the integral: ∫ ∞

0

ρ(ω)s(ω) dω ≈ ρ(ω0)

∫ ∞
0

s(ω) dω = ρ(ω0). (3.14)

Thus, we recover the previous rate equations, corresponding to Eq. (3.3), with sharp energy levels.

3.5.2 Nearly Monochromatic Light

For nearly monochromatic light, the field spectrum is narrow, so s(ω) is much broader than ρ(ω). Thus, we
can evaluate the integral with the same slowly varying approximation as for the broadband case:∫ ∞

0

ρ(ω)s(ω) dω ≈ s(ωfield)

∫ ∞
0

ρ(ω) dω. (3.15)

The integral on the right-hand side is the total field energy density, summed over all frequencies. Let’s
denote this simply by ρ. Then the rate equation becomes

dN2

dt
= −A21N2 −B21N2s(ω)ρ+B12N1s(ω)ρ, (3.16)

where we have written s(ω) in place of s(ωfield). The total energy density is related to the total intensity I
by ρ = I/c, so

dN2

dt
= −A21N2 −

σ(ω)I

h̄ω

[
N2 −

g2
g1
N1

]
.

(rate equation, monochromatic light) (3.17)
Here, we have defined the absorption cross-section

σ(ω) = A21
λ2

4
s(ω).

(3.18)
(cross section)

The cross section has the dimensions of area, and is defined such that σ(ω)I is the power absorbed by a
single atom when irradiated by intensity I (in the weak-excitation limit). Note that for a Lorentzian line
shape s(ω),

s(ω) =
∆ω

2π [(ω0 − ω)2 + (∆ω/2)2]
, (3.19)

the resonant cross section σ(ω0) is given by

σ(ω0) =
A21

∆ω

λ2

2π
. (3.20)
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For homogeneous broadening, ∆ω is the natural line width given by ∆ω = A21, so that the natural cross
section is

σ(ω0) =
λ 2
0

2π
.

(3.21)
(natural, on-resonance cross section)

This answer is consistent with a fully quantum-mechanical calculation, and this is the same cross-section
that we used before [Eq. (1.35)] to derive the form of the oscillator strength. This relation also establishes
the relation of the Einstein B coefficient to the classical model of the atom. Note that this answer assumes an
average over all possible atomic orientations, since the blackbody distribution of Eq. (3.9) assumes isotropic
radiation. For atomic dipole moments aligned with the field polarization, the resonant cross section is

σ(ω0) =
3λ 2

0

2π
, (3.22)

since the coupling that would normally be ‘‘distributed’’ among three orthogonal directions is concentrated
into one.

3.6 Absorption Coefficient and Saturation

Let us assume that nearly monochromatic light of frequency ω passes through a vapor of two-level atoms.
Evidently, from the rate equation (3.17), the rate per unit volume at which atoms are being promoted to
the excited state by the pumping field is

− σ(ω)I

h̄ω

[
N2 −

g2
g1
N1

]
. (3.23)

We define the absorption coefficient by
dI

dz
= −a(ω)I(z). (3.24)

(absorption coefficient definition)

Then we multiply the expression (3.23) by the photon energy h̄ω to obtain the rate of energy absorption per
unit volume, or equivalently the rate of intensity absorption per unit length, which matches the right-hand
side of Eq. (3.24). Thus, we find

a(ω) = −σ(ω)
[
N2 −

g2
g1
N1

]
. (3.25)

We can get the population difference here from the steady state of the rate equation (3.17). This gives

N2

N1
=
g2
g1


σI

h̄ωA21

1 +
σI

h̄ωA21

 . (3.26)

Noting that N1 +N2 = N , which implies

N2 −
g2
g1
N1

N
=

(
g1
g2

N2

N1
− 1

)
(
g1
g2

N2

N1
+
g1
g2

) = − g2/g1

1 +

(
1 +

g2
g1

)
σI

h̄ωA21

. (3.27)

Putting this result into Eq. (3.25), we find for the absorption coefficient

a(ω) =

(
g2
g1

)
σ(ω)N

1 +

(
1 +

g2
g1

)
σ(ω)I

h̄ωA21

. (3.28)
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Note that in the case of equal degeneracies, g1 = g2, we have

a(ω) =
σ(ω)N

1 + 2
σ(ω)I

h̄ωA21

.
(3.29)

(absorption coefficient, g1 = g2)

For small intensities, this expression is equivalent to the classical expression (1.33), which had the constant
value σ(ω)N . For large intensities, the absorption coefficient falls to zero. This is the effect of saturation
or optical bleaching of the medium. On resonance, the absorption coefficient becomes

a(ω0) =
σ0N

1 + 2
σ0I

h̄ω0A21

, (3.30)

where σ0 = σ(ω0) is the resonant cross-section. It is convenient to define the saturation intensity Isat by

Isat :=
h̄ω0A21

2σ0
,

(3.31)
(saturation intensity)

so that we can write the resonant absorption coefficient as

a(ω0) =
σ0N

1 +
I

Isat

. (3.32)

The saturation intensity gives the intensity scale over which saturation sets in. Specifically, we see that the
absorption coefficient drops to half the small-signal value when I = Isat. Again, this is one important feature
of the light–matter interaction that the classical model misses: the harmonic oscillator can be excited to
arbitrarily high amplitudes, but in a quantum-mechanical atom, the best excitation is when the maximum
number of atoms are pumped into the excited state.
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3.7 Exercises

Problem 3.1
We said that a medium of two-level atoms is no good as a laser gain medium, since the ground state
ends up with more population than the excited state, and so absorption wins out over stimulated
emission (i.e., loss wins out over amplification).
The simplest change that we can make to achieve a population inversion, where the excited state is
more populated than the ground state, is to add a third level. The level scheme is shown here.

1

2

3

pump
R13

A21o(slow)

A32o(fast)

laser
transition}

The new level (with highest energy) decays quickly, while the laser (2 −→ 1) transition decays slowly.
That is, we will assume A21 � R13, A32. Also, for a monochromatic pump (e.g., the pump is another
laser),

R13 =
σ(ω)I

h̄ω
, (3.33)

where σ(ω) is the absorption cross section for the 1 −→ 3 transition, and ω is the frequency of the
pumping field. Then we can write the rate equations for the three-level atom as

dN3

dt
= −R13(N3 −N1)−A32N3

dN2

dt
= A32N3 −A21N2

dN1

dt
= A21N2 +R13(N3 −N1),

(3.34)

where of course one of the equations is redundant since N1+N2+N3 must be a constant of the motion.
The key to why this scheme gives a population inversion on the laser transition (1 −→ 2) is that
atoms will be promoted to level 3 after absorbing a pump photon, and they will quickly decay to the
metastable level 2 before stimulated emission by the pump field returns them to level 1. In this way
the pump depletes level 1 and populates level 2 without trying to return the atoms back to level 1.
(a) Got all that? Outstanding. Now find the steady-state solution in the limit where A32 is by far
the fastest time scale in the problem. Under what conditions does a population inversion occur on the
laser transition? What should you do to get the best possible inversion?
You can do this directly, but here is the fancy-schmancy way. Note that level 3 decays quickly, and
the decay term is like a damping term for N3. Thus, we can assume N3 is always in quasiequilibrium
with respect to N1 and N2, which evolve comparatively slowly. So we can take dN3/dt ≈ 0 to obtain
an approximate (‘‘adiabatic’’) expression for N3. Now use this to adiabatically eliminate the N3’s in
the other two rate equations. By now you should have a set of effective rate equations for a two-level
atom. Finding the steady state of these new equations is a piece of cake.
(b) Now that you’re comfortable with the three-level atom, let’s turn it upside down and consider the
inverted three-level laser scheme shown here.
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0

1

2

pump
R02

A10o

A21o
laser

transition}

Argue qualitatively that in the best possible cases (optimal pumping and decay rates), for the same
pumping rate, laser cross section, and atomic number density, the small-signal gain coefficient for the
usual scheme is twice the small-signal gain coefficient for the inverted scheme shown here. Recall that
the gain corresponds to negative absorption, so we can write the gain coefficient as γ(ω) = −a(ω) =
σ(ω)[Ne − Ng], where ‘‘e’’ and ‘‘g’’ refer to the excited and ground levels of the laser transition,
respectively.
Note that you could go solving a new set of rate equations in steady state, but if you do some thinking,
you will realize that you don’t really need to. Just use the analysis of the two-level atom to reason out
what the steady-state populations would be in the optimal cases.
(c) Give a qualitative argument for why the saturation intensity for the inverted three-level scheme
will be twice that of the saturation intensity for the usual three-level scheme. Assume the laser cross
sections are the same in both cases.





Chapter 4

The Quantum State

4.1 Density Operator

Traditionally, the state vector |ψ〉 represents the state of a quantum system. However, we will need a more
general object to represent the quantum state for the purposes of studying light-matter interactions. The
density operator represents the state of a quantum system in a more general way than the state vector, and
equivalently represents an observer’s state of knowledge of a system. It is particularly important to use the
density operator in the quantum theory of open systems, where a quantum system interacts with an external
system whose evolution is unknown, and in the quantum theory of measurement and information.

When a quantum state can be represented by a state vector |ψ〉, the density operator is defined as
the product

ρ := |ψ〉〈ψ|. (4.1)
(density operator, pure state)

In this case, it is obvious that the information content of the density operator is equivalent to that of the
state vector (except for the overall phase, which is not of physical significance).

The state vector can represent states of coherent superposition. The power of the density operator lies
in the fact that it can represent incoherent superpositions as well. For example, let |ψα〉 be a set of states
(without any particular restrictions). Then the density operator

ρ =
∑
α

Pα|ψα〉〈ψα|
(4.2)

(density operator, general)

models the fact that we don’t know which of the states |ψα〉 the system is in, but we assign a probability or
weight Pα to the quantum state |ψα〉 in the mixture defined by ρ. Note that the weights obey∑

α

Pα = 1 (4.3)

for proper normalization of the density operator. Another way to say it is this: the state vector |ψ〉 represents
a certain intrinsic uncertainty with respect to quantum observables; the density operator can represent
uncertainty beyond the minimum required by quantum mechanics. Equivalently, the density operator can
represent an ensemble of identical systems in possibly different states.

A state of the form (4.1) is said to be a pure state. One that cannot be written in this form is said
to be mixed.

4.1.1 Example

As a simple example, consider a qubit, a two-level system with states |0〉 and |1〉. The density operators
corresponding to the eigenstates are |0〉〈0| and |1〉〈1|; clearly these are pure states. Another pure state is
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the superposition |ψ〉 = (|0〉+ |1〉)/
√
2, which has the corresponding density operator

ρ =
1

2

(
|0〉〈0|+ |1〉〈1|+ |0〉〈1|+ |1〉〈0|

)
. (4.4)

The density operator is the sum of the density operators for the eigenstates, plus two extra terms that
indicated the purity of the state or the coherence of the superposition. An example of a mixture of the two
eigenstates comes from simply removing these last two terms:

ρ =
1

2

(
|0〉〈0|+ |1〉〈1|

)
. (4.5)

We can clearly regard this as an mixture of the form (4.2), where the probabilities are P0,1 = 1/2 for the
eigenstates |ψ0〉 = |0〉 and |ψ1〉 = |1〉. However, we can equally well regard the same mixed state as a different
mixture. That is, defining the mixed state

ρ′ =
1

2

(
|+〉〈+|+ |−〉〈−|

)
, (4.6)

where
|±〉 := 1√

2

(
|0〉 ± |1〉

)
. (4.7)

it is not hard to see that ρ = ρ′. Thus we see that we have to be a bit careful with our above statement,
where we said that a mixed state can be regarded as an association of classical probabilities with being in
different pure quantum states. Just given a particular density operator, it is not not in general possible to
uniquely define a pure-state decomposition of the form (4.2). Thus stating that the state is really in a pure
state, but we don’t quite know which one it’s in, implies some extra information that is not contained in the
density operator.

4.1.2 Evolution

Differentiating the density operator and employing the Schrödinger equation ih̄∂t|ψ〉 = H|ψ〉, we can write
down the equation of motion for the density operator:

∂tρ = (∂t|ψ〉)〈ψ|+ |ψ〉∂t〈ψ|

= − i

h̄
Hρ+

i

h̄
ρH

= − i

h̄
[H, ρ].

(4.8)
(Schrödinger–von Neumann equation)

This is referred to as the Schrödinger–von Neumann equation. The derivation here assumed a pure
state but carries through in the obvious way for arbitrary density operators. Of course, the point is that
using the density operator allows us to write down more general evolution equations than those implied by
state-vector dynamics. The more general forms are referred to as Liouville–von Neumann equations or
master equations, which we can write in the form

∂tρ = Lρ. (4.9)
(master equation, generic form)

Here, L is the Liouvillian superoperator. We use the term ‘‘superoperator’’ because the Liouvillian
represents a higher-dimensional object, since it must represent the commutator above (i.e., it ‘‘operates
from both sides’’). Thinking of the density operator as a two-dimensional matrix as we discuss below, the
Liouvillian is effectively a rank-4 tensor.
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4.1.3 Expectation Values

We can compute expectation values with respect to the density operator via the trace operation. The trace of
an operator A is simply the sum over the diagonal matrix elements with respect to any complete, orthonormal
set of states |β〉:

Tr[A] :=
∑
β

〈β|A|β〉 (4.10)

An important property of the trace is that the trace of a product is invariant under cyclic permutations of
the product. For example, for three operators,

Tr[ABC] = Tr[BCA] = Tr[CAB].
(4.11)

(cyclic permutation invariance)

This amounts to simply an interchange in the order of summations. For example, for two operators, working
in the position representation,

Tr[AB] =

∫
dx 〈x|AB|x〉

=

∫
dx

∫
dx′ 〈x|A|x′〉〈x′|B|x〉

=

∫
dx′
∫
dx 〈x′|B|x〉〈x|A|x′〉

=

∫
dx′ 〈x′|BA|x′〉

= Tr[BA].

(4.12)

Note that this argument assumes sufficiently ‘‘nice’’ operators (it fails, for example, for Tr[xp]). More
general permutations [e.g., of the form (4.11)] are obtained by replacements of the form B −→ BC. Using
this property, we can obviously write the expectation value with respect to a pure state as

〈A〉 =〈ψ|A|ψ〉 = Tr[Aρ]. (4.13)
(expectation value, pure state)

This obviously extends to the more general form (4.2) of the density operator. Taking an additional average
over the ensemble of pure states,

〈〈A〉〉 =
∑
α

Pα〈ψα|A|ψα〉 = Tr[Aρ], (4.14)
(expectation value, ensemble)

where the double angle brackets 〈〈〉〉 denote the ensemble average over expectation values. For simplicity we
will drop the extra brackets and simply use single brackets for expectation values with respect to either a
pure state or an ensemble (〈〈〉〉 −→〈〉).

4.1.4 The Density Matrix

The physical content of the density operator is more apparent when we compute the elements ραα′ of the
density matrix with respect to a complete, orthonormal basis. The density matrix elements are given by

ραα′ := 〈α|ρ|α′〉. (4.15)
(density matrix)

To analyze these matrix elements, we will assume the simple form ρ = |ψ〉〈ψ| of the density operator, though
the arguments generalize easily to arbitrary density operators.

The diagonal elements ραα are referred to as populations, and give the measurement probability of the
system in the state |α〉:

ραα = 〈α|ρ|α〉 = |〈α|ψ〉|2 . (4.16)
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The off-diagonal elements ραα′ (with α 6= α′) are referred to as coherences, since they give information about
the relative phase of different components of the superposition. For example, if we write the state vector as
a superposition with explicit phases,

|ψ〉 =
∑
α

|cα| eiφα |α〉, (4.17)

then the coherences are
ραα′ = |cαcα′ | ei(φα−φα′ ). (4.18)

Notice that for a density operator not corresponding to a pure state, the coherences in general will be the
sum of complex numbers corresponding to different states in the incoherent sum. The phases will not in
general line up, so that while |ραα′ |2 = ρααρα′α′ for a pure state, we expect |ραα′ |2 < ρααρα′α′ (α 6= α′) for
a generic mixed state.

4.1.5 Purity

How can we tell a pure state from a mixed one in general? Notice that the diagonal elements of the density
matrix form a probability distribution. Proper normalization thus requires

Tr[ρ] =
∑
α

ραα = 1.
(4.19)

(normalization)

We can do the same computation for ρ2, and we will define the purity to be Tr[ρ2]. For a pure state, the
purity is simple to calculate, since ρ2 = |ψ〉〈ψ|ψ〉〈ψ| = ρ:

Tr[ρ2] = Tr[ρ] = 1.
(4.20)

(purity for pure state)

(In fact ρn = ρ in a pure state for any nonnegative n.) But for mixed states, Tr[ρ2] < 1. For example, for
the density operator in (4.2),

Tr[ρ2] =
∑
α

P 2
α , (4.21)

if we assume the states |ψα〉 to be orthonormal. For equal probability of being in N such states, Tr[ρ2] = 1/N .
Intuitively, then we can see that Tr[ρ2] drops to zero as the state becomes more mixed—that is, as it becomes
an incoherent superposition of more and more orthogonal states.

To prove that Tr[ρ2] < 1 for mixed states, first note that ρ is a Hermitian operator (ρ = ρ†). Thus, ρ
may be diagonalized by a unitary transformation, so we may write

ρ′ = SρS†, (4.22)

where ρ′ is diagonal and S−1 = S†. It is easy to verify that the trace is invariant under unitary transforma-
tions, so

Tr[ρ2] = Tr[ρ′2] =
∑
α

(ρ′αα)
2 ≤

∑
α

ρ′αα = 1, (4.23)

where the inequality comes from noting that 0 ≤ ρ′αα ≤ 1, so that ρ′ 2αα ≤ ρ′αα. A diagonal pure state has
only a single nonzero diagonal element, while a diagonal mixed state necessarily has more than one nonzero
diagonal element. Hence, for a mixed state, Tr[ρ2] < 1. This follows since the diagonal matrix elements are
positive,

ραα = 〈α|ρ|α〉 =
∑
k

Pk|〈α|ψ〉k|2 ≥ 0, (4.24)

and so the equality occurs only for a single term in the sum.
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4.2 Pictures

4.2.1 Unitary Time-Evolution Operator

The Schrödinger equation generates the time evolution of the state vector |ψ〉. It is convenient to represent
time evolution in the form of an operator:

|ψ(t0)〉 −→ |ψ(t)〉 = U(t, t0) |ψ(t0)〉.
(time-evolution operator, definition) (4.25)

Here, U(t, t0) is the unitary time-evolution operator1 that evolves the state from time t0 to t. Note that
the operator must be unitary to preserve the norm of the state vector. Since

〈ψ(t)|ψ(t)〉 = 〈ψ(t0)|U†(t, t0)U(t, t0)|ψ(t0)〉, (4.26)

if we require this to be equal to 〈ψ(t0)|ψ(t0)〉 for any initial state |ψ(t0)〉, then it follows that

U†(t, t0)U(t, t0) = 1,
(4.27)

(unitary condition)

and thus U(t, t0) is unitary. In other words, unitarity of the evolution is required to conserve probability.
The time-evolution operator also must have the composition property

U(t2, t0) = U(t2, t1)U(t1, t0),
(4.28)

(composition property)

which is sensible for the representation of time evolution. In this relation, note that with the time ordering
t0 < t1 < t2, the earliest time appears to the right, since it is that one that operates ‘‘first’’ on the state
vector. Finally, we must have the inversion property

U(t, t′) = U−1(t′, t) = U†(t′, t),
(4.29)

(inversion property)

so that the inverse of an evolution operator corresponds to backwards-time evolution.

4.2.1.1 Infinitesimal Form

Again, the Schrödinger equation
∂t|ψ〉 = −

i

h̄
H|ψ〉 (4.30)

can be rewritten in differential form as

|ψ(t+ dt)〉 − |ψ(t)〉 = − i

h̄
H|ψ(t)〉 dt, (4.31)

and thus generates the evolution over an interval dt according to

|ψ(t)〉 −→ |ψ(t+ dt)〉 =
(
1− i

h̄
H dt

)
|ψ(t)〉. (4.32)

Thus, the infinitesimal time-evolution operator is given by

U(t+ dt, t) = 1− i

h̄
H dt.

(4.33)
(infinitesimal time-evolution operator)

We can verify the above properties for this form of the evolution operator. For example,

U†(t+ dt, t)U(t+ dt, t) =

(
1 +

i

h̄
H dt

)(
1− i

h̄
H dt

)
= 1 +O(dt2) = 1. (4.34)

A similar argument works for the composition property, which gives the form of U(t+ 2 dt, t).
1For further reading, see J. J. Sakurai, Modern Quantum Mechanics 2nd ed. (Addison Wesley, 1993), chapter 2, p. 68.
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4.2.1.2 Differential Equation for the Evolution Operator

Now using the composition property,

U(t+ dt, t0) = U(t+ dt, t)U(t, t0) =

(
1− i

h̄
H dt

)
U(t, t0). (4.35)

Thus, U(t, t0), regarded as a function of t, undergoes time translation in the same way as the state vector
|ψ(t)〉. In particular, then, we can write

∂tU(t, t0) = −
i

h̄
HU(t, t0),

(Schrödinger equation for evolution operator) (4.36)
and thus we see that the evolution operator satisfies the Schrödinger equation.

4.2.1.3 General Form

Noting again that dt2 = 0 for infinitesimal time increments, we can write

U(t+ dt, t) = 1− i

h̄
H dt = e−iH dt/h̄. (4.37)

Then the composition property extends to give the general form of the evolution operator over finite time
intervals,

U(t, t0) =
t∏
t0

e−iH(tα) dtα/h̄, (4.38)

where the product is over all infinitesimal time intervals dtα between t0 and t. The product is ordered such
that earlier times are to the right of later times. In the case that H(t) commutes with H(t′) for t 6= t′, then
we can combine the elements of the product into a single exponential, using the relation

eAeB = eA+B , (4.39)

which holds when [A,B] = 0. Then

U(t, t0) = exp

[
− i

h̄

t∑
t0

H(tα) dtα

]

= exp
[
− i

h̄

∫ t

t0

H(t′) dt′
]
.

(4.40)
(general form, [H(t),H(t′)] = 0)

If the Hamiltonian does not commute with itself at different times, then we can’t use this form, and we must
use the form (4.38). We can use the shorthand for this notation2

U(t, t0) = T exp
[
− i

h̄

∫ t

t0

H(t′) dt′
]
,

(4.41)
(general form)

where T is the chronological operator, which indicates that the exponential is really a time-ordered
product of infinitesimal time-evolution operators. On the other hand, if the Hamiltonian is time-independent,
so that H(t) = H,

U(t, t0) = exp
[
− i

h̄
H(t− t0)

]
,

(4.42)
(general form, time-independent H)

and we see that the time-evolution operator simplifies considerably, being essentially just the exponentiated
Hamiltonian operator.

2V. B. Berestetskii, E. M. Lifshitz, and L. P. Pitaevskii, Relativistic Quantum Theory, (Pergamon Press, 1971).
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4.2.2 Schrödinger vs. Heisenberg Picture

The Schrödinger picture is the usual scheme that you probably learned when you first studied quantum
mechanics. In the Schrödinger picture, the state vector |ψ(t)〉 evolves according to the Schrödinger equation.
The operators, on the other hand, are time-independent, so that time-dependent expectation values are
computed by

〈A(t)〉 = 〈ψ(t)|A|ψ(t)〉. (4.43)
(Schrödinger picture)

An alternate scheme, the Heisenberg picture, is formulated differently. In the Heisenberg picture, the
time dependence is carried by the operators, not the state vector. The state vectors are time-independent
here. Thus, the expectation value in the Heisenberg picture is given as

〈A(t)〉 = 〈ψ|A(t)|ψ〉. (4.44)
(Heisenberg picture)

How do we transform between the two pictures? We will use the subscripts ‘‘S’’ and ‘‘H’’ for the Schrödinger
and Heisenberg pictures, respectively, so that AS is the Schrödinger operator, and AH(t) is the Heisenberg
operator. Then we can use the time-evolution operator to write

〈ψ(t)|AS|ψ(t)〉 = 〈ψ(0)|U†(t, 0)ASU(t, 0)|ψ(0)〉

= 〈ψ(0)|AH(t)|ψ(0)〉,
(4.45)

where we have identified the transformation between pictures as

AH(t) = U†(t, 0)ASU(t, 0).
(4.46)

(operator transformation)

We also identify the Heisenberg-picture state vector as the initial state vector:

|ψ〉H = |ψ(0)〉S = U†(t, 0) |ψ(t)〉S.
(4.47)

(state transformation)

Note that the density operator ρ is a Schrödinger-picture operator, since it is equivalent to the state vector.
Thus, the density operator transforms as

ρH = U†(t, 0) ρS(t)U(t, 0).
(4.48)

(operator transformation)

That is, in the Schrödinger picture, the density operator is time-dependent, while it is time-independent in
the Heisenberg picture, which is opposite to the behavior of operators for observables.

4.2.2.1 Heisenberg Equation of Motion

In the Heisenberg picture, the operators evolve in time, so we must derive an equation of motion for Heisen-
berg operators. Differentiating a Heisenberg operator A and using U as shorthand for U(t, 0),

∂tAH = ∂t
[
U†ASU

]
=
[
∂tU

†]ASU + U†AS∂tU

=
i

h̄
U†HS(t)ASU −

i

h̄
U†ASHS(t)U

=
i

h̄
U†HS(t)UU

†ASU −
i

h̄
U†ASUU

†HS(t)U,

(4.49)
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and finally, we can write

∂tAH = − i
h̄

[
AH, U

†HS(t)U
]
.

(4.50)
(Heisenberg-picture evolution)

Note that we assumed AS to be time-independent—we are still not treating any operators with explicit time
dependence. Recall that the Hamiltonian generates time evolution, and so the time dependence is externally
imposed. We will thus not speak of the Heisenberg-picture Hamiltonian, although we use the ‘‘S’’ subscript
to denote that we introduced it in the Schrödinger picture. Note that for a time-independent Hamiltonian
such that U(t, 0) = exp(−iHt/h̄), then U(t, 0) commutes with the Hamiltonian, and thus

∂tAH = − i
h̄
[AH,H] .

(Heisenberg evolution, time-independent H) (4.51)
This evolution equation has a similar form to the Schrödinger–von Neumann equation (4.8) for the density
operator (differing only by a minus sign).

4.2.3 Interaction Picture

The interaction picture is a hybrid of the Schrödinger and Heisenberg pictures. Suppose that the Hamil-
tonian can be decomposed as

H = H0 + V (t), (4.52)

where V is the ‘‘interaction Hamiltonian.’’ Then the interaction picture is essentially the Schrödinger picture
with respect to V , but the Heisenberg picture with respect to H0. That is, the state vector carries the time
dependence due to V , while the operators carry the time dependence due to H0.

For concreteness and simplicity, let’s assume that H0 is time-independent. Thus, the transformation
of the state vector to the interaction picture is

|ψ〉I = eiH0t/h̄|ψ〉S,
(4.53)

(interaction-picture state)

and the transformation for the density operator follows similarly:

ρI = eiH0t/h̄ρS(t) e
−iH0t/h̄.

(4.54)
(interaction-picture state)

The operator transforms according to

AI(t) = eiH0t/h̄ASe
−iH0t/h̄.

(4.55)
(interaction-picture operator)

Then the background Hamiltonian causes the operator to evolve,

∂tAI = −
i

h̄
[AI,H0] ,

(4.56)
(interaction-picture evolution)

while the state evolves according to the interaction Hamiltonian

∂t|ψ〉I = −
i

h̄
VI(t)|ψ〉I

∂tρI = −
i

h̄
[VI(t), ρI],

(4.57)
(interaction-picture evolution)

where VI(t) is the interaction-picture form of the Schrödinger-picture operator V (t) in the sense of Eq. (4.55).
The interaction picture is useful in perturbation theory, where the evolution due to H0 is already known. It
is thus convenient to bury this evolution in the operators, so that it is possible to focus on the perturbation
Hamiltonian V .
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4.3 Wigner Distribution

One important tool for this discussion is the Wigner function (or distribution), which facilitates the de-
scription of quantum dynamics in phase space. This is particularly important in comparing quantum and
classical mechanics, where the analogous classical object is the phase-space (Liouville) distribution for an
ensemble in phase space. The Wigner representation allows us to work with phase-space functions, rather
than state vectors and operators. This allows for tremendous insight and simplification for certain aspects
of quantum dynamics, and quite a bit of obfuscation for some others.

What do we mean by phase space? For a single-particle, classical Hamiltonian of the form

H(x, p) =
p2

2m
+ V (x), (4.58)

the canonical coordinate pair (x, p) is sufficient to completely determine the state of the particle. Thus, for
this system, we can define the (x, p) plane to be the phase space. In general, the classical phase space is
the space of all generalized coordinates needed to completely specify the state of the system. For a classical
Hamiltonian system of N degrees of freedom, we can generally take the phase space to be the 2N -tuple
(x1, . . . , xN , p1, . . . , pN ) of canonical coordinates.

The Wigner function is defined in terms of the density operator as3

W (x, p) :=
1

2πh̄

∫ ∞
−∞

dx′ e−ipx
′/h̄〈x+ x′/2|ρ|x− x′/2〉. (4.59)

(Wigner distribution)

We can see that in terms of a rotated density matrix ρr(x, x
′) := 〈x+ x′/2|ρ|x− x′/2〉, the Wigner function

has the form of a Fourier transform over the second variable. Since ρr(x, x
′) = ρ∗r (x,−x′), it is clear that the

Wigner function is real-valued. Note that for a pure state, the above formula reduces to

W (x, p) :=
1

2πh̄

∫ ∞
−∞

dx′ e−ipx
′/h̄ψ(x+ x′/2)ψ∗(x− x′/2). (4.60)

(Wigner distribution)

Obviously, the information content of the Wigner function is equivalent to that of the density operator,
since the Wigner transform (4.59) can be inverted: the inverse Fourier transform of W (x, p) over p gives
the rotated density operator, which is related by a simple coordinate rotation to the usual density operator.
Note that for simplicity here we are sticking to systems of one degree of freedom; the generalizations to more
dimensions is reasonably straightforward.

4.3.1 Marginal Distributions

The Wigner function is not the only possible quantum phase-space distribution, but it has several features
that make it preferable to other distributions. One of its most appealing properties is that each marginal
distribution of the Wigner function, where one of the variables is integrated out, results in the probability
distribution corresponding to the other variable. The Wigner function itself, however, is not a joint proba-
bility distribution, since it can take on negative values, which as we will see below represent the interferences
or coherences of the quantum state.

To formalize this notion, we can show that when integrated over the variable p, the Wigner function
yields the correct spatial probability density:∫ ∞

−∞
dpW (x, p) =〈x|ρ|x〉 . (4.61)

(x marginal distribution)

3E. Wigner, ‘‘On the Quantum Correction For Thermodynamic Equilibrium,’’ Physical Review 40, 749 (1932) (doi:
10.1103/PhysRev.40.749). For good reviews, see also Wolfgang P. Schleich, Quantum Optics in Phase Space (Wiley, 2001); M.
Hillery, R. F. O’Connell, M. O. Scully, and E. P. Wigner, ‘‘Distribution Functions in Physics: Fundamentals,’’ Physics Reports
106, 121 (1984) (doi: 10.1016/0370-1573(84)90160-1); and V. I. Tatarskii, ‘‘The Wigner representation of quantum mechanics,’’
Soviet Physics Uspekhi 26, 311 (1983) (doi: 10.1070/PU1983v026n04ABEH004345).

http://dx.doi.org/10.1103/PhysRev.40.749
http://dx.doi.org/10.1016/0370-1573(84)90160-1
http://dx.doi.org/10.1070/PU1983v026n04ABEH004345
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To see this, just use the definition (4.59) and the integral representation of the delta function:

∫ ∞
−∞

dpW (x, p) =
1

2πh̄

∫ ∞
−∞

dx′ 〈x+ x′/2|ρ|x− x′/2〉
∫ ∞
−∞

dp e−ipx
′/h̄

=

∫ ∞
−∞

dx′ 〈x+ x′/2|ρ|x− x′/2〉 δ(x′)

=〈x|ρ|x〉 .

(4.62)

Similarly, we can show that integration over x gives the momentum probability density:∫ ∞
−∞

dxW (x, p) =〈p|ρ|p〉 . (4.63)
(p marginal distribution)

To see this, we perform the following steps: insert the definition (4.59), let x −→ x+ x′/2, let x′ −→ x′ − x,
use the expressions

〈p|x′〉 = 1√
2πh̄

e−ipx
′/h̄, 〈x|p〉 = 1√

2πh̄
eipx/h̄, (4.64)

and finally use the completeness relation:

∫ ∞
−∞

dxW (x, p) =
1

2πh̄

∫ ∞
−∞

dx

∫ ∞
−∞

dx′ e−ipx
′/h̄〈x+ x′/2|ρ|x− x′/2〉

=
1

2πh̄

∫ ∞
−∞

dx

∫ ∞
−∞

dx′ e−ipx
′/h̄〈x+ x′|ρ|x〉

=
1

2πh̄

∫ ∞
−∞

dx

∫ ∞
−∞

dx′ e−ip(x
′−x)/h̄〈x′|ρ|x〉

=

∫ ∞
−∞

dx

∫ ∞
−∞

dx′ 〈p|x′〉〈x′|ρ|x〉〈x|p〉

=〈p|ρ|p〉 .

(4.65)

From either of these arguments it is obvious that the Wigner distribution is normalized such that∫ ∞
−∞

dx

∫ ∞
−∞

dpW (x, p) = 1.
(4.66)

(normalization)

The marginal property works along other axes in phase space. This follows from the property that we will
show below, that the Wigner-distribution evolution in a harmonic potential is simply a rotation, just as
it is for a classical phase-space distribution. Thus, these same arguments can be applied after any phase-
space rotation. In fact, this acts as one method for performing a tomographic reconstruction of the Wigner
function, since the marginal distributions can be experimentally measured along many axes, then converted
to the Wigner function via the (inverse) Radon transform.4

4.3.2 Overlap

Another intuitively appealing feature of the Wigner function is that the overlap integral of two Wigner
functions yields the overlap of the two corresponding density operators. We can see this for the overlap

4M. G. Raymer, M. Beck, and D. F. McAlister, ‘‘Complex Wave-Field Reconstruction Using Phase-Space Tomography,’’
Physical Review Letters 72, 1137 (1994) (doi: 10.1103/PhysRevLett.72.1137).

http://dx.doi.org/10.1103/PhysRevLett.72.1137
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of two states represented by W1(x, p) and W2(x, p), by again using the integral representation of the delta
function:∫ ∞

−∞
dx

∫ ∞
−∞

dpW1(x, p)W2(x, p)

=
1

(2πh̄)2

∫ ∞
−∞

dx

∫ ∞
−∞

dp

∫ ∞
−∞

dx′
∫ ∞
−∞

dx′′ e−ip(x
′+x′′)/h̄〈x+ x′/2|ρ1|x− x′/2〉〈x+ x′′/2|ρ2|x− x′′/2〉

=
1

2πh̄

∫ ∞
−∞

dx

∫ ∞
−∞

dx′
∫ ∞
−∞

dx′′ δ(x′ + x′′)〈x+ x′/2|ρ1|x− x′/2〉〈x+ x′′/2|ρ2|x− x′′/2〉

=
1

2πh̄

∫ ∞
−∞

dx

∫ ∞
−∞

dx′ 〈x+ x′/2|ρ1|x− x′/2〉〈x− x′/2|ρ2|x+ x′/2〉 .

(4.67)
Again letting x −→ x+ x′/2 and then x′ −→ x′ − x,∫ ∞
−∞

dx

∫ ∞
−∞

dpW1(x, p)W2(x, p) =
1

2πh̄

∫ ∞
−∞

dx

∫ ∞
−∞

dx′ 〈x+ x′/2|ρ1|x− x′/2〉〈x− x′/2|ρ2|x+ x′/2〉

=
1

2πh̄

∫ ∞
−∞

dx

∫ ∞
−∞

dx′ 〈x′|ρ1|x〉〈x|ρ2|x′〉

=
1

2πh̄

∫ ∞
−∞

dx′ 〈x′|ρ1ρ2|x′〉

=
1

2πh̄
Tr[ρ1ρ2].

(4.68)

Recall that for pure states,
Tr[ρ1ρ2] = |〈ψ1|ψ2〉|2, (4.69)

where the latter expression is known as the fidelity of two pure states. Thus, Tr[ρ1ρ2] is a generalized
overlap for mixed states, and

2πh̄

∫ ∞
−∞

dx

∫ ∞
−∞

dp W1(x, p)W2(x, p) = Tr[ρ1ρ2]
(4.70)

(overlap integral)

represents the same overlap in terms of the Wigner functions. Note that Tr[ρ1ρ2] also represents the more
general fidelity if either of ρ1 or ρ2 are pure, but if both states are mixed, the fidelity is defined by F (ρ1, ρ2) :=
max |〈1|2〉|2, where the maximum is taken over all ‘‘purifications’’ (Section 4.4.5) |1〉 of ρ1 and |2〉 of ρ2.5
This definition turns out to be equivalent to the expression6 F (ρ1, ρ2) = {Tr[

√√
ρ1ρ2
√
ρ1]}2.

4.3.3 Area

Recall that for the density operator, we showed that Tr[ρ2] ≤ 1, with the equality holding for pure states.
Using Eq. (4.70),

Tr[ρ2] = 2πh̄

∫ ∞
−∞

dx

∫ ∞
−∞

dp W 2(x, p) ≤ 1. (4.71)

Inverting this relation, we find a sort of generalized uncertainty relation,[∫ ∞
−∞

dx

∫ ∞
−∞

dp W 2(x, p)

]−1
≥ 2πh̄,

(4.72)
(area theorem)

5The important concept of fidelity for mixed states was introduced by Richard Jozsa, ‘‘Fidelity for Mixed Quantum States,’’
Journal of Modern Optics 41, 2315 (1994) (doi: 10.1080/09500349414552171); see also Benjamin Schumacher, ‘‘Sending entan-
glement through noisy quantum channels,’’ Physical Review A 54, 2614 (1996) (doi: 10.1103/PhysRevA.54.2614).

6Richard Jozsa, op. cit.

http://dx.doi.org/10.1080/09500349414552171
http://dx.doi.org/10.1103/PhysRevA.54.2614
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again with the equality holding for pure states. Recalling that the Wigner function is a normalized distribu-
tion, along with the definition for the width δω for the normalized spectral function s(ω) [Eq. (2.59)], we see
that the quantity on the left-hand side is the two-dimensional generalization of the frequency width. Thus,
the quantity on the left-hand side represents the area of the Wigner function, and is sometimes referred to
as the Süßmann measure7 for the Wigner function. Again, this measure of area is more ‘‘robust’’ for
certain distributions than corresponding measures based on rms widths. Eq. (4.72) therefore has the nice
interpretation that the Wigner function for a pure state occupies an area of h in phase space, with mixed
states occupying more area.

4.3.4 Sample Wigner Distributions

To gain more intuition, since our discussion has so far been rather abstract, we will consider a few specific
examples of Wigner functions.

4.3.4.1 Gaussian State

For a Gaussian state, the definition (4.59) amounts to a Fourier transform of a Gaussian function. In this
case, the Wigner function is clearly Gaussian. The most general Gaussian distribution we can write down
for two dimensions (centered about the origin) is8

W (x, p) =
1

2π
√

det(Sαβ)
exp

[
− 1

2
zα
(
S−1

)
αβ
zβ

]
,

(4.73)
(Gaussian state)

where (zα) = (x, p) and

(Sαβ) =
1

2
([zα, zβ ]+) =

[
Vx Cxp
Cxp Vp

]
(4.74)

(covariance matrix)

is the covariance matrix, whose inverse is

(
S−1

)
αβ

=
1

VxVp − C 2
xp

[
Vp −Cxp
−Cxp Vx

]
. (4.75)

Here, [a, b]+ = ab + ba is the anticommutator bracket, Vx =
〈
x2
〉

is the position variance, Vp =
〈
p2
〉

is the
momentum variance, and Cxp =〈xp+ px〉 /2 is the covariance. This form can be derived as follows. For two
independent Gaussian random variables, the joint distribution is just the product of two individual Gaussian
distributions. Written in matrix form, this gives the above form for W (x, p) where the covariance matrix
is diagonal (recall that we just want the distribution with the correct marginals, so in this case classical
arguments suffice.) Applying a rotation (or more generally, any linear, symplectic transformation) then
gives the form where the covariance matrix is not diagonal. It is then easy to verify that this distribution is
normalized and has the correct variances:

∫ ∞
−∞

dx

∫ ∞
−∞

dp W (x, p)x2 = Vx =
〈
x2
〉

∫ ∞
−∞

dx

∫ ∞
−∞

dp W (x, p) p2 = Vp =
〈
p2
〉

∫ ∞
−∞

dx

∫ ∞
−∞

dp W (x, p)xp = Cxp =
1

2
〈xp+ px〉 .

(4.76)
(Gaussian moments)

Note that in the last case, the covariance is associated with the symmetrically ordered expectation value, a
point we will return to below.

7Wolfgang P. Schleich, Quantum Optics in Phase Space (Wiley, 2001).
8Note the slightly different form from Eq. (2.85), which is for complex variables.



4.3 Wigner Distribution 119

x

p

For the Gaussian state, we can evaluate the integral∫ ∞
−∞

dx

∫ ∞
−∞

dpW 2(x, p) =

∫ ∞
−∞

dx

∫ ∞
−∞

dp
1

4π2det(Sαβ)
exp

[
−zα

(
S−1

)
αβ
zβ

]
=

1

4π
√

det(Sαβ)
=

1

4π
√
VxVp − C 2

xp

,

(4.77)

which follows from the fact that the form of W (x, p) is normalized. From Eq. (4.72), we thus find the
inequality

VxVp − C 2
xp ≥

h̄2

4
,

(4.78)
(generalized uncertainty relation)

which acts as a generalized uncertainty relation for Gaussian states, and is stronger than the usual uncertainty
relation VxVp ≥ h̄2/4, since it maintains the equality for pure Gaussian states even if they are rotated in
phase space. Again, the equality holds for pure states. From Eq. (4.71), we can then see that

Tr
[
ρ2
]
=

h̄/2√
VxVp − C 2

xp

,
(4.79)

(Gaussian-state purity)

and thus that the size of the Gaussian state is simply related to its purity.
The Gaussian state is also important in another sense. Hudson’s theorem9 states that the only pure

states that do not take on any negative values are Gaussian, at least for systems of one degree of freedom.
In this sense the Gaussian pure states are the ‘‘most classical,’’ since they can be given a sensible classical
interpretation, at least in terms of a classical probability distribution in phase space.

4.3.4.2 Coherent Superpositions

Consider the coherent superposition of two positions ±x0. To keep things physical, we will consider a
superposition of two Gaussian states, each of rms width σ:

ψ(x) =
1√
2

1

(2πσ2)1/4

[
e−(x−x0)

2/4σ2

+ e−(x+x0)
2/4σ2

]
. (4.80)

9R. L. Hudson, ‘‘When is the Wigner Quasi-Probability Density Non-Negative?’’ Reports on Mathematical Physics 6, 249
(1974).
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Putting this into the definition (4.60), we find

W (x, p) =
1

4πh̄
e−2σ

2p2/h̄2
[
e−(x−x0)

2/2σ2

+ e−(x+x0)
2/2σ2

+ 2e−x
2/2σ2

cos(2px0/h̄)
]
. (4.81)

The first two terms in brackets are Gaussian distributions centered at ±x0, corresponding to each of the
first distributions separately. The final term looks like some sort of interference term: it is a Gaussian
distribution centered at the origin, but with a sinusoidal modulation in the p-direction with period πh̄/x0.
The interpretation is that the coherence of the superposition is encoded in this oscillatory structure that lies
between the two structures that represent the population. Indeed, had we chosen a different relative phase
for the two Gaussian states, we would have simply found a different phase for the sinusoidal modulation. It
is also easy to see that for an incoherent superposition of the two Gaussian states (i.e., the density operator
being the sum of two Gaussian density operators), the Wigner function is linear in the density operator and
thus the oscillatory structure would be missing.

x

p

In the wave function, coherences between components of a superposition are again ‘‘encoded’’ in the
phases of the complex numbers. The Wigner function is real-valued, and thus complex phases cannot contain
the same information. Instead, coherence between two phase-space regions is encoded as oscillations in the
region directly between them. In this sense, negative values of the Wigner distribution are indicators of
coherence.

We can also see that the oscillatory structure is necessary to recover the proper marginal distributions.
The position distribution is given by integrating over p, in which case the oscillatory part vanishes, leaving
just the two Gaussian states:

〈x|ρ|x〉 =
∫ ∞
−∞

dpW (x, p)

=
1

2
√
2πσ2

[
e−(x−x0)

2/4σ2

+ e−(x+x0)
2/4σ2

]2
≈ 1

2
√
2πσ2

[
e−(x−x0)

2/2σ2

+ e−(x+x0)
2/2σ2

]
,

(4.82)

where the last expression follows through when the Gaussians are well resolved, |x0| � σ, so that the
overlap terms are negligible. On the other hand, the coherent superposition leads to interference fringes in
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the momentum distribution (as you would expect, for example, for the far-field diffraction pattern of two
Gaussian apertures):

〈p|ρ|p〉 =
∫ ∞
−∞

dxW (x, p) =
2σ√
2πh̄

e−2σ
2p2/h̄2

cos2(2px0/h̄). (4.83)

Thus, the orientation of the modulation is critical: a coherent superposition of two phase-space regions
implies an array of ‘‘stripes’’ pointing between the two regions, with the stripes or ridges becoming denser
and more numerous as the separation increases.

4.3.4.3 Harmonic Oscillator States

For the harmonic oscillator with Hamiltonian

H(x, p) =
p2

2m
+

1

2
mω2

0x
2, (4.84)

we will see below that the quantum and classical equations of motion are identical. The classical motion of
a single point particle corresponds to a closed, elliptical trajectory in phase space. This is clear from the
form of the Hamiltonian, since classical trajectories correspond to surfaces of constant energy. In particular,
in rescaled coordinates such that the Hamiltonian has the form

H ′(x′, p′) =
p′2

2
+
x′2

2
, (4.85)

the classical trajectories are circles in phase space, all rotating at the same frequency ω0. Thus, time evolution
in the rescaled harmonic-oscillator phase space is equivalent to rotation at frequency ω0. Similarly, then, in
the proper coordinates, the Wigner function simply rotates in time at frequency ω0.

We can thus infer that in the proper coordinates, the Wigner functions for the harmonic-oscillator
eigenstates must be rotationally invariant. Indeed, it can be shown that the nth eigenstate has the form10

Wn(x, p) =
(−1)n

πh̄
e−r

2(x,p)/h̄Ln
[
2r2(x, p)/h̄

]
,

(harmonic-oscillator eigenstate) (4.86)
where

r2(x, p) = mω0x
2 +

p2

mω0
, (4.87)

and the Ln(x) are the Laguerre polynomials, given explicitly by

Ln(x) =

n∑
j=0

(
n

j

)
(−x)j

j!
. (4.88)

The functions Wn(x, p) are thus called Laguerre–Gaussian functions. Naturally, the marginals of these
distributions must reproduce the position and momentum distributions for the harmonic oscillator, given by

|ψn(x)|2 =
1

2nn!

√
mω0

πh̄
exp

(
− mω0x

2

h̄

)
H 2
n

(√
mω0

h̄
x

)
|φn(p)|2 =

1

2nn!

√
1

πmω0h̄
exp

(
− p2

mω0h̄

)
H 2
n

(√
1

mω0h̄
p

)
.

(4.89)

Here, the Hn(x) are the Hermite polynomials, given explicitly by

Hn(x) = (−1)nex
2/2∂ nx e

−x2/2, (4.90)

and the wave functions in x and p are the Hermite–Gaussian functions. Clearly, for n > 0, the Wigner
functions must take on negative values to reproduce the zeros in the marginal distributions.

Below is a plot of the Wigner distribution and the marginals for the n = 1 harmonic-oscillator eigen-
state,

10Wolfgang P. Schleich, Quantum Optics in Phase Space (Wiley, 2001).
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x

p

and below is the corresponding plot for the n = 2 harmonic-oscillator eigenstate.

x

p

4.3.5 Weyl Correspondence and Operator Ordering

The Wigner representation casts quantum mechanics in terms of real-valued functions, rather than state
vectors and operators. But then, how do we associate functions with operators, for example, if we want
to compute expectation values in the Wigner formalism? While simple phase-space functions, such as x
and p have obvious associations with the operators x̂ and p̂, more complicated functions such as x2p2 have
ambiguous operator associations due to the ordering problem, where multiple possible operator orderings
can correspond to the same classical function. (In this section we explicitly mark operators with hats to
distinguish them from real numbers, since this is the whole point, with the exception of the density operator
where the notation is already clear.) Indeed, it can be difficult to formulate a prescription for uniquely
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associating phase-space functions with operators.11

4.3.5.1 Weyl’s Rule

Consider the exponential phase-space function

ei(πxx+πpp)/h̄. (4.91)

The notation here is intended to suggest that x and p are, in a sense, coordinates with ‘‘conjugate’’ variables
πx and πp, respectively, because we will be constructing Fourier transforms in this way. We can choose to
associate this function with the characteristic operator

M̂(πx, πp) = ei(πxx̂+πpp̂)/h̄.
(4.92)

(characteristic operator)

This association of the exponential function,

ei(πxx+πpp)/h̄ −→ ei(πxx̂+πpp̂)/h̄,
(4.93)

(Weyl association)

is sufficient to uniquely fix the operator association with any phase-space function.
Weyl’s prescription12 for the association of an arbitrary phase-space function F (x, p) to an operator

proceeds then as follows. The exponential function (4.91) implies the (inverse) Fourier transform relation

F (x, p) =
1

2πh̄

∫ ∞
−∞

dπx

∫ ∞
−∞

dπp F̃ (πx, πp) e
i(πxx+πpp)/h̄. (4.94)

Converting the exponential factor to the characteristic operator, we find an operator related to the same
Fourier-transform function F̃ (πx, πp):

F̂ (x̂, p̂) =
1

2πh̄

∫ ∞
−∞

dπx

∫ ∞
−∞

dπp F̃ (πx, πp) e
i(πxx̂+πpp̂)/h̄. (4.95)

These relations uniquely define the association

F (x, p) −→ F̂ (x̂, p̂). (4.96)

For example, we can eliminate the intermediate function in Eq. (4.95),

F̂ (x̂, p̂) =
1

(2πh̄)2

∫ ∞
−∞

dπx

∫ ∞
−∞

dπp

∫ ∞
−∞

dx

∫ ∞
−∞

dp F (x, p) ei[πx(x̂−x)+πp(p̂−p)]/h̄,

(Weyl’s rule) (4.97)
to obtain the operator explicitly in terms of the original function.

4.3.5.2 Expectation Values

Suppose we now compute the expectation value of Eq. (4.97) with respect to an arbitrary state ρ. Then we
find 〈

F̂ (x̂, p̂)
〉
=

1

(2πh̄)2

∫ ∞
−∞

dπx

∫ ∞
−∞

dπp

∫ ∞
−∞

dx

∫ ∞
−∞

dp F (x, p)M(πx, πp) e
−i(πxx+πpp)/h̄, (4.98)

where
M(πx, πp) :=

〈
M̂(πx, πp)

〉
=
〈
ei(πxx̂+πpp̂)/h̄

〉 (4.99)
(characteristic function)

11John Robert Shewell, ‘‘On the Formation of Quantum-Mechanical Operators,’’ American Journal of Physics 27, 16 (1959)
(doi: 10.1119/1.1934740 ).

12H. Weyl, ‘‘Quantenmechanik und Gruppentheorie,’’ Zeitschrift für Physik 46, 1 (1927) (doi: 10.1007/BF02055756); Her-
mann Weyl, The Theory of Groups and Quantum Mechanics (Dover, 1950).

http://dx.doi.org/10.1119/1.1934740 
http://dx.doi.org/10.1007/BF02055756
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is the characteristic function. Using a special case of the Baker–Campbell–Hausdorff (BCH) ex-
pansion,13 which states that

exp(A+B) = exp(A) exp(B) exp
(
−1

2
[A,B]

)
= exp(B) exp(A) exp

(
1

2
[A,B]

)
(4.100)

if [A, [A,B]] = [B, [A,B]] = 0, we can see that

ei(πxx̂+πpp̂)/h̄ = eiπpp̂/2h̄eiπxx̂/h̄eiπpp̂/2h̄, (4.101)

since [x, p] = ih̄. Then we can write the characteristic function as

M(πx, πp) = Tr
[
eiπpp̂/2h̄eiπxx̂/h̄eiπpp̂/2h̄ρ

]
=

∫ ∞
−∞

dx eiπxx/h̄〈x|eiπpp̂/2h̄ρeiπpp̂/2h̄|x〉

=

∫ ∞
−∞

dx eiπxx/h̄〈x+ πp/2|ρ|x− πp/2〉

(4.102)

In the last step, we use the shifting property of the exponential factors:

eip̂x0/h̄|x〉 =
∫ ∞
−∞

dp′ eip̂x0/h̄|p′〉〈p′|x〉

=
1√
2πh̄

∫ ∞
−∞

dp′ e−ip
′(x−x0)/h̄|p′〉

=
1√
2πh̄

∫ ∞
−∞

dx′
∫ ∞
−∞

dp′ e−ip
′(x−x0)/h̄|x′〉〈x′|p′〉

=
1

2πh̄

∫ ∞
−∞

dx′
∫ ∞
−∞

dp′ e−ip
′(x−x0−x′)/h̄|x′〉

=

∫ ∞
−∞

dx′ δ(x− x0 − x′)|x′〉

= |x− x0〉.

(4.103)

Eq. (4.102) has the form of an inverse Fourier transform, which we can happily invert, with the result

〈x+ πp/2|ρ|x− πp/2〉 =
1

2πh̄

∫ ∞
−∞

dπxM(πx, πp) e
−iπxx/h̄. (4.104)

Now applying (2πh̄)−1
∫
dπp e

−iπpp/h̄ to both sides, we find an expression for the Wigner function in terms
of the characteristic function:

W (x, p) =
1

(2πh̄)2

∫ ∞
−∞

dπx

∫ ∞
−∞

dπpM(πx, πp) e
−i(πxx+πpp)/h̄.

(4.105)
(alternate definition)

That is, the Wigner function is, up to a constant factor, just the Fourier transform of the characteristic func-
tion. Essentially, we have just motivated the definition of the Wigner function as the Weyl correspondence
of the density operator.

Using this expression to simplify Eq. (4.98), we find〈
F̂ (x̂, p̂)

〉
=

∫ ∞
−∞

dx

∫ ∞
−∞

dp F (x, p)W (x, p).
(4.106)

(operator expectation value)

13R. M. Wilcox, ‘‘Exponential Operators and Parameter Differentiation in Quantum Physics,’’ Journal of Mathematical
Physics 8, 962 (1967) (doi: 10.1063/1.1705306).

http://dx.doi.org/10.1063/1.1705306
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Thus we find another intuitively appealing result, that the expectation values of operators are given by an
overlap integral of the corresponding phase-space function with the Wigner distribution. This relation further
cements the analogy of the Wigner distribution with a joint probability density. Note that the expectation
value here assumes the particular ordering implied by Weyl’s rule. This turns out to be a symmetrized
ordering, which we will explore more carefully below.

4.3.5.3 Weyl Correspondence: Inverse Form

In Eq. (4.97), we gave the operator F̂ (x̂, p̂) in explicitly in terms of the function F (x, p), but we did not give
the inverse relation. We do so here, as a convenient prescription for obtaining the phase-space function from
the operator. We start by writing the expectation value as〈

F̂ (x̂, p̂)
〉
= Tr

[
F̂ (x̂, p̂)ρ

]
=

∫ ∞
−∞

dx

∫ ∞
−∞

dx′ Tr
[
F̂ (x̂, p̂)|x′〉〈x′|ρ|x〉〈x|

]
=

∫ ∞
−∞

dx

∫ ∞
−∞

dx′ 〈x|F̂ (x̂, p̂)|x′〉〈x′|ρ|x〉

=

∫ ∞
−∞

dx

∫ ∞
−∞

dx′ 〈x− x′/2|F̂ (x̂, p̂)|x+ x′/2〉〈x+ x′/2|ρ|x− x′/2〉.

(4.107)

In the last step, we performed the usual trick of letting x′ −→ x′ + x and then x −→ x − x′/2. We can
compare this expression with Eq. (4.106), which gives〈

F̂ (x̂, p̂)
〉
=

1

2πh̄

∫ ∞
−∞

dx

∫ ∞
−∞

dp

∫ ∞
−∞

dx′ F (x, p)〈x+ x′/2|ρ|x− x′/2〉e−ipx
′/h̄. (4.108)

If both relations are to hold for any density operator ρ, then we may identify the two integrands:

〈x− x′/2|F̂ (x̂, p̂)|x+ x′/2〉 = 1

2πh̄

∫ ∞
−∞

dpF (x, p)e−ipx
′/h̄. (4.109)

Inverting this relation and letting x′ −→ −x′, we find

F (x, p) =

∫ ∞
−∞

dx′ 〈x+ x′/2|F̂ (x̂, p̂)|x− x′/2〉 e−ipx
′/h̄.

(4.110)
(Weyl correspondence)

Thus, we see how an arbitrary operator transforms to a phase-space function, and we see that this transfor-
mation also motivates the original form for the Wigner transform (4.59).

4.3.5.4 Weyl Ordering

As we noted above, the operator ordering implied by Weyl’s rule is a symmetrized ordering. Again, the
association (4.93) gives

ei(πxx+πpp)/h̄ −→ eiπxx̂/2h̄eiπpp̂/h̄eiπxx̂/2h̄ (4.111)
after applying the BCH formula (4.100). Then noting that

ei(πxx+πpp)/h̄ =

∞∑
n=0

1

n!

[
i

h̄
(πxx+ πpp)

]n
=

∞∑
n=0

(
i

h̄

)n
1

n!

n∑
k=0

(
n

k

)
(πxx)

k(πpp)
n−k, (4.112)

we can match the coefficients of π kx π n−kp to find the correspondence

1

n!

(
n

k

)
xkpn−k −→

k∑
m=0

1

m!(n− k)!(k −m)!

(
x̂

2

)m
p̂n−k

(
x̂

2

)k−m
(4.113)
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after expansion of the operator exponentials. Dividing through by the factorials on the left-hand side, this
simplifies to

xkpn−k −→ 1

2k

k∑
m=0

(
k

m

)
x̂mp̂n−kx̂k−m, (4.114)

and letting l = n− k, we find the explicit Weyl ordering

xkpl −→ 1

2k

k∑
m=0

(
k

m

)
x̂mp̂lx̂k−m.

(4.115)
(Weyl ordering rule)

Here we explicitly see the symmetric nature of the ordering. In particular, we have shown that the charac-
teristic function gives all the symmetrically ordered moments

〈
(x̂kp̂l)W

〉
= (−i)k+l ∂ kπx

∂ lπp
M(πx, πp)

∣∣∣
πx=0,πp=0

,
(4.116)

(moment formula)

where (x̂kp̂l)W denotes the symmetrized Weyl ordering of Eq. (4.115).
It is somewhat inconvenient to order any particular function by expanding it, applying the above rule

term-by-term, and then resumming it. For general functions, it is easier to use McCoy’s formula,14 which
says that if F̂std(x̂, p̂) is an operator with ‘‘standard’’ ordering, having all x̂’s written to the left and all p̂’s
written to the right, then the corresponding operator F̂W(x̂, p̂) with Weyl-ordering operator is obtained by

F̂W(x̂, p̂) = exp
(
− ih̄

2

∂2

∂x̂∂p̂

)
F̂std(x̂, p̂).

(4.117)
(McCoy’s formula)

The orders of the factors must obviously be preserved in the differentiation.

4.3.6 Operator Products and Commutators

Consider the operator product
Â = B̂Ĉ. (4.118)

How does the product go over to the Wigner representation? Using the Wigner correspondence in the form
(4.110), we find that the operator product implies

A(x, p) = B(x, p) exp
[
h̄

2i

(
←−
∂p
−→
∂x −

←−
∂x
−→
∂p

)]
C(x, p),

(Weyl product correspondence) (4.119)
where the arrows on the derivative operators indicate the direction of operation. Mostly, the Wigner function
has given us relatively simple and intuitively appealing results. However, as we see now, the complexities we
have hidden thus far start to become more obvious when looking at operator products.

The proof of this correspondence is left as an exercise (Problem 4.3), but the outline of the derivation
is as follows. First, note that Eq. (4.95) gives the operator matrix elements as

〈x′|F̂ |x′′〉 = 1

2πh̄

∫ ∞
−∞

dπx F̃ (πx, x
′′ − x′)eiπx(x

′+x′′)/2h̄. (4.120)

This relation can then be used in the correspondence equation (4.110), and then the derivation carries
through in essentially the same way as the others above.

14Neal H. McCoy, ‘‘On the Function in Quantum Mechanics which Corresponds to a Given Function in Classical Mechanics,’’
Proceedings of the National Academy of Sciences (18), 674 (1932). See also John Robert Shewell, ‘‘On the Formation of
Quantum-Mechanical Operators,’’ American Journal of Physics 27, 16 (1959) (doi: 10.1119/1.1934740).

http://dx.doi.org/10.1119/1.1934740
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An alternate form of the operator product is

A(x, p) = B

(
x− h̄

2i
∂p, p+

h̄

2i
∂x

)
C(x, p) = C

(
x+

h̄

2i
∂p, p−

h̄

2i
∂x

)
B(x, p).

(Weyl product correspondence) (4.121)
These expressions follow from an argument similar to the one for the original form (4.119) (Problem 4.3).

These expressions for the product then give the following correspondence for the commutator:

[Â, B̂] −→ 2

i
A(x, p) sin

[
h̄

2

(
←−
∂p
−→
∂x −

←−
∂x
−→
∂p

)]
B(x, p).

(Weyl commutator correspondence) (4.122)
With the alternate forms (4.121), we can also write

[Â, B̂] −→
[
A

(
x− h̄

2i
∂p, p+

h̄

2i
∂x

)
−A

(
x+

h̄

2i
∂p, p−

h̄

2i
∂x

)]
B(x, p)

(Weyl commutator correspondence) (4.123)
as an alternate correspondence. While the other properties of the Wigner function make it intuitively
appealing, we can see that when operator products are involved, the situation becomes substantially more
complicated.

4.3.7 Moyal Bracket

Finally, based on what we now know, it is straightforward to obtain the equation of motion for the Wigner
function. Recalling the Schrödinger–von Neumann equation (4.8), we note by comparing the definition (4.59)
to the Weyl correspondence (4.110), we see that the Weyl correspondence for the density operator reads

1

2πh̄
ρ −→W (x, p).

(4.124)
(Weyl quantum-state correspondence)

Using the commutator correspondence (4.122), we find that the Schrödinger–von Neumann equation (4.8)
becomes

∂tW (x, p) = − 2

h̄
H(x, p) sin

[
h̄

2

(
←−
∂p
−→
∂x −

←−
∂x
−→
∂p

)]
W (x, p)

=: {H,W}M.

(4.125)
(Moyal bracket)

The final abbreviation {A,B}M is the Moyal bracket,15 so named to emphasize the connection to the
classical Poisson bracket

{A,B}P := (∂xA)(∂pB)− (∂pA)(∂xB).
(4.126)

(Poisson bracket)

For a particle Hamiltonian in ‘‘standard form,’’ H = p2/(2m) + V (x), the Moyal bracket can be written as
the Poisson bracket plus quantum ‘‘correction’’ terms:

∂tW = {H,W}P +

∞∑
n=1

(−1)nh̄2n

22n(2n+ 1)!
(∂2n+1
x V )(∂2n+1

p W ).

(Moyal bracket for particle Hamiltonian) (4.127)
This equation is especially suitable for comparing the quantum evolution with the evolution of a classical
(‘‘Liouville’’) distribution ρL,

∂tρL(x, p) = {H, ρL}P,
(4.128)

(Liouville equation)
15J. E. Moyal, ‘‘Quantum Mechanics as a Statistical Theory,’’ Proceedings of the Cambridge Philosophical Society 45, 99

(1949).
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which is described only by the Poisson bracket. This equation of motion follows from the classical expansion
for a general phase-space function,

df(x, p, t)

dt
=
∂f

∂x

dx

dt
+
∂f

∂p

dp

dt
+
∂f

∂t

=
∂f

∂x

∂H

∂p
− ∂f

∂p

∂H

∂x
+
∂f

∂t

= {f,H}P +
∂f

∂t
,

(4.129)

along with Liouville’s theorem, which says that (d/dt)ρL = 0, since ρL(x(t), p(t), t) is an invariant along any
classical trajectory. Thus we see that the usual analogy between quantum and classical mechanics16 of

1

ih̄
[Â, B̂] −→ {A,B}P, (4.130)

seen by comparing the Liouville equation (4.128) to the Heisenberg equation of motion (4.51), is made
explicit via the Moyal bracket.

Notice that formally setting h̄ = 0 in (4.127) recovers the Liouville evolution (4.128), so that corre-
spondence seems easy in this formulation; however, it must be emphasized that taking the limit h̄→ 0 for a
quantum system is not trivial and is not, in general, well defined due to the singular nature of the limit.

It is immediately clear from the form of the Moyal bracket (4.127) that quantum-classical correspon-
dence is particularly simple for linear systems, such as the free particle and the harmonic oscillator, because
the quantum-correction terms vanish. This yields identical quantum and classical evolution equations for
the harmonic oscillator. This point was recognized early on by Schrödinger, when he constructed the coher-
ent states of the harmonic oscillator that mimic the classical oscillating trajectories.17 This is a critically
important point, and so I’ll repeat it: for harmonic oscillators, the quantum and classical evolution
equations are equivalent. Thus, all quantum effects in the harmonic oscillator are only in the initial
condition. It is only in nonlinear potentials that the dynamical evolution generates quantum effects.

4.3.8 Summary: Defining Properties

We conclude our discussion of the Wigner distribution with a summary of the properties that define it. It
turns out that the following five properties are sufficient to uniquely define the Wigner function:18

1. W (x, p) is a Hermitian, bilinear form of the state vector |ψ〉, so that W (x, p) = 〈ψ|Ŵ (x, p)|ψ〉, where
Ŵ is a Hermitian operator depending on x and p. This implies W (x, p) is real.

2. W (x, p) is normalized and produces the correct marginal probability densities of x and p.

3. The definition of W (x, p) exhibits Galilean invariance: the replacement ψ(x) −→ ψ(x + x0) implies
W (x, p) −→W (x+ x0, p) for translations, and ψ(x) −→ eip0x/h̄ψ(x) implies W (x, p) −→W (x, p+ p0)
for boosts.

4. The definition of W (x, p) is invariant under the reflections x −→ −x and t −→ −t. Mathematically, this
means that ψ(x) −→ ψ(−x) implies W (x, p) −→ W (−x, p) for space reflections, and ψ(x) −→ ψ∗(x)
implies W (x, p) −→W (x,−p) for time reflections.

5. The equation of motion for W (x, p) is the classical one in the case of the free particle.

We have discussed most of these properties already, and the others are easy to see. The extra condition
16See P. A. M. Dirac, The Principles of Quantum Mechanics, 4th revised ed. (Oxford, 1967), § 21, p. 84.
17E. Schrödinger, ‘‘Der stetige Übergang von der Mikro- zur Makromechanik,’’ Naturwissenschaften 14, 664 (1926) (doi:

10.1007/BF01507634).
18M. Hillery, R. F. O’Connell, M. O. Scully, and E. P. Wigner, ‘‘Distribution Functions in Physics: Fundamentals,’’ Physics

Reports 106, 121 (1984) (doi: 10.1016/0370-1573(84)90160-1), and references therein.

http://dx.doi.org/10.1007/BF01507634
http://dx.doi.org/10.1016/0370-1573(84)90160-1
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6. The squared modulus of the overlap of two states is given by 2πh̄ times the phase-space overlap integral
of the corresponding Wigner functions, as in Eq. (4.70).

gives an alternate set of conditions sufficient to fix the form of the Wigner function, obtained by replacing
condition 5 with this last condition.

4.3.9 Other Representations

Naturally, other choices regarding the desirable properties of quantum phase-space distributions lead to other
distributions. We will consider a few distributions, some of which have some utility in quantum optics, but
we will consider them only briefly.

4.3.9.1 Husimi or Q Function

Consider the following Wigner function for a pure Gaussian state, centered at (0, 0), from Eq. (4.73):

WVx,Vp(x, p) =
1

2π
√
VxVp

exp
[
−
(
x2

2Vx
+

p2

2Vp

)]
. (4.131)

Note that here we have assumed a covariance Cxp = 0 for simplicity, and thus VxVp = h̄2/4. The Husimi
Distribution19 for an arbitrary state ρ with Wigner distribution W (x, p) is then given by the convolution
of the Wigner function corresponding to ρ with the Gaussian Wigner function:

WH(x, p) :=
(
W ∗WVxVp

)
(x, p)

=

∫ ∞
−∞

dx′
∫ ∞
−∞

dp′ W (x′, p′)WVx,Vp(x− x′, p− p′).

(4.132)
(Husimi distribution)

From the overlap relation (4.70), we can see that the Husimi distribution has the following interpretation:
WH(x

′, p′) represents the projection (up to a factor of 2πh̄) of ρ into the Gaussian state represented by
WVx,Vp

(x − x′, p − p′) [i.e., the Gaussian state centered at (x, p)]. Thus, the Husimi distribution represents
a projection into an overcomplete basis of displaced Gaussian states.

Because of the above projection interpretation, it follows that the Husimi distribution is everywhere
positive. It also is a ‘‘smoothed’’ version of the Wigner function, and can be useful for visualizing quantum
states in phase space, especially in cases where interferences cause complicated oscillations in the Wigner
distribution. The flip side of this is that the Husimi distribution tends to ‘‘hide’’ the quantum nature of
certain states; this argument has been used both for and against it for comparing quantum states to classical
distributions. The Husimi function also has neither the correct marginals nor a simple equation of motion.

In terms of ordering, the Husimi function corresponds to anti-normal ordering: that is, if x̂ and p̂ are
decomposed into the creation and annihilation operators for the harmonic oscillator (â† and â, respectively),
then the ordering is such that all annihilation operators are to the left of the creation operators. In the case of
a harmonic oscillator, and the variances Vx and Vp of the convolution kernel are chosen to match the ground
state (i.e., WVx,Vp

(x′ − x, p′ − p) is a displaced ground state or a coherent state) the Husimi distribution
reduces to the Q function. In this case, the distribution is connected with the operator association20

ezα
∗−z∗α −→ e−z

∗âezâ
†
, (4.133)

in place of Eq. (4.93) for the Wigner distribution. Here, α is the eigenvalue of â, since it turns out that the
coherent states are eigenstates of the annihilation operator.

19K. Husimi, Proceedings of the Physico-Mathematical Society of Japan 22, 264 (1940).
20Hai-Woong Lee, ‘‘Theory and Application of the Quantum Phase-Space Distribution Functions,’’ Physics Reports 259, 147

(1995) (doi: 10.1016/0370-1573(95)00007-4).

http://dx.doi.org/10.1016/0370-1573(95)00007-4
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4.3.9.2 P Function

The Glauber–Sudarshan P function, on the other hand, corresponds to a normal ordering, where all
the annihilation operators are written to the right. The formal association rule is thus

ezα
∗−z∗α −→ ezâ

†
e−z

∗â. (4.134)

This correspondence is sufficient to define the function as well as the operator associations, as in Eqs. (4.94)
and (4.95), though we must first equate exp(zα∗− z∗α) = exp[i(πxx+πpp)/h̄] to identify the z variable and
thus perform the integration.

4.3.9.3 Standard-Ordered Distribution

The standard ordering gives the exponential association

ei(πxx+πpp)/h̄ −→ eiπxx̂/h̄eiπpp̂/h̄, (4.135)

which gives rise to the standard-ordered distribution. It turns out that the corresponding distribution
can be written as21

WS(x, p) :=
1

2πh̄

∫ ∞
−∞

dx′e−ipx
′/h̄〈x+ x′|ρ|x〉, (4.136)

which follows from an argument similar to the one embodied by Eq. (4.102), in analogy with the definition
(4.59) of the Wigner distribution.

4.3.9.4 Antistandard-Ordered Distribution

Finally, the antistandard ordering corresponds to

ei(πxx+πpp)/h̄ −→ eiπpp̂/h̄eiπxx̂/h̄, (4.137)

giving rise to the antistandard-ordered distribution, also known as the the Kirkwood distribution
or the Rihaczek distribution. It turns out that this distribution can be written as22

WA(x, p) :=
1

2πh̄

∫ ∞
−∞

dx′e−ipx
′/h̄〈x|ρ|x− x′〉. (4.138)

This distribution is the complex conjugate of the standard-ordered distribution.

4.4 Multiple Degrees of Freedom

4.4.1 Merging Hilbert Spaces

Suppose two degrees of freedom are prepared in two quantum states completely independently of each other.
This could happen, say, for two particles prepared in separate, distant galaxies. We will refer to the two
degrees of freedom as ‘‘particles,’’ even though they could correspond to different degrees of freedom of the
same system, such as the spin and center-of-mass position of an atom, or the spin and spatial profile of a
photon.

Labeling the two particles as A and B, if the individual states of the particles are |ψ〉A and |ψ〉B , then
we can write the composite state as

|ψ〉 = |ψ〉A ⊗ |ψ〉B , (4.139)
where ⊗ denotes the tensor product (or direct product). Often, this is product is written without an
explicit tensor-product symbol:

|ψ〉A ⊗ |ψ〉B ≡ |ψ〉A|ψ〉B ≡ |ψA ψB〉. (4.140)
21Ibid.
22Ibid.
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The particle labels can even be dropped, since the ordering determines which state applies to which particle.
We can also see the meaning of the tensor product in component form. Let each separate state be

expressed in an orthonormal basis as

|ψ〉A =
∑
α

c(A)
α |α〉A, |ψ〉B =

∑
β

c
(B)
β |β〉B . (4.141)

Then we can express the composite state as

|ψ〉 =
∑
αβ

cαβ |αA βB〉, (4.142)

where
cαβ = c(A)

α c
(B)
β . (4.143)

Note that cαβ is still understood to be a vector-like object, with a single index. Thus, there is an implicit
(bijective) mapping of the ordered index pair (α, β) to a single index, which we simply denote as αβ.

Similarly, we can write a density operator for two independent particles by the same tensor product:

ρ = ρ(A) ⊗ ρ(B). (4.144)

We can also write this in component form for the density matrices as

ραµβν = ρ
(A)
αβ ρ

(B)
µν , (4.145)

where again αµ and βν are to be taken as composite indices.
The same tensor-product notation applies to Hilbert spaces. That is, we can write

|ψA ψB〉 ∈HA ⊗HB (4.146)

if |ψ〉A ∈HA and |ψ〉B ∈HB .

4.4.2 Entanglement

The above composite states, described by tensor products of separated states, are called separable states.
However, not all states are separable, and those that are not separable are called entangled. In some sense,
entanglement is the ‘‘most quantum’’ of all quantum effects.

Thus, we can see that a composite state |ψ〉 is entangled if and only if it cannot be written in the
separable form

|ψ〉 = |ψ〉A ⊗ |ψ〉B . (4.147)

The definition for density operators is somewhat more general: a density operator for a composite system is
separable if and only if it can be written in the form

ρ =
∑
α

Pαρ
(A)
α ⊗ ρ(B)

α . (4.148)

Unfortunately, given an arbitrary mixed density operator, it is difficult to tell if it corresponds to an entangled
state (in fact, this turns out to be an NP-hard problem).

The point is that two entangled systems do not have local states that can be treated independently.
This is in conflict with the apparently reasonable assumption of local realism, which states that distant
systems should have independent, observer-independent realities (in particular, they should not directly
influence each other). Herein lies the importance of the famous Bell-type inequalities and the experimental
verification that quantum mechanics violates the inequalities: local realism contradicts quantum mechanics.
Specifically, quantum mechanics is inherently nonlocal because of entanglement.
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4.4.2.1 Cloning

With the language of entanglement, it is relatively simple to demonstrate the no-cloning theorem,23 which
says that the state of a single quantum system cannot be copied to another particle. This turns out to be a
simple consequence of unitary evolution.

Let’s examine just a simple case. Suppose that cloning is possible on a two-state system from particle
A to particle B. Particle B must be in a particular state to begin with, and without loss of generality we
may take this to be the ‘‘0’’ state. Then to copy the eigenstates of A, we see that there must be a unitary
transformation U such that

U |0〉A|0〉B = |0〉A|0〉B , U |1〉A|0〉B = |1〉A|1〉B . (4.149)

However, if particle A is in the superposition state

|ψ〉A =
1√
2

(
|0〉A + |1〉A

)
, (4.150)

then we see that the cloning operator gives

U |ψ〉A|0〉B =
1√
2

(
|0〉A|0〉B + |1〉A|1〉B

)
, (4.151)

which is an entangled state (a Bell state). However, what we wanted for cloning to work properly is the
separable state

U |ψ〉A|0〉B =
1

2

(
|0〉A + |1〉A

)(
|0〉B + |1〉B

)
. (4.152)

We can see that the problem in this particular example is that U acts nonlocally, and thus induces entangle-
ment between the two particles. In fact, the controlled-NOT (CNOT) gate is a quantum operation that
effects the transformations in Eqs. (4.149) (if A and B are in eigenstates, the CNOT flips the state of system
B if and only if system A is in state 1).

Of course, it is possible to clone a state if you already know everything about it (i.e., you have classical
knowledge of the state), or if you have an infinite ensemble of copies. (Copying a state is possible to within
some fidelity tolerance for a finite ensemble of copies.) In this case, enough measurements may be made
to reconstruct the state of the system arbitrarily well, and of course this procedure does not correspond
to a unitary transformation. The problem with the single system is that in general, a measurement of the
system destroys its state, and a single measurement is not enough to determine the state of the system. Of
course, there is no problem with the cloning of the basis states, as in Eqs. (4.149); the problem is in cloning
general states that are not orthogonal to the basis states. In particular this means that with a bit of extra
information beyond what is contained in the quantum state (e.g., the state of particle A is either |0〉A or
|1〉A, but not any coherent superposition of the two), cloning may in fact be possible.

4.4.3 Peres–Horodecki Criterion

Given an arbitrary density operator, how do we tell if it corresponds to an entangled or separable state?
As we mentioned above, this is a very difficult problem in general. Nevertheless, we can briefly discuss
one important criterion for separability. The Peres–Horodecki or positive partial transpose (PPT)
criterion24 starts with the following observation. Suppose that we have a separable, composite state for two
systems of the form

ρ = ρ(A) ⊗ ρ(B). (4.153)
23W. K. Wootters and W. H. Zurek, ‘‘A single quantum cannot be cloned,’’ Nature 299, 802 (1982); D. Dieks, ‘‘Communication

by EPR devices,’’ Physics Letters A 92, 271 (1982).
24Asher Peres, ‘‘Separability Criterion for Density Matrices,’’ Physical Review Letters 77, 1413 (1996). Michal Horodecki,

Pawel Horodecki, and Ryszard Horodecki, ‘‘Separability of Mixed States: Necessary and Sufficient Conditions,’’ Physics Letters
A 223, 1 (1996).
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Now suppose that we take the transpose of one subsystem, say B, to obtain a new ‘‘density operator:’’

ρ̃ = ρ(A) ⊗
(
ρ(B)

)T
. (4.154)

Note here that for the transposition operation,
(
ρ(B)

)T ≡
(
ρ(B)

)∗. The question now is, is ρ̃ still a valid
density operator? In general, a Hermitian operator ρ is a valid density operator if it has unit trace and is
positive semidefinite; that is, if all its eigenvalues are nonnegative (equivalently, every diagonal matrix
element of the density operator is nonnegative in every basis). In this sense, it represents a sensible quantum-
mechanical probability distribution. This property often goes by the name of rho-positivity. The transpose
operation does not affect the eigenvalue spectrum, so the transpose of ρ(B) is still a valid density operator,
and it follows that ρ̃ is also a valid density operator. Clearly, this argument also holds for the more general
separable state (4.148). Thus, we have established a necessary condition for the composite density operator
to be separable.

In component form, we can again write the density operator as

ραµβν = ρ
(A)
αβ ρ

(B)
µν , (4.155)

in which case the PPT is given by interchanging µ and ν:

ρ̃αµβν = ρ
(A)
αβ ρ

(B)
νµ . (4.156)

Thus, for an arbitrary density operator, the PPT test consists of computing the PPT of the operator, and
then testing ρ̃ for positivity. The positivity of the transposed density operator,

ρ̃αµβν = ρανβµ ≥ 0,
(4.157)

(positive partial transpose criterion)

is a necessary (and sufficient in some cases, as we will discuss below) criterion for separability.
Fine, so let’s take it for a test drive. Consider the entangled Schrödinger-cat state

|ψ〉 = 1√
2

(
|0A0B〉+ |1A1B〉

)
. (4.158)

The density operator is
ρ =

1

2

(
|00〉〈00|+ |11〉〈11|+ |00〉〈11|+ |11〉〈00|

)
, (4.159)

so that the PPT operation on subsystem B gives

ρ̃ =
1

2

(
|00〉〈00|+ |11〉〈11|+ |01〉〈10|+ |10〉〈01|

)
. (4.160)

With the index ordering (00, 01, 10, 11), this density operator corresponds to the density matrix

(ρ̃αβ) =
1

2


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 , (4.161)

which has eigenvalues 1/2 and −1/2 with multiplicities 3 and 1, respectively. (We can also see that there
is a problem since it is easy to see that the determinant is −1/24, and so at least one eigenvalue must be
negative.) Hence this is not a proper density matrix, and the state is not separable according to the PPT
criterion.

Horodecki3 have shown that the PPT criterion is also sufficient for density operators in H2 ⊗H2 and
H2⊗H3. That is sufficiency holds if the subsystems are both qubits (two-state quantum systems) or there is
one qubit and one qutrit (three-state quantum system). For larger Hilbert spaces, the PPT criterion breaks
down as a sufficient condition, but remains a useful tool.

More general and powerful criteria than the PPT can be devised,25 though of course the general
problem of distinguishing separable from entangled states is still computationally inefficient.

25Andrew C. Doherty, Pablo A. Parrilo, Federico M. Spedalieri, ‘‘Distinguishing separable and entangled states,’’ Physical
Review Letters 88, 187904 (2002).
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4.4.3.1 Wigner Representation

The PPT condition has an interesting interpretation in the Wigner representation. As we noted above, the
transpose of the state is merely the complex conjugation operation. But as we discussed for the Wigner
function, complex conjugation corresponds to time-reversal, and thus under the transformation ψ(x) −→
ψ∗(x), the Wigner function undergoes the corresponding transformation W (x, p) −→W (x,−p).

Now consider the Wigner function generalized to N degrees of freedom:

W (xα, pα) :=
1

(2πh̄)N

∫ ∞
−∞

dx′1 · · ·
∫ ∞
−∞

dx′N e
−ipβx′

β/h̄

× 〈x1 + x′1/2, . . . , xN + x′N/2|ρ|x1 + x′1/2, . . . , xN + x′N/2〉.
(4.162)

Thus, in the Wigner representation the PPT criterion reads as follows. For the bipartite Wigner function
W (x1, x2, p1, p2), a necessary condition for separability is that

W̃ (x1, x2, p1, p2) :=W (x1, x2, p1,−p2)
(4.163)

(positive partial transpose)
be a valid Wigner function. The inversion of one momentum here looks like a physical transformation—it is
for a system of one degree of freedom—but for a bipartite system it is not, because it maps some physical
states to unphysical ones. This test is not necessarily easier than the original one for the density operator.
However, Simon26 showed that this form of the Peres–Horodecki criterion is also sufficient for Gaussian
bipartite states.

We can see from the definition (4.162) of the Wigner function that the area theorem generalizes to[∫
dNx

∫
dNp W 2(xα, pα)

]−1
≥ (2πh̄)N .

(4.164)
(area theorem)

We can write the Gaussian Wigner function as

W (zα) =
1

(2π)N
√

det(Sαβ)
exp

[
− 1

2
zα
(
S−1

)
αβ
zβ

]
,

(4.165)
(Gaussian state)

where we are using the generalized coordinate ordering

zα := (x1, . . . , xN , p1, . . . , pN ), (4.166)

and the covariance matrix is thus
Sαβ :=〈zαzβ〉 =

1

2
〈[ẑα, ẑβ ]+〉 (4.167)

in the case where 〈zα〉 = 0 (which is not a restrictive assumption). Here, [a, b]+ := ab + ba denotes the
anticommutator bracket. Thus, the area theorem again implies the generalized ‘‘uncertainty relation’’ for
Gaussian states

det(Sαβ) ≥
(
h̄2

4

)N
,

(4.168)
(area theorem)

where again equality holds only for pure states. We can use this as one necessary criterion for the validity
of a Gaussian Wigner function. However, the PPT operation corresponds to a sign change in the covariance
matrix of the form 

+ + + +
+ + + +
+ + + +
+ + + +

 −→


+ + + −
+ + + −
+ + + −
− − − +

 , (4.169)

and thus we can see that det(Sαβ) is actually invariant under PPT. Thus, the condition (4.168) is not strong
enough to see why something goes wrong with the Wigner function under PPT.

26R. Simon, ‘‘Peres–Horodecki Separability Criterion for Continuous Variable Systems,’’ Physical Review Letters 84, 2726
(2000) (doi: 10.1103/PhysRevA.84.2726).

http://dx.doi.org/10.1103/PhysRevA.84.2726
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4.4.3.2 Generalized Uncertainty Relation

To express a better uncertainty relation, we first note that the commutators for the canonical coordinates
can be written in the compact form

[zα, zβ ] = ih̄Ωαβ ,
(4.170)

(commutation relation)

where Ωαβ is the canonical cosymplectic two-form, defined by

(Ωαβ) :=

(
0n In
−In 0n

)
,

(4.171)
(canonical cosymplectic form)

with In denoting the n × n identity matrix and 0n the n × n null matrix. [Note that the cosymplectic
form satisfies −(Ωαβ) = (Ωαβ)

T = (Ωαβ)
−1.] The cosymplectic form effectively defines the structure of

Hamiltonian mechanics. In particular, the classical Poisson bracket reads

{f, g}P := (∂xf)(∂pg)− (∂pf)(∂xg) =⇒ {f, g}P =
∂f

∂zα
Ωαβ

∂g

∂zβ
, (4.172)

and the classical Hamilton equations are (Section 8.2.2.2)

∂tpα = ∂xαH, ∂txα = −∂pαH =⇒ ∂tzα = Ωαβ
∂H

∂zβ
= {zα,H}P. (4.173)

Essentially, the cosymplectic form mixes positions and momenta, but only if they belong to the same degree
of freedom. It also treats them on equal footing, but an exchange of the positions with the momenta is
accompanied by a minus sign.

The point of all this is that we can use the cosymplectic form to write down a generalized uncertainty
relation:27

(Sαβ) + i
h̄

2
(Ωαβ) ≥ 0.

(4.174)
(generalized uncertainty relation)

Here, (Aαβ) ≥ 0 means that the Hermitian operator (Aαβ) is positive semidefinite (i.e., it has no negative
eigenvalues).

So what does that mean? Well, we can try this out for one degree of freedom, in which case we have[
Vx Cxp + ih̄/2

Cxp − ih̄/2 Vp

]
≥ 0. (4.175)

Recalling positive semidefiniteness (positivity) is also required of the density operator, we note that this
means that all the eigenvalues of the above matrix must be nonnegative. Diagonalizing the above matrix,
we find that

1

2

(
Vx + Vp ±

√
(Vx − Vp)2 + 4C 2

xp + h̄2
)
≥ 0. (4.176)

Only the case of the negative sign is nontrivial, and this simplifies to

VxVp − C 2
xp ≥

h̄2

4
, (4.177)

which is precisely the uncertainty condition that we saw before in Eq. (4.72) for the Gaussian state [i.e., the
one-dimensional version of Eq. (4.168)]. However, we’re trying to establish this as a general criterion, not
restricted to Gaussian states.

To establish this result in the case of a single degree of freedom, note that this result (4.177) reduced
to the usual uncertainty principle for a diagonal covariance matrix (Cxp = 0). Now note that any covariance

27R. Simon, N. Mukunda, and Biswadeb Dutta, ‘‘Quantum-noise matrix for multimode systems: U(n) invariance, squeezing,
and normal forms,’’ Physical Review A 49 1567 (1994) (doi: 10.1103/PhysRevA.49.1567).

http://dx.doi.org/10.1103/PhysRevA.49.1567
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matrix may be obtained from a diagonal one by a suitable initial choice of diagonal variance matrix and a
coordinate rotation in phase space. A coordinate rotation preserves areas in phase space, so in a straightfor-
ward way, this establishes the result (4.177) for an arbitrary covariance matrix for a one-degree-of-freedom
system. The coordinate rotation here is a special case of a symplectic transformation, which we will now
examine more closely.

To handle the case of multiple degrees of freedom, we need to be more sophisticated about our co-
ordinate transformations. In particular, let’s make a time-independent coordinate transformation from zα
to new coordinates z̃α = z̃α(zβ), which are continuous, differentiable functions of the old coordinates. The
Hamiltonian is a scalar, so H(zα) = H̃(z̃α), and so in the new coordinate system, we can write the equations
of motion as

∂tz̃µ =
∂z̃µ
∂zα

∂tzα =
∂z̃µ
∂zα

Ωαβ
∂H

∂zβ
=

[
∂z̃µ
∂zα

Ωαβ
∂z̃ν
∂zβ

]
∂H

∂z̃ν
, (4.178)

where we used Hamilton’s equations in the old coordinate system. Thus we can define

Ω̃µν :=
∂z̃µ
∂zα

Ωαβ
∂z̃ν
∂zβ

, (4.179)

which is the cosymplectic form for the new coordinate system. (Recall that Ωαβ is the cosymplectic form in
canonical coordinates.) Hamilton’s equations in the new coordinates can thus be written

∂tz̃µ = Ω̃µν
∂H

∂z̃ν
= {z̃µ,H}P̃, (4.180)

where the new Poisson bracket is
{f, g}P̃ =

∂f

∂z̃µ
Ω̃µν

∂g

∂z̃ν
. (4.181)

Now we can define a canonical transformation, which is a coordinate transformation that leaves the
cosymplectic form unchanged. In this case, the new coordinates z̃α are canonical. Thus, the transformation
from zα to z̃α is canonical if and only if

Ω̃µν = Ωµν ⇐⇒ Ωµν =
∂z̃µ
∂zα

Ωαβ
∂z̃ν
∂zβ

.
(4.182)

(canonical transformation)

Again, this is because Ω̃αβ must have the special form for the new coordinates to be canonical. In particular,
note that evolution over a finite time interval T represents a coordinate change z̃α(t) = zα(t+T ) that satisfies
these properties, and thus time evolution represents a canonical transformation.

Consider now a linear, canonical coordinate change, or possibly a nonlinear canonical coordinate change
only in the neighborhood of a particular point zα, so that we may linearize the transformation. Then we
may represent the transformation by a matrix,

Aµν :=
∂z̃µ

∂zν
, (4.183)

where Aµν is independent of the coordinates and z̃α = Aαβzβ . Being a canonical transformation, the linear
mapping Aµν satisfies

AµαΩαβAνβ = Ωµν , (4.184)
or in other words A preserves the canonical cosymplectic form under a similarity transformation:

AAT = Ω.
(4.185)

(symplectic matrix)

Any matrix that satisfies this condition is said to be a symplectic matrix.28

28The set of all 2n× 2n real symplectic matrices forms a group, called the symplectic group, denoted Sp(2n,R). Hermann
Weyl coined this term; he originally wanted to call this the ‘‘complex group,’’ but wanted to avoid confusion with complex
numbers. So he chose the term ‘‘symplectic’’ as a (rough) Greek translation of the word ‘‘complex.’’ See Hermann Weyl, The
Classical Groups: Their Invariants and Representations (Princeton, 1939), p. 165.
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How does the covariance matrix transform? In general, we can expand the new coordinates as

z̃α =
∂z̃α
∂zβ

∣∣∣∣
zα=0

zβ +O(z2). (4.186)

In new coordinates,

S̃αβ =〈z̃αz̃β〉 =
∂z̃α
∂zµ

∣∣∣∣
zµ=0

〈zµzν〉
∂z̃β
∂zν

∣∣∣∣
zν=0

+O(z3). (4.187)

Thus, we see that the covariance matrix only goes simply over to a covariance matrix under a linear trans-
formation, in which case the coordinate transformation reduces to a symplectic matrix Aαβ , and we can
write

S̃αβ = AαµSµνAβν . (4.188)

Thus, we can see that

Aαµ

(
Sµν + i

h̄

2
Ωµν

)
Aβν = AαµSµνAβν + i

h̄

2
Ωµν = S̃µν + i

h̄

2
Ωµν , (4.189)

and thus the uncertainty relation (4.174) is invariant under linear canonical transformations,

(S̃αβ) + i
h̄

2
(Ωαβ) ≥ 0, (4.190)

as we expect. We have used the fact that the statement M ≥ 0 is equivalent to the statement M̃ ≥ 0 if M and
M̃ are related by an invertible transformation (you should try proving this, it isn’t difficult). This is certainly
true here of the symplectic matrices, since we generally assume nonsingular coordinate transformations.

Okay, now let’s return to the uncertainty relation for N degrees of freedom. We’ll start again by
considering only a diagonal covariance matrix. Then the matrix

(Sαβ) + i
h̄

2
(Ωαβ) (4.191)

only has elements along three diagonals: the cosymplectic form again couples positions to momenta, but
only if they belong to the same degree of freedom. Thus, this matrix is easy to diagonalize: the matrix
essentially decomposes into a set of N 2× 2 blocks of the form[

Vxα ih̄/2
−ih̄/2 Vpα

]
, (4.192)

just as we had in the case of one degree of freedom. Then, by the same argument, we can see that the
uncertainty relation in this case reduces to the set of uncertainty relations

Vxα
Vpα ≥

h̄2

4
, (4.193)

which we know to be true.
For the general case, we then rely on the fact that any covariance matrix can be reduced to diagonal

form by a linear, symplectic transformation (i.e., via a symplectic matrix). This seems reasonable, since as
long as we are doing an effective linearization by only considering the covariance matrix, there should exist
a linear, canonical transformation that takes any covariance matrix to any other (with the same ‘‘volume’’
or purity). However, this result can be formalized in Williamson’s theorem29, which guarantees that we
can always use a symplectic transformation to obtain the diagonal form. We showed that the uncertainty
relation is invariant under linear, canonical transformations, and thus the uncertainty relation (4.174) holds
in general.

29Simon et al., ibid.
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4.4.3.3 Sufficiency for Gaussian States

Now we can get back to the original question, what goes wrong with the Wigner function under the partial
transpose operation for entangled states? Well, we need to do a little more work with the uncertainty relation
(4.174) to see what it means. Let Mαβ be positive semidefinite. This means that

c∗αMαβcα ≥ 0 (4.194)

for any complex vector cα, and note that we may take Mαβ to be Hermitian. Now let

cα = aα + ibα, (4.195)

where aα and bα are real vectors. Then the positivity condition reads

aαMαβaβ + bαMαβbβ + iaαMαβbβ − ibαMαβaβ ≥ 0. (4.196)

Since Mαβ is Hermitian,
bαMαβaβ = aαM

∗
αβbβ . (4.197)

Then with
Mαβ −M∗αβ = iIm[Mαβ ], (4.198)

the positivity condition is
aαMαβaβ + bαMαβbβ − 2aαIm[Mαβ ]bβ ≥ 0. (4.199)

Letting Mαβ −→ Sαβ + i(h̄/2)Ωαβ and using aαΩαβaβ = 0 (because Ωαβ = −Ωβα), we see that the
uncertainty relation becomes

aαSαβaβ + bαSαβbβ ≥ h̄aαΩαβbβ . (4.200)

The left-hand side is invariant under the exchange aα ←→ bα, but the right-hand side changes sign, giving
a second condition. Only one of these two conditions is nontrivial, and so it is appropriate to rewrite the
uncertainty condition as

aαSαβaβ + bαSαβbβ ≥ h̄ |aαΩαβbβ | (4.201)

to emphasize the nontrivial condition.
In the case of two degrees of freedom,

Ωαβbβ =


0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0



b1
b2
b3
b4

 =


b3
b4
−b1
−b2

 , (4.202)

and so
aαΩαβbβ = (a1b3 − b1a3) + (a2b4 − b2a4). (4.203)

Thus, the uncertainty condition becomes

aαSαβaβ + bαSαβbβ ≥ h̄ |(a1b3 − b1a3) + (a2b4 − b2a4)| . (4.204)

Recalling that the partial transpose corresponds to p2 −→ −p2, we see that the partial transpose is induced
by the operator Λ = diag(1, 1, 1,−1), so that we can write the transposition as

Sαβ −→ S′αβ = ΛαµSµνΛβν , zα −→ z′α = Λαβzβ . (4.205)

Note that Λαβ does not correspond to a unitary transformation, nor does it represent a canonical transfor-
mation, as we can see from the transformation of the cosymplectic form:

Ωαβ −→ Ω′αβ = ΛαµΩµνΛβν =

[
0 J
−J 0

]
, J =

[
1 0
0 −1

]
. (4.206)
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This clearly does not have the same form as the original cosymplectic form. Again, the Peres–Horodecki
criterion says that under partial transposition, the resulting Wigner function for a separable state must still
be a valid state. Thus, we have the new uncertainty relation that must be satisfied for separable states:

(S′αβ) + i
h̄

2
(Ωαβ) ≥ 0. (4.207)

Since (Λαβ) = (Λαβ)
−1, this condition is equivalent to

(Sαβ) + i
h̄

2
(Ω′αβ) ≥ 0. (4.208)

Repeating the above derivation, we see that

Ω′αβbβ =


0 0 1 0
0 0 0 −1
−1 0 0 0
0 1 0 0



b1
b2
b3
b4

 =


b3
−b4
−b1
b2

 , (4.209)

and thus
aαΩ

′
αβbβ = (a1b3 − b1a3)− (a2b4 − b2a4). (4.210)

This is the same as the uncertainty relation as before save for a minus sign. Noting that w ≥ |u + v| and
w ≥ |u − v| implies that w ≥ |u| + |v| for real numbers u, v, and w, we see from Eq. (4.204) that the
uncertainty relation for separable states reads

aαSαβaβ + bαSαβbβ ≥ h̄ |a1b3 − b1a3|+ h̄ |a2b4 − b2a4| . (4.211)

We can see that this is a stronger condition than the uncertainty relation (4.204).
Thus we see that separable states obey a stricter uncertainty law than generic states. Now let’s consider

an example to try to get a feeling for this. Consider the case

(aα) =
1

x0


1
1
0
0

 , (bα) =
1

p0


0
0
1
−1

 , (4.212)

where x0 and p0 are length and momentum scales, respectively, that we introduce to make the units come
out right. Then

(a1b3 − b1a3) =
1

x0p0
, (a2b4 − b2a4) = −

1

x0p0
, (4.213)

and the terms on the left-hand side of the uncertainty relation are

aαSαβaβ =
1

x 2
0

(Vx1
+ Vx2

+ 2Cx1x2
) =

1

x 2
0

〈
(x1 + x2)

2
〉

bαSαβbβ =
1

p 2
0

(Vp1 + Vp2 − 2Cp1p2) =
1

p 2
0

〈
(p1 − p2)2

〉
.

(4.214)

In this case, we can see that the uncertainty relation

1

x 2
0

〈
(x1 + x2)

2
〉
+

1

p 2
0

〈
(p1 − p2)2

〉
≥ 0, (4.215)

which always trivially holds. The separability condition, on the other hand, gives

1

x 2
0

〈
(x1 + x2)

2
〉
+

1

p 2
0

〈
(p1 − p2)2

〉
≥ 2h̄

x0p0
. (4.216)
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Introducing scaled variables x′α := xα/x0 and p′α := pα/p0, and choosing x0p0 = h̄, these conditions become

〈
(x′1 + x′2)

2
〉
+
〈
(p′1 − p′2)2

〉
≥ 0 (uncertainty)〈

(x′1 + x′2)
2
〉
+
〈
(p′1 − p′2)2

〉
≥ 2 (separability).

(4.217)

It is certainly possible to find a Gaussian state to violate this second condition. Such a state is a two-mode
squeezed state, and represents entanglement between the particles.

In effect the entanglement arises via correlations between x1 and x2, and between p1 and p2. That is,
even if p1 and p2 have large variances, it is possible for the difference to be well-defined. To compensate, the
sum must be ill-defined. Thus, the two-mode squeezed state with x1 + x2 and p1 − p2 squeezed would look
something like this:

x¡

x™

p¡

p™

Note that the choice of the particular combination (x1+x2) and (p1−p2) is not accidental, as these operators
form a pair of commuting observables:

[x1 + x2, p1 − p2] = [x1, p1]− [x2, p2] = 0. (4.218)

For example, if we had instead chosen the combination (p1 + p2), this would not have worked out, since the
variables no longer commute:

[x1 + x2, p1 + p2] = [x1, p1] + [x2, p2] = 2ih̄. (4.219)

In this case,

(bα) =
1

p0


0
0
1
1

 , (4.220)

and so (a2b4 − b2a4) = 1/x0p0 and bαSαβbβ =
〈
(p1 + p2)

2
〉
/p 2

0 . However, the uncertainty relation and
separability conditions are equivalent in this case, reading (in the same scaled coordinates)〈

(x′1 + x′2)
2
〉
+
〈
(p′1 + p′2)

2
〉
≥ 2 (separability and uncertainty). (4.221)

For the noncommuting observables, as usual, correlation in one set leads to decorrelation of the others, in
such a way that squeezing does not work. Now we can see what goes wrong in the partial transpose: it is
possible to construct a state squeezed in (x1 +x2) and (p1− p2), and under the transpose, we obtain a state
that violates the uncertainty relation for (x1 + x2) and (p1 + p2). Thus, we see explicitly that separability
implies uncertainty relations even among commuting observables.

For Gaussian states, the variances represent the end of the story: they fully characterize the Gaussian.
Indeed, it has been shown30 that the above separability criteria are sufficient for separability for two-mode
continuous Gaussian systems. (We knew all along that the separability criterion was necessary.)

30R. Simon, ibid. For a related analysis, see Lu-Ming Duan, G. Giedke, J. I. Cirac, and P. Zoller, ‘‘Inseparability Criterion
for Continuous Variable Systems,’’ Physical Review Letters 84, 2722 (2000).
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4.4.4 Indistinguishability

Bosonic and fermionic quantum particles that are identical are furthermore indistinguishable, even in prin-
ciple. This induces a structure that looks a lot like entanglement, but isn’t really the same.31 Consider the
two-particle state

|ψ〉 = |(ψ1)A (ψ2)B〉. (4.222)

That is, particle A is in state |ψ1〉, and particle B is in state |ψ2〉. This state is appropriate for distinguishable
particles. But if the two particles are indistinguishable, the state must be invariant under exchange of the
particle labels,

|ψ〉 = |(ψ2)A (ψ1)B〉, (4.223)

which for this state would imply that |ψ1〉 = |ψ2〉. It is hardly satisfactory for every indistinguishable particle
to be in the same state, so we can introduce an explicit symmetrization (antisymmetrization) as follows:

|ψ〉± =
1√
2

(
|(ψ1)A (ψ2)B〉 ± |(ψ2)A (ψ1)B〉

)
, (4.224)

In the case of the minus sign, the particle exchange is accompanied by a factor (−1), amounting to just an
overall phase, which is certainly permissible.

What happens when we try to superpose these states? We can see that

1√
2

(
|ψ〉+ + |ψ〉−

)
= |(ψ1)A (ψ2)B〉, (4.225)

and so we end up in a state that’s no good. Evidently, we can’t superpose states corresponding to different
symmetrizations. Thus, we must postulate that once a pair of particles obey a certain symmetrization rule,
they must always do so. (This is equivalent to the statement that the operator corresponding to the exchange
operation commutes with the Hamiltonian.) Of course, the particles corresponding to the + sign in (4.224)
are bosons, and those corresponding to the − sign are fermions. Again, Eq. (4.224) is suggestive of an
entangled state, but only in a trivial sense, since it is nonsensical to speak of separate identities for the two
particles. It is completely, fundamentally impossible to tell them apart. Another way to see this that even
with an unsymmetrized state vector, we can always impose the symmetrization via the representation:

1√
2

(
〈(x1)A (x2)B | ± 〈(x2)A (x1)B |

)
|ψ〉 = 1√

2
[ψ(x1, x2)± ψ(x2, x1)] . (4.226)

Here, x1 and x2 represent two different position coordinates, it is the ordering of the arguments that deter-
mines which particle is associated with which position.

4.4.4.1 Exchange “Force”

One consequence of indistinguishability is an interference effect that looks something like an effective force
between indistinguishable particles. This effect, the exchange force, is particularly important in understand-
ing atomic and molecular structure, condensed matter systems, quantum degenerate gases, and astrophysics
(where ‘‘degeneracy pressure’’ prevents white dwarfs and neutron stars from collapsing).

Consider two particles A and B in respective states |ψ1〉 and |ψ2〉, which we assume to be orthonormal.
For distinguishable particles, the composite state is

|ψ〉 = |(ψ1)A (ψ2)B〉. (4.227)

The joint spatial probability density is

P (A at xA, B at xB) = |〈xA xB |ψ〉|2 = |ψ1(xA)|2|ψ2(xB)|2 (distinguishable), (4.228)
31The presentation here follows parts of David J. Griffiths, Introduction to Quantum Mechanics (Prentice–Hall, 1995), Chapter

5, p. 177; Asher Peres, Quantum Theory: Concepts and Methods (Kluwer, 1995), Section 5-4, p. 126; and lecture notes by M.
Baranger and J. Negele. See also Daniel F. Styer, ‘‘Common misconceptions regarding quantum mechanics,’’ American Journal
of Physics 64, 31 (1996).
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where ψ1(xA) = 〈xA|(ψ1)A〉 and ψ2(xB) = 〈xB |(ψ2)B〉. If we choose not to distinguish between the particles,
we can compute the probability of finding one at x and the other at x′,

P (1 particle at x, 1 particle at x′) = P (A at x, B at x′) + P (A at x′, B at x)

= |ψ1(x)|2|ψ2(x
′)|2 + |ψ1(x

′)|2|ψ2(x)|2 (distinguishable).
(4.229)

This expression facilitates comparison with the indistinguishable case.
Now consider indistinguishable particles, either bosons or fermions

|ψ〉 = 1√
2

(
|(ψ1)A (ψ2)B〉 ± |(ψ2)A (ψ1)B〉

)
, (4.230)

In this case the joint spatial probability density becomes

P (A at xA, B at xB) = |〈xA xB |ψ〉|2

=
1

2

(
|ψ1(xA)|2|ψ2(xB)|2 + |ψ2(xA)|2|ψ1(xB)|2

± 2Re[ψ∗1(xA)ψ∗2(xB)ψ2(xA)ψ1(xB)]
)

(bosons/fermions).

(4.231)

Again, we must drop the particle labels, so

P (1 particle at x, 1 particle at x′) =
(
|ψ1(x)|2|ψ2(x

′)|2 + |ψ2(x)|2|ψ1(x
′)|2

± 2Re[ψ∗1(x)ψ∗2(x′)ψ2(x)ψ1(x
′)]
)

(bosons/fermions).
(4.232)

The final interference term is the exchange term. Note that it is nonvanishing only if the two wave functions
ψ1(x) and ψ2(x) overlap.

To see the effect of the exchange term, consider the probability density when x = x′. For distinguishable
particles, the probability density is simply

P (both at x) = 2|ψ1(x)|2|ψ2(x)|2,
(4.233)

(distinguishable particles)

while in the indistinguishable case,

P (both at x) = 2|ψ1(x)|2|ψ2(x)|2 ± 2Re[|ψ1(x)|2|ψ2(x)|2]

=

{
4|ψ1(x)|2|ψ2(x)|2 (bosons)
0 (fermions)

(indistinguishable particles) (4.234)
Thus, we see that the probability density for being at the same position doubles with respect to the dis-
tinguishable case for bosons, and vanishes for fermions. Thus, it is common to speak of the attractive
‘‘exchange force,’’ or exchange interaction between bosons, and the repulsive ‘‘force’’ between fermions.
This effect is not a force, however; it is simply an interference effect due to the symmetry properties under
exchange. In particular, if two noninteracting particles ‘‘collide’’ and then separate, there is no scattering
or net phase shift after the crossing of the particles due to the exchange interaction. However, these would
occur if the exchange interaction really could be modeled as a force (instead, the exchange interaction affects
the details of the particles spatial distributions only while they are overlapping).32

32W. J. Mullin and G. Blaylock, ‘‘Quantum statistics: Is there an effective fermion repulsion or boson attraction?’’ American
Journal of Physics 71, 1223 (2003) (doi: 10.1119/1.1590658).

http://dx.doi.org/10.1119/1.1590658
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4.4.5 Open Systems: Church of the Larger Hilbert Space

One important use of the density operator is in describing open quantum systems—systems interacting with
auxiliary systems (environments or reservoirs) that we don’t have access to. We will treat open quantum
systems in great detail, but for now let’s examine a simple model for why the density operator is useful.

Consider the entangled state

|ψ〉 = 1√
2

(
|0A〉|0B〉+ |1A〉|1B〉

)
(4.235)

between particles (qubits) A and B. Suppose that we have access to particle A, but particle B is locked up
in a box, so that we don’t know anything about it. The density operator for the composite system is

ρ = |ψ〉〈ψ| = 1

2

(
|0A〉|0B〉〈0A|〈0B |+ |1A〉|1B〉〈1A|〈1B |+ |1A〉|1B〉〈0A|〈0B |+ |0A〉|0B〉〈1A|〈1B |

)
(4.236)

We can define the reduced density operator that describes only particle A by performing a partial trace
over the state of particle B:

ρA = TrB [ρ] :=
∑
α

〈αB |ρ|αB〉 =
1

2

(
|0A〉〈0A|+ |1A〉〈1A|

)
.

(reduced density operator) (4.237)
Thus, we can see that the reduced state of particle A corresponds to a completely incoherent superposition
of the two states, even though the composite system carried a completely coherent superposition.

This is a simple model for the process of decoherence. A quantum system can start in a local state of
coherent superposition. But if it interacts with the environment, the coupling causes entanglement between
the system and environment, since the interaction is nonlocal. Because we don’t have access to the state of
the environment, we must trace over it, which reduces the purity of the reduced density operator. Note that
we can’t keep track of the environment even in principle, since it generally has many degrees of freedom.
As the interaction continues, the entanglement progresses, driving the reduced density operator towards a
completely incoherent superposition. This is, at a simple level, why classical (macroscopic) things behave
classically: coupling to the environment destroys quantum coherence.

Conversely, whenever we have a system described by a mixed density operator,

ρ =
∑
α

Pα|ψα〉〈ψα|, (4.238)

we can always think of it as part of a larger system. We can see this as follows. We will introduce a fictitious
environment with orthonormal basis states |αE〉. Then we can write the state vector for the composite
system as

|ψtotal〉 =
∑
α

√
Pα|ψα〉|αE〉.

(4.239)
(purification of mixed state)

When we compute the total density operator for the composite pure state and trace over the environment,
we recover the original density operator (4.238) as the reduced density operator of the larger state. This
procedure of switching to a larger pure state is referred to as purification or ‘‘the doctrine of the Church
of the larger Hilbert space.’’33 The space of these extra environmental degrees of freedom is often referred
to as the ancilla.34 Often, this is a useful picture for thinking about mixed quantum states, especially in
quantum-information problems.

33Terminology introduced by John Smolin; see Daniel Gottesman and Hoi-Kwong Lo, ‘‘From Quantum Cheating to Quantum
Security,’’ Physics Today 53, no. 11, 22 (2000) (doi: 10.1063/1.1333282).

34Although it just doesn’t sound right to my ear, ‘‘ancilla’’ is a singular noun that comes from latin, where it means ‘‘hand-
maiden,’’ but in contemporary English can mean something that helps to achieve something difficult. (The plural form can be
‘‘ancillae’’ or ‘‘ancillas.’’)

http://dx.doi.org/10.1063/1.1333282
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4.5 Master Equation

A main and obvious advantage of the density-operator formalism is that it provides a method for handling
nonunitary evolution of the quantum state. This generally occurs in the treatment of open quantum systems:
quantum systems coupled to external systems that we do not directly track.35 We saw the simplest example
of this in the previous section: maximal entanglement of two qubits enforces minimum purity in the reduced
state of one qubit. Now we will take this idea and study more generally how weak entanglement with an
external system leads to a general, nonunitary evolution equation for the density operator.

We will thus study the evolution of a quantum system, described by Hamiltonian HS, interacting
with a ‘‘reservoir’’ (or ‘‘heat bath’’ or ‘‘environment’’), described by Hamiltonian HR. We will assume the
system–reservoir interaction, described by HSR, to be weak, causing slow evolution on the uncoupled time
scales of the system and reservoir separately. The evolution of the total system is unitary, given by

∂tρSR = − i
h̄
[H, ρSR], (4.240)

where ρSR is the combined state of the system and reservoir, and the total Hamiltonian is

H = HS +HR +HSR. (4.241)

Our goal is to derive an equation of motion for the state of the system alone, given by a partial trace over
the reservoir degrees of freedom:

ρ := TrR[ρSR]. (4.242)
Note that so long as we are interested in operators that act solely on the system’s Hilbert space, this reduced
density operator is sufficient to compute any appropriate expectation values.

We will derive the master equation with a number of approximations and idealizations, mostly related
to the reservoir having many degrees of freedom. The approximations here typically work extremely well in
quantum optics, though not necessarily in other areas such as condensed-matter physics where, for example,
the weak-coupling idealization may break down. Examples of reservoirs include the quantum electromagnetic
field (in a vacuum or thermal state), or the internal degrees of freedom of a composite object.

4.5.1 Interaction Representation

The first step is to switch to the interaction representation, in effect hiding the fast dynamics of the uncoupled
system and reservoir, and focusing on the slow dynamics induced by HSR. We do this as in Section 4.2.3 via
the transformations

ρ̃SR(t) = ei(HS+HR)t/h̄ρSR(t)e
−i(HS+HR)t/h̄

H̃SR(t) = ei(HS+HR)t/h̄HSRe
−i(HS+HR)t/h̄,

(4.243)

so that the formerly time-independent interaction becomes explicitly time-dependent. The equation of
motion then becomes

∂tρ̃SR(t) = −
i

h̄
[H̃SR(t), ρ̃SR(t)]. (4.244)

Integrating this from t to t+∆t,

ρ̃SR(t+∆t) = ρ̃SR(t)−
i

h̄

∫ t+∆t

t

dt′ [H̃SR(t
′), ρ̃SR(t

′)]. (4.245)

Iterating this equation by using it as an expression for ρ̃SR(t
′),

ρ̃SR(t+∆t)− ρ̃SR(t) = −
i

h̄

∫ t+∆t

t

dt′ [H̃SR(t
′), ρ̃SR(t)]−

1

h̄2

∫ t+∆t

t

dt′
∫ t′

t

dt′′ [H̃SR(t
′), [H̃SR(t

′′), ρ̃SR(t
′′)]].

(4.246)
35For further reading, see William H. Louisell, Quantum Statistical Properties of Radiation (Wiley, 1973), Chapter 6; Claude

Cohen–Tannoudji, Jacques Dupont-Roc, and Gilbert Grynberg, Atom–Photon Interactions: Basic Processes and Applications
(Wiley, 1992), Chapter IV; and Howard Carmichael, An Open Systems Approach to Quantum Optics (Springer, 1993), Chapter
1.
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Now in taking the trace over the reservoir, we will assume that the first term on the right-hand side vanishes.
More specifically, we assume

TrR[H̃SR(t
′)ρ̃SR(t)] = 0. (4.247)

This follows by assuming that the total system–reservoir state always approximately factorizes

ρ̃SR(t) ≈ ρ̃(t)⊗ ρ̃R, (4.248)

where ρ̃R is the stationary state of the reservoir. This amounts to assuming that the reservoir is large and
complex, and weak coupling of the system to the reservoir, so that the perturbation to the reservoir by the
system is small. In this case, the time interval ∆t� τc, where τc is the correlation time of the reservoir—the
time for reservoir and system–reservoir correlations to decay away. This also amounts to a coarse-graining
approximation, which means that we are smoothing out any fast dynamics on time scales of the order of
τc or shorter. Thus, any correlations that have arisen in past time intervals have decayed away. Of course,
new correlations arise due to the coupling in the present time interval, which will give rise to nonunitary
terms in the evolution equation for the reduced state. Then the assumption (4.247) amounts to

TrR[H̃SR(t
′)ρ̃R] = 0. (4.249)

This assumption means essentially that there is no dc component to the system–reservoir coupling—that is,
the system–reservoir coupling consists of fluctuations about a zero mean. This can always be arranged by
absorbing any nonzero mean into the system Hamiltonian.

4.5.2 Born–Markov Approximation

Since the first term vanishes under the partial trace, with the trace Eq. (4.246) becomes

∆ρ̃(t) ≈ − 1

h̄2

∫ t+∆t

t

dt′
∫ t′

t

dt′′ TrR[H̃SR(t
′), [H̃SR(t

′′), ρ̃SR(t
′′)]], (4.250)

with ∆ρ̃(t) := ρ̃(t+∆t)− ρ̃(t). Now we will make the Born–Markov approximation by setting

ρ̃SR(t
′′) ≈ ρ̃(t)⊗ ρ̃R. (4.251)

In fact there is a pair of approximations at work here. The Born approximation amounts to assuming
the factorization in (4.248), which we have justified in terms of a large, complex reservoir with a short
coherence time. The Markov approximation amounts to setting ρ(t′′) to ρ(t) in (4.251), which will result
in an evolution equation that only depends on ρ(t), and not the past history of the density operator. We
can justify this approximation by noting that ∆t is small and HSR induces a weak perturbation, so that
ρ(t′′) = ρ(t) + O(∆t). Then this amounts to a lowest-order expansion in ∆t of the right-hand side of
Eq. (4.250), which is appropriate in view of the limit ∆t −→ 0 to obtain a differential equation (though in
a coarse-grained sense, since strictly speaking we always require ∆t� τc).

Next we change integration variables by setting

τ := t′ − t′′, (4.252)

so that the integration becomes ∫ t+∆t

t

dt′
∫ t′

t

dt′′ =

∫ ∆t

0

dτ

∫ t+∆t

t+τ

dt′

≈
∫ ∞
0

dτ

∫ t+∆t

t

dt′.

(4.253)

In writing down the final, approximate form for the integrals, we have used the fact that the integrand
involves an expectation value of the interaction Hamiltonian taken at times that differ by τ , as we will
explore further shortly. That is, the integrand involves reservoir correlation functions, which decay away on
the time scale τc.
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4.5.3 Interaction

Now we make a reasonably general assumption regarding the interaction Hamiltonian; namely, that it can
be written as a sum of products over system and reservoir operators:

HSR = h̄SαRα. (4.254)

(Recall that repeated indices imply summation.) The interpretation here is that if Sα is a Hermitian
operator, then it represents an observable that is being effectively (or actually) monitored via coupling to
the environment. For example, a position measurement is represented by an interaction of the form HSR = xR
(Chapter 19). Alternately, the operators need not be Hermitian. For example, an interaction of the form
HSR = SR†+S†R represents the exchange of quanta (e.g., of energy) between the system and reservoir, and
would thus represent dissipation or loss of energy to the reservoir. Such interactions occur in spontaneous
emission (Chapter 11) and cavity decay (Chapter 12).

With the interaction of the form (4.254) and the change of integration in Eqs. (4.253), the change
(4.250) in the quantum state becomes

∆ρ̃(t) ≈ −
∫ ∞
0

dτ

∫ t+∆t

t

dt′
{[
S̃α(t

′)S̃β(t
′ − τ)ρ̃(t)− S̃β(t′ − τ)ρ̃(t)S̃α(t′)

]
Gαβ(τ)

+
[
ρ̃(t)S̃β(t

′ − τ)S̃α(t′)− S̃α(t′)ρ̃(t)S̃β(t′ − τ)
]
Gβα(−τ)

}
,

(4.255)

where we have defined the reservoir correlation functions

Gαβ(τ) := TrR

[
R̃α(t

′)R̃β(t
′ − τ) ρ̃R

]
=
〈
R̃α(t

′)R̃β(t
′ − τ)

〉
R
=
〈
R̃α(τ)R̃β(0)

〉
R
, (4.256)

which depend only on the time difference because the reservoir is in a stationary state. Now we make the
further assumption

S̃α(t) = eiHSt/h̄Sαe
−iHSt/h̄ = Sαe

iωαt (4.257)
about the interaction-picture system operators. This is not necessarily a restrictive assumption, since multiple
frequencies for a given system operator may be separated in the sum in (4.254). Then Eq. (4.255) becomes

∆ρ̃(t) ≈ −
∫ ∞
0

dτ

∫ t+∆t

t

dt′
{[
SαSβ ρ̃(t)− Sβ ρ̃(t)Sα

]
Gαβ(τ)

+
[
ρ̃(t)SβSα − Sαρ̃(t)Sβ

]
Gβα(−τ)

}
eiωαt

′
eiωβ(t

′−τ).

(4.258)

Now defining

I(ωα + ωβ) :=

∫ t+∆t

t

dt′ ei(ωα+ωβ)t
′

w+
αβ :=

∫ ∞
0

dτ e−iωβτGαβ(τ)

w−βα :=

∫ ∞
0

dτ e−iωβτGβα(−τ),

(4.259)

we can write

∆ρ̃(t) ≈ −
{[
SαSβ ρ̃(t)− Sβ ρ̃(t)Sα

]
w+
αβ +

[
ρ̃(t)SβSα − Sαρ̃(t)Sβ

]
w−βα

}
I(ωα + ωβ). (4.260)

Under the assumption of fast (uncoupled) system and reservoir dynamics,

∆t� (ωα + ωβ)
−1, (4.261)

the integral I(ωα + ωβ) averages to zero unless ωα + ωβ = 0. Thus we may replace the integral with a
Kronecker delta,

I(ωα + ωβ) = ∆t δ(ωα,−ωβ). (4.262)
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Now formally taking the limit of small ∆t,

∂tρ̃(t) ≈
∆ρ̃(t)

∆t
= −δ(ωα,−ωβ)

{[
SαSβ ρ̃(t)− Sβ ρ̃(t)Sα

]
w+
αβ +

[
ρ̃(t)SβSα − Sαρ̃(t)Sβ

]
w−βα

}
, (4.263)

where again we must keep in mind that this differential equation is coarse-grained in the sense of not
representing dynamics on time scales as short as τc or (ωα + ωβ)

−1 for different frequencies. Now transforming
out of the interaction representation, using the assumption (4.257) and ωα = −ωβ ,

∂tρ(t) = −
i

h̄
[HS, ρ(t)]− δ(ωα,−ωβ)

{[
SαSβρ(t)− Sβρ(t)Sα

]
w+
αβ +

[
ρ(t)SβSα − Sαρ(t)Sβ

]
w−βα

}
. (4.264)

Now we use the fact that HSR is Hermitian, so terms of the form SR in (4.254) that are not Hermitian must
be accompanied by their adjoint terms S†R†. Clearly, terms where Sα = S†β satisfy δ(ωα,−ωβ) = 1, so we
can explicitly combine these pairs of terms to write the master equation in terms of only a single sum:

∂tρ(t) = −
i

h̄
[HS, ρ(t)] +

∑
α

{[
Sαρ(t)S

†
α − S†αSαρ(t)

]
w+
α +

[
Sαρ(t)S

†
α − ρ(t)S†αSα

]
w−α

}
. (4.265)

Of course, terms of the same form carry through when Sα is Hermitian. In the expression above we have
also defined the reduced integrals

w+
α :=

∫ ∞
0

dτ e−iωατ
〈
R̃†α(τ)R̃α(0)

〉
R

w−α :=

∫ ∞
0

dτ eiωατ
〈
R̃†α(0)R̃α(τ)

〉
R
= [w+

α ]
∗.

(4.266)

Note that other cross-terms could in principle occur in Eq. (4.264) that satisfy ωα = −ωβ , which we appear to
be missing here. However, if we end up with terms like S1ρS

†
2, this can always be absorbed into terms of the

form (S1 + S2)ρ(S1 + S2)
†, representing interferences in the couplings represented by S1,2. The cross terms

are weighted by a cross-correlation function between R1 and R2, representing the cross terms of the coherence.
In the absence of cross coherence, only terms of the form S1ρS

†
1 and S2ρS

†
2 should appear. Weighted

combinations of these terms with (S1 + S2)ρ(S1 + S2)
† terms can account for any degree of coherence. (See

Section 6.2.4.1 for a discussion of interference contributions of this form in the context of quantum beats in
three-level atoms.)

Now separating out the real and imaginary parts of the integrals (4.266) in (4.265),

∂tρ(t) = −
i

h̄
[HS, ρ(t)] +

∑
α

2Re[w+
α ]

{
Sαρ(t)S

†
α −

1

2

[
S†αSαρ(t) + ρ(t)S†αSα

]}
− i
∑
α

Im[w+
α ]
[
S†αSα, ρ(t)

]
.

(4.267)
Note that the last term has the form of Hamiltonian evolution, while the second term does not; these represent
energy shifts and dissipation/diffusion effects, respectively, due to the interaction with the reservoir. Now
separating out the real and imaginary parts of the integrals, we have the final result

∂tρ(t) = −
i

h̄
[HS +Heff, ρ(t)] +

∑
α

kαD[Sα]ρ(t),

(Born–Markov master equation) (4.268)
where the effective Hamiltonian for the reservoir interaction, leading to a ‘‘generalized Lamb shift,’’ is

Heff := h̄
∑
α

Im[w+
α ]S

†
αSα,

(effective Hamiltonian for generalized Lamb shift) (4.269)
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and we have defined the Lindblad superoperator

D[c]ρ := cρc† − 1

2

[
c†cρ+ ρc†c

]
.

(4.270)
(Lindblad superoperator)

with coefficient
kα := 2Re[w+

α ].
(4.271)

(dissipation/diffusion coupling coefficient)

We have thus arrived at the general Lindblad form of the master equation in the Born–Markov approxi-
mation, which we return to and justify in the context of measurement in Section 19.1. Again, the system
operators Sα represent the coupling channel of the system to the reservoir, and thus the channel by which
the system may be observed. Thus, for example, if Sα −→ x, then we have the master equation for a position
measurement, whereas if Sα −→ a, where a is the annihilation operator for the harmonic oscillator, then we
have the master equation for energy loss (and thus damping) of a quantum harmonic oscillator.
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4.6 Exercises

Problem 4.1
(a) Using the expression for the Wigner function in terms of a pure state, argue that the Wigner
function corresponds to an overlap integral of two wave functions, and thus derive the upper bound

|W (x, p)| ≤ 1

πh̄
(4.272)

for the magnitude.
(b) Derive a similar upper bound for the Husimi distribution WH(x, p).

Problem 4.2
For a harmonic oscillator of frequency ω and mass m, the density operator for a thermal state of
temperature T is given by the Boltzmann-type sum

ρ =
(
1− e−h̄ω/kBT

) ∞∑
n=0

e−nh̄ω/kBT |n〉〈n|. (4.273)

Carry out the appropriate summation over the Wigner functions for the harmonic-oscillator eigenstates
to show that the thermal state is Gaussian.36 What are the variances of the thermal state? Show that
your variance expressions are sensible in the limits of low and high temperature.
It may help to know that the summation formula

∞∑
j=0

e−jx
(n+ j)!

j!
= n!(1− e−x)−(1+n), (4.274)

valid for nonnegative n, is not difficult to prove by induction. (Translation: if you use it, you should
prove it by induction.)

Problem 4.3
Derive the Weyl correspondences

A(x, p) = B(x, p) exp
[
h̄

2i

(
←−
∂p
−→
∂x −

←−
∂x
−→
∂p

)]
C(x, p) (4.275)

and
A(x, p) = B

(
x− h̄

2i
∂p, p+

h̄

2i
∂x

)
C(x, p) = C

(
x+

h̄

2i
∂p, p−

h̄

2i
∂x

)
B(x, p) (4.276)

for the operator product Â = B̂Ĉ.

Problem 4.4

Let A be a symplectic matrix, so that A satisfies AΩAT = Ω.
(a) Show that A−1 = −ΩATΩ.
(b) Show that AT is symplectic.

Problem 4.5
Let A be a symplectic matrix.
(a) Show that if λ is an eigenvalue of A, then 1/λ is also an eigenvalue of A.
(b) What is the determinant of A?
(c) Give a physical interpretation of the eigenvalues and the determinant of A.

36Note that in the Church of the Larger Hilbert Space, the thermal state corresponds to a two-mode (Gaussian) squeezed
state—that is, when you trace over one of the modes, you can choose the variances such that you recover the thermal state for
the remaining mode.
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Problem 4.6
Show that under Hamiltonian evolution,

∂tρ = − i

h̄
[H, ρ], (4.277)

the purity Tr[ρ2] is a constant of the motion.

Problem 4.7
(a) Show that for a single particle in the sinusoidal (pendulum) potential

V (x) = −α cos(kx), (4.278)

the equation of motion for the Wigner function may be written

∂tW (x, p) = − p

m
∂xW (x, p) +

α

h̄
sin(kx)

[
W

(
x, p+

h̄k

2

)
−W

(
x, p− h̄k

2

)]
. (4.279)

(b) We can make this equation of motion look ‘‘more classical’’ by defining the Wigner effective
potential by writing the Liouville-type equation

∂tW = − p

m
∂xW + ∂xVeff∂pW. (4.280)

Write down an expression for ∂xVeff, and then show that for the minimum-uncertainty Gaussian state
with variance Vx and no covariance,

W (x, p) =
1

πh̄
exp

[
− (x− 〈x〉)2

2Vx
− 2Vx(p− 〈p〉)2

h̄2

]
, (4.281)

the effective potential can be written

Veff = −α cos(kx) exp
(
−k

2Vx
2

) sinh
[
2kVx
h̄

(p− 〈p〉)
]

2kVx
h̄

(p− 〈p〉)
. (4.282)

(c) Argue that the last factor in the above expression is negligible for a localized wave packet, and then
show that in this limit, the above effective potential is approximately equal to what we will call the
Ehrenfest effective potential V (E)

eff :=〈V (x)〉, which follows from the Ehrenfest equation

∂t〈p〉 = −〈∂xV (x)〉 = −∂〈x〉V
(E)

eff (〈x〉), (4.283)

where it turns out the last equality holds for the Gaussian state in a cosine potential.

Problem 4.8
The master equation for a damped harmonic oscillator, coupled to a reservoir in the vacuum state in
Lindblad form is

∂tρ = − i
h̄
[H, ρ] + κD[a]ρ, (4.284)

where κ is the rate of energy decay of the oscillator, and H is the harmonic-oscillator Hamiltonian.
Consider the master equation for a damped, anharmonic oscillator. A reasonable guess might be
to take the same master equation as for the harmonic case, and simply take H = p2/2m + V (x),
where V (x) is an anharmonic potential, while keeping the damping terms the same (and assuming
that a is still defined as an appropriate linear combination of x and p). Explain why the Born–Markov
master-equation formalism does not lead to this master equation, and discuss the most general form for
the master equation of a damped, anharmonic oscillator. (Hint: what is the spectrum of a harmonic
oscillator? An anharmonic oscillator? What does a for a harmonic oscillator look like in the Heisenberg
picture? What would it look like if generalized to an anharmonic oscillator? Make sure to keep track
of the assumptions in the Born–Markov derivation.)



Chapter 5

Two-Level Atom Interacting with a
Classical Field

The interaction of a two-level atom is one of the canonical problems in quantum optics. We will now be
accounting for quantum coherences between the two levels, which we ignored in our rate-equation treatment
in Chapter 3. The approaches we will use here are widely applicable, since a two-level atom is essentially
equivalent to a qubit or a spin-1/2 particle. Less obvious is that equivalent phenomena also occur in
seemingly different problems such as tunneling in the double-well potential, Bragg diffraction, and neutrino
oscillations.1

5.1 Atom–Field Interaction

We begin our treatment with a general description of the atom-field interaction. We will assume the field is
monochromatic with angular frequency ω to model the field due to a laser:

E(t) = ε̂E0 cos(ωt). (5.1)

Here, ε̂ is the unit polarization vector of the field. Note that we are ignoring the spatial dependence
of the field, only writing down the field at the location of the atom. This is appropriate in the dipole
approximation or long-wavelength approximation, where we assume that the wavelength of the field
is much longer than the size of the atom, so that we can neglect any variations of the field over the extent
of the atom. This is generally appropriate for optical transitions, since atomic dimensions have Å scales,
while optical wavelengths are hundreds of nm. Formally, as the name suggests, the dipole approximation
corresponds to the lowest-order contribution in a multipole expansion of the atom–field interaction.

As before, it is convenient to decompose the field into its positive- and negative-rotating components
E(+) and E(−):

E(t) = ε̂
E0

2

(
e−iωt + eiωt

)
=: E(+)

0 e−iωt + E(−)
0 eiωt

=: E(+)(t) + E(−)(t) .

(5.2)

That is, E(±) ∼ e−i(±ω)t.
We will treat the atom as a two-level atom. This is clearly an approximation to a true atom, which

has an infinite set of bound states. The justification is that we will consider near-resonant interactions, so
that the transitions to other levels are negligible. We will label the ground and excited levels as |g〉 and |e〉,
respectively, and we will denote the resonant frequency by ω0 (that is, the energy splitting of the pair of
states is h̄ω0).

1Alexander Friedland, ‘‘Evolution of the neutrino state inside the Sun,’’ Physical Review D 64, 013008 (2001) (doi:
10.1103/PhysRevD.64.013008).

http://dx.doi.org/10.1103/PhysRevD.64.013008
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We will define ∆ := ω − ω0 to be the detuning of the laser field from the atomic resonance.
We can write the total Hamiltonian for the atom and field as a sum of the free atomic Hamiltonian

HA and the atom–field interaction Hamiltonian HAF:

H = HA +HAF. (5.3)

The atomic free-evolution Hamiltonian is given by

HA = h̄ω0|e〉〈e|,
(5.4)

(free evolution)

if we take the ground-state energy to be zero. The atom-field interaction Hamiltonian in the dipole approx-
imation is

HAF = −d ·E, (5.5)
(dipole interaction)

where d is the atomic dipole operator, given in terms of the atomic electron position re as

d = −ere, (5.6)

if we assume a single electron for the atom (i.e., the field interacts predominantly with one electron). We
denote the fundamental charge by e, so that the electron charge is q = −e. We will not justify this form
of the interaction Hamiltonian for now, except to note that it seems reasonable as a dipole-field interaction,
and also it is consistent with the classical case (see Problem 5.1).

5.1.1 Parity and the Dipole Operator

We can then use a simple parity argument to gain more information about the form of the dipole operator.
The parity operator Π flips the sign of the position operator, and is thus defined by the operator transfor-
mation ΠreΠ

† = −re. (Note that Π is unitary: Π and Π−1 correspond to the same operation or reversing
the position coordinate, so that Π = Π−1—Π is an involution—or Π2 = 1.) Operating with Π on the right
gives Πre = −reΠ, and thus the anticommutator of the parity operator with re vanishes:

[Π, re]+ = 0. (5.7)

The matrix elements of the anticommutator clearly vanish,

〈a|[Π, re]+|b〉 = 0, (5.8)

but we can also write the matrix elements in the energy basis as

〈a|[Π, re]+|b〉 = 〈a|[Πre + reΠ]|b〉 = (πa + πb)〈a|re|b〉, (5.9)

where πa and πb are eigenvalues of Π. We can define these because Π commutes with the atomic Hamiltonian,
which has the form p2e/2me − α/|re|, and thus Π and H have simultaneous eigenstates. But Π2 = 1, so the
possible eigenvalues of Π are ±1, corresponding to even (+) and odd (−) parity. For both (5.8) and (5.9) to
hold, either πa + πb = 0 or 〈a|re|b〉 = 0. This argument obviously applies just as well to the dipole operator
instead of re. We can then see that the diagonal matrix elements of d vanish, since πg and πe are both
nonzero:

〈g|d|g〉 = 〈e|d|e〉 = 0. (5.10)
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The off-diagonal matrix elements 〈g|d|e〉 = 〈e|d|g〉∗ are nonvanishing, however, provided that the states have
opposite parity, πe = −πg. The point is that the dipole operator couples the ground and excited states, but
does not produce any first-order shift of either state.

By applying the identity |e〉〈e| + |g〉〈g| on both sides of d, we see that dipole operator admits the
decomposition

d = 〈g|d|e〉|g〉〈e|+ 〈e|d|g〉|e〉〈g|. (5.11)

We can choose the phase of the dipole matrix element 〈g|d|e〉 such that it is real, in which case we can write
the dipole operator as

d = 〈g|d|e〉(σ + σ†),
(5.12)

(dipole operator in terms of σ)

where σ := |g〉〈e| is the atomic lowering operator. For clarity when we get to more complicated atoms, we
will always write the dipole matrix element 〈g|d|e〉 with the excited state to the right. We can thus write
the total atom–field Hamiltonian as

H = HA +HAF = h̄ω0σ
†σ − 〈g|d|e〉 ·E

(
σ + σ†

)
, (5.13)

where σ†σ = |e〉〈e| is the excited-state projection operator.

5.1.2 Rotating-Wave Approximation

Just as we decomposed the field into positive- and negative-rotating parts, we can do the same for the dipole
operator in the form (5.12):

d = 〈g|d|e〉(σ + σ†)

= d(+) + d(−),
(5.14)

where d(+) ∼ σ and d(−) ∼ σ†. We do this because the expectation value of σ = |g〉〈e| has the unperturbed
time dependence e−iω0t (since this is the evolution of |e〉 under the free atomic Hamiltonian), and thus
corresponds to a positive frequency.

Including the same decomposition of the field, the atom–field Hamiltonian becomes

HAF = −(d(+) + d(−)) · (E(+) + E(−))

= −d(+) ·E(+) − d(−) ·E(−) − d(+) ·E(−) − d(−) ·E(+).
(5.15)

Recalling the time dependences
d(±) ∼ e∓iω0t; E(±) ∼ e∓iωt, (5.16)

we see that the first two terms oscillate rapidly as e±i(ω+ω0)t, while the last two (cross) terms oscillate slowly
as e±i∆t. Assuming that |ω − ω0| � ω + ω0, we can make the rotating-wave approximation (RWA).2
This approximation focuses on slow dynamics, replacing terms rotating at optical frequencies are replaced
by their zero average value, which amounts to a coarse-graining on fs time scales. This is reasonable since
optical detectors don’t respond on fs time scales anyway.

Something that is sometimes not appreciated is that the two-level approximation and the RWA are at
the same level of accuracy. That is, it makes no sense to throw one out and keep the other. Both amount
to discarding interactions that are far off resonance (the RWA amounts to a very far detuned interaction
of a positive-frequency resonance with a negative-frequency field). If the detuning is large enough that the
counter-rotating term is not negligible, then neither are the couplings to the other levels.

2The name ‘‘rotating-wave approximation’’ comes from nuclear magnetic resonance. A spin-1/2 particle in a magnetic field
precesses (rotates) naturally. When you hit it with a linearly polarized microwave field, the field is a superposition of two
waves with opposite circular (‘‘rotating’’) polarization. Only one of the polarization rotates in the same direction as the spin
precession, and so the RWA amounts to ignoring the counter-rotating field component. Said another way, it amounts to replacing
the linearly polarized wave with a rotating wave. Note that in NMR, the RWA is exact for circular polarization, a property
that does not carry over to the optical case.
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5.1.3 Rabi Frequency

Thus, the atom–field interaction Hamiltonian in the RWA becomes

HAF = −d(+) ·E(−) − d(−) ·E(+).
(5.17)

(RWA dipole interaction)

Using Eq. (5.2) for the explicit time-dependence of the field along with Eq. (5.14) for the dipole operator,
we can write

HAF = −〈g|ε̂ · d|e〉
(
E

(−)
0 σeiωt + E

(+)
0 σ†e−iωt

)
=
h̄Ω

2

(
σeiωt + σ†e−iωt

)
,

(5.18)

where we have assumed E
(+)
0 to be real, and we have defined the Rabi frequency3 as

Ω := − 2〈g|ε̂ · d|e〉E(+)
0

h̄
= − 〈g|ε̂ · d|e〉E0

h̄
.

(5.19)
(Rabi frequency)

Note that we generally choose the phase of the dipole matrix element so that Ω > 0. The Rabi frequency
characterizes the strength of the atom–field coupling. In the case of a linearly polarized field, the Rabi
frequency simplifies to

Ω = − 〈g|dz|e〉E0

h̄
(5.20)

if the field is polarized in the z-direction (ε̂ = ẑ).

5.1.4 Schrödinger Equation

Let’s write the atomic state as
|ψ〉 = cg|g〉+ ce|e〉, (5.21)

where cg and ce carry all the time dependence of the state. With the atomic Hamiltonian HA (5.4) and
interaction HAF (5.18), the Schrödinger equation ih̄∂t|ψ〉 = H|ψ〉 then gives

∂tcg|g〉+ ∂tce|e〉 = −iω0ce|e〉 − i
Ω

2
eiωtce|g〉 − i

Ω

2
e−iωtcg|e〉. (5.22)

Projecting with 〈g| and 〈e| gives the pair of coupled differential equations,

∂tcg = −iΩ
2
cee

iωt

∂tce = −iω0ce − i
Ω

2
cge
−iωt,

(5.23)

which we can now in principle solve for the atomic evolution.

5.1.5 Rotating Frame

We now have a set of coupled equations that involve oscillatory terms at optical frequencies. However, at
resonance the precessions are phase-locked and should disappear in the proper coordinates. It it therefore
convenient to transform into a corotating frame to eliminate the fast rotation. Thus, we make a transforma-
tion into the rotating frame of the laser field by defining the slowly varying excited-state amplitude

c̃e := cee
iωt.

(5.24)
(rotating-frame transformation)

3after Isador Isaac Rabi, who pioneered the field of nuclear magnetic resonance. He was awarded the 1944 Nobel prize for
this work.
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We can then rewrite the equations of motion as

∂tcg = −iΩ
2
c̃e

∂tc̃e = i∆c̃e − i
Ω

2
cg.

(5.25)

In fact, these are the same equations of motion generated by the effective, rotating-frame atomic Hamilto-
nian

H̃A = −h̄∆|e〉〈e|, (5.26)
(rotating-frame free evolution)

where recall that ∆ := ω − ω0 is the detuning of the laser from the atomic resonance, and the effective,
rotating-frame interaction Hamiltonian

H̃AF = −d(+) · Ẽ(−) − d(−) · Ẽ(+)

=
h̄Ω

2
(σ + σ†),

(5.27)
(rotating-frame dipole interaction)

where we have defined the stationary field amplitudes

Ẽ(±) := e±iωtE(±). (5.28)

In making the rotating-wave approximation, we have discarded the two terms that would have an explicit
time dependence of e±i2ωt in Eq. (5.27), and in transforming to the rotating frame, we have removed all of
the explicit time dependence from this problem. Essentially, we are hiding the time dependence of the field
in the slowly varying amplitude c̃e, where it cancels most of the natural state evolution. Notice also that |e〉
is still an eigenstate of H̃A, with eigenvalue h̄ω0− h̄ω = −h̄∆, so that the rotating-frame transformation has
the effect of shifting the excited state down in energy by an amount h̄ω.

This representation of the problem in the laser frame is interesting when we look at it this way: it shows
that this ac interaction is equivalent to the problem of two states separated in energy by h̄∆ interacting with
a dc electric field (in the RWA). Because we have eliminated any explicit time dependence, this problem will
be easy to solve.

5.1.5.1 Unitary Transformations

Suppose that we have a unitary transformation U , which induces the transformation |ψ̃〉 = U |ψ〉. Then how
does the Hamiltonian transform? Both the original and transformed states must satisfy the Schrödinger
equation,

ih̄∂t|ψ〉 = H|ψ〉, ih̄∂t|ψ̃〉 = H̃|ψ̃〉, (5.29)

where H̃ is the transformed Hamiltonian. We can write the first equation here as

ih̄∂t(U
†|ψ̃〉) = HU†|ψ̃〉. (5.30)

Then we can expand the time derivative and operate on the left by U :

ih̄∂t|ψ̃〉+ ih̄U∂tU
†|ψ̃〉 = UHU†|ψ̃〉. (5.31)

Noting that ∂t(UU†) = (∂tU)U† + U∂tU
† = 0, we can rewrite this as

ih̄∂t|ψ̃〉 =
[
UHU† + ih̄(∂tU)U†

]
|ψ̃〉. (5.32)

Comparing this to the Schrödinger equation in the transformed variables, we can identify the transformation
law

H̃ = UHU† + ih̄(∂tU)U†
(5.33)

(time-dependent transformation)
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for the Hamiltonian under a general time-dependent, unitary transformation.
Thus we can see that the transformation to the rotating frame is represented by the unitary transfor-

mation
U = exp (iωt|e〉〈e|) . (5.34)

This gives the proper form for the rotating-frame state

|ψ̃〉 = U |ψ〉

= U
(
cg|g〉+ ce|e〉

)
= cg|g〉+ cee

iωt|e〉

= cg|g〉+ c̃e|e〉,

(5.35)

and it also gives the proper forms for H̃A and H̃AF from Eqs. (5.26) and (5.27), respectively, when we use
the transformation law (5.33) is applied to HA +HAF.

5.1.5.2 Digression: Field Operators

This rotating-frame transformation, where the atomic ground and excited states become nearly degenerate,
has an analogous interpretation in the fully quantum treatment of the problem. The key point is that
in a fully quantum treatment, the electric field is represented by an operator. We will defer the detailed
derivations until later, but the basic idea is that a single-mode field is represented quantum-mechanically by
a harmonic oscillator of frequency ω, where the nth energy level corresponds to the presence of n photons.
The other important thing to realize is that the positive-rotating field amplitude is proportional to the field
annihilation operator, E(+) ∼ a, where a is given by in terms of the photon number states as

a =
∞∑
n=1

|n− 1〉〈n|
√
n, (5.36)

while the negative-rotating amplitude corresponds to the creation operator, E(−) ∼ a†. It is not hard to see,
for example, that generic expectation values of the field operators have the right time dependence to match
the classical case.

In terms of the quantized field, the combined Hamiltonian becomes

Hquantum = HA +HAF

= h̄ω0|e〉〈e|+ h̄g
(
σa†eiωt + σ†ae−iωt

)
,

(5.37)

where 2g is often called the one-photon Rabi frequency, as we will see in our discussion of the Jaynes–
Cummings model in Chapter 10. This is very similar in form to the semiclassical Hamiltonian, where the
atom–field interaction is given by Eq. (5.18):

Hsemiclassical = HA +HAF

= h̄ω0|e〉〈e|+
h̄Ω

2

(
σeiωt + σ†e−iωt

)
,

(5.38)

except for the presence of the field operators and the different coupling constant.
This quantum Hamiltonian is in the interaction picture with respect to the field evolution. We can see

this because the field operators carry the explicit time dependence of the field (written out explicitly here),
and because the field should evolve according to a harmonic-oscillator Hamiltonian,

HF = h̄ω

(
a†a+

1

2

)
, (5.39)



5.2 Rabi Flopping 157

which is obviously missing here. We can transform out of the interaction picture by using the transformation

UI = exp (iHFt/h̄) . (5.40)

The resulting Hamiltonian is

H̃quantum = h̄ω0|e〉〈e|+ h̄g
(
σa† + σ†a

)
+ h̄ω

(
a†a+

1

2

)
= H̃A + H̃AF + H̃F,

(5.41)

where the tildes indicate operators after transformation (i.e., in the Schrödinger picture), and we have hidden
constant phase factors in the atom–field Hamiltonian. This Hamiltonian is then in the Schrödinger picture
with respect to the field, where the field time dependence is generated by the presence of HF. Note that we
didn’t shift the energy of the excited state down, but in a sense we shifted the energy of the ground state up,
which amounts to the same thing. This happened because the Hamiltonian here couples states of the form

|g, n+ 1〉 −→ |e, n〉, (5.42)

where the integer refers to photon-number states. The splitting between these states is −h̄∆, as we saw in
the semiclassical rotating frame.

In the classical limit, the average photon number N of the laser field is very large, and in a coherent
(Gaussian) state of the field, the fractional uncertainty in N becomes vanishingly small. Hence, the field
operator a can be replaced by

√
N . With the argument above, the free atom and field Hamiltonians conspire

to give an atomic Hamiltonian with the correct splitting in the rotating frame. Upon making the identification
Ω/2 = g

√
N , we also recover the correct form for the rotating interaction Hamiltonian (5.27). Hence we have

shown that the transformation to the rotating frame also arises as a transformation from the interaction
picture to the Schrödinger picture with respect to the quantized field. We have also established explicitly
how the fully quantized atom–field treatment reduces to the present semiclassical model in the classical-field
limit.

With the expressions (5.37) and (5.38) for the atom–field interaction in hand, we can make one final
remark about the RWA. Since E(+) annihilates a photon from the laser field, the terms left in the interaction
Hamiltonian from the RWA correspond to raising the atomic state while lowering the field state (d(−)z E(+) −→
σ†a) and lowering the atomic state while raising the field state (d

(+)
z E(−) −→ σa†). Near resonance, these

interactions are energy-conserving. The rotating terms that we neglected are of the form (d
(+)
z E(+) −→ σa)

and (d
(−)
z E(−) −→ σ†a†), corresponding to lowering the atom but annihilating a photon, and raising the

atom but creating a photon, respectively. These processes violate energy conservation by an energy of about
two photons’ worth, and should thus be much less important than the energy-conserving ones. Invoking the
RWA, then, amounts to keeping only the energy-conserving (resonant) terms in the interaction Hamiltonian.

5.2 Rabi Flopping

Now we can solve the coupled amplitude equations (5.25) in the rotating frame to look at the driven atomic
dynamics. We will do this first in the case of exact resonance, and then in the more general, nearly resonant
case.

5.2.1 Resonant Interaction

In the case of exact resonance (∆ = 0), the coupled equations reduce to

∂tcg = −iΩ
2
c̃e

∂tc̃e = −iΩ
2
cg.

(5.43)
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We can easily decouple these by differentiating them and substituting in the original equations. For example,

∂2t cg = −iΩ
2
∂tc̃e = −

(
Ω

2

)2

cg. (5.44)

This has the form of an undamped harmonic oscillator of frequency Ω/2. The equations of motion are
invariant under the exchange g←→ e, and so ce satisfies the same uncoupled equation as cg. Thus, we may
write the uncoupled equations as

∂2t cg = −
(
Ω

2

)2
cg

∂2t c̃e = −
(
Ω

2

)2
c̃e.

(5.45)

The general solution for cg is

cg(t) = A sin
(
1

2
Ωt

)
+B cos

(
1

2
Ωt

)
. (5.46)

To put this solution in terms of the initial conditions cg(0) and c̃e(0), we first set t = 0 in the cg solution to
find that cg(0) = B. Differentiating cg(t) and using the original equation of motion for cg, we find

∂tcg(t) =
1

2
Ω

[
A cos

(
1

2
Ωt

)
−B sin

(
1

2
Ωt

)]
= − i

2
Ωc̃e(t). (5.47)

Setting t = 0 then gives A = −ic̃e(0). Thus, the general solution for cg comes from Eq. (5.46), and the
general solution for c̃e comes from Eq. (5.47), which gives

cg(t) = cg(0) cos
(
1

2
Ωt

)
− ic̃e(0) sin

(
1

2
Ωt

)
c̃e(t) = c̃e(0) cos

(
1

2
Ωt

)
− icg(0) sin

(
1

2
Ωt

)
(two-level atom solution, ∆ = 0) (5.48)

as the general solution for the two amplitudes.

5.2.1.1 Example: Initially Unexcited Atom

For an atom initially in the ground state, cg(0) = 1 and c̃e(0) = 0. The general solution then becomes

cg(t) = cos
(
1

2
Ωt

)
c̃e(t) = −i sin

(
1

2
Ωt

)
.

(5.49)

The ground- and excited-state populations are thus

Pg(t) = |cg(t)|2 = cos2
(
1

2
Ωt

)
=

1

2
(1 + cosΩt)

Pe(t) = |c̃e(t)|2 = sin2

(
1

2
Ωt

)
=

1

2
(1− cosΩt).

(5.50)

Thus, we see explicitly the significance of the Rabi frequency: the population oscillates between the ground
and excited levels at the angular frequency Ω. This oscillation phenomenon is referred to as Rabi flopping.
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Roughly, the ‘‘upswings’’ in population from |g〉 to |e〉 correspond to light absorption, while the downswings
correspond to stimulated emission back into the original field (thus far we are ignoring spontaneous emission).
The period of the oscillation is T = 2π/Ω, and thus some particular times are important. If the field is turned
on for a duration T/2 [i.e., Ω(T/2) = π], an atom initially in the ground state is promoted to the excited
state with unit probability. A pulse of this form is called a π-pulse. On the other hand, if the field is turned
on for a duration T/4 [i.e., Ω(T/4) = π/2], an atom initially in the ground state ends up in a superposition
of the ground and excited states. A pulse of this form is called a π/2-pulse.

Of course, these ‘‘pulses’’ refer to square-profile pulses, since we have assumed a constant field ampli-
tude E0, but more generally we can consider the above analysis to be valid even when the field amplitude is
time-dependent, so long as it varies slowly on the optical time scales. In this case, the Rabi frequency itself
is time-dependent, and we can generally define a π-pulse to be any pulse with an ‘‘area’’ of π,∫

dtΩ(t) = π, (5.51)

and a π/2 pulse is any pulse with area π/2.

5.2.2 Nearly Resonant Interaction

In the case of nonzero detuning ∆, we need to solve Eqs. (5.25). We can again decouple these by differentiating
and eliminating appropriate variables, with the result(

∂2t − i∆∂t +
Ω2

4

)
cg = 0(

∂2t − i∆∂t +
Ω2

4

)
c̃e = 0.

(5.52)

Rewriting the decoupled equations as(
∂t − i

∆

2
+ i

Ω̃

2

)(
∂t − i

∆

2
− i Ω̃

2

)
cg = 0(

∂t − i
∆

2
+ i

Ω̃

2

)(
∂t − i

∆

2
− i Ω̃

2

)
c̃e = 0,

(5.53)

where Ω̃ is the generalized Rabi frequency,

Ω̃ :=
√
Ω2 +∆2, (5.54)

it is easy to see that any function that causes either factor to vanish will solve the equation, and thus the
solutions are linear combinations of functions of the form exp(i∆t/2±iΩ̃t/2). We will thus write the solutions
as

cg(t) = ei∆t/2
[
Ag cos

(
1

2
Ω̃t

)
+Bg sin

(
1

2
Ω̃t

)]
c̃e(t) = ei∆t/2

[
Ae cos

(
1

2
Ω̃t

)
+Be sin

(
1

2
Ω̃t

)]
.

(5.55)
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Setting t = 0 in these equations gives

Ag = cg(0), Ae = c̃e(0), (5.56)

while differentiating the solutions and comparing to the equations of motion gives

∂tcg(0) = i
∆

2
cg(0) +

Ω̃

2
Bg = −iΩ

2
c̃e(0) =⇒ Bg = − i

Ω̃
[∆cg(0) + Ωc̃e(0)]

∂tc̃e(0) = i
∆

2
c̃e(0) +

Ω̃

2
Be = i∆c̃e(0)− i

Ω

2
c̃e(0) =⇒ Be =

i

Ω̃
[∆c̃e(0)− Ωcg(0)] .

(5.57)

Thus, the general solution in terms of initial conditions reads

cg(t) = ei∆t/2
[
cg(0) cos

(
1

2
Ω̃t

)
− i

Ω̃
[∆cg(0) + Ωce(0)] sin

(
1

2
Ω̃t

)]
c̃e(t) = ei∆t/2

[
c̃e(0) cos

(
1

2
Ω̃t

)
+

i

Ω̃
[∆c̃e(0)− Ωcg(0)] sin

(
1

2
Ω̃t

)]
.

(two-level atom solution, arbitrary ∆) (5.58)

5.2.2.1 Example: Initially Unexcited Atom

Again, for an atom initially in the ground state, cg(0) = 1 and c̃e(0) = 0, and the general solution becomes

cg(t) = ei∆t/2
[
cos
(
1

2
Ω̃t

)
− i∆

Ω̃
sin
(
1

2
Ω̃t

)]
c̃e(t) = −iei∆t/2

Ω

Ω̃
sin
(
1

2
Ω̃t

)
.

(5.59)

The excited-state population is thus

Pe(t) =
Ω2

Ω̃2
sin2

(
1

2
Ω̃t

)
=

Ω2

Ω̃2

(
1

2
− 1

2
cos Ω̃t

)
. (5.60)

We can thus notice two things. First, the Rabi oscillations now occur at the generalized Rabi frequency
Ω̃ ≥ Ω, so the oscillation rate increases as the magnitude of the detuning increases. For weak fields (|∆| � Ω),
Ω̃ ≈ |∆|, while for strong fields (|∆| � Ω), Ω̃ ≈ Ω.

Wt
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D = 2W
D = W

D = W/2
D = 0
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0

Pooo(t)
e

1

The other thing to notice is that the amplitude of the oscillations is reduced. The modulation depth
(maximum excitation probability) is

Ω2

Ω̃2
=

Ω2

Ω2 +∆2
, (5.61)

which reduces to Ω2/∆2 for weak excitation and to 1 for strong excitation.



5.3 Dressed States 161

D/W

Wt = p

Wt = 2p

Wt = p/2
Wt = p/4

4 6 8-2-4-6-8 20

1
Pooo(t)

e

5.3 Dressed States

One thing that we can conclude from the Rabi-flopping behavior is that the old eigenstates |g〉 and |e〉 are
no longer eigenstates of the coupled system. However, we can still find the new eigenstates. We start by
writing the equations of motion (5.23) for the coefficients in the matrix form

∂t

[
c̃e
cg

]
= −i

[
−∆ Ω/2

Ω/2 0

] [
c̃e
cg

]
= − i

h̄
H̃

[
c̃e
cg

]
, (5.62)

where we identify the rotating-frame Hamiltonian

H̃ =
(
H̃A + H̃AF

)
= h̄

[
−∆ Ω/2

Ω/2 0

]
(5.63)

in the uncoupled energy basis. We leave the diagonalization of this Hamiltonian as an exercise, but it can
be shown that the eigenvalues are

E± = − h̄∆
2
± h̄Ω̃

2
,

(5.64)
(dressed-state energies)

and the corresponding eigenvectors are given by an effective rotation of the uncoupled states,

|+〉 = sin θ|g〉+ cos θ|e〉

|−〉 = cos θ|g〉 − sin θ|e〉,

(5.65)
(dressed states)

where by convention the state |+〉 has the higher energy, and the Stückelberg angle θ is defined via

tan 2θ = −Ω

∆

(
0 ≤ θ < π

2

)
.

(5.66)
(Stückelberg angle)

These are the dressed states of the atom, and we see from Eq. (5.64) that the coupling to the field causes
an avoided crossing in the energy level structure of the atom. That is, in the uncoupled case, the energies
of the ground and excited states—the bare states—are 0 and −h̄∆, respectively. The energy curves cross
when ∆ = 0.

D

E
E ooo= -hDoooe

E oo= 0ooog
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The coupling between the two levels lifts the degeneracy, however, converting the level crossing into a
hyperbolic avoided crossing. Avoided crossings happen commonly in quantum mechanics, and here we have
a simple model for this phenomenon.

D

W

W
~

E
Eò

E–

In the limit of large detuning, when the coupling is small, we can approximately identify the coupled eigen-
states with the uncoupled eigenstates. Near resonance, however, the states are mixed, and the energies are
shifted. The energy shifts are the ac Stark shifts, or lamp shifts, which we will treat in more detail later.

5.3.1 Rabi Oscillations in the Dressed-State Picture

We saw that due to the interaction of the field, the atom undergoes Rabi oscillations, where the magnitudes
of the probability amplitudes oscillate in time. How does this work in the dressed-state picture, where
the only possible evolution of the amplitudes is a change in phase? As an illustration, we’ll work this out
explicitly for the resonant case ∆ = 0. In this case, the dressed states are even and odd superpositions of
the bare states,

|±〉 = |g〉 ± |e〉 (5.67)

(we are dropping the normalization factor 1/
√
2 here), while the bare states are

|g〉 = |+〉+ |−〉
|e〉 = |+〉 − |−〉

(5.68)

in terms of the dressed states. Then if the atom starts in the ground state |g〉 = |+〉+ |−〉, the dressed-state
phases will evolve according to the appropriate energies:

|ψ(t)〉 = |+〉 e−iE+t/h̄ + |−〉 e−iE−t/h̄

= |+〉 e−iΩt/2 + |−〉 eiΩt/2.
(5.69)

Dropping an irrelevant overall phase,
|ψ(t)〉 = |+〉+ |−〉 eiΩt. (5.70)

Thus, it is the relative phase of the two dressed states that changes in time, and causes the Rabi flopping.
The frequency splitting between the dressed states is just Ω, so the evolution must be periodic with frequency
Ω. At time Ωt = π,

|ψ(t = π/Ω)〉 = |+〉+ |−〉 eiπ = |+〉 − |−〉 = |e〉, (5.71)

and the atom is in the excited state. At time Ωt = 2π,

|ψ(t = 2π/Ω)〉 = |+〉+ |−〉 ei2π = |+〉+ |−〉 = |g〉, (5.72)

and the atom is back in the ground state. This is precisely what we found in our analysis above.
Of course, the same general picture holds off resonance. In this case, the dressed-state splitting becomes

Ω̃, so the oscillations occur at the generalized Rabi frequency. Also, from Eq. (5.65) the bare states are not
equal superpositions of the dressed states, so the off-resonant Rabi flopping will not result in a complete
transfer of population, say from |g〉 to |e〉. This intuitive picture gives a simple way of looking at the analytic,
off-resonant solutions we found above.
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5.3.2 Adiabatic Passage and Landau–Zener Crossings

Suppose you have an atom in the ground state, and you want to tranfer it exactly into the excited state.
Sure, you can just use a resonant π-pulse. But lasers aren’t perfect: they have jitter in both frequency and
amplitude, the amplitude jitter often being more important directly on resonance. Instead of working really
hard to stabilize the laser, there is an easy trick that you can use, provided you can chirp (sweep) the laser
frequency. The idea is to chirp the laser frequency across the atomic resonance. As long as the chirp is slow
enough, it turns out that the atom will flip to the excited state with nearly unit probability. This effect is
called adiabatic passage.

We can see how this works as follows. Suppose we start the chirp well below resonance, ∆ � −Ω
(assuming Ω > 0 by convention). From Eqs. (5.65) and (5.66), we can see that the phase angle θ ≈ 0, and
thus |−〉 ≈ |g〉. As the chirp slowly proceeds, the adiabatic theorem guarantees that the atom will remain in
the |−〉 dressed state. When the chirp ends well above resonance, ∆ � Ω, we can see that the phase angle
increases to θ ≈ π/2 (passing through θ = π/4 on resonance), and thus |−〉 ≈ |e〉.

D

|gÒ

|gÒ
|-Ò

|+Ò

|eÒ

|eÒ

(start)

(end)

Thus, by mixing the two states, the atom adiabatically passes from |g〉 to |e〉: the avoided crossing exchanges
the identities of the uncoupled eigenstates. Of course, we could have chirped the other way, in which case
the atom would have followed the |+〉 dressed state from |g〉 to |e〉.

Clearly this happens if the chirp is ‘‘slow enough.’’ For a very fast chirp, the atom–field coupling
has effectively no time to become manifest, and the atom starting in |g〉 will jump (‘‘tunnel’’) across the
avoided crossing as if it weren’t there. For intermediate chirps, we might expect the atom to end up in
a superposition of |g〉 and |e〉, since some of the probablity will tunnel through the gap. but how slow is
slow enough? This problem can be solved completely, and the solution was given independently by Landau,
Zener, and Stückelberg; this is commonly called the Landau–Zener crossing problem.4

To solve the problem, recall the atom–field interaction Hamiltonian from Eq. (5.18) in the nonrotating
frame:

HAF =
h̄Ω

2

(
σeiωt + σ†e−iωt

)
. (5.73)

This came from a monochromatic field E(+) with phase e−iωt. To generalize this to a chirped field, we note
that the frequency is the rate at which phase accumulates, so that in general we can write the phase as
e−iφ(t), with ω ≡ dφ(t)/dt. Thus, the generalized interaction Hamiltonian has the same form as above, but
with the replacement

e−iωt −→ exp
(
−i
∫ t

0

ω(t′) dt′
)
, (5.74)

where ω(t) is the instantaneous frequency. We carry through the derivation of the Schrödinger equation as
before, defining the slowly varying excited-state amplitudes by

c̃e = ce exp
(
i

∫ t

0

ω(t′) dt′
)

(5.75)

4L. D. Landau, ‘‘Zur Theorie der Energieübertragung. II.,’’ Physikalische Zeitschrift der Sowjetunion 2, 46 (1932); Clarence
Zener, ‘‘Non-Adiabatic Crossing of Energy Levels,’’ Proceedings of the Royal Society of London. Series A, Containing Papers of
a Mathematical and Physical Character, 137, 696 (1932); E. C. G. Stueckelberg, Helvetica Physica Acta 5, 369 (1932). See also
Jan R. Rubbmark, Michael M. Kash, Michael G. Littman, and Daniel Kleppner, ‘‘Dynamical effects at avoided level crossings: A
study of the Landau–Zener effect using Rydberg atoms,’’ Physical Review A 23, 3107 (1981) (doi: 10.1103/PhysRevA.23.3107).

http://links.jstor.org/sici?sici=0950-1207%2819320901%29137%3A833%3C696%3ANCOEL%3E2.0.CO%3B2-I
http://dx.doi.org/10.1103/PhysRevA.23.3107
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so that the rotating-frame atomic and atom–field Hamiltonians become

H̃A = −h̄∆(t)σ†σ

H̃AF =
h̄Ω

2

(
σ + σ†

)
,

(5.76)

where ∆(t) := ω(t)− ω0. The equations of motion for the bare-state amplitudes are thus

∂tcg = −iΩ
2
c̃e

∂tc̃e = i∆(t)c̃e − i
Ω

2
cg.

(5.77)

Decoupling by differentiation and back substitution as usual gives(
∂ 2
t − i∆∂t − i(∂t∆) +

Ω2

4

)
c̃e = 0(

∂ 2
t − i∆∂t +

Ω2

4

)
cg = 0.

(5.78)

Now we transform into yet another rotating frame defined by the new variables

c′e := c̃e exp
(
− i
2

∫ t

0

∆(t′) dt′
)

c′g := cg exp
(
− i
2

∫ t

0

∆(t′) dt′
)
,

(5.79)

in terms of which the equations (5.78) become(
∂ 2
t −

i

2
(∂t∆) +

∆2

4
+

Ω2

4

)
c′e = 0(

∂ 2
t +

i

2
(∂t∆) +

∆2

4
+

Ω2

4

)
c′g = 0.

(5.80)

Assuming a purely linear chirp, ∆ = αt (α > 0), we see that(
∂ 2
t +

Ω2

4
− iα

2
+
α2

4
t2
)
c′e = 0(

∂ 2
t +

Ω2

4
+
iα

2
+
α2

4
t2
)
c′g = 0,

(5.81)

and then defining the new variables

ν := i
Ω2

4α
= i|ν|, z := e−iπ/4

√
α t, (5.82)

the uncoupled equations of motion become(
∂ 2
z + ν +

1

2
− z2

4

)
c′e = 0(

∂ 2
z + (ν − 1) +

1

2
− z2

4

)
c′g = 0.

(5.83)

These are both in the form of Weber’s equation,(
∂ 2
z + ν +

1

2
− z2

4

)
y = 0, (5.84)
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whose solutions are the parabolic-cylinder functions Dν(z), Dν(−z), D−(ν+1)(iz), and D−(ν+1)(−iz).5
We will now be concerned with the solution for the excited-state amplitude c′e. The leading-order

asymptotic expansion of Dn(z) (for large |z|) is

Dν(z) ∼ e−z
2/4zν (5.85)

for | arg(z)| < 3π/4. Letting ν −→ −(ν + 1) and z −→ i|z|e−iπ/4,

D−(ν+1)

(
i|z|e−iπ/4

)
∼ e−iπ(ν+1)/4 e−i|z|

2/4 |z|−(ν+1). (5.86)

We can conclude from this that D−(ν+1)(−iz) is a function that vanishes for large |z|, if z follows the direction
ei3π/4 = −e−iπ/4 (vanishing as |z|−1 since ν is imaginary), and thus vanishes in the limit t −→ −∞. Thus,
we can write our solution for the excited-state amplitude

c′e = AD−(ν+1)(−iz), (5.87)

where A is an undetermined constant, since this represents a particular solution to Weber’s equation with
the correct initial condition

c′e(t −→ −∞) = 0. (5.88)
Note that we are idealizing the chirp, assuming that it extends to all frequencies, and thus we treating this
as a scattering-type problem, where the boundary conditions are applied at t = ±∞.

Now to determine the coefficient. We use the bare-state equations of motion (5.77), which in terms of
new variables becomes

c′g =
i√
ν

(
∂z +

z

2

)
c′e. (5.89)

We can then use the asymptotic expansion (5.86) to find |c′g| in the limit t −→ −∞:∣∣c′g∣∣ = |A|√
|ν|
eπ|ν|/4. (5.90)

Our other boundary condition is that the ground state is initially fully populated,∣∣c′g(t −→ −∞)
∣∣ = 1, (5.91)

and thus we have
|A| =

√
|ν|e−π|ν|/4, (5.92)

which fixes the form of the solution, up to an overall phase.
To look at the t −→∞ limit, we use an alternate form of the asymptotic expression,

Dν(z) ∼ e−z
2/4zν −

√
2π

Γ(−ν)
e−iπνez

2/4z−(ν+1), (5.93)

valid for arg z ∈ (−5π/4,−π/4). Letting ν −→ −(ν + 1) and z −→ −i|z|e−iπ/4, and keeping only the
leading-order term, we find

D−(ν+1)

(
−i|z|eiπ/4

)
∼

√
2π

Γ(ν + 1)
eiπν/4ei|z|

2/4|z|ν , (5.94)

in which case the excited-state population becomes

Pe(t −→∞) = |c′e|
2
= |A|2

∣∣∣D−(ν+1)

(
−i|z|e−iπ/4

)∣∣∣2
=

2π|ν|e−π|ν|

Γ(ν + 1)Γ(−ν + 1)

= 2e−π|ν| sinh(π|ν|)

= 1− e−2π|ν|

(5.95)

5The theory of Weber’s equation and the parabolic-cylinder functions that we will use here is covered by E. T. Whittaker
and G. N. Watson, A Course of Modern Analysis, 4th reprinted ed. (Cambridge, 1945), section 16.5.
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in the limit t −→∞. Thus, the fraction that didn’t adiabatically follow the dressed state is

Plost = e−2π|ν| = exp
(
− πΩ2

2|α|

)
= exp

(
− πΩ2

2|∂t∆|

)
.

(Landau–Zener tunnel probability) (5.96)
This is the Landau–Zener result. In the limit of a strong field and slow sweep (Ω2 � |∂t∆|), nothing is
lost—all the population adiabatically follows the dressed state and makes the transition. In the opposite
regime of a weak field and fast sweep (Ω2 � |∂t∆|), the population jumps (tunnels) across the gap, and
everything stays in the original state.

The simulated evolution for an atom undergoing a chirp from ∆/Ω = −20 to 20 for two different chirp
rates, slow (α/Ω2 = 0.2) and fast (α/Ω2 = 2), are shown here.

-20 20

D/G
10-10 0

1

0

P
e
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™
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™

The Landau–Zener predictions for the final excited-state population are 0.9996 and 0.544, respectively.
What we have discussed here is just adiabatic passage. We also need to consider the effects of the fact

that the excited state will decay due to spontaneous emission. Thus, we also need adiabatic rapid passage,6
since the chirp must be fast compared to decay rate of excited state for the analysis to be valid. The field
must also be strong enough so that the dressed states are well resolved, in spite of homogeneous broadening
of the levels. Thus, if the Rabi frequency is much larger than the decay rate, and the field is chirped quickly
enough, the atom can still make a complete transition.

5.4 Bloch Sphere

Consider the Pauli operators

σx =

[
0 1

1 0

]
= σ + σ†

σy =

[
0 −i
i 0

]
= i
(
σ − σ†

)
σz =

[
1 0

0 −1

]
= |e〉〈e| − |g〉〈g| = σ†σ − σσ† = [σ†, σ],

(5.97)

6Adiabatic rapid passage was first observed in NH3 by sweeping the resonant frequency via the dc Stark effect (shifting the
resonant frequency by applying an external dc electric field). See Michael M. T. Loy, ‘‘Observation of Population Inversion by
Optical Adiabatic Rapid Passage,’’ Physical Review Letters 32, 814 (1974) (doi: 10.1103/PhysRevLett.32.814).

http://dx.doi.org/10.1103/PhysRevLett.32.814
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which satisfy the commutation and anticommutation relations

[σα, σβ ] = 2iεαβγσγ

[σα, σβ ]+ = 2δαβ .
(5.98)

These operators work on (rotating-frame) states with the ordering[
c̃e
cg

]
. (5.99)

The idea behind the Bloch sphere7 is to use the expectation values 〈σα〉 as dynamical coordinates for the
atomic evolution.

Let’s first connect these variables to the density matrix for the atom. It is sufficient to use the relations
(in the rotating frame)

〈σ〉 = Tr[|g〉〈e|ρ] = Tr[〈e|ρ̃|g〉] = ρ̃eg〈
σ†
〉
= Tr[|e〉〈g|ρ] = Tr[〈g|ρ̃|e〉] = ρ̃ge〈

σ†σ
〉
= Tr[|e〉〈e|ρ̃] = ρee〈

σσ†
〉
= Tr[|g〉〈g|ρ̃] = ρgg.

(5.100)

Here the twiddles indicate coherences in the rotating frame. To make this more explicit, ρ̃ is the slowly
varying state, which in a pure state has the form |ψ̃〉〈ψ̃|. The corresponding density matrix for a pure state
then has the form ρ̃αβ = c̃αc̃

∗
β (with c̃g ≡ cg). Then the rotating-frame populations are independent of the

choice of frame,

ρ̃gg = cgc
∗
g = ρgg

ρ̃ee = c̃ec̃
∗
e = cec

∗
e = ρee,

(5.101)

while the coherences in the rotating frame differ from the usual coherences by a rotating phase factor,

ρ̃ge = cgc̃
∗
e = cgcee

−iωt = ρgee
−iωt

ρ̃eg = ρege
iωt,

(5.102)

and thus the rotating-frame coherences are called the slowly varying coherences.
Now using the evolution equations for the coefficients c̃e and cg [Eqs. (5.23)], we can compute the

equations of motion for the excited-state population,

∂tρee = c̃∗e(∂tc̃e) + c.c.

= i∆c̃ec̃
∗
e − i

Ω

2
cgc̃
∗
e + c.c.

= i
Ω

2
(ρ̃eg − ρ̃ge),

(5.103)

the ground-state population,

∂tρgg = −∂tρee

= −iΩ
2
(ρ̃eg − ρ̃ge),

(5.104)

7after Felix Bloch, who derived the equation of motion for a spin in a magnetic field, which has the spherical representation.
See F. Bloch, ‘‘Nuclear Induction,’’ Physical Review 70, 460 (1946) (doi: 10.1103/PhysRev.70.460).

http://dx.doi.org/10.1103/PhysRev.70.460
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and the coherences,

∂tρ̃ge = cg∂tc̃
∗
e + c̃∗e∂tcg

= −i∆cgc̃
∗
e + i

Ω

2
cgc
∗
g − i

Ω

2
c̃ec̃
∗
e

= −i∆ρ̃ge − i
Ω

2
(ρee − ρgg),

∂tρ̃eg = ∂tρ̃
∗
ge

= i∆ρ̃eg + i
Ω

2
(ρee − ρgg).

(5.105)

Of course, these four equations for the density matrix elements are equivalent to the Schrödinger–von Neu-
mann equation

∂tρ̃ = − i

h̄

[
H̃A + H̃AF, ρ̃

]
(5.106)

in the rotating frame. Again, without the transformation to the rotating frame, the equations of motion
would have explicit time dependences, representing the relative precession of the atomic and field phases.

Given the above relations for the density matrix elements, how many degrees of freedom are there?
There are four matix elements, and if each is complex, then there are eight possible independent, real
numbers. The populations must be real, so this removes two free variables. The populations much further
sum up to unity, removing another free variable. Finally, the constraint ρge = ρ∗eg removes two more free
variables, leaving only three independent, real numbers to represent the quantum state. This motivates the
idea of using a three-vector (in R3) to represent the atomic state.

To proceed with this idea, we start with the relations

〈σx〉 =〈σ〉+
〈
σ†
〉
= ρ̃eg + ρ̃ge

〈σy〉 = i〈σ〉 − i
〈
σ†
〉
= i(ρ̃eg − ρ̃ge)

〈σz〉 = ρee − ρgg,

(5.107)

for the Bloch variables, and then we use the equations of motion for the density matrix elements (5.103)-
(5.105) to write

∂t〈σx〉 = ∆〈σy〉
∂t〈σy〉 = −∆〈σx〉 − Ω〈σz〉
∂t〈σz〉 = Ω〈σy〉 .

(5.108)
(Bloch-vector equations of motion)

Note that these equations may be rewritten in terms of the Bloch vector 〈σ〉 :=〈σx〉 x̂+〈σy〉 ŷ+〈σz〉 ẑ as

∂t〈σ〉 = −∆ẑ ×〈σ〉+Ωx̂×〈σ〉 , (5.109)
(Bloch-vector equation of motion)

which we can also write this as a torque equation in terms of a single ‘‘precession vector’’ ℘ as8

∂t〈σ〉 = ℘×〈σ〉 , (5.110)
(Bloch-vector equation of motion)

where
℘ := Ωx̂−∆ẑ,

(5.111)
(precession vector)

in analogy with τ = ∂tL = Ω × L, with L the angular momentum, τ the torque, and Ω the angular
frequency vector for the precession (or the magnetic field vector in the case of Larmor precession of

8The symbol ℘ is pronounced ‘‘squiggle.’’
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a magnetic moment).9 This picture of the two-level atom in terms of a precessing spin is known as the
Feynman–Vernon–Hellwarth representation.10

One property that follows immediately from this representation is that the length of the Bloch vector
is a constant of the motion. That’s because the change in 〈σ〉 is always normal to it. Furthermore, if we
assume a pure quantum state, we can see that∣∣ 〈σ〉 ∣∣2 =〈σx〉2 +〈σy〉2 +〈σz〉2

= (ρ̃eg + ρ̃ge)
2 − (ρ̃eg − ρ̃ge)

2 + (ρee − ρgg)
2

= 4ρ̃egρ̃ge + ρ2ee + ρ2gg − 2ρeeρgg

= (ρee + ρgg)
2 = 1,

(5.112)

since ρ̃egρ̃ge = ρeeρgg for a pure state. Thus, the Bloch vector for a pure state lies on a sphere of unit radius,
which we call the Bloch sphere. Thus, of the three independent real numbers in the density matrix, one
of these is fixed by the purity of the state. The remaining two numbers, as we will see, correspond to the
degree of atomic excitation and a phase angle.

We can see that the FVH representation is a compact, handy way to visualize the evolution. The trajectories
lie on the unit sphere, and their evolution is generated simply by a constant-speed rotation of the whole
sphere. The rotation axis and angular speed are determined by the precession vector ℘, whose magnitude
is simply Ω̃.

From Eqs. (5.107), we can interpret the meanings of the components of the Bloch vector. The vertical
(z) component of the Bloch vector represents the degree of atomic excitation (population inversion): the
Bloch vector points straight down for an atom in |g〉 and straight up for an atom in |e〉. When the driving
field is on resonance (∆ = 0), the precession vector is ℘ = Ωx̂.

9See Richard Feynman, Robert B. Leighton, and Matthew L. Sands, The Feynman Lectures in Physics (Addison–Wesley,
1963), Chapter 20.

10Richard P. Feynman, Frank L. Vernon, and Robert W. Hellwarth, ‘‘Geometrical Representation of the Schrödinger Equation
for Solving Maser Problems,’’ Journal of Applied Physics 28, 49 (1957) (doi: 10.1063/1.1722572).

http://dx.doi.org/10.1063/1.1722572
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If the atom is initially in the ground state, the trajectory follows the great circle given by the intersection of
the Bloch sphere with the x = 0 plane. Thus, it passes through the excited state.

Now we turn to the transverse (x and y) components of the Bloch vector. Recalling that the dipole
operator has the form

d = 〈g|d|e〉(σ + σ†), (5.113)

we can easily see that
〈d〉 = 〈g|d|e〉〈σx〉 . (5.114)

Thus, 〈σx〉 represents the atomic dipole. The other transverse component 〈σy〉, represents the alternate
‘‘quadrature’’ of the dipole moment. That is, 〈σx〉 represents the real part of

〈
d(+)

〉
,

〈σx〉 ∼ Re [〈σ〉] ∼ Re
[〈

d(+)
〉]
, (5.115)

while 〈σy〉 represents the imaginary part of
〈
d(+)

〉
,

〈σy〉 ∼ −Im [〈σ〉] ∼ −Im
[〈

d(+)
〉]
. (5.116)

Note that there can only be a dipole moment when the atom is in a superposition of |g〉 and |e〉, since the
diagonal matrix elements of d vanish.

The other picture of the transverse Bloch-vector components is as follows. When the atom is in a
superposition of |g〉 and |e〉, the azimuthal angle (represented by the x and y components of the Bloch
vector) represents the relative phase of the ground and excited states. In the absence of an external field,
Ω = 0. Then the precession vector is ℘ = −∆ẑ.
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Thus, the Bloch sphere simply spins about the z-axis, causing azimuthal rotation of the trajectories. This
evolution represents the relative phase evolution of the ground and excited states. But remember that we are
in the rotating frame, where the rotation rate is the field frequency ω. To go back to the original variables,
you just have to add ω to the precession frequency to get ω0ẑ in the stationary coordinates. We can therefore
see that the free evolution is just the precession of the excited state phase relative to that of the ground
state.

With a nearly resonant driving field with nonzero detuning, the rotation axis is tilted, being a combi-
nation of the previous two rotations. If the atom starts in the ground state, the trajectory never quite makes
it exactly to the excited state.

This a nice way to visualize how the off-resonant excitation ends up being incomplete. Furthermore, the rate
at which the Rabi oscillations occur is given by the magnitude

|℘| =
√
Ω2 +∆2 = Ω̃, (5.117)

as we saw from the direct solution to the Schrödinger equation.

5.4.1 Atomic Timekeeping and Ramsey Fringes

One nice application of the Bloch sphere is to understanding Ramsey fringes,11 which form the basis for
atomic time and frequency standards as well as the benchmark for demonstrating quantum coherence.

Suppose that we want to let a field interact with an atom in order to compare their frequencies. The
main limitation in doing this is the interaction time, since long interaction times are required to resolve
small frequency splittings (as dictated by the ‘‘time-frequency uncertainty relation’’). In principle, one can
let the atom and field interact for a long time, but this poses a number of difficult problems. For example,
for configurations such as the atomic beam, it is difficult to maintain a uniform interaction over the entire
length of the beam, since the interaction region must be large (say, meters) for a sensitive measurment.
Furthermore, constraints on the apparatus itself (such as the vacuum system) may not permit the driving
field to enter in certain regions. And even if it is possible to have a uniform field, the nearly resonant field
will cause an energy (Stark) shift of the transition (as we saw from the dressed-state solutions), so that a
precise comparison isn’t possible anyway.

So what do we do? Well, there is a clever trick called Ramsey’s method of separated, oscillatory
fields. Suppose we have an beam of atoms moving at velocity v. We allow two identical fields (laser or
microwave fields, depending on the transition, but both fields are derived from the same source) of width
` to cross the beam a distance L apart. Mathematically, we will idealize the fields as spatially uniform,
but it is straightforward to generalize this to arbitrary beam profiles. The beams are then followed by a
state-sensitive detector (Stern–Gerlach apparatus) to measure the excitation probability.

11Ramsey, a former student of Rabi, shared the 1989 Nobel prize for the method of separated, oscillatory fields. See Norman
F. Ramsey, ‘‘A New Molecular Beam Resonance Method,’’ Physical Review 76, 996 (1949) (doi: 10.1103/PhysRev.76.996);
Norman F. Ramsey, ‘‘A Molecular Beam Resonance Method with Separated Oscillating Fields,’’ Physical Review 78, 695
(1950) (doi: 10.1103/PhysRev.78.695); Norman F. Ramsey, Molecular Beams (Oxford, 1956).

http://dx.doi.org/10.1103/PhysRev.76.996
http://dx.doi.org/10.1103/PhysRev.78.695
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atomic beam

field 1 field 2
state-sensitive

detector

v

L

To see how this works, we will assume that the field is very close to the atomic resonance, so that |∆| � Ω,
where Ω is the Rabi frequency for each field. In doing so, we can ignore the fact that the Rabi oscillations
do not quite occur about the x-axis. Now letting τ = `/v be the interaction time of each field with the
passing atoms, the first field causes a Rabi oscillation with an accumulated phase of Ω̃τ ≈ Ωτ . We assume
the atoms start in the ground state, and we will choose the field amplitude Ω such that the field drives a
π/2-pulse (i.e., Ωτ = π/2). Then the interaction with the first field puts the atom in an equal superposition
of the ground and excited states.

Then in between the fields, the atom undergoes free evolution—precession about the −z-axis at rate ∆—for
a time T = L/v. The accumulated phase is thus −∆T .

The final field causes another π/2-pulse, but its effect depends on the state of the atom after the precession
stage. If the atom ends up with its initial phase after the precession, which happens if ∆T is an integer
multiple of 2π, then the effect of the second π/2-pulse continues the evolution from before and promotes the
atom to the excited state.
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On the other hand, if the atom ends up with the opposite phase after precession, as happens when ∆T is an
odd-integer multiple of π, then the second π/2-pulse has the opposite effect: the atom returns to the ground
state.

For other final phases after the precession stage, the final excited-state population interpolates sinusoidally
between these extreme values. We thus see that the output signal (the excited-state population) is sinusoidal
in T with period 2π/∆. Similarly the output signal is sinusoidal in ∆ with period 2π/T .

DT

2p 3pp-p-2p-3p 0

Pooo
e

1

These oscillations are what are referred to as Ramsey fringes. Essentially, we have built something like
an optical Mach–Zehnder interferometer, but where the two arms of the interferometer correspond to the
internal states of the atom, and the beamsplitters correspond to the π/2-pulses. Alternately, we can think
of this experiment as a sort of Young double slit, but where the slits are separated in time (and thus the
fringes appear as a function of frequency). Since the output signal varies between 0 and 1, we can write

Pe = cos2
(
∆T

2

)
=

1

2
(1 + cos∆T ) , (5.118)

and we can see that the width (FWHM) of the central fringe is π/T in angular frequency. Thus, the accuracy
of the comparison of the atom and field frequencies increases as T increases, as we expect.
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In the more general case, where we are not restricted to very small detunings, the excitation probability
can be written (Problem 5.6)

Pe = 4
Ω2

Ω̃2
sin2

(
Ω̃τ

2

)[
cos
(
∆T

2

)
cos

(
Ω̃τ

2

)
− ∆

Ω̃
sin
(
∆T

2

)
sin

(
Ω̃τ

2

)]2
,

(Ramsey excitation proability) (5.119)
where τ is the interaction time of each of the two laser pulses of Rabi frequency Ω, and T is the time interval
(time spent ‘‘in the dark’’) between pulses. For larger detunings, then, the tipped Rabi oscillations lead to a
reduction in the fringe contrast. A more serious reduction in the fringe contrast for larger detunings occurs
in atomic beams due to the longitudinal velocity spread, which causes slightly different interaction times and
thus slightly different fringe spacings.

This method is precisely the one used for atomic clocks. The current frequency standard corresponds to
the energy difference between two spin states of an isolated 133Cs atom, which is defined to have a transition
frequency of 9.192 631 770 GHz. In typical cesium frequency standards, a ‘‘flywheel’’ oscillator with very
good short-term stability, such as a crystal oscillator or a hydrogen maser, has its frequency periodically
compared to the cesium transition frequency by a similar atomic beam measurement. Of course, there are
many tricks in getting this method to work well and to compensate for systematic effects that we won’t get
into here. One of the best atomic-beam clocks was NIST-7,12 a cesium-beam atomic clock with a drift region
of L = 1.53 m, an interaction region of ` = 2.3 cm, and a mean beam velocity of 230 m/s. It operated from
1993-1999, and had an uncertainty of 5× 10−15. The current U.S. standard clock operated by the National
Institute of Standards and Technology (NIST) is NIST-F1, a ‘‘fountain’’ clock, where a sample of ultracold
atoms is tossed upwards and returns to the interaction region under free fall to reach long interaction times,
and as of 2005, the uncertainty is about 5× 10−16.

The measure of clock stability is the ratio ω0/δω, where δω is the frequency uncertainty. Traditional
approaches to cesium clocks has focused on making δω as small as possible. However, the ratio can also be
made large by choosing a much larger transition frequency, such as in the optical regime. Candidates for
future standards include optical transitions in single trapped ions, where the transition shift due the trapping
fields averages to zero, or atoms trapped in ‘‘magic wavelength’’ optical lattices, which we will discuss soon.

5.4.2 Spin Echoes and Photon Echoes

Ramsey-type experiments work a lot less well when dephasing between members of an ensemble occurs.
This type of issue crops up with inhomogeneous broadening, where each atom effectively has a slightly
different resonance frequency, as happens with Doppler broadening in atomic vapors or local field effects
on atoms embedded in crystalline media (and has something of a similar effect of a velocity spread in the
Ramsey experiment, which causes effectively different drift times for different atoms). To see the problem,
let’s walk through the Ramsey experiment in the presence of inhomogeneous broadening. The first step is
the π/2-pulse to put the atoms in a superposition of the ground and excited states.

12J. H. Shirley, W. D. Lee, and R. E. Drullinger, ‘‘Accuracy evaluation of the primary frequency standard NIST-7,’’ Metrologia
38, 427 (2001) (doi: 10.1088/0026-1394/38/5/7).

http://dx.doi.org/10.1088/0026-1394/38/5/7
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During the free-drift time, each atom precesses at a slightly different frequency, leading to a spread in phase
angles that increases with time. As shown here, the blue vectors precess more quickly than the green vectors.

Now when the second π/2-pulse (the ‘‘interrogation pulse’’) comes, the Bloch sphere rotates appropriately.
But in a situation that would put all the atoms in the ground state, only a small fraction of the atoms actually
makes it to the right state. In the limit of large dephasing, the atoms are spread uniformly around the
equator, and thus after the interrogation pulse, the average excited-state population is just 1/2, independent
of the drift time. The Ramsey fringes damp away in a drift time of order 1/δω0, where δω0 measures the
inhomogeneously broadened width of the atomic transition. This damping of the ensemble-averaged dipole
moment due to dephasing is sometimes called free-induction decay.
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The fact that the Ramsey fringes damp away makes it look like irreversible decoherence of the atomic
polarization. But just how reversible is it? Let’s try something else—after the atoms have dephased, hit the
atoms with a π-pulse. This effectively reflects the orientation of the dipoles.

Now as the evolution continues, the dipoles begin to come back together to the same phase. In the diagram,
the faster (blue) dipoles are now behind the slower (green) ones, and thus the slower ones can now ‘‘catch
up.’’ The other way to look at this is that the reflection due to the π-pulse is effectively equivalent to
flipping the precession axis, and thus reversing the direction of time. The dipoles thus come back to their
common original location. Actually, that’s not quite right: they come back to the mirror image of the
original orientation, if we account fully for the effect of the reflection of the π-pulse.

When the dipoles rephase, the Ramsey fringes become visible again. If the π-pulse is applied a time T after
the original preparation pulse, the spin echo occurs at time 2T . This phenomenon in the case of nuclear
spins is called the spin echo.13

t

drift
p-pulse

echo

0

1
P

In the optical case, there is a more direct, dramatic manifestation. Suppose that an atomic sample (a
ruby crystal in the original experiments) is irradiated by two coherent light pulses separated by some time

13E. L. Hahn, ‘‘Spin Echoes,’’ Physical Review 80, 580 (1950) (doi: 10.1103/PhysRev.80.580).

http://dx.doi.org/10.1103/PhysRev.80.580
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T . The atoms then spontaneously emit another pulse of light a time T after the second pulse. We can
see how this works based on the above analysis. The first laser pulse comes in and polarizes the atoms.
After the dipoles dephase, the atoms can only emit incoherently, so the radiation is nondirectional and even
suppressed, as we have seen is the case for classical dipoles radiating out of phase. The other way to say this
is that the polarization wave decays away. However, upon applying the π-pulse, the dipoles rephase, and the
polarization wave recurs. The recurrent polarization wave emits a pulse of light, an ‘‘echo’’ of the original
excitation. This is called the photon echo.14

5.4.3 Adiabatic Following

We will close this discussion of the Bloch sphere by revisiting the problem of rapid adiabatic passage.
Suppose a bunch of atoms begin in the ground state, so that the Bloch vector points along −z. Now apply
an intense but very far detuned field (|∆| � Ω and thus Ω̃ ≈ |∆|), and say that it is above resonance so
that the precession vector ℘ ≈ |∆|ẑ is aligned with the Bloch vector. The precession of the Bloch vector
is very simple, since it just stays in place. Now start sweeping the detuning through resonance, so that the
precession vector moves through the x-axis and up towards the +z-axis. As long as we change the direction
of ℘ slowly on the time scale of the Rabi frequency Ω, the Bloch vector will follow the precession vector.
When the detuning is swept until it is far below resonance, the precession vector has flipped by this time,
and the Bloch vector has flipped as well. This is the ‘‘classical’’ view of the adiabatic passage problem that
we treated quantum mechanically in Section 5.3.2.

5.5 Optical Bloch Equations

Now let’s return to the evolution of the density operator. Recall that we have the Schrödinger–von Neumann
equation in both the ‘‘laboratory’’ frame,

∂tρ = − i

h̄
[HA +HAF, ρ] , (5.120)

and in the rotating frame,
∂tρ̃ = − i

h̄

[
H̃A + H̃AF, ρ̃

]
. (5.121)

In the latter case, we have already worked out the equations of motion for the density-matrix elements in
Eqs. (5.103)-(5.105):

∂tρee = i
Ω

2
(ρ̃eg − ρ̃ge)

∂tρgg = −iΩ
2
(ρ̃eg − ρ̃ge)

∂tρ̃ge = −i∆ρ̃ge − i
Ω

2
(ρee − ρgg)

∂tρ̃eg = i∆ρ̃eg + i
Ω

2
(ρee − ρgg).

(5.122)

To model spontanous emission, we need to add extra terms. We will do so now by simply putting them in,
but we will justify them later. With ∆ = Ω = 0, the extra terms have the form

∂tρee = −Γρee

∂tρgg = +Γρee

∂tρ̃ge = −γ⊥ρ̃ge

∂tρ̃eg = −γ⊥ρ̃eg.

(5.123)

14Photon echoes with pulse separations of around 100 ns (with 10 ns pulses) were observed in ruby (T ∗
2 ∼ 0.1 ns) by I. D.

Abella, N. A. Kurnit, and S. R. Hartmann, ‘‘Photon Echoes,’’ Physical Review 141, 391 (1966) (doi: 10.1103/PhysRev.141.391).

http://dx.doi.org/10.1103/PhysRev.141.391
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Let’s look at these and understand them. The excited-state population now decays at a rate of Γ, and to
compensate for this, a similar term puts the decayed population into the ground state. These terms have
exactly the same form as the rate-equation terms for spontaneous emission, if we identify ρee and ρgg as the
relative number densities Ne/N and Ng/N in the excited and ground states, respectively. We thus identify
Γ = A21 as the excited-state decay rate. Since Γ is the rate of relaxation of the z-component of the Bloch
vector to the ground state, it is also called the longitudinal decay rate.

The coherences also damp at the rate γ⊥, which are introduced phenomenologically now, but which
we will justify later via the quantum theory of damping. For now we note that in general γ⊥ ≥ Γ/2, and in
fact we can write

γ⊥ =
Γ

2
+ γc, (5.124)

where γc models additional coherence decay beyond the minimum rate of Γ/2 needed for consistency with
spontaneous emission. Thus γc models dephasing effects such as atom–atom collisions that do not affect the
populations. Since γ⊥ is the rate at which the coherences damp it is also the rate at which the transverse
components (transverse to z) of the Bloch vector damp, and hence γ⊥ is called the transverse decay rate.
The original and still common notation15 for these decay rates is in terms of the longitudinal relaxation
time T1 = 1/Γ and transverse relaxation time T2 = 1/γ⊥. Note that the notation T ∗2 is used when
there is inhomogeneous broadening, and would include inhomogeneous dephasing as well as other sources of
damping (e.g., collisions), so that T ∗2 ≤ T2.

We can thus combine the damping terms with the Hamiltonian-evolution terms in (5.122) to obtain
the optical Bloch equations:

∂tρee = i
Ω

2
(ρ̃eg − ρ̃ge)− Γρee

∂tρgg = −iΩ
2
(ρ̃eg − ρ̃ge) + Γρee

∂tρ̃ge = −(γ⊥ + i∆)ρ̃ge − i
Ω

2
(ρee − ρgg)

∂tρ̃eg = −(γ⊥ − i∆)ρ̃eg + i
Ω

2
(ρee − ρgg).

(5.125)
(optical Bloch equations)

That is, these are the extension of Bloch’s original equations for nuclear magnetic resonance to the optical
regime.

Note that we may also write the damped optical Bloch equations in terms of the Bloch vector as

∂t〈σα〉 = εαµν℘µ〈σν〉 − γα
(
〈σα〉+ δαz

)
,

(optical Bloch equations, Bloch-vector form) (5.126)
where again ℘α = Ωδαx −∆δαz is the precession vector, and γα = γ⊥(δαx + δαy) + Γδαz gives the damping
rates for the three Bloch-vector components as we discussed above (note that there is no implied summation
in the γα〈σα〉 term. Writing the components out separately gives

∂t〈σx〉 = ∆〈σy〉 − γ⊥〈σx〉
∂t〈σy〉 = −∆〈σx〉 − Ω〈σz〉 − γ⊥〈σy〉
∂t〈σz〉 = Ω〈σy〉 − Γ

(
〈σz〉+ 1

)
,

(optical Bloch equations, Bloch-vector form) (5.127)
where we can see explicitly that the damping terms push the transverse components towards zero, while
they push the longitudinal component towards the ground-state value 〈σz〉 = −1.

15F. Bloch, op. cit.



5.5 Optical Bloch Equations 179

5.5.1 Steady State

Since we now have damping in the equations of motion, there exist steady-state solutions (∂tρ̃ = 0) to the
optical Bloch equations (5.125). To find these, we first set ∂tρ̃eg = 0, which gives

ρ̃eg(t −→∞) =
iΩ

γ⊥ − i∆

(
ρee −

1

2

)
= − Ω(∆− iγ⊥)

γ2⊥ +∆2

(
ρee −

1

2

)
. (5.128)

The complex conjugate of this equation is

ρ̃ge(t −→∞) = − iΩ

γ⊥ + i∆

(
ρee −

1

2

)
= − Ω(∆ + iγ⊥)

γ2⊥ +∆2

(
ρee −

1

2

)
, (5.129)

which we can subtract from the previous equation to obtain

(ρ̃eg − ρ̃ge)(t −→∞) =
2iΩγ⊥
γ2⊥ +∆2

(
ρee −

1

2

)
. (5.130)

Now we can set ∂tρee = 0 to obtain

ρee(t −→∞) = i
Ω

2Γ
(ρ̃eg − ρ̃ge) = −

Ω2(γ⊥/Γ)

γ2⊥ +∆2

(
ρee −

1

2

)
. (5.131)

Solving for ρee, we find the steady-state excitation

ρee(t −→∞) =
Ω2

2γ⊥Γ

1

1 +
∆2

γ2⊥
+

Ω2

γ⊥Γ

.
(5.132)

(steady-state excitation)

We can put this result into Eq. (5.128) to obtain the steady-state coherence

ρ̃eg(t −→∞) = − iΩ

2γ⊥

1 +
i∆

γ⊥

1 +
∆2

γ2⊥
+

Ω2

γ⊥Γ

.
(5.133)

(steady-state coherence)

The other elements of the density matrix are of course given by ρee + ρgg = 1 and ρ̃ge = ρ̃∗eg.
We can simplify the notation here somewhat by defining the saturation parameter

s :=
Ω2/γ⊥Γ

1 +∆2/γ2⊥
.

(5.134)
(saturation parameter)

The saturation parameter is proportional to the intensity, and it has a Lorentzian frequency profile with full
width at half maximum of 2γ⊥. We can then write the steady-state solutions as

ρee(t −→∞) =
s/2

1 + s

|ρ̃eg( t −→∞)|2 =
Γ

4γ⊥

s

(1 + s)2
.

(steady-state solutions to optical Bloch equations) (5.135)
In this form it is easier to see that we get generally the same result that we got for the rate equations in
Eq. (3.6): for small intensities, the excitation increases linearly with s (as s/2), and in the limit of large
intensity (s −→ ∞), the largest possible excitation is half the population (ρee −→ 1/2). Furthermore,
although the excitation ρee increases monotonically with s, we can see that the expectation value of the
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dipole moment, which is proportional to the real part of ρ̃ge, increases as
√
s for small excitations but

decreases back to zero for very large excitations. You might get the false impression from this that a highly
excited atom does not radiate! This is not quite true, and we will return to this point shortly.

Most often we will be concerned with the ‘‘pure’’ case of homogeneous (natural) broadening, with
γ⊥ = Γ/2. That is, there is no additional damping of the coherences due to collisions. In this case, the
saturation parameter becomes

s :=
2Ω2/Γ2

1 + (2∆/Γ)2
,

(saturation parameter, homogeneous broadening) (5.136)
the steady-state population becomes

ρee(t −→∞) =
s/2

1 + s
=

Ω2/Γ2

1 +

(
2∆

Γ

)2

+ 2
Ω2

Γ2

,

(steady-state excitation, homogeneous broadening) (5.137)
and the steady-state coherence is

ρ̃eg(t −→∞) = − iΩ

Γ

1 +
i2∆

Γ

1 +

(
2∆

Γ

)2

+ 2
Ω2

Γ2

.

(steady-state coherence, homogeneous broadening) (5.138)
These solutions will be important in our discussion of resonance fluorescence.

5.5.2 Damped Rabi Oscillations

5.5.2.1 Laplace Transform

Now let’s consider solutions to the optical Bloch equations. Recall (from Section 4.1) that we can write the
Liouville–von Neumann equation for the density operator as

∂tρ̃ = Lρ̃, (5.139)

where L is the Liouvillian superoperator, and effectively has larger tensor rank than the density operator.
We can write this in component form as

∂tρ̃α = Lαβ ρ̃β , (5.140)

where α is a composite index, so that the density matrix is a column vector (i.e., for a two-level atom, α
takes on the values ee, eg, ge, and gg). The Liouvillian then acts as a matrix in this notation. In the general
case of a linear, time-independent equation of this form, we can obtain a solution via the Laplace transform.
To review this method, start with the identity

y(t) =

∫ t

0

dt′ ẏ(t′) + y0, (5.141)
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where y0 = y(t = 0). Then we define the Laplace transform as

L [y](s) :=

∫ ∞
0

dt e−sty(t)

=

∫ ∞
0

dt e−st
[
y0 +

∫ t

0

dt′ ẏ(t′)

]
=

y0
s

+

∫ ∞
0

dt′ ẏ(t′)

∫ ∞
t′

dt e−st

=
y0
s

+
1

s

∫ ∞
0

dt′ e−st
′
ẏ(t′)

=
y0
s

+
1

s
L [ẏ](s).

(5.142)

Here, we used the identity (5.141), and the fact that the two-dimensional integral is over the t′ < t region,
so that we can interchange the order of integration via∫ ∞

0

dt

∫ t

0

dt′ =

∫ ∞
0

dt′
∫ ∞
t′

dt. (5.143)

Thus, we can solve our result (5.142) for L [ẏ] to find the transform of the time derivative

L [ẏ] = sL [y]− y0.
(5.144)

(Laplace transform of time derivative)

We can now use this result to take the Laplace transform of the Liouville–von Neumann equation to find

sL [ρ̃]− ρ̃(0) = LL [ρ̃], (5.145)

assuming L is time-independent. Thus, the Laplace transform conveniently changes a system of coupled
differential equations into an algebraic problem. Now we can solve for L [ρ̃], with the result

L [ρ̃] =
1

s− L
ρ̃(0). (5.146)

Note that the addition of a scalar and an operator here should be interpreted in the sense

s− L −→ sδαβ − Lαβ . (5.147)

The operator (s − L)−1 is called the resolvent of the Liouvillian, and gives the decoupled form for the
Laplace transform of the solutions in terms of the initial condition. The solutions are then given by inverse
Laplace transforms:

ρ̃(t) = L −1
[

1

s− L
ρ̃(0)

]
.

(5.148)
(general solution to master equation)

Again, we have assumed that L is time-independent: this is where it helps to use the density operator ρ̃ in
the rotating frame.

5.5.2.2 Torrey’s Solutions

To apply this method to the two-level atom, it is useful to do so in a slightly different form.16 Starting with
the optical Bloch equations in the form (5.127), we can write these in matrix form as

∂t〈σ〉 =

 −γ⊥ ∆ 0

−∆ −γ⊥ −Ω
0 Ω −Γ

〈σ〉 −
00
Γ


=: Q〈σ〉 − Γ.

(5.149)

16Here we follow H. C. Torrey, ‘‘Transient Nutations in Nuclear Magnetic Resonance,’’ Physical Review 76, 1059 (1949) (doi:
10.1103/PhysRev.76.1059). See also L. Allen and J. H. Eberly, Optical Resonance and Two-Level Atoms (Wiley, 1975), section
3.5, p. 62.

http://dx.doi.org/10.1103/PhysRev.76.1059
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We thus have a smaller matrix to deal with than the Laplacian, but at the expense of an extra constant in
the equation. Now taking the Laplace transform of this equation, and using the fact that L [1] = 1/s, as we
used in Eq. (5.142), we find

sL [〈σ〉]−〈σ〉0 = QL [〈σ〉]− 1

s
. (5.150)

Rearranging this, we get a slightly modified form of the resolvent solution:

L [〈σ〉] = 1

s(s−Q)
(s〈σ〉0 − Γ) . (5.151)

The analog of the resolvent operator here is

1

s−Q =
1

f(s)

 (s+ γ⊥)(s+ Γ) + Ω2 (s+ Γ)∆ −∆Ω
−(s+ Γ)∆ (s+ γ⊥)(s+ Γ) −(s+ γ⊥)Ω
−∆Ω (s+ γ⊥)Ω (s+ γ⊥)

2 +∆2

 , (5.152)

where
f(s) = det(s−Q) = (s+ γ⊥)Ω

2 + (s+ Γ)
(
(s+ γ⊥)

2 +∆2
)
. (5.153)

Looking at this solution, we can see that each component of L [〈σ〉] can be written in the form

g(s)

sf(s)
, (5.154)

where f(s) is a cubic polynomial in s, and g(s) is also at most cubic in s [and thus of smaller degree than
f(s)]. We can thus write f(s) in terms of three roots −a1,2,3,

f(s) = (s+ a1)(s+ a2)(s+ a3), (5.155)

and comparison to the form (5.153), where all the polynomial coefficients are positive, tells us that the
product a1a2a3 > 0. For this to hold, as well as to maintain the positivity of the other coefficients, one of
these numbers must be positive, and the other two must either also be real and positive, or they must form
a complex-conjugate pair. Thus, we may write

f(s) = (s+ c)(s+ a− ib)(s+ a+ ib) = (s+ c)
[
(s+ a)2 + b2

]
, (5.156)

where a, c > 0, and b is real for conjugate roots, but could otherwise be imaginary. This form for f(s) implies
the partial-fraction decomposition

g(s)

sf(s)
=

A

s+ c
+
B(s+ a) + C

(s+ a)2 + b2
+
D

s
, (5.157)

where A, B, C, and D are constants that depend both on the initial conditions and on which component
of 〈σ〉 we are considering. Computing the inverse Laplace transform of this expression, we can see that the
solution for any component of 〈σ〉 can be written in the form

〈σα(t)〉 = Ae−ct +Be−at cos bt+ C

b
e−at sin bt+D.

(general form of solution to optical Bloch equations) (5.158)
We can thus see that the general solution is reasonably simple, and even without finding the explicit forms
of the coefficients, we can interpret the different terms. The first term represents exponential decay of
the populations and coherences, as we would expect from the damping terms. The second and third terms
represent exponentially damped Rabi oscillations with different phases. The final term is just the steady-state
solution that we derived in Section 5.5.1.
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5.5.2.3 Exact Resonance

Unfortunately, since the general solution depends on the roots of f(s), which do not have a simple form,
we don’t gain much intuition by trying to write them down. Torrey17 identified three regimes where the
solutions are reasonably simple: (1) exact resonance (∆ = 0), (2) damping such that γ⊥ = Γ, and (3) strong
excitation, such that Ω � Γ, γ⊥. A fourth case is the weak-excitation regime (Ω � Γ, γ⊥), which we will
see later reproduces the results of the classical Lorentz model. We will only consider the first case (∆ = 0),
for an atom initially in the ground state (〈σx(0)〉 =〈σy(0)〉 = 0, 〈σz(0)〉 = −1), to get a feel for the damped
solutions. For ∆ = 0, and for homogeneous broadening (γ⊥ = Γ/2),

f(s) = (s+ Γ/2)Ω2 + (s+ Γ)(s+ Γ/2)2. (5.159)

One root (the real one) is s = −Γ/2, and thus

c =
Γ

2
, (5.160)

giving the decay rate of the damped but nonoscillating term. The other two roots are

s = −3Γ

4
± iΩΓ, (5.161)

where

ΩΓ :=

√
Ω2 −

(
Γ

4

)2

(5.162)

is the Rabi flopping frequency in the presence of damping. Note that in the limit Ω −→ 0, the roots become
s = −Γ and s = −Γ/2, which is what we expect for the longitudinal and transverse decay rates in the
absence of driving. Thus, we have fixed the other two roots,

a =
3Γ

4
, b = ΩΓ, (5.163)

in the notation above, giving the decay rate and oscillation frequency, respectively, of the oscillating terms.
x-component: Now we need to determine the coefficients of the different terms for the three compo-

nents. First for the 〈σx〉 case. Starting with the steady-state coefficient D, we note from Eq. (5.138) that
on resonance the steady-state value of ρ̃eg is purely imaginary. But 〈σx〉 is the real part of ρ̃eg, so D = 0.
From (5.157), we see that we can recover A from

A = lim
s→−c

(
g(s)

sf(s)
(s+ c)

)
= 0, (5.164)

since g(s) = 0 on resonance and 〈σx(0)〉 = 0. Also, from 〈σx(0)〉 = 0 and Eq. (5.158), we see that A+B+D =
0, and thus B = 0. The remaining coefficient to determine is C. From Eq. (5.149), the initial value of the
derivative is

∂t〈σx(0)〉 = ∆〈σy(0)〉 −
Γ

2
〈σx(0)〉 = 0. (5.165)

Similarly differentiating Eq. (5.158),

∂t〈σx(0)〉 = −cA− aB + C, (5.166)

and comparing these two expressions gives C = 0. Thus,

〈σx(t)〉 = 0,

(solution to optical Bloch equations, ∆ = 0, γ⊥ = Γ/2, ρ(0) = |g〉〈g|) (5.167)
as we expect from the resonant case.

17H. C. Torrey, op. cit.



184 Chapter 5. Two-Level Atom Interacting with a Classical Field

y-component: We can obtain the steady state here from 〈σy〉 = iρ̃eg − iρ̃ge. Using Eq. (5.138), we
find

D =
2Ω/Γ

1 + 2
Ω2

Γ2

. (5.168)

The A coefficient is again given by

A = lim
s→−c

(
g(s)

sf(s)
(s+ c)

)
= lim
s→−Γ/2

(
(s+ Γ/2)Ω(s+ Γ)

(s+ Γ/2)Ω2 + (s+ Γ)(s+ Γ/2)2
s+ Γ/2

s

)
= 0. (5.169)

Setting 〈σy(0)〉 = 0 in Eq. (5.158), we see that A + B +D = 0, and thus B = −D. Finally, matching the
initial time derivatives of 〈σy(0)〉 from Eqs. (5.149) and (5.158) gives

C = cA+ aB −∆〈σx(0)〉 −
Γ

2
〈σy(0)〉 − Ω〈σz(0)〉 = −

3Ω/2

1 + 2
Ω2

Γ2

+Ω = Ω

(
Ω2 − Γ2/4

Ω2 + Γ2/2

)
. (5.170)

The complete solution is thus

〈σy(t)〉 =
ΩΓ

Ω2 + Γ2/2

[
1− e−(3Γ/4)t

(
cosΩΓt−

Ω2 − Γ2/4

ΓΩΓ
sinΩΓt

)]
.

(solution to optical Bloch equations, ∆ = 0, γ⊥ = Γ/2, ρ(0) = |g〉〈g|) (5.171)
We can clearly see the damped oscillations in the dipole moment at the frequency ΩΓ.

z-component: The steady state comes from 〈σz〉 = ρee − ρgg = 2ρee − 1. Using Eq. (5.137) for the
steady-state solution, we find

D =
2Ω2/Γ2

1 + 2
Ω2

Γ2

− 1 = − 1

1 + 2
Ω2

Γ2

=
Ω2

Ω2 + Γ2/2
− 1. (5.172)

Note that D −→ 0 as Ω −→∞, as we expect it to. The A coefficient is once again given by

A = lim
s→−c

(
g(s)

sf(s)
(s+ c)

)
= lim
s→−Γ/2

(
−(s+ Γ/2)2(s+ Γ)

(s+ Γ/2)Ω2 + (s+ Γ)(s+ Γ/2)2
s+ Γ/2

s

)
= 0. (5.173)

Setting 〈σz(0)〉 = −1 in Eq. (5.158) gives A+B +D = −1, and thus

B = −D − 1 = − Ω2

Ω2 + Γ2/2
. (5.174)

Finally, again matching the initial time derivatives of 〈σz(0)〉 from Eqs. (5.149) and (5.158),

C = cA+ aB +Ω〈σy(0)〉 − Γ〈σz(0)〉 − Γ =
(−3Γ/4)Ω2

Ω2 + Γ2/2
. (5.175)

The complete solution is thus

〈σz(t)〉 = −1 +
Ω2

Ω2 + Γ2/2

[
1− e−(3Γ/4)t

(
cosΩΓt+

3Γ

4ΩΓ
sinΩΓt

)]
.

(solution to optical Bloch equations, ∆ = 0, γ⊥ = Γ/2, ρ(0) = |g〉〈g|) (5.176)
We can again clearly see the damped Rabi oscillations at the damped Rabi frequency ΩΓ.
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The damped Rabi oscillations in the excited state population Pe ≡ ρee = (〈σz〉+ 1)/2 are shown above.

5.5.3 Operator Form

The optical Bloch equations (5.125) can be written in the equivalent and compact operator form of a master
equation for the density operator as

∂tρ̃ = − i

h̄

[
H̃A + H̃AF, ρ̃

]
+ ΓD[σ]ρ̃+ γc

2
D[σz]ρ̃,

(optical Bloch equations, operator form) (5.177)
where we have defined the Lindblad superoperator

D[c]ρ := cρc† − 1

2

(
c†cρ+ ρc†c

)
.

(5.178)
(Lindblad superoperator)

The last two terms in the master equation correspond to decay of the excited state and extra dephasing due
to collisions, respectively (the latter turns out to have the form of a measurement of σz, and thus causes
increased uncertainty in the transverse spin components). Again, this is a ‘‘superoperator’’ on ρ because
it operates on it from both sides. We will see that this form is universal, in the sense that all Markovian
master equations (those where ∂tρ(t) depends on ρ at time t and not any other time) always have damping
terms in this Lindblad form—that is, any form where the master equation is written purely in terms of
Hamiltonian commutators and Lindblad superoperators.

Note also that in many cases, these damping terms must be written as separate terms from the
Hamiltonian part. For example, take the naturally damped atom,

∂tρ̃ = − i

h̄

[
H̃A + H̃AF, ρ̃

]
+ ΓD[σ]ρ̃. (5.179)

It is common in the literature to define an effective, non-Hermitian Hamiltonian by

H̃eff := H̃A + H̃AF − i
h̄Γ

2
σ†σ. (5.180)

In this way, we can absorb some of the Lindblad terms into the Hamiltonian:

∂tρ̃ = − i

h̄

[
H̃effρ̃− ρ̃H†eff

]
+ Γσρ̃σ†. (5.181)

However, one term remains. What is the meaning of this? Consider that

σρ̃σ† = ρee|g〉〈g|. (5.182)

Thus, this operator only enters the ∂tρgg equation, and in fact it is the term that returns the decayed
population to the ground state. Thus, the non-Hermitian Hamiltonian can correctly handle both the decay of
the excited state and the coherence decay. However, on its own, it does not preserve the trace of the density
operator, as we can see from the form exp(−iHefft/h̄) of the time-evolution operator. Renormalization at
each time step, then, introduces an extra term that cannot be written in terms of a Hamiltonian.

5.5.4 Orders of Magnitude

Now that we have introduced a couple of time scales, it is useful to estimate their magnitude. First, the
Rabi frequency. Suppose we have a Gaussian beam with beam-waist parameter (1/e2 intensity radius) w0.18

In terms of the total beam power P , the intensity at the beam center is

I =
P

πw 2
0

. (5.183)

18Daniel A. Steck, Classical and Modern Optics (2006), chapter 6, available online at http://steck.us/teaching.

http://steck.us/teaching
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In terms of the field amplitude, the intensity is

I =
E 2

0

2η0
, (5.184)

where η0 is the impedence of the vacuum, so that

E0 =
√

2η0I. (5.185)

We may thus write the Rabi frequency as

Ω =
|〈g|dz|e〉|

√
2η0I

h̄
=

[
2η0|〈g|dz|e〉|2P

πh̄2w 2
0

]1/2
. (5.186)

The dipole matrix element 〈g|dz|e〉 is of the order of ea0, where e is the fundamental charge and a0 ≈ 0.529 Å
is the Bohr radius. On the D2 transition (780 nm) in 87Rb, depending on the details of the interaction, the
matrix element can be as high as about 3.0 ea0 ≈ 2.5× 10−29 C ·m. A beam power of 10 mW is achievable
by a very modest diode laser, and a beam waist of w0 = 1 mm is fairly typical. Putting in these numbers,
we find Ω/2π ≈ 60 MHz. Much larger local intensities are possible by using larger lasers (on the order of a
couple of W for the largest cw lasers at 780 nm) and smaller beam waists (on the order of 10 µm is easy to
achieve), giving Rabi frequencies in the tens of GHz range. Even larger values can be achieved with pulsed
lasers, until the fields are strong enough that the whole two-level treatment breaks down.

We have also introduced the spontaneous decay rate Γ. Back when we studied the rate equations,
we related this quantity to the Einstein B coefficient. Shortly, we will connect this to the dipole matrix
element. But typically, for atomic transitions in the optical, decay rates Γ/2π are on the order of several
MHz (6.1 MHz for 87Rb, corresponding to a lifetime of 26 ns). The decay rates turn out to scale as ω 3

0

(Chapter 11), so these can become larger as the transition becomes more energetic. For ‘‘dipole forbidden’’
transitions, the decay rates can be substantially smaller.

5.6 Consistency with Other Models

5.6.1 Classical Limit

We will now show the connection between the optical Bloch equations and the classical Lorentz atom.
Formally, these two problems are equivalent in the case of a weak drive. The general idea is to construct
the damped version of the quantum harmonic oscillator, and then show that it reduces to both the Lorentz
model and the optical Bloch equations in the weak-excitation limit.

5.6.1.1 Review: Harmonic Oscillator in Quantum Mechanics

We will take the following results for the quantum harmonic oscillator to be given. The Hamiltonian is

H =
p2

2m
+

1

2
mω 2

0 x
2 = h̄ω0

(
a†a+

1

2

)
, (5.187)

where the creation (a†) and annihilation (a) operators are defined via the relation

a =
1√
2

(
x

x0
+ i

x0p

h̄

)
(5.188)

and its Hermitian adjoint. The length scale x0 is given by

x0 =

√
h̄

mω0
. (5.189)
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The phase-space operators can be written in terms of the ladder operators as

x =
x0√
2

(
a+ a†

)
p =

h̄

i
√
2x0

(
a− a†

)
. (5.190)

We have the usual commutation relations

[x, p] = ih̄ [a, a†] = 1, (5.191)

which are equivalent to each other via the above definitions.
We will denote the eigenstates of the Hamiltonian (‘‘Fock states’’) by |n〉 for nonnegative n, with

corresponding eigenvalues

En = h̄ω0

(
n+

1

2

)
. (5.192)

These states all have 〈x〉 = 〈p〉 = 0 and moments

〈
n
∣∣x2∣∣n〉 = h̄

mω0

(
n+

1

2

)
,

〈
n
∣∣p2∣∣n〉 = mh̄ω0

(
n+

1

2

)
. (5.193)

In this basis, the ladder operators have the effect

a|n〉 =
√
n |n− 1〉 a†|n〉 =

√
n+ 1 |n+ 1〉. (5.194)

The eigenstate of the annihilation operator is the coherent state

|α〉 =
∞∑
n=0

αn√
n!
e−|α|

2/2|n〉, (5.195)

with eigenvalue α:
a|α〉 = α|α〉. (5.196)

Note that the occupation probabilities for the number states form a Poisson distribution of mean α. The
effect of the creation operator on the coherent state is more complicated:

a†|α〉 = (∂α + α∗) |α〉. (5.197)

The ground state |0〉 is a special case of a coherent state. The general coherent state |α〉 has the same
Gaussian probability-density profile as the ground state, but the centroid oscillates with frequency ω0 and
amplitude

√
2x0|α| in position and

√
2 h̄|α|/x0 in momentum.

5.6.1.2 Evolution of the Means: Damped Quantum Harmonic Oscillator

We can add damping to the harmonic oscillator by adding an extra component in Lindblad form to the
master equation:

∂tρ = − i

h̄
[H, ρ] + γD[a]ρ.

(damped quantum harmonic oscillator) (5.198)
Again, the Lindblad superoperator is given by

D[a]ρ := aρa† − 1

2

(
a†aρ+ ρa†a

)
. (5.199)

We already know from the discussion of the Moyal bracket that the Hamiltonian part of this evolution is
classical. So now let’s check this again and show the correspondence of this oscillator with damping with the
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classical damped oscillator. The master equation implies the equation of motion for the expectation value
of an arbitrary operator A:

∂t〈A〉 = Tr[A∂tρ]

= − i

h̄
〈[A,H]〉+ γ

〈
a†Aa− 1

2

(
a†aA+Aa†a

)〉
= − i

2mh̄
〈[A, p2]〉 − imω 2

0

h̄
〈[A, x2]〉+ γ

2

〈
a†[A, a] + [a†, A]a

〉
.

(5.200)

Recall that we are in the Schrödinger picture, so the time dependence is contained only in ρ, and not in A.
For the expected position, we can use the commutation relation [x, f(p)] = ih̄∂pf(p) to evaluate [x,H]; we
can also use [x, a] = −x0/

√
2 = −[x, a†] to evaluate the dissipation term:〈

a†[x, a] + [a†, x]a
〉
= − x0√

2

〈
a+ a†

〉
= −〈x〉 . (5.201)

The resulting position equation is

∂t〈x〉 =
〈p〉
m
− γ

2
〈x〉. (5.202)

Similarly, we can find the equation for the expected momentum by using [p, f(x)] = −ih̄∂xf(x) to evaluate
the Hamiltonian term and [p, a] = [p, a†] = h̄/i

√
2x0 to evaluate the dissipation term. The resulting equation

is
∂t〈p〉 = −mω 2

0 〈x〉 −
γ

2
〈p〉. (5.203)

It may look funny to have damping terms on both Eqs. (5.202) and (5.203), but differentiating Eq. (5.202)
and eliminating ∂t〈p〉 gives

∂ 2
t 〈x〉+ γ∂t〈x〉+

(
ω 2
0 +

γ2

4

)
〈x〉 = 0

(centroid evolution, quantum damped harmonic oscillator) (5.204)
for the wave-packet centroid. This has the same form as for a classical damped oscillator:

ẍ+ γẋ+ ω 2
0 x = 0. (5.205)

Note that we identify the frequency ω0 in Eq. (5.204) as the renormalized oscillation frequency ωγ of the
damped oscillator, given by ω 2

γ = ω 2
0 − γ2/4, and not the true resonance frequency ω0 that appears in the

classical formula (5.205).
Adding a dipole interaction Hamiltonian for coupling to an external applied field,

HAF = −d ·E = exE
(+)
0 e−iωt + c.c., (5.206)

where e is the fundamental charge (e > 0), modifies the momentum equation to read (using [p,HAF] =

−ih̄eE(+)
0 e−iωt + c.c.)

∂t〈p〉 = −mω 2
0 〈x〉 −

γ

2
〈p〉 −

(
eE

(+)
0 e−iωt + c.c.

)
. (5.207)

Rewriting the equations as a second-order equation, we find

∂ 2
t 〈x〉+ γ∂t〈x〉+

(
ω 2
0 +

γ2

4

)
〈x〉 = − eE

(+)
0

m
e−iωt + c.c.,

(centroid evolution, with external drive) (5.208)
which is the equation for the driven Lorentz atom in the dipole approximation, if we again associate the
wave-packet centroid with the classical electron position and interpret the frequency ω0 properly. Of course,
for typical atomic dipole transitions in the optical, γ/ω ∼ 10−8, so that the difference between the resonance
and damped oscillation frequencies is negligible.
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Note also that the damped harmonic oscillator in the weak-driving limit occupies mostly the ground
state, with small population in |1〉. The populations in higher-energy states are negligible, so we can identify
the harmonic oscillator with the weakly driven, two-level atom by taking |1〉 −→ |e〉, |0〉 −→ |g〉, and
a −→ σ = |g〉〈e|. Then the master equation (5.198), including the dipole interaction becomes

∂tρ = −iω0[σ
†σ, ρ]− i

h̄
[HAF, ρ] + γD[σ]ρ, (5.209)

which generates the usual optical Bloch equations for the two-level atom if we identify γ = Γ. The same
interaction Hamiltonian above gives the dipole coupling of the two-level atom to a monochromatic field.
Thus, we see in the weak-excitation limit (s� 1) that the Lorentz atom accurately describes the dynamics
of a quantum-mechanical atom interacting with a classical monochromatic field.

Note that there is a subtlety involved in introducing the atom–field interaction HAF. Really, in
Eq. (5.208), we should have ended up with the same result, but with a factor of the oscillator strength
f0 multiplying the right-hand side. This is the same replacement e/m −→ ef0/m that we discussed in the
classical treatment, which turns out to be necessary to get the quantitatively correct answer. How does this
work out here? We have to be more careful about the replacement σ −→ a in going from the two-level atom
to the harmonic oscillator. Quantum mechanically, the dipole operator is

dz = 〈g|dz|e〉
(
σ + σ†

)
, (5.210)

while the classical dipole moment is

ex =
ex0√
2

(
a+ a†

)
=

√
e2h̄

2mω0

(
a+ a†

)
. (5.211)

To put in the oscillator strength, we let e/m −→ ef0/m:

ex =

√
e2h̄f0
2mω0

(
a+ a†

)
, (5.212)

to make this expression quantitatively correct. Thus, to make the identification σ −→ a, we must also
identify the coefficients

|〈g|dz|e〉|2 =
e2h̄f0
2mω0

, (5.213)

which is the correct relation between the oscillator strength and dipole matrix element. (See also Prob-
lem 5.10, where the same result comes out of comparing the classical and quantum expressions for the
polarizability.)

5.6.1.3 Evolution of the Variances

The solution to a driven, damped harmonic oscillator turns out to be a coherent state, so let’s see this
explicitly. Let’s evaluate the equation of motion for 〈x2〉. Using [x2, p2] = 2ih̄[x, p]+ for the Hamiltonian
term (with [a, b]+ := ab+ ba) and [x2, a] = −

√
2x0x = −[x2, a†], we find

∂t
〈
x2
〉
=

1

m
〈[x, p]+〉 − γ

[x0
2h̄

(
a†x− xa

)]
=

1

m
〈[x, p]+〉 − γ

(〈
x2
〉
− h̄

2mω0

)
.

(5.214)

Using the variance definition
Vx :=

〈
x2
〉
− 〈x〉2, (5.215)
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the equation of motion becomes

∂tVx = ∂t
〈
x2
〉
− 2〈x〉∂t〈x〉 =

2

m
Cxp − γ

(
Vx −

h̄

2mω0

)
, (5.216)

where the symmetrized covariance is

Cxp :=
1

2
〈[x, p]+〉 − 〈x〉〈p〉. (5.217)

Similarly, for the momentum variance
Vp :=

〈
p2
〉
− 〈p〉2, (5.218)

we can use the commutators [p2, a] = [p2, a†] = −2ih̄p/
√
2x0 to obtain

∂tVp = −2mω 2
0 Cxp − γ

(
Vp −

mω0h̄

2

)
. (5.219)

For the covariance, the Hamiltonian part requires the commutators[
[x, p]+, x

2
]
= −4ih̄x2[

[x, p]+, p
2
]
= 4ih̄p2

[[x, p]+, a] = ih̄a†[
[x, p]+, a

†] = ih̄a.

(5.220)

To derive the last two relations, it is useful to make the identification [x, p]+ = (h̄/2i)(a2 − a†2), along with
[a†

2
, a] = −2a† and [a2, a†] = 2a. The equation of motion for the anticommutator is

∂t〈[x, p]+〉 =
2

m

〈
p2
〉
− 2mω 2

0

〈
x2
〉
− γ〈[x, p]+〉, (5.221)

so that the covariance equation becomes

∂tCxp =
1

2
∂t〈[x, p]+〉 − 〈p〉∂t〈x〉 − 〈x〉∂t〈p〉 =

1

m
Vp −mω 2

0 Vx − γCxp. (5.222)

Collecting all the equations for the means and variances together,

∂t〈x〉 =
1

m
〈p〉 − γ

2
〈x〉

∂t〈p〉 = −mω 2
0 〈x〉 −

γ

2
〈p〉

∂tVx =
2

m
Cxp − γ

(
Vx −

h̄

2mω0

)
∂tVp = −2mω 2

0 Cxp − γ
(
Vp −

mω0h̄

2

)
∂tCxp =

1

m
Vp −mω 2

0 Vx − γCxp.

(damped quantum harmonic oscillator, evolution of means and variances) (5.223)
This is sufficient to completely characterize a Gaussian state for the damped harmonic oscillator. Of course
to consider forcing, we still need to add a dipole interaction Hamiltonian. But as a check, the steady state
here should be the ground state of the harmonic oscillator. However, when we compute the steady state of
the above equations, we find

〈x〉 = 〈p〉 = 0,
(5.224)

(steady-state means)
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while

Vx =
h̄

2mω0
, Vp =

mω0h̄

2
, Cxp = 0.

(5.225)
(steady-state variances)

This is a state of minimum uncertainty (where the generalized uncertainty relation is VxVp − C 2
xp ≥ h̄2/4),

and thus must be Gaussian.19 The variances are indeed the same as for |0〉 from Eq. (5.193), so the oscillator
damps to the ground state.

In the driven case, note that the means and variances of Eqs. (5.223) are uncoupled. For a sinusoidal
drive of the form (5.206), the means evolve according to the classical equation of motion (5.208), so that in
steady state the wave packet centroid oscillates with an amplitude given by the steady state of Eq. (5.208).
Hence, the steady state is just a coherent state |α〉 with amplitude

|α| = e|E(+)
0 |/m

(ω2 − ω 2
0 )

2 + γ2ω2
, (5.226)

again showing the classical nature of the solution.

5.6.2 Rate-Equation Limit

We can also show that under certain conditions, the optical Bloch equations (5.125) reduce to the rate
equations of Chapter 3. Recall the form of the optical Bloch equations:

∂tρee = i
Ω

2
(ρ̃eg − ρ̃ge)− Γρee

∂tρ̃eg = −(γ⊥ − i∆)ρ̃eg + i
Ω

2
(ρee − ρgg).

(5.227)

In the case of strong collisional damping γ⊥ � Ω,Γ, we can note that the coherences will be damped very
quickly, whereas the populations will continue to evolve on much longer time scales. We can exploit this
separation of time scales and make the adiabatic approximation, where we focus only on the slow pop-
ulation dynamics by assuming the coherences are always approximately in equilibrium. Thus, approximate
steady state of the coherence equations give

(γ⊥ − i∆)ρ̃eg = i
Ω

2
(ρee − ρgg) (for ∂tρ̃eg ≈ 0)

(γ⊥ + i∆)ρ̃ge = −iΩ
2
(ρee − ρgg) (for ∂tρ̃ge ≈ 0).

(5.228)

Adding these two equations together gives

(ρ̃eg + ρ̃ge) = i
∆

γ⊥
(ρ̃eg − ρ̃ge) , (5.229)

while subtracting them gives

γ⊥ (ρ̃eg − ρ̃ge)− i∆(ρ̃eg + ρ̃ge) = iΩ(ρee − ρgg) . (5.230)

Combining these two relations to obtain the adiabatic difference of the coherences, we find

γ⊥

(
1 +

∆2

γ2⊥

)
(ρ̃eg − ρ̃ge) = iΩ(ρee − ρgg) . (5.231)

We can now put this into the first population equation to obtain the adiabatic evolution equation

∂tρee = −Γρee −
Ω2

2γ⊥ (1 + ∆2/γ2⊥)
(ρee − ρgg) . (5.232)

19Eugen Merzbacher, Quantum Mechanics, 3rd ed. (Wiley, 1998), pp. 219-20.
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This result is now formally equivalent to the rate equation for nearly monochromatic light [Eq. (3.17),

∂tN2 = −A21N2 − σ(ω)
I

h̄ω
(N2 −N1) ,

(rate-equation limit of optical Bloch equations) (5.233)
where we have assumed no degeneracy for the two-level atom (g1 = g2 = 1).

To compare the Einstein equation to the adiabatic result, we can clearly identify

ρee −→ N2/N, ρgg −→ N1/N, Γ −→ A21. (5.234)

Comparing the coefficients of the stimulated emission and absorption terms is less straightforward but very
useful. Recall from Eq. (3.18) that the resonant cross section is

σ(ω) = A21
λ2

4
s(ω), (5.235)

while for a Lorentzian line shape s(ω), we have from Eq. (3.19)

s(ω) =
∆ω

2π [(∆ω/2)2 +∆2]
. (5.236)

Comparing the denominator of s(ω) to the similar denominator of Eq. (5.232), we conclude that we must
identify the transverse decay rate with the line width:

γ⊥ −→
∆ω

2
. (5.237)

We may thus write the line-shape function as

s(ω) =
γ⊥

π (γ2⊥ +∆2)
. (5.238)

Now identifying the coefficients of the spontaneous emission and absorption terms,

γ⊥Ω
2

2 (γ2⊥ +∆2)
−→ σ(ω)I

h̄ω
=

Γλ2γ⊥I

4π (γ2⊥ +∆2) h̄ω
. (5.239)

Thus, we have

Ω2 =
Γλ2I

2πh̄ω
=

2πΓc2I

h̄ω3
. (5.240)

Using Ω = −〈g|dz|e〉E0/h̄ for z-polarized light, and I = E 2
0 /2η = (ε0c/2)E

2
0 , we find

Γ =
ω3

πε0h̄c3
|〈g|dz|e〉|2. (5.241)

This analysis is only valid near resonance, so ω ≈ ω0, and we take the atom to be spherically symmetric, so
that |〈g|dx|e〉|2 = |〈g|dy|e〉|2 = |〈g|dz|e〉|2, with the result

Γ =
ω 3
0

3πε0h̄c3
|〈g|d|e〉|2.

(relation between decay rate and dipole matrix elements) (5.242)
This is, in fact, the correct relation between the atomic decay rate and the atomic dipole matrix element
that comes out of a full quantum electrodynamics calculation, as we will later see in Section 11.4.
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5.6.2.1 Saturation Intensity

We can make a connection to the earlier notion of the saturation intensity. From our rate equation
analysis, specifically Eq. (3.27), the population inversion for an exactly resonant drive is given by

N2 −N1

N
= − 1

1 +
2σ0I

h̄ω0A21

= − 1

1 +
I

Isat

, (5.243)

where we again have ignored any degeneracy. We have also defined the saturation intensity as

Isat :=
h̄ω0A21

2σ0
,

(5.244)
(saturation intensity)

as we did before in Eq. (3.31).
We can do the same thing for the optical Bloch equations. Recalling that the steady-state population

in the excited state from Eq. (5.132) is

ρee(t −→∞) =
Ω2

2γ⊥Γ

1

1 +
∆2

γ2⊥
+

Ω2

γ⊥Γ

, (5.245)

we can write
ρee(t −→∞) =

Ω2/Γ2

1 + 2Ω2/Γ2 (5.246)

for the case of exact resonance (∆ = 0) and homongenous broadening (Γ = 2γ⊥). Then the population
inversion is given by

ρee − ρgg = 2ρee − 1 = − 1

1 + 2Ω2/Γ2 . (5.247)

Since Ω2 scales as the intensity, we can similarly define the saturation intensity for the two-level atom to
match (5.243):

I

Isat
≡ 2Ω2

Γ2
.

(saturation intensity related to Rabi frequency) (5.248)
Using Ω = −〈g|ε̂ ·d|e〉E0/h̄ for arbitrary light polarization and I = E 2

0 /2η = (ε0c/2)E
2
0 , this relation gives

Isat =
cε0Γ

2h̄2

4|〈g|ε̂ · d|e〉|2 .
(5.249)

(saturation intensity)

Thus, for example, we can write

ρee(t −→∞) =

(
1

2

)
I/Isat

1 + 4∆2/Γ2 + I/Isat
,

(5.250)
(steady-state population)

for the excited-state population in the case of homogenout broadening. Similarly, we may write

s =
I/Isat

1 + 4∆2/Γ2

(5.251)
(saturation parameter)

for the saturation parameter. The saturation effect here represents the nonlinear response of the two-level
atom to the field, which is not predicted by the classical (linear) Lorentz model.
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But now, are the two saturation intensities from Eqs. (5.244) and (5.249) equivalent? Consider the
case of linearly polarized light (ε̂ = ẑ). Using

Γ =
ω 3
0

πε0h̄c3
|〈g|dz|e〉|2 (5.252)

to eliminate the dipole matrix element in Eq. (5.249), we find

Isat =
h̄ω 3

0 Γ

4πc2
. (5.253)

In the case of the rate equations, the resonant cross section for linearly polarized light and random orientation
of the atom from Eq. (3.21) is

σ0 =
λ 2
0

2π
. (5.254)

Substitution of this cross section into Eq. (5.244) and taking A21 = Γ then gives exactly the same expression
(5.253) for the saturation intensity.

5.6.2.2 Validity of the Rate-Equation Limit

As we discussed above, the optical Bloch equations can be accurately represented by the rate equations when
the collisional damping rate is large, because the coherences are quickly damped away. The rate equations
are also valid in the case of incoherent (broadband) excitation, since there the dipole is driven by many
frequencies, and thus the dephasing of the different frequency components mimics fast damping.

5.7 Spectrum of Resonance Fluorescence

We will now consider the radiation (resonance fluorescence) due to a single, isolated atom driven by a
monochromatic field. The optical Wiener–Khinchin theorem that we wrote down before in Eq. (2.21) was∫ ∞

0

I(r, ω)e−iωτ dω =
2

η

〈
E(−)(r, t)E(+)(r, t+ τ)

〉
. (5.255)

Inverting this relation, keeping in mind that I(ω) will be centered near a large, positive frequency (of the
driving laser), gives the intensity spectrum in terms of the field autocorrelation function:

I(r, ω) = 1

πη

∫ ∞
−∞

〈
E(−)(r, t)E(+)(r, t+ τ)

〉
eiωτ dτ. (5.256)

Note that the spectrum is real due to the time-inversion symmetry of the correlation function. Note also that
we are maintaining a particular ordering of the positive- and negative-frequency components of the electric
field, a point we will return to below.

Applying this to the scattered light from a driven, two-level atom, recall that we use ω to refer to the
frequency of the driving field and ω0 to refer to the atomic resonance frequency. Thus, we will use ωs to refer
to the frequency of the scattered light. Also, recall from Eq. (1.43) that in the radiation zone, the electric
field of an oscillating dipole is

E(+)(r, t) = 1

4πε0c2
[(ε̂ · r̂)r̂ − ε̂] d̈

(+)(tr)

r
. (5.257)

This classical expression is still appropriate for radiation from a quantum dipole, although obviously we
will need to remember that d(t) here is a Heisenberg-picture operator. We will work in the near-resonant
regime, and thus we assume that any scattered light will be close to ω0 in frequency. Thus, we make the
approximation

d̈(+) ≈ −ω 2
0 d

(+). (5.258)
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We also note that
|(ε̂ · r̂)r̂ − ε̂|2 = 1− |ε̂ · r̂|2 , (5.259)

which allows us to use the angular distribution function

fε̂(θ, φ) =
3

8π

(
1− |r̂ · ε̂|2

)
. (5.260)

from before. Putting all this together, we can write down the scattered spectrum as

Isc(r, ωs) =
ω 4
0

6π2ε0c3r2
fε̂(θ, φ)

∫ ∞
−∞

dτ eiωsτ
〈
d(−)(t)d(+)(t+ τ)

〉
, (5.261)

where we used η = 1/ε0c. The angle brackets here imply both a time average and an expectation value,
since we are now dealing with operators instead of classical quantities (Heisenberg-picture operators, that
is, since they now carry the explicit time dependence). We can now separate out the dipole matrix elements
from the dipole product to obtain

Isc(r, ωs) =
ω 4
0 |〈g|d|e〉|2

6π2ε0c3r2
fε̂(θ, φ)

∫ ∞
−∞

dτ eiωsτ
〈
σ†(t)σ(t+ τ)

〉
. (5.262)

Now we see the importance of the so called normal ordering, where E(+) appears to the right of E(−)

in the expectation value in Eq. (5.256): it implies that the atomic lowering operator is to the right in
the expectation value, which thus vanishes if the atom is in the ground state. With any other ordering, the
expectation value would be nonzero for an atom in the ground state, and would thus need to be compensated
by another explicit term. Finally, we can use the result (5.242) from our rate-equation analysis to write this
expression in terms of the spontaneous decay rate:

Isc(r, ωs) =
h̄ω0Γ

2πr2
fε̂(θ, φ)

∫ ∞
−∞

dτ eiωsτ
〈
σ†(t)σ(t+ τ)

〉
. (5.263)

The spectral content is entirely in the integral factor, and thus we may define the (unnormalized) spectral
function

S(ωs) =
1

2π

∫ ∞
−∞

dτ eiωsτ
〈
σ†(t)σ(t+ τ)

〉
,

(5.264)
(radiation spectrum)

in terms of which the intensity spectral density becomes

Isc(r, ωs) =
h̄ω0Γ

r2
fε̂(θ, φ)S(ωs).

(fluorescence spectral density) (5.265)
Note that the expectation value here is in the standard frame, whereas the optical Bloch equations are in
the rotating frame. To use the rotating-frame solutions, we transform as follows:

〈ψ|σ†(t)σ(t+ τ)|ψ〉 = 〈ψ̃|eiωtσ†(t)σ(t+ τ)e−iω(t+τ)|ψ̃〉 = e−iωτ 〈ψ̃|σ†(t)σ(t+ τ)|ψ̃〉, (5.266)

so that we may use the spectral function

S(ωs) :=
1

2π

∫ ∞
−∞

dτ ei(ωs−ω)τ
〈
σ†(t)σ(t+ τ)

〉
(radiation spectrum, rotating frame) (5.267)

if we take the expectation value with respect to rotating-frame solutions. We will do this henceforth. Thus,
to find the spectrum of the scattered light, we need to compute the two-time atomic correlation function
[which is of course proportional to g(1)(τ)] and then compute its Fourier transform. We will do so shortly,
but first we will make a few comments about the total scattered radiation.
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5.7.1 Scattering Cross Section, Line Shape, and Power Broadening

To compute the total scattered intensity, we can integrate the spectrum over all frequencies, keeping in mind
that this is a one-sided spectrum: ∫ ∞

0

S(ωs) dωs =
〈
σ†σ

〉
= ρee(t −→∞). (5.268)

Here, the steady-state population is appropriate in view of the time average. Thus, the scattered intensity
is proportional to the excited-state population, as we would expect from the rate-equation model. We can,
of course, define a normalized spectrum by

s(ωs) :=
S(ωs)

ρee(t −→∞)
.

(5.269)
(normalized spectrum)

The total scattered intensity is thus

Isc =
h̄ω0Γ

r2
fε̂(θ, φ)ρee(t −→∞), (5.270)

and we obtain the total scattered power by integrating the intensity over a spherical shell of radius r:

Psc = h̄ω0Γρee(t −→∞). (5.271)

The photon scattering rate is given by dividing the scattered power by the photon energy h̄ω0 (again,
assuming that scattering occurs near resonance),

Rsc = Γρee(t −→∞),
(5.272)

(photon scattering rate)

and we see that this is simply the excited-state decay rate multiplied by the excited-state population.
A common way to describe the total scattered power is the scattering cross section σsc, which we

define as the power radiated by the atom divided by the incident energy flux. That is, the scattered power
is σscI, where I is the intensity of the driving field. This is, of course, the same quantity that we defined
in Section 1.2.1 in our treatment of the Lorentz atom. Recalling from Eq. (5.250) that we can write the
excited-state population in steady state as

ρee(t −→∞) =

(
1

2

)
I/Isat

1 + 4∆2/Γ2 + I/Isat
, (5.273)

we see that we can write the scattering cross section as

σsc =
σ0

1 + 4∆2/Γ2 + I/Isat
,

(5.274)
(scattering cross section)

where the on-resonance, small-signal cross section is given by

σ0 :=
h̄ω0Γ

2Isat
.

(5.275)
(on-resonance, small-signal cross section)

Obviously, the cross section falls to zero as the driving laser is tuned away from resonance, or due to saturation
as the incident intensity becomes large.

We will now examine the absorption line shape, which is just the frequency dependence of the cross sec-
tion. It is somewhat more convenient to examine the excited-state population, which we saw is proportional
to the cross section. We can write the population in the form of Eq. (5.137) as

ρee(t −→∞) =
Ω2/Γ2

1 +

(
2∆

Γ

)2

+ 2
Ω2

Γ2

.
(5.276)

(absorption line shape)
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For a weak driving field, this reduces to

ρee(t −→∞) =
Ω2/4

∆2 + Γ2/4
.

(5.277)
(absorption line shape, weak drive)

This line shape is Lorentzian with a width (FWHM) of Γ, and a maximum value of (Ω/Γ)2 � 1. Hence, Γ
is also referred to as the transition linewidth (representing the angular frequency width of the transition).

In the strong-field limit, the excited-state population becomes

ρee(t −→∞) =
Ω2/4

∆2 +Ω2/2
.

(5.278)
(absorption line shape, strong drive)

This line shape is also Lorentzian, but now with a much larger width (FWHM) of
√
2Ω, and a maximum

value of 1/2 as we expect for a saturated transition.
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Thus, the line shape of the transition is effectively larger due to the strong coupling to the field. This
phenomenon is called power broadening of the transition.

5.7.2 Coherent and Incoherent Scattering

Before grinding through the full solution of the g(1)(τ) coherence function, we can gain some insight by first
considering the asymptotic limit. Given that σ(t) is a stochastically fluctuating operator, due to the random
nature of spontaneous emission, it should become uncorrelated with itself at very different times. Thus,

lim
τ−→∞

〈
σ†(t)σ(t+ τ)

〉
=
〈
σ†(t)

〉
〈σ(t+ τ)〉 = |ρ̃eg(t −→∞)|2 . (5.279)

Thus, the coherence function decays to a possibly nonzero constant. The Fourier transform of this dc
component leads to a delta function in the radiated spectrum, which we can refer to as the ‘‘coherent’’
component of the spectrum (even though it turns out not to be coherent to all orders). The decaying part
of the correlation function leads to a broadened or ‘‘incoherent’’ component of the spectrum, which we will
evaluate below. Formally, we decompose the scattering rate as

Rsc = R(coh)
sc +R(inc)

sc

= Γ| 〈σ〉 |2 + Γ
[〈
σ†σ

〉
− | 〈σ〉 |2

]
= Γ|ρ̃eg(t −→∞)|2 + Γ

[
ρee(t −→∞)− |ρ̃eg(t −→∞)|2

]
.

(coherent and incoherent scattering rates) (5.280)
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That is, the coherent part is due to the square of the mean of the dipole moment, which corresponds to
what we found in the classical analysis (recall that the classical electron ‘‘position’’ was in fact the mean
electron position). The incoherent part includes the mean square dipole moment, and thus accounts for the
fluctuations of the dipole moment within the (possibly fictitious) ensemble.

As for the actual spectral content of the coherent part, a constant value for the coherence function in
Eq. (5.267) gives a perfectly defined spectral peak

S(coh)(ωs) =
1

π

∫ ∞
−∞

dτ ei(ωs−ω)τ |ρ̃eg(t −→∞)|2

= 2|ρ̃eg(t −→∞)|2δ(ωs − ω).

(5.281)
(elastic spectral peak)

That is, the coherent part of the spectrum is exactly at the driving laser frequency, and thus represents
elastically scattered light. (In the regime of far red detuning, the elastic scattering is often referred to as
Rayleigh scattering.) We recall that this was also the classical prediction for the scattered light in steady
state, since the steady state of the Lorentz atom is sinusoidal oscillation at the driving frequency. The
incoherent part will be spread over a range of frequencies and thus will represent inelastic scattering.

What fraction of the scattered light is coherent? We can calculate this simply using the steady-state
solutions of the optical Bloch equations in the forms (5.135):

R
(coh)
sc

Rsc
=
|ρ̃eg( t −→∞)|2

ρee(t −→∞)
=

Γ

4γ⊥

s

(1 + s)2

s/2

1 + s

=
Γ

2γ⊥

1

(1 + s)
. (5.282)

Here, s is again the saturation parameter, given by

s =
Ω2/γ⊥Γ

1 +∆2/γ2⊥
. (5.283)

For homogeneous broadening (no collisions), γ⊥ = Γ/2, and thus

R
(coh)
sc

Rsc
=

1

1 + s
,

(5.284)
(fraction of elastic scattering)

where the saturation parameter becomes

s =
2Ω2/Γ2

1 + (2∆/Γ)2
, (5.285)

In this case, for small saturation parameter (small driving intensity), the scattered light is completely elastic.
As the driving laser intensity increases, the elastic component vanishes, and the light is all inelastically
scattered. In the presence of collisional damping (γ⊥ > Γ/2), there is some inelastic scattering even for a
vanishingly small driving field.

In the homogeneously broadened case, the steady-state solutions again give explicit expressions for the
components. The total scattering rate is

Rsc = Γρee(t −→∞) =
Γ

2

s

1 + s
,

(5.286)
(total scattering rate)

while the coherent scattering rate is

R(coh)
sc = Γ |ρ̃eg( t −→∞)|2 =

Γ

2

s

(1 + s)2
.

(5.287)
(coherent scattering rate)
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The incoherent scattering rate is the difference of these two expressions:

R(inc)
sc = Rsc −R(coh)

sc =
Γ

2

s2

(1 + s)2
.

(5.288)
(incoherent scattering rate)

Thus, since the saturation parameter is proportional to the driving intensity, for small drive intensities the
coherent component ‘‘turns on’’ linearly with the intensity, whereas the incoherent component turns on
quadratically with intensity.
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0.5

0
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/G
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R   /Gsc
(coh)

R  /Gsc

R   /Gsc
(inc)

We thus see that the coherent component represents the linear response of the atom to the field, and thus
the classical component. The incoherent part is the nonlinear part of the response of the two-level atom to
the field, and is manifestly quantum.

5.7.3 Quantum Regression Theorem

In order to evaluate the frequency dependence of the scattered radiation, we must calculate the correlation
functions 〈σ†(t)σ(t+ τ)〉. One method of calculating these correlation functions comes from the quantum
regression theorem,20 which we now describe. The upshot is that according to the quantum regression
theorem, two-time correlation functions obey the same equations of motion as one-time averages, which
considerably simplifies their calculation. In the spirit of the Church of the Larger Hilbert Space, we will
regard the evolution of the atomic system according to a master equation as unitary evolution of the system
coupled to an external ‘‘reservoir.’’

Before we consider the correlation functions, we will briefly review the calculation of single-time aver-
ages. Recall that if A is a system operator (i.e., it does not operate on the reservoir coupled to the system),
then its time-averaged value is given in the Heisenberg picture by

〈A(t)〉 = Tr[A(t) ρSR], (5.289)

where Tr is a trace over both the system and reservoir variables, ρSR is the composite density operator,
ρ = TrR[ρSR] is the reduced density operator for the system, and ρR = TrS[ρSR] is the reduced density
operator for the reservoir. Also, TrS and TrR are partial traces over the system and reservoir, respectively.

20Melvin Lax, ‘‘Quantum Noise. IV. Quantum Theory of Noise Sources,’’ Physical Review 145, 110 (1966) (doi: 10.1103/Phys-
Rev.145.110); S. Swain, ‘‘Master equation derivation of quantum regression theorem,’’ J. Phys. A 14, 2577 (1981) (doi:
10.1088/0305-4470/14/10/013).

http://dx.doi.org/10.1103/PhysRev.145.110
http://dx.doi.org/10.1103/PhysRev.145.110
http://dx.doi.org/10.1088/0305-4470/14/10/013
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We can now change to the Schrödinger representation using A(t) = U†(t, 0)AU(t, 0), where U(t, 0) is
the unitary time-evolution operator from 0 to t, with the result

〈A(t)〉 = Tr[A U(t, 0) ρSR U
†(t, 0)]

= TrS[Aρ(t)],
(5.290)

where we have used the invariance of the trace operation under cyclic permutations and we have carried out
the trace over the reservoir by setting as before

ρ(t) = TrR[U(t, 0) ρSR U
†(t, 0)]. (5.291)

Then, if ρ(t) satisfies the master equation
∂tρ(t) = Lρ(t), (5.292)

with Liouvillian operator L, the evolution of 〈A(t)〉 can be computed by solving Eq. (5.292) for the time
evolution of ρ(t).

To calculate the correlation function (or two-time average) 〈A(t)B(t + τ)〉, where A(t) and B(t) are
arbitrary Heisenberg operators, we proceed in a similar manner. Factoring out the explicit time dependence
and using the composition and inversion properties of the evolution operator,

U(t, t′)U(t′, t′′) = U(t, t′′)

U†(t, t′) = U(t′, t),
(5.293)

we find
〈A(t)B(t+ τ)〉 = Tr[A(t)B(t+ τ)ρSR]

= Tr[AU†(t+ τ, t)BU(t+ τ, t) {U(t, 0) ρSR U
†(t, 0)}]

= Tr[BU(t+ τ, t) ρSR(t)AU
†(t+ τ, t) ].

(5.294)

Then if we define the two-time operator

Λ(t+ τ, t) := TrR[U(t+ τ, t) ρSR(t)AU
†(t+ τ, t)], (5.295)

the two-time correlation function becomes

〈A(t)B(t+ τ)〉 = TrS[B Λ(t+ τ, t)]. (5.296)

This last expression looks much like an evolving expectation value, as in Eq. (5.290), with Λ(t+τ, t) replacing
the reduced density operator ρ(t). Similarly, comparing to Eq. (5.291), the definition (5.295) of Λ looks much
like a density operator, which ρSR replaced by ρSR(t)A. Thus, we see that Λ(t+τ, t) obeys the same equation
of motion as ρ(t), but as a function of τ ,

∂τΛ(t+ τ, t) = LΛ(t+ τ, t), (5.297)

because the time evolution is governed by the same evolution operators in each case. This evolution is subject
to the boundary condition

Λ(t, t) = ρ(t)A. (5.298)

Hence, in the long-time limit, we may summarize the quantum regression theorem as

lim
t→∞
〈A(t)B(t+ τ)〉 = TrS[BΛ(τ)]

(quantum regression theorem) (5.299)
where

∂τΛ(τ) = LΛ(τ),
(quantum regression theorem: evolution) (5.300)
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and
Λ(0) = ρ(t→∞)A

(quantum regression theorem: initial condition) (5.301)
is the initial condition for the evolution.

If we apply the quantum regression theorem to the emission correlation operator 〈σ†(t)σ(t + τ)〉, we
find that the operator Λ(τ), which satisfies the master equation, has the specific initial condition Λ(0) =
ρ̃(t→∞)σ†. Writing out the matrix elements of the initial condition explicitly, these conditions become

Λαβ(0) = δβgρ̃αe(t→∞). (5.302)

Even more explicitly, Λee(0) = Λge(0) = 0, while Λeg(0) = ρee(t → ∞) and Λgg(0) = ρ̃ge(t → ∞). Then,
in terms of the solution Λ(τ) of the optical Bloch equations with these initial conditions, the correlation
function that we need is given by

〈σ†σ(τ)〉 = TrS[σΛ(τ)] = Λeg(τ). (5.303)

Using these two relations, we can now use the solutions of the optical Bloch equations that we already
obtained to evaluate the two-time correlation function for the resonance fluorescence spectrum.

5.7.3.1 Alternate Form

The quantum regression theorem can be written in a useful alternate form as follows. Suppose that the
one-time average of an operator A can be written in the form

〈B(t)〉 =
∑
j

gj(t) 〈Bj(0)〉 , (5.304)

where gj(t) are functions representing the solution in terms of initial conditions 〈Aj(0)〉 of some set of
operators, then the two-time average may be written

〈A(t)B(t+ τ)〉t→∞ ≡〈A(0)B(τ)〉 =
∑
j

gj(τ) 〈ABj〉t→∞ .

(quantum regression theorem) (5.305)
To show this, we can see that

〈A(0)B(τ)〉 = TrS

[
BΛ(τ)

]
=
∑
j

gj(τ)TrS

[
BjΛ(0)

]
=
∑
j

gj(τ)TrS

[
Bjρ(t −→∞)A

]
=
∑
j

gj(τ) 〈ABj〉t→∞ ,

(5.306)

where we used Eq. (5.304) in the second step, recalling that Λ(τ) is formally equivalent to a density operator,
and we used the initial condition Λ(0) = ρ(t −→∞)A in the third step.

This form of the quantum regression theorem can also be generalized a bit to read

〈A(t)B(t+ τ)C(t)〉t→∞ ≡〈A(0)B(τ)C(0)〉 =
∑
j

gj(τ) 〈ABjC 〉t→∞ .

(quantum regression theorem) (5.307)
This form is useful in computing the second-order coherence g(2)(τ) with normally-ordered operators. We
leave the proof of this form as an exercise (Problem 5.22).
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5.7.4 Mollow Triplet

The above recipe for computing the spectrum is good for a numerical computation. However, we can make
our lives a bit easier by modifying the equations for the analytical calculation. The resulting spectrum was
first computed by Mollow,21 and is now called the Mollow spectrum or Mollow triplet.

Given that the initial conditions for Λ(τ) are zero for the (ge) component but not for the (eg) com-
ponent, it is not so convenient to use Torrey’s solutions from Section 5.5.2.2, since they are best when real
values are expected for 〈σx〉 and 〈σy〉. Instead, let us cast the optical Bloch equations in the form

∂tρ̃eg = −(γ⊥ − i∆)ρ̃eg + i
Ω

2
〈σz〉

∂tρ̃ge = −(γ⊥ + i∆)ρ̃ge − i
Ω

2
〈σz〉

∂t〈σz〉 = iΩ(ρ̃eg − ρ̃ge)− Γ
(
〈σz〉+ 1

)
,

(5.308)

which is similar to the Bloch-vector form of Eqs. (5.127), but keeps the complex coherences instead of the
transverse Bloch-vector components. Since we need only compute the incoherent part of the spectrum, we
need only treat the fluctutation parts of the atomic operators. Thus, we wish to compute〈

δσ†(t)δσ(t+ τ)
〉
t→∞ , (5.309)

where
δσ = σ −〈σ〉t→∞ . (5.310)

When we subtract off the steady-state components of the Bloch equations (5.308), we obtain the matrix
form

∂t


δρ̃eg

δρ̃ge

〈δσz〉

 =


− Γ

2
+ i∆ 0 i

Ω

2

0 − Γ

2
− i∆ −iΩ

2

iΩ −iΩ −Γ




δρ̃eg

δρ̃ge

〈δσz〉

 =: P


δρ̃eg

δρ̃ge

〈δσz〉

 , (5.311)

where we are considering only the case of homogeneous broadening (γ⊥ = Γ/2). Note that this is simpler
than the form (5.127) that we used for Torrey’s solutions, since there is no extra constant component. We
thus have a purely linear system to solve.

We then need to work out a modified form of the quantum regression theorem, since we want to
compute the fluctuation part of the correlation function. From Eq. (5.302), the initial conditions are given
by subtracting the steady-state values from the previous initial condition:

δΛ(0) = ρ̃(t −→∞)δσ†. (5.312)
21B. R. Mollow, ‘‘Power Spectrum of Light Scattered by Two-Level Systems,’’ Physical Review 188, 1969 (1969) (doi:

10.1103/PhysRev.188.1969); B. R. Mollow, ‘‘Absorption and Emission Line-Shape Functions for Driven Atoms,’’ Physical Re-
view A, 5, 1522 (1972) (doi: 10.1103/PhysRevA.5.1522); B. R. Mollow, ‘‘Stimulated Emission and Absorption near Resonance
for Driven Systems,’’ Physical Review A, 5, 2217 (1972) (doi: 10.1103/PhysRevA.5.2217). The calculation presented here is sim-
ilar to that of Howard Carmichael, An Open System Approach to Quantum Optics (Springer-Verlag, 1993), section 3.3. For the
experimental observation of the Mollow triplet, see F. Schuda, C. R. Stroud, Jr., and M. Hercher, ‘‘Observation of the resonant
Stark effect at optical frequencies,’’ Journal of Physics B: Atomic and Molecular Physics 7, L198 (1974) (doi: 10.1088/0022-
3700/7/7/002); F. Y. Wu, R. E. Grove, and S. Ezekiel, ‘‘Investigation of the Spectrum of Resonance Fluorescence Induced by a
Monochromatic Field,’’ Physical Review Letters 35, 1426 (1975) (doi: 10.1103/PhysRevLett.35.1426); R. E. Grove, F. Y. Wu,
and S. Ezekiel, ‘‘Measurement of the spectrum of resonance fluorescence from a two-level atom in an intense monochromatic
field,’’ Physical Review A 15, 227 (1977) (doi: 10.1103/PhysRevA.15.227); W. Hartig, W. Rassmussen, R. Schieder, and H.
Walther, ‘‘Study of the frequency distribution of the fluorescent light induced by monochromatic radiation,’’ Zeitschrift für
Physik A 278, 205 (1976) (doi: 10.1007/BF01409169); J. L. Carlsten, A. Szöke, and M. G. Raymer, ‘‘Collisional redistribution
and saturation of near-resonance scattered light,’’ Physical Review A 15, 1029 (1977) (doi: 10.1103/PhysRevA.15.1029); and
J. Hunnekens and A. Gallagher, ‘‘Self-broadening of the sodium resonance lines and excitation transfer between the 3P3/2 and
3P1/2 levels,’’ Physical Review A 27, 1851 (1983) (doi: 10.1103/PhysRevA.27.1851).

http://dx.doi.org/10.1103/PhysRev.188.1969
http://dx.doi.org/10.1103/PhysRevA.5.1522
http://dx.doi.org/10.1103/PhysRevA.5.2217
http://dx.doi.org/10.1088/0022-3700/7/7/002
http://dx.doi.org/10.1088/0022-3700/7/7/002
http://dx.doi.org/10.1103/PhysRevLett.35.1426
http://dx.doi.org/10.1103/PhysRevA.15.227
http://dx.doi.org/10.1007/BF01409169
http://dx.doi.org/10.1103/PhysRevA.15.1029
http://dx.doi.org/10.1103/PhysRevA.27.1851
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In component form, this reads

δΛαβ(0) = δβgρ̃αe(t −→∞)− ρ̃αβ(t −→∞)ρ̃ge(t −→∞), (5.313)

which we can write out even more explicitly as

δΛ(0) =

 ρee − ρ̃egρ̃ge
−ρ̃geρ̃ge

−ρeeρ̃ge − ρ̃ge + ρggρ̃ge


t→∞

=

 ρee − |ρ̃eg|2
−ρ̃2ge

−ρ̃ge (1 +〈σz〉)


t→∞

, (5.314)

where all the atomic expectation values here refer to the steady-state values.
If we now restrict our attention to the resonant (∆ = 0) case, we have the steady-state values

ρee(t −→∞) =
1

2

s

1 + s

〈σz(t −→∞)〉 = 2ρee(t −→∞)− 1 = − 1

1 + s

ρ̃ge(t −→∞) = i

√
s

2

1

1 + s

[ρ̃eg(t −→∞)]
2
= − 1

2

s

(1 + s)2

|ρ̃eg(t −→∞)|2 =
1

2

s

(1 + s)2
,

(5.315)

where
s = 2

Ω2

Γ2
. (5.316)

Thus, we can write the initial conditions as

δΛ(0) =
1

2

s

(1 + s)2

 s
1

−i
√
2s

 . (5.317)

We also note that the on-resonance evolution matrix

P =


− Γ

2
0 i

Ω

2

0 − Γ

2
−iΩ

2

iΩ −iΩ −Γ

 (5.318)

has eigenvalues
− Γ

2
, − 3Γ

4
± iΩΓ, (5.319)

where as before

Ω 2
Γ := Ω2 −

(
Γ

4

)2

. (5.320)

The corresponding eigenvectors are

 1
1
0

 ,

− 1

2Ω

(
i
Γ

4
∓ ΩΓ

)
1

2Ω

(
i
Γ

4
∓ ΩΓ

)
1

 . (5.321)



204 Chapter 5. Two-Level Atom Interacting with a Classical Field

If we write these as the columns of the matrix

S =


1 − 1

2Ω

(
i
Γ

4
− ΩΓ

)
− 1

2Ω

(
i
Γ

4
+ ΩΓ

)
1

1

2Ω

(
i
Γ

4
− ΩΓ

)
1

2Ω

(
i
Γ

4
+ ΩΓ

)
0 1 1

 , (5.322)

then this matrix diagonalizes the evolution matrix:

S−1PS = D =


− Γ

2
0 0

0 − 3Γ

4
+ iΩΓ 0

0 0 − 3Γ

4
− iΩΓ

 . (5.323)

Now that we have an evolution equation of the form

∂τδΛ(τ) = P δΛ(τ), (5.324)

we can use P = SDS−1 to obtain the solution

δΛ(τ) = exp(Pτ)δΛ(0) = S exp(Dτ)S−1δΛ(0). (5.325)

The element of the operator Λ that we need is

δΛeg(τ) =
〈
δσ†(t) δσ(t+ τ)

〉
t→∞ , (5.326)

which is equivalent to the desired correlation function according to the quantum regression theorem. In the
vector form of the solution (5.325), this is simply the first (topmost) component in the ordering we have
used here. After multiplying everything out (a symbolic algebra package helps a great deal here), we obtain
the result

δΛeg(τ) =
〈
δσ†(0) δσ(τ)

〉
=

s

4(1 + s)
e−(Γ/2)τ

+
s

8(1 + s)2

[
s− 1− i Γ

4ΩΓ
(5s− 1)

]
e−(3Γ/4)τeiΩΓτ

+
s

8(1 + s)2

[
s− 1 + i

Γ

4ΩΓ
(5s− 1)

]
e−(3Γ/4)τe−iΩΓτ .

(atomic dipole correlation function) (5.327)
We can see that there are three components here: the first is a simple damped exponential and thus corre-
sponds to a Lorentzian of width Γ (FWHM) centered on the resonant frequency; the other two are Lorentzian
peaks shifted by ±ΩΓ from the resonance frequency (if Ω is large enough that ΩΓ is real), each of width
3Γ/2 (FWHM). In the weak-field limit, all component are centered at the resonance frequency, since ΩΓ is
imaginary. In the strong-field limit (Ω� Γ or s� 1), this correlation function reduces to

〈
δσ†(0) δσ(τ)

〉
=

1

4
e−(Γ/2)τ +

1

8
e−(3Γ/4)τeiΩΓτ +

1

8
e−(3Γ/4)τe−iΩΓτ .

(dipole correlation, strong-field limit) (5.328)
Noting that the coherent part of the spectrum is negligible in this regime, we see that the spectrum consists of
three well-separated Lorentzian peaks. Accounting for the extra factor of 2 that we pick up when calculating
the one-sided spectrum, we note that the total integrated spectrum is given by the correlation function
evaluated at τ = 0, so we conclude that 1/2 of the total power is in the central lobe, and 1/4 of the total
power is in each of the side lobes.
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Computing the Fourier transform in Eq. (5.264) to find the explicit spectrum, we find [including the
elastic component from Eq. (5.281)]

S(ωs) =
s

(1 + s)2
δ(ωs − ω) +

s

8π(1 + s)

Γ

[(ωs − ω)2 + (Γ/2)2]

+
s

16π(1 + s)2
(s− 1)(3Γ/2) + (5s− 1)(Γ/2ΩΓ)[ωs − (ω − ΩΓ)][

[ωs − (ω − ΩΓ)]2 + (3Γ/4)2
]

+
s

16π(1 + s)2
(s− 1)(3Γ/2) + (5s− 1)(Γ/2ΩΓ)[ωs − (ω +ΩΓ)][

[ωs − (ω +ΩΓ)]2 + (3Γ/4)2
]

(Mollow triplet, strong-field limit) (5.329)
in the strong-field case where ΩΓ is real (Ω > Γ/4), and

S(ωs) =
s

(1 + s)2
δ(ωs − ω) +

s

8π(1 + s)

Γ

[(ωs − ω)2 + (Γ/2)2]

+
s

4π(1 + s)2
(s− 1)(3Γ/4 + ΩΓ)

[(ωs − ω)2 + (3Γ/4 + ΩΓ)2]

(Mollow spectrum, weak-field limit) (5.330)
in the weak-field case where ΩΓ is imaginary (Ω < Γ/4). Several resonant spectra are plotted below.
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The elastic delta function of varying heights is schematically included. The spectrum is always symmetric
about the laser (and hence atomic) frequency.

5.7.4.1 Off Resonance

In the off-resonant case, the eigenvalues do not have a simple form, and it is difficult to treat the problem
analytically. However, in the case of very large detuning or driving, such that Γ is negligible, the eigenvalues
of P are 0 and ±iΩ̃, so that the splitting reduces to the generalized Rabi frequency. In the case of large
detuning and weak excitation (Γ� Ω� |∆|), the splitting just reduces to ∆, and we expect a central peak
at the laser frequency ω, a side peak at the atomic resonance ω0, and the other side peak at ω+∆ = 2ω−ω0.

The line shapes for detuning ∆ = 1 are quite different for small drive, but similar to the resonant line
shapes for large drive, with the outer lobes being slightly larger and farther out.



206 Chapter 5. Two-Level Atom Interacting with a Classical Field

(w  - w)/G
-20 200

0.16

0

sp
ec

tr
a
l 
d
en

si
ty

W = 10G

W = 3G

W = 0.3G
(¥20)

W = G

D = G

s

0

For larger detunings, the central peak is suppressed compared to the resonant case, especially for small driving
intensities. Again, the spectrum is always centered about the laser frequency, not the atomic resonance
frequency.
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5.7.4.2 Interpretations

One nice physical picture of the Mollow triplet is an amplitude-modulated radiator. A source at frequency
ω modulated in amplitude at frequency ωm can be modeled as

cos(ωt) cos2(ωmt/2) =
1

2
cos(ωt) [1 + cos(ωmt)] =

1

2
cos(ωt) + 1

4
cos[(ω + ωm)t] +

1

4
cos[(ω − ωm)t]. (5.331)

Amplitude modulation of a wave thus produces two sidebands with the original ‘‘carrier,’’ where the sideband
splitting is just the modulation frequency. In the atom, the emission probability is proportional to ρee,
which is modulated by the Rabi oscillations, and thus we expect a similar triplet spectrum based on the
modulation of the emission probability. The Mollow spectrum is thus a direct signature of Rabi oscillations.
In the resonant case, the Rabi oscillations happen at the damped Rabi frequency ΩΓ, and thus we expect
the Mollow splitting to occur at this frequency. This argument extends to the far-off-resonant case, where
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Rabi oscillations occur at the generalized Rabi frequency Ω̃. However, this model is too simple to account
for the spectral widths or relative heights of the peaks in the off-resonant case.

The other nice intepretation of the Mollow triplet comes from the dressed-atom picture. We worked
out the dressed states for the atom interacting with a classical field before in Section 5.3, where we found
that the new eigenstates of the combined atom-field system are split by Ω̃, as opposed to the uncoupled
states, which are split by the detuning ∆. Although we have not explicitly quantized the field, we have
discussed the idea of photons, and so it is easy to extend the dressed-atom picture to the case of the atom
coupled to the quantized field. The only difference from the previous analysis is that the two atomic levels
are repeated in energy corresponding to the presence of different numbers of field quanta. The repetition
occurs every h̄ω in energy.

w = wº

|g, no+o1Ò, |e, nÒ fi

|g, nÒ, |e, no-o1Ò
|+, (no-o1)Ò

|-, (no-o1)Ò

|+, (n)Ò

|-, (n)Ò

|+, (no+o1)Ò

|-, (no+o1)Ò
|g, no+o2Ò, |e, no+o1Ò

w = wº

W

As we see, for the resonant case, the rotating-frame states |g, n+ 1〉 and |e, n〉 are degenerate, but they are
coupled to each other by the field. They are thus split into a doublet, with the splitting again given by
the Rabi frequency Ω. On the right-hand side of the diagram are shown four possible decay paths. Note
that this analysis is only valid for Ω � Γ (otherwise the states are not resolved), and thus the decay here
corresponds to the incoherent spectrum. The dressed-state splitting in this regime is likewise Ω ≈ ΩΓ.

We see that two possible paths give rise to the central peak, centered about the resonant frequency,
while the two other decay paths are shifted in energy by ±Ω from the resonance. Also, on resonance, each
dressed state is an equal superposition of the atomic excited and ground states, and thus we expect each
decay path to occur at the same rate. Thus, the central band has twice the integrated area as each of the
side bands, as we have already seen in the Ω � Γ limit. Of course, in the off-resonant case, the uncoupled
states are split by ∆, and the dressed states are split by Ω̃, so the splittings of the Mollow triplet are just
given by the generalized Rabi frequency Ω̃. In addition to this simple physical picture, it is possible to
compute quantitatively the general line widths and weights of the lines in the secular limit (of large driving
or detuning).22

5.7.4.3 Energy Conservation

These scalings have a nice interpretation in terms of scattering processes in perturbation theory.23 Consider
the case of small saturation s (i.e., we take s to be the expansion parameter). Then the diagrammatic
representation of the first-order atom-field interaction is as follows.

w

w

|og‚

|oe‚

|og‚

22Claude Cohen-Tannoudji, Jacques Dupont-Roc, and Gilbert Grynberg, Atom–Photon Interactions: Basic Processes and
Applications (Wiley, 1992), Section VI.E, p. 437.

23Claude Cohen-Tannoudji, ‘‘Atoms in Strong Resonant Fields,’’ in Frontiers in laser spectroscopy: Proceedings of the Les
Houches Summer School, Session XXVII, 1975, R. Balian, S. Haroche, and S. Liberman, Eds. (North-Holland, 1977), p. 1.
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That is, we associate a factor of s with each absorption/emission cycle. Since there is only one emitted
photon, and the atom ends in its initial state, the emitted photon must have the same frequency ω as the
incident photon. This scattering process represents the elastic peak, the coherent delta-function spectrum
from Section 5.7.2. The second-order diagram, on the other hand, is as follows.

w

w1

w

w2

|og‚

|oe‚

|og‚ |oe‚

|og‚

Energy needs only to be conserved for the entire process here, so energy conservation imposes the requirement

2ω = ω1 + ω2 (5.332)

on the two emitted photons. This is how photons may be inelastically scattered, say into the Mollow
side bands, while maintaining energy conservation: any inelastically scattered photon must be balanced by
another one (or possibly more, in higher order) that maintains overall energy balance.

From before, we saw that for small s, the amplitude of the elastic peak scales as s, while the power of
the inelastic component scales as s2. This matches our intuition here from perturbation theory. At higher
orders, perturbation theory becomes rapidly more complicated, and not so useful to consider, but we can
get some powerful intuition in the weak-excitation limit, as the next example shows.

5.7.4.4 Nonclassical Correlations

The above analysis implies that for weak excitation, any photon emitted in one Mollow side band will
be strongly correlated with another photon emitted in the other side band. This effect was observed in
a beautiful experiment24 on the fluorescence of a strontium beam. The atoms were excited very far off
resonance (28 Å off the 460.7 nm resonance, corresponding to ∆/2π = 4 THz, which was much larger than
the Rabi frequency Ω/2π = 80 GHz and the decay rate, which is specified in terms of the 4.7 ns lifetime).
Again, the outer side bands are located approximately at ω0 and 2ω − ω0, and photon coincidences in these
two bands were monitored as a function of time delay.

The data showed a large correlation over what would be expected for random coincidences, with the
peak correlation occuring for a time delay of about one lifetime. Again, this is not explained by the linear
Rayleigh process,

|eÒ

|gÒ

ww

but rather by the nonlinear, second-order multiphoton process in the following diagram (shown for the blue
detuning of the experiment).

|oeo‚

|ogo‚

w wº

2wo-owº

w

24A. Aspect, G. Roger, S. Reynaud, J. Dalibard, and C. Cohen-Tannoudji, Physical Review Letters 45, 617 (1980) (doi:
10.1103/PhysRevLett.45.617); Jean Dalibard and Serge Reynaud, ‘‘Non-Classical Properties of Resonance Fluorescence Light,’’
in New trends in atomic physics: Proceedings of the Les Houches Summer School, Session XXXVIII, 1982, G. Grynberg and
R. Stora, Eds. (Elsevier, 1984), Seminar 2, p. 181.

http://dx.doi.org/10.1103/PhysRevLett.45.617
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Note the ordering here, as the photon of frequency ω0 nearly always follows the emission of the photon of
frequency 2ω−ω0. This is because the diagram for emission in the reverse order does not have an intermediate
resonance with the excited state, as shown here.

|oeo‚

|ogo‚

w

wº

2wo-owº

w

Thus, the reverse process proceeds at a much smaller rate. (By contrast, for a resonantly driven atom,
the photons in the two side bands can come in either order.) It is important to realize that this effect is
manifestly quantum: it represents a correlation between the photons in two frequency modes, while no such
correlation exists between photons in the same mode. The atom thus emits nonclassically correlated pairs
of photons into the two frequency bands.

5.7.5 Antibunching of Resonance Fluorescence

The elastic part of the spectrum is first-order coherent, because it is monochromatic. It turns out not to
be coherent at second order, as we will now show, and in fact it turns out to be antibunched.25 To see
this antibunching, we will need to examine the second-order coherence function. From our discussion of
coherence in Section 2.6, Eq. (2.68), the normalized, second-order coherence function is

g(2)(τ) :=
〈E(−)(t)E(−)(t+ τ)E(+)(t+ τ)E(+)(t)〉

〈E(−)(t)E(+)(t)〉2
. (5.333)

Again, we can replace the scattered-field operators with the atomic operators, with the result

g(2)(τ) :=
〈σ†(t)σ†(t+ τ)σ(t+ τ)σ(t)〉

〈σ†σ〉2
. (5.334)

Recall that from our classical calculation, g(2)(τ = 0) ≥ 1 [Eq. (2.72)]. We will work with the unnormalized
form

G(2)(τ) = 〈σ†(t)σ†(t+ τ)σ(t+ τ)σ(t)〉, (5.335)

where we can see where things will become nonclassical: at τ = 0,

G(2)(0) = 〈σ†σ†σσ〉 = 0, (5.336)

since σ2ψ = 0. This is impossible for a classical field, so resonance fluorescence from a two-level atom is
manifestly quantum. The correlation function vanishes at τ = 0 because just after a photon is detected, the
atom is known to be in the ground state, and cannot emit again until a time of order 2π/Ω elapses. In other
words, two photons cannot be detected simultaneously in the resonance fluorescence of a single atom.

25For the first theoretical proposals, see H. J. Carmichael and D. F. Walls, ‘‘Proposal for the measurement of the resonant
Stark effect by photon correlation techniques,’’ Journal of Physics B: Atomic and Molecular Physics 9, L43 (1976) (doi:
10.1088/0022-3700/9/4/00); H. J. Kimble and L. Mandel, ‘‘Theory of resonance fluorescence,’’ Physical Review A 13, 2123
(1976) (doi: 10.1103/PhysRevA.13.2123); H. J. Carmichael and D. F. Walls, ‘‘A quantum-mechanical master equation treatment
of the dynamical Stark effect,’’ Journal of Physics B: Atomic and Molecular Physics 9, 1199 (1976) (doi: 10.1088/0022-
3700/9/8/007). For the experimental observation, see H. J. Kimble, M. Dagenais, and L. Mandel, ‘‘Photon Antibunching in
Resonance Fluorescence,’’ Physical Review Letters 39, 691 (1977) (doi: 10.1103/PhysRevLett.39.691); M. Dagenais and L.
Mandel, ‘‘Investigation of two-time correlations in photon emissions from a single atom,’’ Physical Review A 18, 2217 (1978)
(doi: 10.1103/PhysRevA.18.2217).

http://dx.doi.org/10.1088/0022-3700/9/4/00
http://dx.doi.org/10.1103/PhysRevA.13.2123
http://dx.doi.org/10.1088/0022-3700/9/8/007
http://dx.doi.org/10.1088/0022-3700/9/8/007
http://dx.doi.org/10.1103/PhysRevLett.39.691
http://dx.doi.org/10.1103/PhysRevA.18.2217
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To evaluate the correlation function, we will use a variation on the quantum regression theorem.
Following along the lines of the above derivation,

G(2)(τ) = Tr
[
σ†(t)σ†(t+ τ)σ(t+ τ)σ(t)ρSR

]
= Tr

[
σ†U†(t+ τ, t)σ†σU(t+ τ, t)σρSR(t)

]
= Tr

[
σ†σU(t+ τ, t)σρSR(t)σ

†U†(t+ τ, t)
]

= TrS

[
σ†σΛ(t+ τ, t)

]
,

(5.337)

where
Λ(t+ τ, t) = TrR

[
U(t+ τ, t)σρSR(t)σ

†U†(t+ τ, t)
]
. (5.338)

Then in the t −→∞ limit, Λ(τ) satisfies the optical Bloch equations

∂τΛ(τ) = LΛ(τ) (5.339)

with initial condition
Λ(0) = TrR

[
σρSR(t −→∞)σ†

]
= σρ(t −→∞)σ†. (5.340)

In components, this means that Λeg(0) = Λge(0) = Λee(0) = 0, while Λgg(0) = ρee(t −→∞). The component
of the solution that we want is,

G(2)(τ) = Λee(τ), (5.341)

the excited-state ‘‘population.’’
Since the optical Bloch equations in terms of ρ̃αβ form a linear system, any scalar multiple of this

solution is also a solution. In particular, rescaling the solution by ρee(t −→∞) matches the initial conditions
for the quantum regression theorem, and thus

G(2)(τ) = ρee(τ)
∣∣∣
ρ(0)=|g〉〈g|

ρee(t −→∞), (5.342)

where ρee(τ)|ρ(0)=|g〉〈g| is the solution to the optical Bloch equations subject to the condition that the atom
is intially in the ground state. Thus, for arbitrary excitation, the correlation function G(2)(τ) starts off at
zero, and for sufficiently large excitation shows damped oscillations towards steady state.

We already know the solution of the on-resonance optical Bloch equations in the case where ρgg(0) = 1
and all other components are initially zero from Eq. (5.176):

ρee(t) =
〈σz(t)〉+ 1

2
=

Ω2/2

Ω2 + Γ2/2

[
1− e−(3Γ/4)t

(
cosΩΓt+

3Γ

4ΩΓ
sinΩΓt

)]
. (5.343)

Thus, on resonance, the correlation function is

G(2)(τ) =

(
Ω2/2

Ω2 + Γ2/2

)2 [
1− e−(3Γ/4)τ

(
cosΩΓτ +

3Γ

4ΩΓ
sinΩΓτ

)]
. (5.344)

We can find the normalized correlation function by dividing by ρ2ee(t −→ ∞) (or by requiring that the
correlation function settle to unity), with the result

g(2)(τ) =

[
1− e−(3Γ/4)τ

(
cosΩΓτ +

3Γ

4ΩΓ
sinΩΓτ

)]
.

(second-order coherence for resonance fluorescence) (5.345)
Again, for small excitation, the correlation function decays smoothly to unity. For larger excitations, the
behavior is similar, but with Rabi oscillations along the way.
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5.7.6 Probe Absorption

Some interesting features come up when we consider the effect of a driven, two-level atom on a second, weak
probe field. Namely, we will now derive the probe-absorption spectrum for the auxiliary probe field.26

Following Mollow’s argument, we start by computing the lowest-order perturbation to the atomic density
operator due to the coupling to the probe field. Let Hp(t) denote the atom–probe coupling Hamiltonian.
Then in time-dependent perturbation theory in the interaction picture, the perturbation to the state is

δρ(t) = − i

h̄

∫ t

−∞
dt′[Hp(t

′), ρ]. (5.346)

Here, ρ is the Heisenberg-picture density operator with respect to the probe-free evolution, and thus has
no time dependence. The effect of the Rabi oscillations must be incorporated into the time-dependence of
Hp(t). The rate at which energy is absorbed from the probe is the rate at which the probe field does work
on the system, which is given by

Pabs(t) = 〈∂tHp(t)〉

= Tr [∂tHp(t) δρ(t)]

= − i

h̄

∫ t

−∞
dt′Tr {[∂tHp(t),Hp(t

′)] ρ} .

(5.347)

Note that there is no contribution from the unperturbed state ρ, since it does not include the effect of
the probe. Assuming a monochromatic probe of frequency ωp, we can write the atom–probe coupling
Hamiltonian in the usual form

Hp(t) =
h̄Ωp

2

(
σ(t)eiωpt + σ†(t)e−iωpt

)
, (5.348)

26B. R. Mollow, op. cit.; see also N. Bloembergen and Y. R. Shen, ‘‘Quantum-Theoretical Comparison of Nonlinear Suscepti-
bilities in Parametric Media, Lasers, and Raman Lasers,’’ Physical Review 133, A37 (1964) (doi: 10.1103/PhysRev.133.A37 );
Murray Sargent III, ‘‘Spectroscopic Techniques Based on Lamb’s Laser Theory,’’ Physics Reports (Section C of Physics Letters)
43, 223 (1978) (doi: 10.1016/0370-1573(78)90163-1); Donald J. Harter and Robert W. Boyd, ‘‘Nearly Degenerate Four-Wave
Mixing Enhanced by the ac Stark Effect,’’ IEEE Journal of Quantum Electronics, QE-16, 1126 (1980); Robert W. Boyd, Michael
G. Raymer, Paul Narum, and Donald J. Harter, ‘‘Four-wave parametric interactions in a strongly driven two-level system,’’
Physical Review A 24, 411 (1981) (doi: 10.1103/PhysRevA.24.411). For the experimental observation of the Mollow absorption
spectra, see F. Y. Wu, S. Ezekiel, M. Ducloy, and B. R. Mollow, ‘‘Observation of Amplification in a Strongly Driven Two-Level
Atomic System at Optical Frequencies,’’ Physical Review Letters 38, 1077 (1977) (doi: 10.1103/PhysRevLett.38.1077).

http://dx.doi.org/10.1103/PhysRev.133.A37 
http://dx.doi.org/10.1016/0370-1573(78)90163-1
http://dx.doi.org/10.1103/PhysRevA.24.411
http://dx.doi.org/10.1103/PhysRevLett.38.1077
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where the probe Rabi frequency is given by

Ωp := − 〈g|ε̂ · d|e〉E0p

h̄
, (5.349)

where E0p is the real amplitude of the probe field. Here, σ(t) is the Heisenberg-picture (with respect to the
probeless atom) atomic lowering operator, which we assume to be slowly varying on the scale of ωp if the
pump and probe are nearly resonant. Then we can evaluate the derivative

∂tHp(t) ≈
ih̄ωpΩp

2

(
σ(t)eiωpt − σ†(t)e−iωpt

)
. (5.350)

Putting these Hamiltonian expressions into Eq. (5.347), we find

Pabs(t;ωp) =
h̄ωpΩ

2
p

4

∫ t

−∞
dt′Tr

{[
σ(t)σ†(t′)e−iωp(t

′−t) − σ†(t)σ(t′)eiωp(t
′−t)
]
ρ
}
+ c.c., (5.351)

where we have dropped terms of the form σ(t)σ(t′)eiωp(t+t
′), which will vanish under the subsequent time

average. Notice that this spectrum is automatically one-sided since ωp is the frequency of the real probe
field, which has a time dependence of the form cos(ωpt). Taking t′ = t+τ , and assuming a stationary process
so that we can drop the explicit t dependence and perform a time average,

Pabs(ωp) =
h̄ωpΩ

2
p

4

∫ 0

−∞
dτ
〈
σ(t)σ†(t+ τ)e−iωpτ − σ†(t)σ(t+ τ)eiωpτ

〉
+ c.c.

=
h̄ωpΩ

2
p

4

∫ 0

−∞
dτ
〈
σ(t+ τ)σ†(t)− σ†(t)σ(t+ τ)

〉
eiωpτ + c.c.

=
h̄ωpΩ

2
p

4

∫ 0

−∞
dτ
〈[
σ(t+ τ), σ†(t)

]〉
eiωpτ + c.c.

=
h̄ωpΩ

2
p

4

∫ ∞
0

dτ
〈[
σ(t+ τ), σ†(t)

]〉
eiωpτ + c.c.

=
h̄ωpΩ

2
p

4

∫ ∞
−∞

dτ
〈[
σ(t+ τ), σ†(t)

]〉
eiωpτ .

(5.352)

We may thus write the absorption spectrum in terms of a new correlation function,

Pabs(ωp) =
h̄ωpΩ

2
p

4

∫ ∞
−∞

dτ ga(τ)e
iωpτ ,

(5.353)
(probe absorption)

where
ga(τ) :=

〈[
σ(t+ τ), σ†(t)

]〉
.

(probe absorption correlation function) (5.354)
The t −→ ∞ limit is implied here. This correlation function allows us to define the (unnormalized) probe-
absorption spectrum

Sa(ωp) =

∫ ∞
−∞

ga(τ)e
iωpτdτ. (5.355)

[Note that there is an arbitrary but different normalization coefficient here compared to the emission spectrum
of Eq. (5.264).] Again, the Heisenberg operator σ(t) only has slow time dependence in the rotating frame of
the laser field, and if we evaluate the correlation function in this frame, the spectrum becomes

Sa(ωp) =

∫ ∞
−∞

ga(τ)e
i(ωp−ω)τdτ,

(probe-absorption spectrum, rotating frame) (5.356)
and is implicitly centered about the laser frequency.
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When we integrate over all frequencies, we find the total absorbed power,

Pabs =

∫ ∞
0

dωp Pabs(ωp)

≈
h̄ω0Ω

2
p

4

∫ ∞
0

dωp Sa(ωp)

=
h̄ω0Ω

2
p

4

∫ ∞
−∞

dτ ga(τ)

∫ ∞
0

dωp e
i(ωp−ω)τ

≈
πh̄ω0Ω

2
p

2

∫ ∞
−∞

dτ ga(τ)δ(τ)

≈
πh̄ω0Ω

2
p

2
ga(0),

(5.357)

where we have assumed that the absorption spectrum is peaked near the atomic resonance. The undelayed
correlation function is

ga(0) =
〈
[σ, σ†]

〉
= ρgg − ρee, (5.358)

and is thus related only to the population inversion. This absorbed power implies an absorption coefficient
for a vapor of number density N of

a =
PabsN

I
=
πh̄ω0Ω

2
p

2I
(ρgg − ρee)N =

πh̄ω0Ω
2
p

2I
(Ng −Ne). (5.359)

Noting that the saturation intensity is defined such that Ω2
p/I = Γ2/2Isat [from Eq. (5.248)], where Isat =

h̄ω3
0Γ/4πc

2 [from Eq. (5.253)], the integrated absorption coefficient becomes

a =
π2c2Γ

ω 2
0

(Ng −Ne). (5.360)

This turns out to match the result we get directly from the rate equations: recall that the rate-equation
absorption coefficient from Eq. (3.25) is

a(ω) = σ(ω) [Ng −Ne] , (5.361)

where the laser cross section is
σ(ω) = Γ

λ 2
0

4
s(ω). (5.362)

Integration over all frequencies gives ∫ ∞
0

dω σ(ω) = Γ
λ 2
0

4
=
π2c2Γ

ω 2
0

, (5.363)

which gives precisely the same integrated absorption coefficient. We can thus be confident that we are more
or less on the right track.

The absorption correlation function can be written as

ga(τ) =
〈
σ(t+ τ)σ†(t)

〉
−
〈
σ†(t)σ(t+ τ)

〉
=: gd(τ)− ge(τ), (5.364)

where ge(τ) is the correlation function that we already evaluated in deriving the emission spectrum. Hence,
it remains to compute the correlation function

gd(τ) :=
〈
σ(t+ τ)σ†(t)

〉
. (5.365)

The usual business of the quantum regression theorem (see Problem 5.21) tells us to solve the optical Bloch
equations, with initial condition

Λ(0) = σ†ρ(t −→∞), (5.366)
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so that Λeg(0) = ρgg(t −→∞), Λee(0) = ρ̃ge(t −→∞), and the other components are initially zero. We can
then use the component

gd(τ) = Λeg(τ) (5.367)

of the solution, whose Fourier transform then gives the probe absorption spectrum.
This problem can also be solved by explicitly including the coupling to the weak probe field in the

optical Bloch equations, essentially by making the substitution

Ωσeiωt −→ Ωσeiωt +Ωpσe
iωpt (5.368)

in the laboratory (nonrotating) frame, and then finding the (oscillating) equilibrium solution. Using this
procedure, Mollow27 gave an analytic form for the absorption spectrum (Problem 5.20):

Sa(ωp) =

[
ρgg(t −→∞)− ρee(t −→∞)

] [
(Γ− i∆p)[γ⊥ + i(∆−∆p)] +

iΩ2∆p

2(γ⊥ + i∆)

]
(Γ− i∆p)[γ⊥ + i(∆−∆p)][γ⊥ − i(∆ +∆p)] + Ω2(γ⊥ − i∆p)

+ c.c.

(Mollow probe-absorption spectrum) (5.369)
Here,

∆p := ωp − ω (5.370)

is the probe detuning from the pump frequency (so that ∆ + ∆p = ωp − ω0 is the probe detuning from
resonance, and ∆−∆p = 2ω−ω0−ωp.. This spectrum is valid off resonance and for general damping (with
or without collisions).

Some on-resonance absorption line shapes are plotted below in the absence of collisions.
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The absorption line is strongest and Lorentzian for small pump intensities. As the pump intensity gets
larger, the absorption line shape becomes more complicated, showing multiple peaks. A vertically zoomed
version of the same plot is shown below.

27B. R. Mollow, ‘‘Stimulated Emission and Absorption near Resonance for Driven Systems,’’ Physical Review A, 5, 2217
(1972) (doi: 10.1103/PhysRevA.5.2217). See in particular Eqs. (3.8) and (3.11a).

http://dx.doi.org/10.1103/PhysRevA.5.2217
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For saturating pump intensities, the absorption line shape crosses through zero and is negative for certain
frequency ranges. These regions of negative absorption correspond, of course, to stimulated emission of the
probe. For large pump intensities, the outer zero crossings occur at ±Ω from the pump laser frequency.
Right on resonance, the probe is absorbed, but just off of resonance stimulated emission dominates.

For larger detunings (and still with no collisions), the line shape is pretty much the same for small
pump intensities: a single Lorentzian peak at the atomic resonance. But as the pump intensity gets larger,
the line shape becomes dramatically different from the on-resonance case.

-20 200

4

-0.2

re
la

ti
v
e 

p
ro

b
e 

a
b
so

rp
ti

o
n

D = -5G

(w  - w)/Gp

W = 10G

W = 3G

W = 0.3G
W = G

Side peaks develop near ±Ω̃ from the pump laser frequency, one positive and one negative. Also, as we can
see from the zoomed version of the same plot, there is also a central dispersive structure in the line shape.
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While the center structure can be understood qualitatively,28 its interpretation is relatively subtle. The
side peaks, however, are reasonably easy to understand in the dressed-state picture (which again applies if
Ω̃� Γ).

|+, (no-o1)Ò

|-, (no-o1)Ò

|+, (n)Ò

|-, (n)Ò

|+, (no+o1)Ò

|-, (no+o1)Ò

W
~

The absorption spectrum is essentially a probe of the dressed levels, which off resonance are split approx-
imately by the generalized Rabi frequency Ω̃, and hence the location of the side peaks. Recall also that
for large negative detuning, the |−〉 dressed state is essentially the same as |g〉, and hence should be more
populated in steady state. Then the more energetic (blue) side peak probes a transition where the ground
state is more populated than the excited state, hence giving rise to an absorptive peak. The less energetic
(red) side peak probes a transition with a population inversion, and thus gives rise to a negative-absorption
peak. The central structure is due to two transitions that probe levels with no population difference, and
again has a more subtle interpretation.

The absorption line shapes in the regime of strong collisional damping are also qualitatively quite
different. We will show the case where γ⊥ = 10Γ and the pump is on resonance (∆ = 0). For small pump
intensities, the line shape is a broadened Lorentzian, corresponding to the collisional line width. Interestingly,
as the pump intensity is increased, a narrow dip appears in the line shape.

28Gilbert Grynberg and Claude Cohen-Tannoudji, ‘‘Central resonance of the Mollow absorption spectrum: physical origin of
gain without population inversion,’’ Optics Communications 96, 150 (1993) (doi: 10.1016/0030-4018(93)90538-G).

http://dx.doi.org/10.1016/0030-4018(93)90538-G
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As the pump intensity is increased to large values, the dip becomes a large ‘‘hole’’ in the line shape, and
the line shape eventually takes on a form much like the homogeneously broadened case, with regions of
stimulated emission.
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Notice that the collisional damping overall suppresses the absorption, as the absorption lines are much weaker
than in the homogeneously broadened cases.

5.7.6.1 Autler–Townes Doublet

We saw above how the peaks in the emission and probe absorption spectra of the driven two-level atom can
be explained in the strongly driven limit in terms of the splitting of the dressed states of the atom. The
Autler–Townes doublet29 is an even more direct manifestation of the dressed-state splittings.

Consider the usual two-level atom, driven by a resonant field of Rabi frequency Ω. Now consider a
third, auxiliary level |e′〉, an energy h̄ω′0 above the usual excited state |e〉. We will assume this state decays
to |e〉 at a rate Γ′. We will also assume a weak probe field of frequency ωp coupling |e〉 −→ |e′〉 (such that
ωp ≈ ω′0) with Rabi frequency Ωp.

29S. H. Autler and C. H. Townes, ‘‘Stark Effect in Rapidly Varying Fields,’’ Physical Review 100, 703 (1955) (doi:
10.1103/PhysRev.100.703).

http://dx.doi.org/10.1103/PhysRev.100.703
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In the presence of a strong drive (large Ω), the excited state splits into a doublet of splitting Ω due to mixing
with the ground state. Thus, we expect the probe-absorption spectrum to have two peaks, corresponding
to resonance of |e′〉 with each of the dressed states. In the limit of large Ω, we expect the absorption
spectrum to be a sum of two Lorentzian peaks. However, we need a formalism for dealing with this more
quantitatively. Fortunately, it is easy to extend the formalism we have already developed to handle this
problem. To compute the probe-absorption spectrum, we will treat the probe perturbatively. Thus, we will
again need the correlation function

ga(τ) =
〈[
σ′(t+ τ), σ′†(t)

]〉
, (5.371)

where now σ′ = |e〉〈e′| is the lowering operator for the probe transition. The first term in this correlation
function is

gd(τ) =
〈
σ′(t+ τ)σ′†(t)

〉
. (5.372)

Working out the quantum regression theorem, we solve the master equation for this three-level atom, with
initial condition

Λ(0) = σ′†ρ(t −→∞), (5.373)

which becomes in components
Λαβ(0) = δαe′ρeβ(t −→∞). (5.374)

Then the correlation function corresponds to the component

gd(τ) = TrS[σ
′Λ(τ)] = Λe′e(τ). (5.375)

The other part of the absorption correlation function is the emission correlation function

ge(τ) =
〈
σ′†(t)σ′(t+ τ)

〉
. (5.376)

This correlation function satisfies the atomic master equation with initial condition

Λ(0) = ρ(t −→∞)σ′†, (5.377)

which becomes in components
Λαβ(0) = δβeραe′(t −→∞). (5.378)

This the correlation function corresponds to the same component as gd(τ):

ge(τ) = TrS[σ
′Λ(τ)] = Λe′e(τ). (5.379)

Note that the initial conditions for the components involving the |e′〉 are Λe′e′(0) = 0 and Λe′e(0) = 0, and
because there is no field coupling any state to |e′〉, these components remain zero for all time. Thus, we can
see that ge(τ) = 0. This of course means that there is no spontaneous emission on the e′ −→ e transition, as
we expect since it is not pumped by any strong field.

The master equation for the atom is the same as for the usual optical Bloch equations, with an extra
dissipation term for the second decay channel,

∂tρ̃ = − i

h̄

[
H̃A + H̃AF, ρ̃

]
+ ΓD[σ]ρ̃+ Γ′D[σ′]ρ̃, (5.380)
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where the atomic Hamiltonian is
H̃A = −h̄∆|e〉〈e| − h̄∆|e′〉〈e′|, (5.381)

in the rotating frame where the |e′〉 state is degenerate with the |e〉 state. The interaction is still

H̃AF =
h̄Ω

2

(
σ + σ†

)
, (5.382)

since we are neglecting the effect of the probe field on the atom.
Written out as a set of coupled equations for the density-matrix elements, we find

∂tρgg = −iΩ
2
(ρ̃eg − ρ̃ge) + Γρee

∂tρ̃ge = −(Γ/2 + i∆)ρ̃ge − i
Ω

2
(ρee − ρgg)

∂tρ̃ge′ = −(Γ′/2 + i∆)ρ̃ge′ − i
Ω

2
ρ̃ee′

∂tρ̃eg = −(Γ/2− i∆)ρ̃eg + i
Ω

2
(ρee − ρgg)

∂tρee = i
Ω

2
(ρ̃eg − ρ̃ge)− Γρee + Γρe′e′

∂tρ̃ee′ = −[(Γ + Γ′)/2]ρ̃ee′ − i
Ω

2
ρ̃ge′

∂tρ̃e′g = −(Γ′/2− i∆)ρ̃e′g + i
Ω

2
ρ̃e′e

∂tρ̃e′e = −[(Γ + Γ′)/2]ρ̃e′e + i
Ω

2
ρ̃e′g

∂tρe′e′ = −Γ′ρe′e′ .

(5.383)

These equations are easy to solve numerically. The normalized spectrum is then again the Fourier transform
of the correlation function

Sa(ωp) =

∫ ∞
−∞

ga(τ)e
iωpτdτ, (5.384)

which is also readily computed numerically. However, we can actually get a closed-form expression for the
spectrum: the correlation function becomes

ga(τ) =
Ωρ̃eg(t −→∞)

2ξ
e−(Γ/4+Γ′/2)τei∆τ/2

(
eiξτ/2 − e−iξτ/2

)
+
ρee(t −→∞)

2
e−(Γ/4+Γ′/2)τei∆τ/2

{[
1 +

i

ξ

(
Γ

2
+ i∆

)]
eiξτ/2 +

[
1− i

ξ

(
Γ

2
+ i∆

)]
e−iξτ/2

}
,

(5.385)
where

ξ =

√
Ω2 +∆2 − Γ2

4
− i∆Γ. (5.386)

Notice that on resonance (∆ = 0), ξ = Ω2Γ =
√

Ω2 − Γ2/4, and

ga(τ) =
Ωρ̃eg(t −→∞)

2Ω2
e−(Γ/4+Γ′/2)τ

(
eiΩ2Γτ/2 − e−iΩ2Γτ/2

)
ρee(t −→∞)

2
e−(Γ/4+Γ′/2)τ

{[
1 +

iΓ

2Ω2Γ

]
eiΩ2Γτ/2 +

[
1− iΓ

2Ω2Γ

]
e−iΩ2Γτ/2

}
.

(5.387)
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In this resonant case, for Ω ≥ Γ/4, the absorption spectrum consists of something like a pair of lines of width
Γ/2 + Γ′, split by Ω2Γ (but with dispersive components),

Sa(ωp) =

(Γ + 2Γ′)ρee(t −→∞)− 2

Ω2

{
2ΩIm[ρ̃eg(t −→∞)] + Γρee(t −→∞)

}(
ωp +

Ω2

2

)
4

[(
ωp +

Ω2

2

)2

+
1

4

(
Γ

2
+ Γ′

)2
]

+ (Ω2 −→ −Ω2) ,

(Autler–Townes absorption spectrum) (5.388)
assuming Ω is large enough that Ω2 is real. As the pump intensity becomes large, the dispersive components
become unimportant near each resonance, and at the same time Ω2 −→ Ω. The dispersive components thus
cease to shift the spectral peaks in this limit—although they are still important in principle for the wings,
since they fall off more slowly than the absorptive part—and the peaks are then separated by Ω, as we
expected from the dressed-atom picture. Of course, we can get the absorption spectrum in the general case,
but it’s complicated enough that it’s not very illuminating.

Why the line width of Γ/2 + Γ′? In general, the weak-probe absorption width of two states of total
decay rates Γ1 and Γ2 is simply Γ1 + Γ2, because the convolution of two Lorentzians of these widths is a
Lorentzian of width Γ1 +Γ2. The dressed states on resonance are equal superpositions of |g〉 and |e〉, which
are states of respective decay rates 0 and Γ. Thus, each dressed state should only decay at rate Γ/2, which
sets the width of each state. In general, from Eq. (5.385), we can see that the line widths are given by the
total exponential decaying part, and so

∆ω =
Γ

2
+ Γ′ ± Im[ξ]. (5.389)

Again, in the limit of large Ω, we have ∆ω = Γ/2 + Γ′. On the other hand, in the limit of small Ω and
resonant pump (∆ = 0), ξ ≈ iΓ/2, and thus ∆ω takes on the values Γ′, which is what we expect for probe
absorption on |g〉 −→ |e′〉, and Γ + Γ′, which is what we expect for probe absorption on |e〉 −→ |e′〉. For
weak drive (Ω� Γ) and large detuning, Im[ξ] = ±Γ/2 for ∆ ≶ 0, which also gives the same two line widths.
Interestingly, the on-resonance Autler–Townes spectrum has a minimum width for Ω = Γ/2, when Im[ξ]
vanishes.

The absorption spectra for Γ′ = Γ for several different values of the pumping rate Ω are shown below.
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As we expected, we see two absorption lines, which become resolved as the pumping rate becomes large.
In the case where the pump field is detuned from resonance, the doublet lines have asymmetric am-

plitudes. The dressed states are an asymmetric superposition of the bare states |g〉 and |e〉, which turns out
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to be more important than the asymmetric steady-state populations of the dressed states. Also, the doublet
center shifts, as we expect from the shift of the center of the bare states. It is a useful exercise to understand
the placement and weights of the two lines here.
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In a magnified view of the same spectrum, we can see the behavior of the cases of small pump intensity,
where the displaced line is dominant, because there is little mixing of the pump-transition states.
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Minor secondary absorption peaks are also barely visible in the spectra in this magnified plot.

5.7.6.2 Lamb Dip

One difficulty in precision spectroscopy of an atomic vapor is the Doppler broadening of the atomic transi-
tions. For example, to use 87Rb as an absoute frequency reference, the natural linewidth is about 5 MHz, and
the center of the transition can be determined far better than this width. However, the Doppler-broadened
width at room temperature is about 500 MHz, making the precision of measurements much worse (and in
fact blending several hyperfine levels into a single Doppler line). Of course, one can now use laser-cooled
atoms, where the Doppler effect is unimportant. However, there is a much easier trick for sub-Doppler spec-
troscopy: the Lamb dip or saturated-absorption spectroscopy. The basic idea is as follows. Consider
a vapor of atoms where the Doppler width is larger than the natural line width. Now illuminate the atoms
with two counterpropagating lasers.
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pump

W

probe
(weak)

v

The pump laser functions simply to saturate the atoms, while we monitor the absorption of the probe laser due
to the atomic vapor. The two fields are generally produced from the same source, and thus their frequencies
are swept together. There may be a frequency offset between them, but to simplify our discussion for
the moment, assume they have the same frequency. Atoms at a particular velocity v experience the two
fields with equal but opposite Doppler shifts, and thus a moving atom experiences them as having different
frequencies. Moving atoms can thus only be resonant with at most one of the fields. Atoms at rest, however,
see two fields at the same frequency, and can be resonant with both fields simultaneously. Because these
atoms are effectively pumped with higher intensity than other atoms, the saturation reduces the resonant
absorption coefficient. This reduction happens again only for atoms (nearly) at rest, and thus this effect is
not Doppler broadened. The saturation produces a ‘‘dip’’ (the Lamb dip) in the Doppler absorption profile,
centered at the atomic resonance, which has a width that can be on the order of the natural linewidth. Of
course, if the pump and probe are not degenerate, the dip still occurs, but is displaced from the atomic
resonance by an amount proportional to the pump-probe detuning.

To analyze this problem quantitatively, we first note that in the interest of precision spectroscopy,
the pump and especially the probe will have low intensity to avoid power broadening of the transition. We
will thus treat the probe field perturbatively, and only explicitly include the effect of the pump field on the
atom. We can then use Mollow’s formula (5.369) for the probe-absorption spectrum, writing ρee(t −→ ∞)
explicitly using Eq. (5.132):

Sa(ωp) =〈(
1− Ω2/γ⊥Γ

1 +∆2/γ2⊥ +Ω2/γ⊥Γ

) [
(Γ− i∆p)[γ⊥ + i(∆−∆p)] +

iΩ2∆p

2(γ⊥ + i∆)

]
(Γ− i∆p)[γ⊥ + i(∆−∆p)][γ⊥ − i(∆ +∆p)] + Ω2(γ⊥ − i∆p)

+ c.c.

〉
v

.

(saturated-absorption spectrum) (5.390)
The angle brackets denote an average over the atomic velocity distribution, and recall that ∆ = ω − ω0 is
the pump detuning from resonance, and ∆p = ωp − ω is the probe detuning from the pump. Both of these
frequencies now depend on the atomic velocity due to the Doppler shift, and the average ‘‘smears out’’ these
frequencies.

Recall that the Doppler shift of a field of wave vector k, as seen by an atom of velocity v, is δω = −k·v.
Why is this? A plane wave has the form

E0 cos(k · x− ωt), (5.391)

and the position

x(t) = x0 +

∫ t

0

dt′ v(t′) (5.392)

of the atom is time-dependent. Thus, we can write the field as

E0 cos
[
k ·
(

x0 +

∫ t

0

dt′ v(t′)
)
− ωt

]
= E0 cos

[
k · x0 −

(
ωt− k ·

∫ t

0

dt′ v(t′)
)]

. (5.393)

In the moving frame, the effective frequency is the time derivative of the plane-wave phase:

ωv = −∂tφ = ω − k · v. (5.394)

This establishes the Doppler shift, even for a time-varying velocity.
We can thus implement the Doppler shift of the pump field by the replacement

∆ −→ ∆− kpump · v = ∆− k · v. (5.395)
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In the case of the probe field, recall that the detuning ∆p is relative to the pump field, and thus we need to
include the Doppler shift twice, once for the pump and once for the probe:

∆p −→ ∆p + kpump · v− kprobe · v ≈ ∆p + 2k · v. (5.396)

Here, we do not distinguish between the pump and probe wave vectors (i.e., |∆p| � ω0), and we assume
exactly counterpropagating pump and probe fields. Again, we will want the probe absorption as a function of
the probe frequency, but the pump and probe are scanned together. Thus, ∆p (after the velocity replacments)
is a fixed parameter, while the spectrum is as a function of ∆. Also, in general, since we want the spectrum
location relative to the atomic resonance, we will make the plot of ∆p +∆ = ωp − ω0.

Thus, in principle we have our result in Eq. (5.390), after making the replacements (5.395) and (5.396).
Unfortunately, this result is rather complicated to interpret. Thus, we will expand the spectrum to lowest
order in Ω2 as

Sa(ωp) = S(0)
a (ωp) + S(2)

a (ωp)Ω
2 + . . . , (5.397)

since it is reasonable to assume a weak pump. The zeroth-order spectrum,

S
(0)
a (ωp) =

〈
2γ⊥

γ 2
⊥ + (∆+∆p + k · v)2

〉
v

=

〈
2γ⊥

γ 2
⊥ + (ωp − ω0 + k · v)2

〉
v
,

(5.398)

is simply the Doppler-broadened absorption line (the Doppler velocity profile convolved with the atomic
Lorentzian line). The next order is much more complicated, but includes the Lamb dip:

S(2)
a (ωp) =

−
〈

2γ2⊥
Γ[γ2⊥ + (∆− k · v)2][γ2⊥ + (∆+∆p + k · v)2]

〉
v

+

〈
i(∆p + 2k · v)

2[γ⊥ + i(∆− k · v)][Γ− i(∆p + 2k · v)][γ⊥ + i(∆−∆p − 3k · v)][γ⊥ − i(∆ +∆p + k · v)] + c.c.
〉

v
,

−
〈

[γ⊥ − i(∆p + 2k · v)]
[Γ− i(∆p + 2k · v)][γ⊥ + i(∆−∆p − 3k · v)][γ⊥ − i(∆ +∆p + k · v)]2 + c.c.

〉
v
.

(5.399)
To interpret this equation, we can focus on the resonant factor in the denominators. There are several
different factors to discuss here:

1. [γ2⊥+(∆−k ·v)2] or [γ⊥+ i(∆−k ·v)]: simply says that the pump beam at detuning ∆ is on resonance
with atoms of velocity ∆/k along the direction of the pump beam. This factor is simply the overall
Doppler profile. Of course, a Lamb dip can only occur inside the Doppler-broadened line.

2. [γ2⊥+(∆+∆p+k ·v)2] or [γ⊥−i(∆+∆p+k ·v)]: has a resonance at ∆+∆p+k ·v = ωp−ω0+k ·v = 0.
This is the same overall Doppler profile, but for probe resonance. Thus, the first term in S(2)

a (ωp) does
not contribute to the Lamb dip, since it contains this and the former factor. This term simply represents
lowest-order overall saturation of the Doppler transition, without any coherence-type effects.

3. [Γ − i(∆p + 2k · v)]: resonance occurs for the velocity class v = −∆p/2k = −(ωp − ω)/2k along the
pump direction, which gives v = 0 for degenerate pump and probe beams (∆p = 0), picking out the
atoms at rest. For nondegenerate pump-probe pairs, a moving velocity class is selected, effectively
moving the Lamb dip. Notice that the last two terms seems to compete; but while the second term
only has dispersive behavior, the last term has the only absorptive-type structure, which we identify
as the dip.
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4. [γ⊥ + i(∆−∆p − 3k · v)]: this factor gives rise to a secondary resonance at 2ω− ω0 − ωp − 3k · v = 0,
or for degenerate pump-probe pairs, this selects out the velocity class v = (ωp − ω0)/3k. This is the
lowest-order ‘‘Doppleron’’ resonance (a higher-order treatment reveals more resonances of this form).30

Since the velocity class is swept with the probe frequency, we do not see structures due to this term in
the spectra.

The saturation spectrum for a degenerate pump-probe pair (∆p = 0) is shown here. We have chosen a
fairly narrow Doppler width of 10Γ for clarity of the plots, with no collisions (γ⊥ = Γ/2). Without a pump
(Ω = 0), we simply get the Doppler-broadened line. For small pump powers, the Lamb dip appears at the
atomic resonance, and it has a width of order Γ (though in reality somewhat larger than Γ). As the pump
becomes stronger, the dip becomes more pronounced, but for high pump intensities, the dip power broadens.
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In the nondegenerate pump-probe case, we see essentially the same behavior, but now the Lamb dip is
shifted by half the pump-probe detuning ∆p = 20Γ. When the probe is at +10Γ, the pump is at −10Γ,
so the average frequency matches the atomic resonance. In this case, the dip is due to atoms moving at
v = −10Γ/2k along the pump direction, which sees both beams as resonant.
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30Stig Stenhom, Foundations of Laser Spectroscopy (Wiley, 1984), section 4.2, p. 149.
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As we mentioned above, one of the main applications for saturation spectroscopy is for precision,
absolute frequency references, such as for active frequency stabilization and absolute referencing of lasers.
Saturation spectroscopy is the primary method used for stabilizing lasers for laser cooling and trapping,
for example. Saturation spectroscopy can also be used to ‘‘automatically,’’ or passively, stabilize a laser
system. One notable example is the methane-stabilized He–Ne laser, where a CH4 cell is placed inside the
linear resonator of a He-Ne laser. This system relies on the coincidence of a He-Ne laser line with a methane
absorption line at 3.39 µm. The lifetime of the methane transition is around 10 ms, so that the resulting
Lamb dip is very narrow (about 400 kHz). The Doppler-broadened methane absorption line causes extra loss
of the He-Ne laser, which is minimized inside the Lamb dip. The laser thus naturally oscillates in the narrow
frequency band of the dip. In the first study,31 two He-Ne lasers were locked by this method to within 1 kHz
of each other, for an absolute reproducibility of a part in 1011. The frequency of the methane-stabilized He-Ne
is very precisely known, with a modern measurement32 giving a frequency of 88 376 182 599 976(10) Hz.

Finally, one other phenomenon that comes up in saturation spectroscopy is the crossover resonance.
If multiple transitions lie within the Doppler width, of course you would expect the saturation spectrum to
have a Lamb dip for each transition. However, one also finds an extra resonance for each pair of transitions.
For a degenerate pump-probe pair, the two fields can be resonant with different transitions for a particular
group of moving atoms.

|e¡Ò

|e™Ò

|gÒ

wp w

This will result in another Lamb-type dip in the absorption spectrum, located halfway in between the Lamb
dips for the individual transitions. The effect is somewhat different, though: the crossover dips are due to
depletion of the transition rather than added saturation. Depletion tends to be more effective than saturation
at reducing the absorption coefficient, and so the crossover dips tend to dominate the saturation spectra.

To illustrate Lamb-dip spectroscopy in a real system, we will look at a saturation spectrum of 87Rb
and 85Rb (the two naturally abundant isotopes) in a room-temperature vapor cell.

vapor cell

pump beam

probe beam

reference beam

from laser

-

Three beams are split from a common laser source. Two probes are sent through the cell. The third beam
acts as a pump, and nearly counterpropagates with one of the probe beams, producing the Lamb dips.
The other probe acts as an unsaturated reference, so that the Doppler profile can be subtracted from the
Lamb-dip signal. The saturation spectrum is shown in the following plot.

31R. L. Barger and J. L. Hall, ‘‘Pressure Shift and Broadening of Methane Line at 3.39 µ Studied by Laser-Saturated Molecular
Absorption,’’ Physical Review Letters 22, 4 (1969) (doi: http://link.aps.org/abstract/PRL/v22/p4).

32P. V. Pokasov, R. Holzwarth, Th. Udem, J. Reichert, M. Niering, M. Zimmermann, M. Weitz, T. W. Hänsch, A. K.
Dmitriev, S. N. Bagayev, P. Lemonde, G. Santarelli, P. Laurent, M. Abgrall, A. Clairon, and C. Salomon, ‘‘Absolute Frequency
Measurements of a Methane-Stabilized Transportable He-Ne Laser at 3.39 µm,’’ in Proceedings of the Sixth Symposium on
Frequency Standards and Metrology, P. Gill, Ed. (World Scientific, 2002), p. 510.

http://dx.doi.org/http://link.aps.org/abstract/PRL/v22/p4
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For this plot, there is no subtraction of the Doppler background. There are four Doppler-broadened ab-
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sorption lines, two lines for each isotope of rubidium. Each pair of absorption lines corresponds to the two
hyperfine ground states of each rubidium isotope, and each line represents a triplet of hyperfine transitions
merged together within the Doppler width. Thus, we expect three Lamb dips and three crossover dips in each
absorption line. For a sense of scale, the splitting between the two 87Rb multiplets is 6.8 GHz, the splitting
between the two 85Rb multiplets is 3.0 GHz, the Doppler width is about 500 MHz at room temperature, and
the natural line widths are about 5 MHz. Along with the saturation spectrum, the unsaturated spectrum
(measured from the same probe beam, but with the pump beam blocked). Also shown here are zoomed
versions of each of the absorption lines, with each of the saturation and crossover dips marked explicitly by
the excited-state hyperfine number F ′.

For the laser cooling transition of 87Rb (the top right plot), the dips are well-resolved, though not
necessarily strong. For the repumping transition of 87Rb (the top left plot), the dips are more closely
spaced, but still resolved. This is because the hyperfine splittings between the excited states is relatively
large: 267 MHz between F ′ = 2 and 3, 157 MHz between F ′ = 1 and 2, and 72 MHz between F ′ = 1 and
2, compared to the 6 MHz line width. (Only 3 excited states can couple to each ground state, because F ,
being an angular momentum interacting with a spin-1 photon, can only change by 1, at least to leading
order.) Oddly, one of the dips (the F ′ = 0, 1 crossover) is a ‘‘negative dip.’’ Reversed peaks such as this
are sometimes possible,33 and reflect the complicated degenerate Zeeman-level substructure of the hyperfine
levels.

In 85Rb, the states are much less well-resolved, because the hyperfine splittings are smaller: 39 MHz
between F ′ = 2 and 3, 21 MHz between F ′ = 1 and 2, and 10 MHz between F ′ = 1 and 2, compared to
the 6 MHz line width. (It is precisely this reason that 85Rb is a difficult isotope to use for laser cooling
and trapping.) In particular, for the ‘‘repumping’’ transition (lower left plot), four of the lines are merged
together, and the other two lines are only marginally well resolved.

Especially in the case of the laser cooling transitions (right two plots), the dips are centered to the
right of the Doppler line center. This is not because of a frequency offset between the pump and probe
lasers. This is because the state with the largest hyperfine number is the strongest transition, contributing
the most to the Doppler absorption profile. The Doppler line center is thus pulled towards these states.
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33O. Schmidt, K.-M. Knaak, R. Wynands, and D. Meschede, ‘‘Cesium saturation spectroscopy revisited: How to reverse peaks
and observe narrow resonances,’’ Applied Physics B: Lasers and Optics 59, 167 (1994) (doi: 10.1007/BF01081167).

http://dx.doi.org/10.1007/BF01081167
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The following four plots are the same as the previous four zoomed plots, but here the Doppler back-
ground is (mostly) subtracted away by using the reference beam in the experimental setup. The dips are
somewhat easier to see here, although their placement within the Doppler lines is of course not apparent
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5.8 Mechanical Effects of Light on Two-Level Atoms

We considered the dipole force in our classical treatment of the atom, but now it is time for a proper quantum
derivation. In particular, the internal and external atomic dynamics are coupled and we will show that under
suitable conditions, they decouple to good approximation.

We will begin with a perturbative treatment, the basic conclusion being that under the proper con-
ditions, it is possible to ignore the internal electronic structure of the atom, and treat the atom as a point
particle. Furthermore, the ‘‘reduced’’ atom moves under the influence of the effective center-of-mass Hamil-
tonian

Heff =
p2

2m
+ Veff(x), (5.400)

where m is the atomic mass and the potential Veff is proportional to the laser intensity and inversely pro-
portional to the detuning from the (nearest) atomic resonance. We will then examine things more generally
in terms of dressed states and look at corrections to the simple dipole-force picture.

5.8.1 Atom-Field Interaction

We must now redo the atom-field interaction, this time including the center-of-mass motion of the atom.
Considering a linearly polarized field,

E(x, t) = ε̂
(
E(+)(x)e−iωt + E(−)(x)eiωt

)
= E(+)(x, t) + E(−)(x, t),

(5.401)
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where again E(+) and E(−) are the positive- and negative-rotating components of the field, respectively, and
E(±)(x) is the space-dependent amplitude of the field.

The atomic free-evolution Hamiltonian is then given by

HA =
p2

2m
+ h̄ω0|e〉〈e|, (5.402)

which is the same as before except for the inclusion of the kinetic energy. The atom-field interaction
Hamiltonian is still given (in the dipole approximation) by

HAF = −d ·E, (5.403)

where d is the atomic dipole operator. In the rotating-wave approximation, this becomes

HAF =
h̄

2

[
Ω∗(x)σeiωt +Ω(x)σ†e−iωt

]
, (5.404)

where
Ω(x) := −2〈g|ε̂ · d|e〉E(+)(x)

h̄
(5.405)

is the space-dependent Rabi frequency, which is no longer a real number in general (due to the eikx-type
dependence of the field). In the rotating frame, the interaction becomes

H̃AF =
h̄

2

[
Ω∗(x)σ +Ω(x)σ†

]
,

(5.406)
(atom–field interaction)

and the free Hamiltonian becomes

H̃A =
p2

2m
− h̄∆|e〉〈e|, (5.407)

(free atomic evolution)

so that the electronic states are nearly degenerate.

5.8.2 Schrödinger Equation

We assume that the detuning from resonance is large (|∆| � Γ), we will neglect spontaneous emission and
use the Schrödinger equation

(H̃A + H̃AF)|ψ〉 = ih̄∂t|ψ〉 (5.408)

to describe the atomic evolution. It is convenient to decompose the state vector |ψ〉 into a product of internal
and external states,

|ψ〉 = |ψe(t)〉 |e〉+ |ψg(t)〉 |g〉 (5.409)

where the |ψα(t)〉 are state vectors in the center-of-mass space of the atom. In the following, we will associate
all time dependence of the atomic state with the center-of-mass components of the state vector. Defining
the coefficients ψα(x, t) := 〈x|ψα(t)〉, the equation of motion for the wave function 〈x|ψ〉 becomes

ih̄ (∂tψe|e〉+ ∂tψg|g〉) =
p2

2m
(ψe|e〉+ ψg|g〉)− h̄∆ψe|e〉+

h̄

2
[Ω∗(x)ψe|g〉+Ω(x)ψg|e〉] . (5.410)

Separating the coefficients of |e〉 and |g〉, we obtain the coupled pair of equations

ih̄∂tψe =
p2

2m
ψe +

h̄Ω(x)

2
ψg − h̄∆ψe

ih̄∂tψg =
p2

2m
ψg +

h̄Ω∗(x)

2
ψe.

(5.411)

for the wave functions ψα(x, t).
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5.8.3 Adiabatic Approximation

The equations of motion (5.411) are greatly simplified by using the adiabatic approximation, which we have
seen a couple of times thus far. We can motivate this approximation by examining the various time scales
in the evolution of ψe and ψg. The kinetic-energy terms in Eqs. (5.411) induce variations on time scales
corresponding to kHz frequencies for ultracold atoms. However, the pump-field terms induce motion on
a time scale corresponding to the Rabi frequency—typically from zero to several hundred MHz—and the
free evolution term induces motion of ψe on a time scale corresponding to ∆, typically several to many
GHz. Together, these terms induce internal atomic oscillations at the generalized Rabi frequency Ω̃(x) :=√
Ω2(x) + ∆2 ≈ |∆|. Furthermore, in between these long and short time scales of external and internal

atomic motion lies the damping time scale due to coupling with the vacuum, which corresponds to the
natural decay rate Γ, and Γ/2π is typically on the order of a few MHz for alkali atoms. Because we are
primarily interested in the slow center-of-mass atomic motion, and the internal atomic dynamics take place
over times much shorter than the damping time, it is a good approximation to assume that the internal
motion is damped instantaneously to equilibrium, when compared to the external motion. Thus, ∂tψe = 0,
because ψe is the variable that carries the natural internal free-evolution time dependence at frequency ∆,
whereas ψg has no natural internal oscillation, because the state |g〉 is at zero energy. This approximation
then gives a relation between ψe and ψg:(

h̄∆− p2

2m

)
ψe ≈

(
h̄Ω(x)

2

)
ψg. (5.412)

Noting that the kinetic energy p2/2m is negligible compared to h̄∆, we can then use this constraint to
eliminate ψe in the second of Eqs. (5.411), with the result

ih̄∂tψg =

(
p2

2m

)
ψg +

h̄|Ω(x)|2

4∆
ψg. (5.413)

Since the detuning is large, nearly all the population is contained in |g〉, so the excited state completely
drops out of the problem. Hence, the atom obeys the Schrödinger equation with the effective center-of-mass
Hamiltonian

Heff =
p2

2m
+ Veff(x), (5.414)

where

Veff(x) =
h̄|Ω(x)|2

4∆
,

(5.415)
(effective optical potential)

and the atom behaves like a point particle in an effective potential, where the strength of the potential is
given by (5.415).

5.8.3.1 Master-Equation Approach

It is also instructive to make the adiabatic approximation from the viewpoint of a master equation, where
we can more explicitly see the effects of damping on the atomic motion. The idea will follow that of
the adiabatic approximation for obtaining the rate equations from the optical Bloch equations from before
(Section 5.6.2). The master equation for the atomic evolution (i.e., the optical Bloch equations generalized
to include center-of-mass motion) has the general form in the absence of collisions

∂tρ̃(t) = −
i

h̄
[H̃A + H̃AF, ρ̃(t)] + Γ

∫
dΩ fε̂(θ, φ)D[σe−ikL·r]ρ̃(t), (5.416)

where kL is the wave vector of the emitted photon (and dΩ is the angular integration element, not to be
confused with the Rabi frequency). This is the same master equation as for the optical Bloch equations,
except for three modifications: (1) the atomic kinetic energy is now included in H̃A, (2) the spatial de-
pendence of the field is now included in H̃AF, and (3) we have made the replacement σ −→ σe−ikL·r in
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the Lindblad superoperator, since any spontaneous emission must be accompanied by a photon recoil to
conserve total momentum, and then we have integrated over all possible emission directions, weighted by
the dipole radiation pattern fε̂(θ, φ). We can write out the effect of the dissipation operator more explicitly,
with the result

∂tρ̃(t) = −
i

h̄
[H̃A + H̃AF, ρ̃(t)]−

Γ

2

[
σ†σ, ρ̃

]
+
+ Γ

∫
dΩfε̂(θ, φ)e

ikLx sin θ cosφσρσ†e−ikLx sin θ cosφ, (5.417)

where for simplicity we now restrict out attention to one dimension. Note that in writing down the master
equation (5.417), we have assumed purely radiative damping. We can then write out the equations of motion
for the density matrix elements ρ̃αβ(x, x′, t) := 〈x|〈α|ρ̃|β〉|x′〉 as

∂tρgg = − i
h̄

[
p2

2m
, ρgg

]
− i

2
(Ω∗(x)ρ̃eg − ρ̃geΩ(x)) + Γ

∫
dΩfε̂(θ, φ)e

ikLx sin θ cosφρeee
−ikLx sin θ cosφ

∂tρee = − i
h̄

[
p2

2m
, ρee

]
+
i

2
(Ω∗(x)ρ̃eg − ρ̃geΩ(x))− Γρee

∂tρ̃ge = − i
h̄

[
p2

2m
, ρ̃ge

]
−
(
Γ

2
+ i∆

)
ρ̃ge −

i

2
[Ω∗(x)ρee − ρggΩ

∗(x)]

∂tρ̃eg = − i
h̄

[
p2

2m
, ρ̃eg

]
−
(
Γ

2
− i∆

)
ρ̃eg −

i

2
[Ω(x)ρgg − ρeeΩ(x)] .

(5.418)

We again assume that |∆| � Γ and note that the equations have fast internal driving terms (with frequencies
comparable to or greater than Γ) and slow center-of-mass terms; this time, however, the equations of motion
for the coherences (which are responsible for the population oscillations) have explicit damping terms. Since
we are interested in the slow external motion, we can use the fact that the steady-state solution for ρ̃ee is
of order (Γ/∆)2, whereas the steady state solutions for the coherences ρ̃eg and ρ̃ge are of order |Γ/∆|, so
that we can neglect the ρ̃ee terms on the right-hand sides of these equations. Now, we will assume that
the quickly rotating coherences are damped to equilibrium on a time scale short compared to the external
motion of interest, and hence set ∂tρ̃ge ≈ ∂tρ̃eg ≈ 0. Doing so leads to the adiabatic relations

ρ̃ge = ρgg
Ω∗(x)

2∆

ρ̃eg =
Ω(x)

2∆
ρgg,

(5.419)

where we have neglected the momentum and Γ terms in comparison to the ∆ term. Substituting Eqs. (5.419)
into the equation of motion for ρ̃gg (and neglecting the ρ̃ee term), we find

∂tρ̃gg = − i
h̄

[
p2

2m
+
h̄|Ω(x)|2

4∆
, ρgg

]
. (5.420)

This equation is simply the equation of motion for ρ̃gg under the Hamiltonian

Hρ̃ =
p2

2m
+
h̄|Ω(x)|2

4∆
, (5.421)

which is just the effective Hamiltonian (5.414). Note that we have ultimately discarded the spontaneous
emission effects, which lead to extra diffusive terms in the reduced evolution equations here, as we discuss
below.

From this approach, it is clear that the adiabatic approximation is good after a time on the order
of 1/Γ, when the coherences have damped away. After this initial transient, the adiabatic approximation
remains good as long as any modulations of the optical potential take place over a time long compared to
1/Ω̃. This is clear from the dressed-state analysis below, because such modulations will not excite transitions
between the dressed states and thus cause the adiabatic approximation to break down.
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5.8.3.2 Bragg Scattering in an Optical Standing Wave

As an example to gain some physical insight into the nature of the dipole force, we will consider the problem of
Bragg scattering of a two-level atom in a weak, optical standing wave. The potential is, of course, sinusoidal
in space with period λ/2, and so this setup is equivalent to the quantum pendulum, but in a regime where
the atoms have enough energy that they are not bound to the optical lattice of potential wells (rotational
pendulum motion). The quantum-pendulum dynamics show a feature that is distinctly nonclassical: the
momentum transferred from the potential to the atoms is quantized. To see this directly, we consider The
following argument. For a standing wave composed of two equal but counterpropagating traveling waves,
with a field of the form

E(x, t) = ẑE0[cos(kx− ωt) + cos(kx+ ωt)]

= ẑE0 cos(kx)
(
e−iωt + eiωt

)
= E(+)(x, t) + E(−)(x, t),

(5.422)

the Rabi frequency is simply Ω(x) = Ω0 cos(kx). Thus, the effective dipole potential is (dropping an overall
constant)

Veff(x) = V0 cos(2kx), (5.423)

where the potential amplitude is

V0 =
h̄|Ω0|2

8∆
. (5.424)

The Schrödinger equation is

ih̄∂t|ψ〉 =
[
p2

2m
+ V0 cos(2kx)

]
|ψ〉

=

[
p2

2m
+
V0
2

(
ei2kx + e−i2kx

)]
|ψ〉,

(5.425)

which can be written in the momentum representation as

ih̄∂tψ(p) =
p2

2m
ψ(p) +

V0
2

[ψ(p+ 2h̄k) + ψ(p− 2h̄k)] , (5.426)

where ψ(p) := 〈p|ψ〉. This form follows from either recognizing exp(ikx) as a momentum-displacement op-
erator, or by carrying out an explicit Fourier transform of the equation from the position to the momentum
representation, and the explicit proof is left as an exercise. So, the evolution in the standing wave imposes
a ‘‘ladder’’ structure in momentum, such that an atom beginning in a plane-wave state |p〉 can only subse-
quently occupy the states |p+ n2h̄k〉 for integer n. This momentum quantization has a clear interpretation
in terms of the stimulated scattering of lattice photons: if the atom absorbs a photon that was traveling
in one direction and then re-emits it into the counterpropagating mode, the atom will recoil, changing its
momentum by twice the photon momentum, or by 2h̄k. Of course, the argument that we just considered
was based on a classical treatment of the field, so it is the spatial periodicity of the potential that imposes
the ladder structure in this model.

However, the momentum transfer to the atoms can be viewed as a stimulated Raman transition—a
two-photon transition from one ground state to an excited state and back to another ground state—between
different motional states, say |g, p〉 and |g, p+ 2h̄k〉.
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w w

|g, po+o2h—kÒ

|g, poÒ

We can use Eq. (5.426) to write down coupled equations for the two states. Assuming that couplings to
other states are negligible, we have

ih̄∂tψ(p) =
p2

2m
ψ(p) +

V0
2
ψ(p+ 2h̄k)

ih̄∂tψ(p+ 2h̄k) =
(p+ 2h̄k)2

2m
ψ(p) +

V0
2
ψ(p).,

(5.427)

These are the equations of motion for a two-level system, coupled with Rabi frequency

ΩR =
V0
h̄

=
|Ω0|2

8∆
, (5.428)

with a dc interaction between states of energy difference

∆E =
(p+ 2h̄k)2

2m
− p2

2m
=

2h̄kp

m
+ 4h̄ωr, (5.429)

where the recoil energy

h̄ωr :=
h̄2k2

2m

(5.430)
(recoil energy)

is the atomic kinetic energy associated with a single photon recoil. Thus, atomic population oscillates
between the two momentum states at the Raman Rabi frequency ΩR: since we have adiabatically eliminated
the intermediate (excited) state, the three-level system behaves approximately as an effective two-level
system.

More generally speaking, the coupling between these two levels is described by a Raman Rabi frequency
(as in the two-level atom), given by

ΩR =
Ω1Ω2

2∆
,

(5.431)
(Raman Rabi frequency)

where Ω1,2 are the Rabi frequencies associated separately with each traveling-wave component of the stand-
ing wave, and ∆ is the mutual detuning to the atomic excited state (the relative frequency difference is
constrained by energy conservation to be the splitting between the motional states). To connect with the
notation that we have already used, Ω1 = Ω2 = Ω0/2 for the case of identical traveling waves, so that
h̄ΩR = V0, and thus again V0 also represents the strength of the Raman couplings.

The two-photon, stimulated Raman transition is an example of a Bragg scattering process.34 In
fact, it is the simplest (‘‘first-order’’) form of Bragg scattering; in general, nth-order Bragg scattering is a

34For experiments and more details about Bragg scattering in atom optics, see Peter J. Martin, Bruce G. Oldaker, Andrew
H. Miklich, and David E. Pritchard, ‘‘Bragg scattering of atoms from a standing light wave,’’ Physical Review Letters 60,
515 (1988) (doi: 10.1103/PhysRevLett.60.515); David M. Giltner, Roger W. McGowan, and Siu Au Lee, ‘‘Theoretical and
experimental study of the Bragg scattering of atoms from a standing light wave,’’ Physical Review A 52, 3966 (1995) (doi:
10.1103/PhysRevA.52.3966), and M. Kozuma, L. Deng, E. W. Hagley, J. Wen, R. Lutwak, K. Helmerson, S. L. Rolston, and
W. D. Phillips, ‘‘Coherent Splitting of Bose-Einstein Condensed Atoms with Optically Induced Bragg Diffraction,’’ Physical
Review Letters 82, 871 (1999) (doi: 10.1103/PhysRevLett.82.871).

http://dx.doi.org/10.1103/PhysRevLett.60.515
http://dx.doi.org/10.1103/PhysRevA.52.3966
http://dx.doi.org/10.1103/PhysRevLett.82.871
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2n-photon transition spanning an interval of 2nh̄k in momentum between the |±nh̄k〉 states.. The term
‘‘Bragg scattering’’ applies to the weakly coupled regime, where the intermediate states are not appreciably
populated, and so the transition between the two distant momentum states can be treated as a two-level
problem. In this regime, classical transport between these distinct momentum regions is forbidden, as the
classical potential is not sufficiently strong to cause a correspondingly large change in the classical momentum.
As such, Bragg scattering is an example of dynamical tunneling, which is quantum tunneling between
regions in phase space between which classical transport is forbidden, but by the dynamics (here, the nature
of asymptotically free-particle motion) rather than by a potential barrier.

Although the potential has a small amplitude, quantum coherence can build up as the atoms sample
the potential and cause the atoms to significantly change their motion. We will illustrate this process by
considering the relatively simple case of second-order Bragg scattering, and then we will generalize our results
to the nth-order case. We consider the case where the standing wave is stationary, so that only the states
|−2h̄k〉 and |2h̄k〉 are resonantly coupled in the limit of small ΩR. No other states will be substantially
coupled by these fields, unless the Raman Rabi frequency is large enough to power-broaden the off-resonant
transitions, which would not correspond to the Bragg regime. The relevant energy-level diagram is shown
below, which shows that the detuning from the |p = 0〉 motional state is simply the kinetic-energy shift.

w

4wr

p = 0

p = 2h—kp = -2h—k

Neglecting couplings to other states (which are even further detuned than the |p = 0〉 state), the Schrödinger
equation for the three coupled momentum states then becomes

ih̄∂tψ(−2h̄k, t) =
(−2h̄k)2

2m
ψ(−2h̄k, t) + h̄ΩR

2
ψ(0, t)

ih̄∂tψ(0, t) =
h̄ΩR

2

[
ψ(−2h̄k, t) + ψ(2h̄k, t)

]
ih̄∂tψ(2h̄k, t) =

(2h̄k)2

2m
ψ(2h̄k, t) +

h̄ΩR

2
ψ(0, t).

(5.432)

Adding an energy offset of −4h̄ωr, the equations become

ih̄∂tψ(±2h̄k, t) =
h̄ΩR

2
ψ(0, t)

ih̄∂tψ(0, t) =
h̄ΩR

2

[
ψ(−2h̄k, t) + ψ(2h̄k, t)

]
− 4h̄ωrψ(0, t).

(5.433)

Now we assume that ΩR � 4ωr, so that the population in the |p = 0〉 state is O(Ω2
R/ω

2
r ) and hence negligible.

Additionally, we can make an adiabatic approximation for the evolution of the |p = 0〉 state, by formally
setting ∂tψ(0, t) = 0, as we did in Section 5.8.3. Again, though, this is a shortcut for considering the density-
matrix picture and replacing the rapidly-varying coherences with their locally average value (although this
procedure is a result of coarse-graining here, rather than radiative damping as in the previous treatment).
Doing so leads to the adiabatic relation

4ωrψ(0, t) =
ΩR

2

[
ψ(−2h̄k, t) + ψ(2h̄k, t)

]
, (5.434)
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which can be used to eliminate the intermediate state, resulting in a two-level evolution:

ih̄∂tψ(±2h̄k, t) =
h̄Ω2

R

16ωr

[
ψ(±2h̄k, t) + ψ(∓2h̄k, t)

]
. (5.435)

Hence, we see explicitly the Raman-Rabi oscillations between the two motional states (which is not the
classical pendulum oscillation of the momentum), and the second-order Bragg Rabi frequency is ΩB,2 =
Ω2

R/8ωr. The first term represents a Stark shift of ΩB,2/2, due to scattering processes where the absorbed
and emitted photons have the same k, while the second term represents the Rabi-type coupling, where the
absorbed and emitted photons have opposite k. Comparing this expression to the form (5.431) for the two-
photon Rabi frequency, we see that this second-order Bragg process can be viewed also as a Raman process
of two Raman transitions, where the detuning to the intermediate state ∆ is identified as 4ωr.

Continuing in this manner, the Bragg rate for nth-order scattering from nh̄k to −nh̄k is given by

ΩB,n =
ΩnR

2n−1
n−1∏
k=1

δk

, (5.436)

where δk is the detuning of the kth intermediate motional state. Notice that the intermediate detunings are
given by [n2− (n−2)2]ωr, [n2− (n−4)2]ωr, …, [n2− (2−n)2]ωr, so that this Bragg frequency can be written
as

ΩB,n =
ΩnR

(8ωr)
n−1[(n− 1)!]2

(5.437)
(Bragg transition rate)

The transition frequency obviously becomes small for high-order Bragg processes, as the Rabi frequency
decreases exponentially with the order. Nevertheless, Bragg oscillations of up to sixth35 and eighth36 order
have been observed experimentally for an atomic beam crossing an optical standing wave.

5.8.4 Nonperturbative Analysis

The above analysis of the dipole force was a perturbative treatment in Ω/∆ for the ground-state energy shift.
We will now perform a better analysis that gets the (adiabatic) potential correct even for strong excitation,
as well as the radiation-pressure force.37 We start with the Heisenberg-picture force,

F = ∂tp =
i

h̄
[H,p] = −∇H̃AF, (5.438)

where the last equality follows because p = −ih̄∇. Here, the atomic position r is in principle an operator, but
we will take on the semiclassical view that it refers to the mean atomic position to simplify this treatment, in
contrast the preceding perturbative treatment. Again, the rotating-frame interaction Hamiltonian is given
by

H̃AF =
h̄

2

[
Ω∗(r)σ +Ω(r)σ†

]
. (5.439)

Here, we have written the Rabi frequency again as

Ω(r) = − 2〈g|ε̂ · d|e〉E(+)
0 (r)

h̄
= |Ω(r)|eiφ(r), (5.440)

where E(+)
0 (r) is the positive-rotating part of the field. The spatial dependence includes both any phase

rotation as well as slow envelope variations.
35David M. Giltner et al., op. cit.
36Armand Eugéne Albert Koolen, Dissipative Atom Optics with Cold Metastable Helium Atoms, Ph.D. thesis, Technische

Universiteit Eindhoven (2000).
37J. P. Gordon and A. Ashkin, ‘‘Motion of atoms in a radiation trap,’’ Physical Review A 21, 1606 (1980) (doi: 10.1103/Phys-

RevA.21.1606).

http://dx.doi.org/10.1103/PhysRevA.21.1606
http://dx.doi.org/10.1103/PhysRevA.21.1606
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The force then depends on the gradient of the Rabi frequency according to

F = − h̄

2

[
∇Ω∗(r)σ +∇Ω(r)σ†

]
. (5.441)

The gradient is given by

∇Ω(r) = (∇|Ω|) eiφ + i(∇φ)|Ω|eiφ = Ω

(
∇|Ω|
|Ω|

+ i∇φ
)
, (5.442)

so we can write
∇ logΩ(r) = ∇Ω(r)

Ω(r) = ∇ log |Ω(r)|+ i∇φ(r) (5.443)

for the gradient. The mean force then becomes

〈F〉 = − h̄Ω∗(r)
2

(
∇ log |Ω(r)| − i∇φ(r)

)
〈σ〉+ c.c. (5.444)

There are two terms here. Both go as the interaction energy

h̄Ω∗(r) 〈σ〉 =
〈

d(+) ·E(−)
〉

(5.445)

for the dipole in the external field, but only the first depends on gradients of the field amplitude, and this
term corresponds to the dipole force. The second term is due to absorption, since it is 90◦ out of phase with
respect to to the dipole force. This is the radiation-pressure force.

In the case where the atom is at rest or moves slowly on time scales of order Γ−1, we can use the steady-
state coherence 〈σ〉 = ρ̃eg. From the solution of the optical Bloch equations [Eq. (5.138)], now accounting
for the fact that Ω is no longer necessarily real, the steady-state coherences are

ρ̃eg = − iΩ

Γ

1 +
i2∆

Γ

1 +

(
2∆

Γ

)2

+ 2
|Ω|2

Γ2

= − iΩ

2(Γ/2− i∆)(1 + s)

ρ̃ge =
iΩ∗

2(Γ/2 + i∆)(1 + s)
,

(5.446)

where the saturation parameter is

s(r) = |Ω(r)|2

2[(Γ/2)2 +∆2]
. (5.447)

With these relations, the adiabatic mean force is

〈F〉 = ih̄|Ω(r)|2

4(Γ/2− i∆)(1 + s)

(
∇ log |Ω(r)| − i∇φ(r)

)
+ c.c.

=
h̄s(r)

1 + s(r)

(
−∆∇ log |Ω(r)|+ Γ

2
∇φ(r)

)
= 〈Fdip〉+ 〈Frad〉 .

(5.448)

We can write the second term, the mean radiation pressure, as

〈Frad〉 = Γρee(r, t −→∞)h̄∇φ(r), (5.449)
(radiation-pressure force)

where we used ρee(t −→ ∞) = (s/2)/(1 + s). For a plane wave, where φ(r) = k · r, the radiation-pressure
force becomes

〈Frad〉 = Γρee(r, t −→∞)h̄k. (5.450)
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The radiation pressure thus has the physically reasonable interpretation of being the photon scattering rate
multiplied by the photon recoil momentum. The force is in the direction of the wave vector k. On the other
hand, for a standing wave composed of two equal but counterpropagating traveling waves, with a field of the
form

E(x, t) = ẑE0[cos(kx− ωt) + cos(kx+ ωt)]

= ẑE0 cos(kx)
(
e−iωt + eiωt

)
,

(5.451)

the phase φ(r) is a constant, and the (mean) radiation-pressure force vanishes.
The first term, the mean dipole force, is

〈Fdip〉 = −
h̄∆ s(r)
1 + s(r)Re

[
∇ log |Ω(r)|

]
. (5.452)

This force depends on ∆ and the field intensity (via s), and thus on the phase between the applied and
dipole radiated fields, giving a dispersive frequency dependence. The force represents a change in the field
momentum due to the interference of the radiated and (outgoing) applied fields. The quantum-mechanical
interpretation is that the force occurs via coherent scattering processes of absorption and stimulated emission,
where the absorbed and emitted photons have different k vector orientations. The atom therefore recoils to
conserve the total atom-field momentum. In a plane wave, there is only one k, and so there is no possibility
for changing k on scattering. There is thus no dipole force in a plane wave: intensity gradients, which are
connected to uncertainty in the direction of k, are necessary to produce a dipole force.

Since the gradient of the saturation parameter is

∇s = 2|Ω|∇|Ω|
2[(Γ/2)2 +∆2]

= 2s
∇|Ω|
|Ω|

= 2s∇ log |Ω|, (5.453)

we can write the dipole force in the form

〈Fdip〉 = −
h̄∆

2

∇s
1 + s

= − h̄∆

2
∇ log(1 + s) = −∇Vdip, (5.454)

where

Vdip =
h̄∆

2
log[1 + s(r)] = h̄∆

2
log
[
1 +

|Ω(r)|2

2[(Γ/2)2 +∆2]

]
=
h̄∆

2
log
[
1 +

I(r)/Isat

1 + 4∆2/Γ2

]
.

(dipole potential) (5.455)
This is the main result of this section. This gives the dipole potential for any field intensity, for a stationary
atom, or for an atom moving very slowly (as we have used the steady-state solutions of the optical Bloch
equations). Notice that while the radiation pressure force saturates for large s, the dipole force can continue
to increase without bound, though for large intensities it only does so logarithmically. Also, the dipole
potential is a negative shift for red detuning and a positive shift for blue detuning. Exactly on resonance,
the dipole force vanishes. Additionally, note that there is no counter-rotating term of the form (ω + ω0)

−1

as there was in the classical result of Eq. (1.76). The solution here is based on the optical Bloch equations,
which assumed the rotating-wave approximation.

Far off resonance, we can expand the logarithm to first order in s(r):

Vdip ≈
h̄∆

2
s(r) ≈ h̄|Ω(r)|2

4∆
.

(5.456)
(dipole potential, far off resonance)

Thus, we recover our effective dipole potential from our previous perturbative treatment. In terms of the
saturation intensity, using I/Isat = 2Ω2/Γ2 we find the perturbative result in standard form

Vdip ≈
h̄Γ2

8∆

I(r)
Isat

,
(5.457)

(dipole potential, far off resonance)

in agreement with the classical expression (1.77) in the same regime.
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5.8.5 Dressed-State Interpretation

Using the dressed-atom picture, we can obtain more generally valid results for the dipole potential.38 The
dressed-state energies from Eq. (5.64) are

E± = − h̄∆
2
± h̄Ω̃

2
, (5.458)

where the generalized Rabi frequency is
Ω̃ =

√
|Ω|2 +∆2 (5.459)

in the case of a complex Rabi frequency. The energies of the dressed states relative to the mean level energy
−h̄∆/2 are thus ±h̄Ω̃/2. For a Gaussian laser beam, the dressed states shift in opposite directions. For
concreteness, assume a large red detuning (∆ < 0), where we can approximately identify |g〉 ≈ |−〉. Then a
ground-state atom sees a potential well, while an excited-state atom sees a potential barrier.

|eÒ

|gÒ

|eÒ

|+Ò

|-Ò

|gÒ

h—|D| h—|D|

position

h—W~

The ground-state shift is then

Vgnd = − h̄Ω̃

2
= − h̄

2
|∆|
√

1 +
|Ω|2
∆2
≈ − h̄

2
|∆|
(
1 +
|Ω|2

2∆2

)
≈ h̄∆

2
+
h̄|Ω|2

4∆
. (5.460)

The first term is the bare-state energy, while the second term is the lowest-order dipole potential. Of course,
this is only valid in the far-detuned limit (|∆| � Γ, |Ω|), where we can assume the atom is approximately
in the ground state. For larger excitation, the atom is in a mixture of the two dressed states in steady
state, and since the shifts are opposite, the total potential shift is less than this perturbative result indicates.
This motivates the logarithmic saturation of the dipole potential with intensity (but see the homework for a
more precise interpretation of the dipole potential in terms of dressed states). The sign of the dipole force,
which again depends only on the sign of the detuning, is thus explained by which dressed state has the
most population. Far to the red of resonance, |g〉 ≈ |−〉, and so the shift is negative, while far to the blue,
|g〉 ≈ |+〉, and so the dipole potential shift is positive.

5.8.6 Fluctuations of the Optical Force

The optical force on the atoms in the standing wave can also lead to momentum diffusion. Part of this
diffusion is due to spontaneous emission. The dipole moment of the atom fluctuates due to spontaneous
emission, and this fluctuating dipole interacts with the field gradients in the standing wave to produce
momentum diffusion. Alternately, you can think of it this way: the atom occasionally jumps to the ground
state whenever a photon is emitted (seen by a fictitious photodetector), and then relaxes towards equilibrium.
This means that the atom is changing its weight stochastically between the dressed states, which have shifts
of opposite signs. Thus, the dipole force the atoms experience is also stochastic.

38J. Dalibard and C. Cohen-Tannoudji, ‘‘Dressed-atom approach to atomic motion in laser light: the dipole force revisited,’’
Journal of the Optical Society of America B 2, 1707 (1985).
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5.8.6.1 Fokker–Planck Equation

To handle the effect of fluctuations on the atoms, we will take the semiclassical view of atoms as localized
particles on the scale of the potential, and treat the momentum probability density f(p, t) for an ensemble
of atoms. In treating the mean force, what we have derived is the drift coefficient A for the advection
equation

∂tf(p, t) = −A∂pf(p, t). (5.461)

The solution to this equation is simply f(p − At), and thus this equation simply represents translation of
the momentum distribution by At. Thus, the drift coefficient A is the mean force on the atoms. We can see
the effect of the right-hand-side on the distribution by visualizing its derivatives on a simple distribution.

On the left-hand side, where the derivative is positive, the advection term causes the function to decrease,
assuming A > 0. On the right-hand side, the opposite is true. The net effect is motion of the distribution
to the right.

To treat diffusion, we use a second-order term to obtain the diffusion equation

∂tf(p, t) =
D

2
∂ 2
p f(p, t) (5.462)

with diffusion coefficient D. The diffusion term causes the distribution to spread, which we can again see
by visualizing the derivatives for a smooth, single-peaked distribution.

For a positive diffusion coefficient, the second derivative is negative at the peak but positive in the wings,
resulting in a net spreading. The diffusion equation has the Gaussian solution, assuming an initial condition
of δ(x− x0), of

f(p, t) =
1√
2πDt

exp
[
−1

2

(x− x0)2

Dt

]
, (5.463)

which has variance Dt and width
√
Dt. Note that under this evolution, even non-Gaussian initial conditions

become asymptotically Gaussian, as we expect for a random-walk process. This is because the Gaussian
solution is the solution for the delta-function initial condition, and thus the solution at time t for a general
initial condition is the convolution of the initial condition with the above Gaussian. At late times, when the
Gaussian solution is much broader than the initial condition, the contribution of the initial condition to the
solution is negligible.

Combining these two effects, we arrive at a simple advection-diffusion equation

∂tf(p, t) = −A∂pf(p, t) +
D

2
∂ 2
p f(p, t). (5.464)

In the more general, one-dimensional case, the advection and diffusion coefficients can depend on the mo-
mentum itself

∂tf(p, t) = −∂pA(p)f(p, t) +
1

2
∂ 2
pD(p)f(p, t).

(5.465)
(Fokker–Planck equation)

This equation is the one-dimensional Fokker–Planck equation. Again, note that we have computed the
advection coefficient for the optical force, although thus far we have ignored its momentum dependence. In
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the following sections, we will be concerned with computing the diffusion coefficient, also ignoring its velocity
dependence. The simplest velocity dependent case that we would like to consider for laser cooling is the
linear case of A(p) = Ap and D(p) = D, where we can write down the Gaussian solution39

f(p, t) =
1√

2π(D/2A)(e2At − 1)
exp

[
−1

2

(p− p0eAt)2

(D/2A)(e2At − 1)

]
. (5.466)

For A > 0, the system is unstable and runs away, while for A < 0, the solution settles down to the steady
state Gaussian centered at p = 0 and width

√
D/2|A|:

f(p, t −→∞) =
1√

2πD/2|A|
exp

[
−1

2

p2

D/2|A|

]
.

(steady-state, linear solution) (5.467)
This, of course, is the problem of laser cooling with intrinsic noise, as we discussed when deriving the Doppler
limit of Section 1.4.3.1.

In the most general case, the Fokker–Planck equation in three dimensions is (note the implied sum-
mations)

∂tf(p, t) = −
∂

∂pα
Aα(p)f(p, t) +

1

2

∂2

∂pα∂pβ
Dαβ(p)f(p, t). (5.468)

However, we will only be concerned with the total diffusion rate Dαα, rather than with the anisotropic
components of the diffusion tensor Dαβ .

5.8.6.2 Diffusion Coefficient

For the calculation of the diffusion coefficient due to optical forces, we will again assume an atom at rest (or
slowly moving), and we will also assume that the atom is spatially localized. Based on our above discussion,
we may take the diffusion coefficient (henceforth denoted by Dp) to be defined by the rate at which the
momentum variance increases:

Dp = ∂tVp

= ∂t

(〈
p2
〉
− 〈p〉2

)
= 〈p · F〉+ 〈F · p〉 − 2 〈p〉 · 〈F〉 ,

(5.469)

where we have used F = ∂tp. Then expressing p as the time integral of F,

Dp =

∫ t

−∞
dt′ [〈F(t′) · F(t)〉+〈F(t) · F(t′)〉 − 2 〈F(t′)〉 · 〈F(t)〉]

=

∫ 0

−∞
dτ [〈F(t+ τ) · F(t)〉+〈F(t) · F(t+ τ)〉 − 2 〈F(t)〉 · 〈F(t+ τ)〉] ,

(5.470)

where we have set t′ = t+ τ and assumed stationarity of the force. Thus, we can write

Dp =

∫ ∞
−∞

dτ
[
〈F(t) · F(t+ τ)〉 − 〈F(t)〉2

]
.

(5.471)
(diffusion coefficient)

Now recalling from Eq. (5.441) that

F = − h̄

2

[
∇Ω∗(r)σ +∇Ω(r)σ†

]
, (5.472)

39H. J. Carmichael, Statistical Methods in Quantum Optics 1: Master Equations and Fokker–Planck Equations (Springer,
1999), p. 148.
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we can write

〈F(t) · F(t+ τ)〉 = h̄2

4

{
|∇Ω(r)|2

[ 〈
σ†(t)σ(t+ τ)

〉
+
〈
σ(t)σ†(t+ τ)

〉 ]
+ [∇Ω(r)]2

〈
σ†(t)σ†(t+ τ)

〉
+ [∇Ω∗(r)]2 〈σ(t)σ(t+ τ)〉

}
.

(5.473)

Had we treated the field quantum-mechanically here, there would be an extra term describing diffusion due
to spontaneous emission.40 However, this is missing in our semiclassical treatment, and we will treat that
effect separately below.

5.8.6.3 Quantum Regression Theorem

Thus, we will need integrals of two-time averages of the form∫ ∞
−∞

dτ
[〈
σ†(t)σ(t+ τ)

〉
− | 〈σ〉 |2

]
. (5.474)

To do this, we will use the alternate form of the quantum regression theorem (Section 5.7.3.1): given that
one-time average 〈σ(t)〉 has a solution of the form

〈σ(t)〉 = g0(t) + g1(t) 〈σ(0)〉+ g2(t)
〈
σ†(0)

〉
+ g3(t) 〈σz(0)〉 , (5.475)

which it must have to be completely determined by the initial quantum state, it follows from the quantum
regression theorem that the two-time average has the similar solution〈

σ†(t)σ(t+ τ)
〉
= g0(τ)

〈
σ†
〉
+ g1(τ)

〈
σ†σ

〉
+ g2(τ)

〈
σ†σ†

〉
+ g3(τ)

〈
σ†σz

〉
, (5.476)

where the expectation values are taken in steady state. Using (σ†)2 = 0 and σ†σz = −σ†,〈
σ†(t)σ(t+ τ)

〉
= [g0(τ)− g3(τ)]ρ̃ge(t −→∞) + g1(τ)ρee(t −→∞). (5.477)

Similarly, we will need the correlation function
〈
σ(t)σ†(t+ τ)

〉
, which should have a similar solution as〈

σ†(t)
〉
= g∗0(t) + g∗1(t)

〈
σ†(0)

〉
+ g∗2(t) 〈σ(0)〉+ g∗3(t) 〈σz(0)〉 , (5.478)

in which case we note that to get the right steady state, we replace g∗0(t) −→ g∗0(τ) 〈σ〉, and for the other
coefficients we replace 〈C(0)〉 −→ 〈σC〉 to obtain

〈
σ(t)σ†(t+ τ)

〉
= g∗0(τ)

〈
σ†
〉
+ g∗1(τ)

〈
σσ†

〉
+ g∗2(τ) 〈σσ〉+ g∗3(τ) 〈σσz〉

= [g∗0(τ) + g∗3(τ)]ρ̃eg(t −→∞) + g∗1(τ)ρgg(t −→∞).

(5.479)

Finally, for the two remaining correlation functions, we have

〈
σ†(t)σ†(t+ τ)

〉
= g∗0(τ)

〈
σ†
〉
+ g∗1(τ)

〈
σ†σ†

〉
+ g∗2(τ)

〈
σ†σ

〉
+ g∗3(τ)

〈
σ†σz

〉
= [g∗0(τ)− g∗3(τ)]ρ̃ge(t −→∞) + g∗2(τ)ρee(t −→∞)

(5.480)

and
〈σ(t)σ(t+ τ)〉 = g0(τ) 〈σ〉+ g1(τ) 〈σσ〉+ g2(τ)

〈
σσ†

〉
+ g3(τ) 〈σσz〉

= [g0(τ) + g3(τ)]ρ̃eg(t −→∞) + g2(τ)ρgg(t −→∞).

(5.481)

40J. P. Gordon and A. Ashkin, op. cit.
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Now, to carry out the appropriate integrals over the correlation functions, we can write∫ ∞
−∞

dτ
[〈
σ†(t)σ(t+ τ)

〉
− | 〈σ〉 |2

]
= (G0 −G3)ρ̃ge(t −→∞) +G1ρee(t −→∞) + c.c.∫ ∞

−∞
dτ
[〈
σ(t)σ†(t+ τ)

〉
− | 〈σ〉 |2

]
= (G∗0 +G∗3)ρ̃eg(t −→∞) +G∗1ρgg(t −→∞) + c.c.∫ ∞

−∞
dτ
[〈
σ†(t)σ†(t+ τ)

〉
−
〈
σ†
〉2]

= (G∗0 −G∗3)ρ̃ge(t −→∞) +G∗2ρee(t −→∞) + c.c.∫ ∞
−∞

dτ
[
〈σ(t)σ(t+ τ)〉 − 〈σ〉2

]
= (G0 +G3)ρ̃eg(t −→∞) +G2ρgg(t −→∞) + c.c.

(5.482)

where
Gα :=

∫ ∞
0

dτ [gα(τ)− 〈σ〉 δα0] , (5.483)

and noting that gα(−τ) = g∗α(τ), so that the Gα are real. Note that we subtract the dc amplitude in G0,
which implements the dc subtraction in Eqs. (5.474). In terms of these integrals, we can use Eqs. (5.482) in
Eqs. (5.471) and (5.473) to write

Dp =
h̄2

4

{
|∇Ω(r)|2

[
(G0ρ̃ge + c.c.)− (G3ρ̃ge − c.c.) +G1

]
+ [∇Ω(r)]2

[
(G∗0 −G∗3)ρ̃ge +G∗2ρee

]
+ [∇Ω∗(r)]2

[
(G0 +G3)ρ̃eg +G2ρgg

]}
+ c.c.

(5.484)

But Dp is real by construction, so we can explicitly drop any imaginary terms with the result

Dp =
h̄2

2
Re
{
|∇Ω(r)|2[2G0ρ̃ge(t −→∞) +G1] + [∇Ω∗(r)]2 [2G0ρ̃eg(t −→∞) +G2]

}
, (5.485)

so that all that remains is to evaluate the integrals Gα.
To do these integrals, note that given a function f(t) and its Laplace transform L [f ](s), we have∫ ∞

0

dt f(t) = L [f ](0), (5.486)

so that all we have to do is to compute Laplace transforms and evaluate them at s = 0 (s being the dummy
variable of the Laplace transform, not the saturation parameter). Now our equations of motion can be
written

∂t


δρ̃eg

δρ̃ge

〈δσz〉

 =


− Γ

2
+ i∆ 0 i

Ω

2

0 − Γ

2
− i∆ −iΩ

∗

2

iΩ∗ −iΩ −Γ




δρ̃eg

δρ̃ge

〈δσz〉

 =: P


δρ̃eg

δρ̃ge

〈δσz〉

 . (5.487)

Computing the Laplace transform, we find
L [δρ̃eg](s)

L [δρ̃ge](s)

L [〈δσz〉](s)

 =
1

s−P


δρ̃eg(0)

δρ̃ge(0)

〈δσz(0)〉

 . (5.488)
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We only need the Laplace transform at s = 0, so it suffices to compute

1

s−P

∣∣∣∣
s=0

=
1

−P =
1

4Γ[Γ2/4 + ∆2 + |Ω|2/2]

 2|Ω|2 + 2Γ(Γ + 2i∆) 2Ω2 −Ω(2∆− iΓ)
2[Ω∗]2 2|Ω|2 + 2Γ(Γ− 2i∆) −Ω∗(2∆ + iΓ)

−2Ω∗(2∆− iΓ) −2Ω(2∆ + iΓ) Γ2 + 4∆2

.
(5.489)

Then, since the zero-frequency component of the Laplace transform has the form

L [δρ̃eg](0) = L [〈δσ〉](0)

= c1 δρ̃eg(0) + c2 δρ̃ge(0) + c3 〈δσz(0)〉

= [−c1 ρ̃eg(t −→∞)− c2 ρ̃ge(t −→∞)− c3 〈σz(t −→∞)〉] + c1ρ̃eg(0) + c2ρ̃ge(0) + c3 〈σz(0)〉 ,
(5.490)

we can compare to Eq. (5.475) to identify G1 = c1, G2 = c2, G3 = c3, and

G0 = −G1ρ̃eg(t −→∞)−G2ρ̃ge(t −→∞)−G3 〈σz(t −→∞)〉 . (5.491)

We thus obtain

G1 =
Γ + s(r)(Γ/2− i∆)

Γ[1 + s(r)](Γ/2− i∆)

G2 =
Ω2

2Γ[(Γ/2)2 +∆2][1 + s(r)]

G3 =
iΩ

2Γ(Γ/2− i∆)[1 + s(r)] ,

(5.492)

and using the steady-state values

ρ̃eg(t −→∞) =
−iΩ

2(Γ/2− i∆)[1 + s(r)]

ρee(t −→∞) =
s(r)/2
1 + s(r) ,

(5.493)

we find
G0 = − iΩ

2[1 + s(r)]2[(Γ/2)2 +∆2]

[
Γ/2− i∆

Γ
− Γ

Γ/2− i∆
− i2s∆

Γ

]
. (5.494)

Then, putting these integrals into Eq. (5.485), we find our main result

Dp =
h̄2Γ

2

(
∇s
2s

)2
s

(1 + s)3

[
1 +

(
Γ2

(Γ/2)2 +∆2
− 1

)
s+ 3s2 + 4

(Γ/2)2 +∆2

Γ2
s3
]

+
h̄2Γ

2
(∇φ)2 s

(1 + s)3

[
1 +

(
3− Γ2

(Γ/2)2 +∆2

)
s+ s2

]
+h̄2∆

(
∇s · ∇φ

s

)
s2

(1 + s)3

[
Γ2

(Γ/2)2 +∆2
+ s

]
.

(diffusion coefficient) (5.495)
This expression is somewhat cumbersome, and so we will examine it in the limits of low and high intensity.

5.8.6.4 Interpretation of the Diffusion Rate

In the low-intensity limit, we find that only the first two terms contribute:

Dp ≈
h̄2Γs

2

[(
∇s
2s

)2

+ (∇φ)2
]
+O(s2).

(diffusion coefficient, low-intensity limit) (5.496)
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The first responds to the gradient of the field, and we can see explicitly now that the effect here is due to
the fluctuations of the atomic dipole interacting with the field gradients. Hence, this effect is referred to
as the stochastic-dipole force. The other term, which depends on the phase gradient is due to photon
absorption; we will interpret this effect more carefully below when we add spontaneous emission. In the
high-intensity limit, the stochastic-dipole force dominates so long as ∇s 6= 0, in which case the diffusion rate
becomes

Dp ≈
h̄2|Ω|2

Γ

(
∇s
2s

)2

.

(diffusion coefficient, high-intensity limit) (5.497)
As was the case for the mean force, the absorption contribution saturates, whereas the dipole contribution
does not. Note that Dp increases like s for very large intensities, while Vdip increases only as log s, so that
for a nearly conservative and long-lived trap it is not wise to use a very large saturation parameter.

5.8.6.5 Dressed-State Model

In the high-intensity limit, we can understand the diffusion simply in terms of the dressed states.41 In this
limit, the dressed states |±〉 are approximately equal superpositions of |g〉 and |e〉, and vice versa. Each
spontaneous-emission event projects the atom into the ground state, and thus into an equal superposition of
the dressed states. The atom therefore sees both dressed-state shifts ±h̄Ω̃/2 ≈ ±h̄|Ω|/2. We can interpret
this as follows: after each spontaneous-emission event, the atom sees a force

F = ∓ h̄∇|Ω|
2

= ∓ h̄|Ω|
2

(
∇s
2s

)
, (5.498)

where the sign is chosen randomly, but with equal probability for the two possibilities. Assuming the
atom is moving slowly, even after accumulating momentum, the momentum change associated with a single
spontaneous-emission event is

∆p = ∓ h̄|Ω|
2

(
∇s
2s

)
ξ (5.499)

where ξ is the time until the next spontaneous-emission event, which is a random variable (ξ > 0) of mean
2/Γ and exponential probability density

f(ξ) =
Γ

2
exp

(
−Γ

2
ξ

)
. (5.500)

To take into account the randomness of the sign, we can write

∆p =
h̄|Ω|
2

(
∇s
2s

)
ξ′ (5.501)

where ξ′ ∈ R has a two-sided exponential probability density

f±(ξ
′) =

Γ

4
exp

(
−Γ

2
|ξ′|
)
. (5.502)

Then the mean-square kick is

〈
(∆p)2

〉
=
h̄2|Ω|2

4

(
∇s
2s

)2 〈
ξ′2
〉
=

2h̄2|Ω|2

Γ2

(
∇s
2s

)2

, (5.503)

where 〈
ξ′2
〉
=

Γ

4

∫ ∞
−∞

dξ′ exp
(
−Γ

2
|ξ′|
)
ξ′2 =

8

Γ2
. (5.504)

41J. P. Gordon and A. Ashkin, op. cit.; see also J. Dalibard and C. Cohen-Tannoudji, op. cit.
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The diffusion rate is the mean-square step divided by the average step time ∆t = 2/Γ, so

Dp =

〈
(∆p)2

〉
∆t

=
h̄2|Ω|2

Γ

(
∇s
2s

)2

, (5.505)

which is precisely what we obtained from the full calculation in this limit.

5.8.6.6 Examples: Plane and Standing Waves

To gain further insight, let’s also consider a couple of concrete examples. For a plane wave, ∇s = 0 and
∇φ = k, so that only the absorption contribution remains:

Dp =
h̄2k2Γ

2

s

(1 + s)3

[
1 +

(
3− Γ2

(Γ/2)2 +∆2

)
s+ s2

]
.

(diffusion coefficient, plane wave) (5.506)
For small intensity, this expression becomes

Dp ≈ h̄2k2Γ
s

2
= h̄2k2Γρee(t −→∞).

(diffusion coefficient, plane wave, low intensity) (5.507)
As we will see below, this is what we expect for the diffusion due to photon recoils of h̄k at an average rate
Γρee(t −→ ∞). However, this is not due to spontaneous emission itself, which we have not yet accounted
for, but rather the absorption of photons that later result in spontaneous emission events. This conclusion
also applies in the high-intensity limit:

Dp ≈
h̄2k2Γ

2
= h̄2k2Γρee(t −→∞).

(diffusion coefficient, plane wave, high intensity) (5.508)
For intermediate intensities, we can see that there are other correction factors in Eq. (5.506). These cor-
rections have been shown to be related to the non-Poissonian character of spontaneous emission.42 This is
related to the antibunching that we already examined; spontaneous emission becomes Poissonian, such that
the second-order coherence function g(2)(τ) ≈ 1 for all τ , in the limits of low and high intensity.

The other example we will consider is a standing wave of light, where we can take ∇φ = 0 and
Ω = Ω0 cos kx. Note that we are taking |Ω| −→ |Ω0| cos kx, so we do not have to deal with the sign of the
Rabi frequency using the phase φ. Thus,

∇s
2s

=
∇|Ω|
|Ω|

= −k tan kx. (5.509)

Only the dipole part contributes, so that the diffusion rate becomes

Dp = 2h̄2k2Γ
Ω 2

0 sin2 kx

[2(∆2 + Γ2/4) + Ω2
0 cos2 kx]3

×

[(
∆2 +

Γ2

4

)2

+

(
3

4
Γ2 −∆2

)
Ω 2

0 cos2 kx+
3

4
Ω 4

0 cos4 kx+
Ω 6

0

2Γ2
cos6 kx

]
.

(diffusion coefficient, standing wave) (5.510)
For low intensities, this becomes

Dp ≈
h̄2k2Γs0

2
sin2 kx,

(diffusion coefficient, standing wave, low intensity) (5.511)
42Richard J. Cook, ‘‘Photon number statistics in resonance fluorescence,’’ Physical Review A 23, 1243 (1981) (doi:

10.1103/PhysRevA.23.1243); Stig Stenholm, ‘‘Distribution of photons and atomic momentum in resonance fluorescence,’’ Phys-
ical Review A 27, 2513 (1981) (doi: 10.1103/PhysRevA.27.2513).

http://dx.doi.org/10.1103/PhysRevA.23.1243
http://dx.doi.org/10.1103/PhysRevA.27.2513
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where
s0 =

Ω 2
0

2[(Γ/2)2 +∆2]
. (5.512)

We thus see that in this regime, the stochastic-dipole force is maximum where the gradients are maximum,
which is where the intensity is minimum. This force is largest precisely where we expect spontaneous-
emission noise to be smallest, and vice versa. It turns out that we can interpret the diffusion in this regime
as due to stimulated absorption, as we will show below. In the large-intensity limit, the diffusion rate reduces
to

Dp =
h̄2k2Ω2

0

Γ
sin2 kx,

(diffusion coefficient, standing wave, high intensity) (5.513)
which has the same spatial dependence as the small-field case.

We should reiterate here that in writing down these diffusion rates, we have assumed nearly zero
atomic velocity and ignored the velocity dependences of the diffusion rates. This is because we have used
local values for the internal atomic variables, which is only valid if the atom really is localized, or if we are
in the perturbative regime.

5.8.6.7 Spontaneous Emission

In our discussion of the force fluctuations, we have ignored spontaneous emission because we have used a
semiclassical field, and we did not use the Bloch equations in the form (5.418) that include the recoil kick in
the dissipation terms. Thus, we will need to put it in by hand.

Note that there are two effects on the atomic motion that one might consider: the absorption of the
photon and the emission. As we noted above, fluctuations due to absorption are already included in the
preceding analysis, but it is worth examining this in a bit more depth. In the perturbative regime, recall
that the excited- and ground-state amplitudes are related from Eq. (5.412) by

ψe =
Ω(x)

2∆
ψg. (5.514)

Thus, the excited state has an ‘‘imprint’’ of the field profile when compared to the ground state. For
concreteness consider the standing-wave case Ω(x) = Ω0 cos kx, so that

ψe =
Ω0

2∆
cos kxψg. (5.515)

On a spontaneous-emission event, the atomic annihilation operator σ is applied to the atomic state vector
(along with the recoil operator for the emission, which we will not consider for the moment). Then the
post-emission state is

〈x|σ|ψ〉 = σ [ψe(x)|e〉+ ψg(x)|g〉]

∝ ψe(x)|g〉

∝ cos kxψg(x)|g〉

∝
(
eikx + e−ikx

)
ψg(x)|g〉.

(5.516)

Thus, the atom is in a superposition of having recoiled by one photon momentum in each direction along the
standing wave, due to the indistinguishable possibilities of having absorbed a photon from either traveling
wave. Notice also that the disturbance to the wave function due to absorption (multiplication by cos kx)
is minimal at the extrema of the cosine function (where the cosine is approximately constant), but there is
most disturbance on the gradients of the cosine function: the gradients induced by the absorption represent
the added momentum. This explains the sin2 kx dependence of the diffusion rate (5.511) in the low-intensity
limit, since sin2 kx is maximum precisely where the derivatives of cos kx are most extreme. In the general
case, it is somewhat difficult to pin down the absorption effects that contribute to force fluctuations, but in
principle we have already accounted for them.
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It is easy to account for the diffusion due to spontaneous emission. The photon scattering rate is

Rsc =
Γ

2

s(r)
1 + s(r) =

(Γ/2)Ω2(r)
2(∆2 + Γ2/4) + Ω2(r) . (5.517)

The momentum recoils from the emitted photons, as we saw in the Lorentz atom treatment, result in atomic
momentum diffusion at the rate

D(se)
p = h̄2k2Rsc =

h̄2k2Γ

2

s

1 + s
=
h̄2k2Γ

2

Ω2(r)
2(∆2 + Γ2/4) + Ω2(r) ,

(diffusion coefficient, spontaneous emission) (5.518)
which is simply the mean-square momentum kick for one photon recoil, h̄2k2, multiplied by the scattering
rate. Again, the momentum diffusion coefficientDp is defined such that Vp = 〈(p−〈p〉)2〉 grows asymptotically
as Dpt. The form here follows from the fact that photons are emitted into random directions, and thus the
resulting photon recoils cause the atom to execute a random walk in momentum space.

The specific example of the plane wave is trivial here, since Ω is just a constant. For the standing
wave, the diffusion rate becomes

D(se)
p =

h̄2k2Γ

2

Ω 2
0 cos2 kx

2(∆2 + Γ2/4) + Ω 2
0 cos2 kx

,

(diffusion coefficient, spontaneous emission, standing wave) (5.519)
which for small intensities becomes

D(se)
p ≈ h̄2k2Γ

2
s0 cos2 kx,

(diffusion coefficient, spontaneous emission, standing wave, low intensity) (5.520)
which has the same form as Eq. (5.511), but with cos2 kx instead of sin2 kx. When added together, we
see that the total diffusion rate (including both absorption and stimulated-emission contributions) becomes
independent of position.

If we restrict our attention to a single dimension, then the one-dimensional diffusion rate is

D(se,1)
p =

h̄2k2Γζ2

2

Ω2(x)

2(∆2 + Γ2/4) + Ω2(x)
, (5.521)

where ζ2 is the mean-square projection of the photon recoil along the direction of the standing wave:

ζ2 =

∫
dΩ sin2 θ cos2 φ. (5.522)

For radiation from a pure linearly oscillating dipole oriented across the axis of interest, ζ2 = 2/5.

5.8.7 Velocity Dependence

When we take into account the atom’s motion, the Rabi frequency Ω becomes time-dependent. Thus, for
example,

∂tΩ = v · ∇Ω = Ωv ·
(
∇|Ω|
|Ω|

+ i∇φ
)

= Ωv ·
(
∇s
2s

+ i∇φ
)
. (5.523)

For the saturation parameter, we can thus also write

∂ts =
2|Ω|∂t|Ω|

2[(Γ/2)2 +∆2]
= 2s

∂t|Ω|
|Ω|

, (5.524)

so that
∂ts

2s
=
∂t|Ω|
|Ω|

= v · ∇|Ω|
|Ω|

= v ·
(
∇s
2s

)
. (5.525)
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Now we can obtain the atomic density matrix to lowest order in v as follows. First, differentiate the at-rest
steady-state solutions

〈σz(t −→∞)〉 = − 1

1 + s

ρ̃eg(t −→∞) = − iΩ

2(Γ/2− i∆)(1 + s)

(5.526)

and keep terms to first order in v to obtain

∂t 〈σz〉 ≈
2s

(1 + s)2
v ·
(
∇s
2s

)
≈ − 2s

1 + s
v ·
(
∇s
2s

)
〈σz〉 (5.527)

and
∂tρ̃eg ≈ ρ̃eg

(
∂tΩ

Ω
− ∂ts

1 + s

)
=

[
v ·
(
∇s
2s

+ i∇φ
)
− 2s

1 + s
v ·
(
∇s
2s

)]
ρ̃eg

=

[(
1− s
1 + s

)
v ·
(
∇s
2s

)
+ iv · ∇φ

]
ρ̃eg.

(5.528)

The optical Bloch equations are

∂t 〈σz〉 = iΩ∗ρ̃eg − iΩρ̃ge − Γ 〈σz〉 − Γ

∂tρ̃eg =

(
−Γ

2
+ i∆

)
ρ̃eg +

iΩ

2
〈σz〉 ,

(5.529)

and equating these relations with the above expressions for the velocity-dependent time derivatives gives

iΩ∗ρ̃eg − iΩρ̃ge − Γv 〈σz〉 = Γ

γvρ̃eg −
iΩ

2
〈σz〉 = 0,

(5.530)

where
Γv := Γ− 2s

1 + s
v ·
(
∇s
2s

)
γv :=

Γ

2
− i∆+

(
1− s
1 + s

)
v ·
(
∇s
2s

)
+ iv · ∇φ.

(5.531)

Eliminating the coherences in the first of Eqs. (5.530) gives the solution

〈σz〉 = −
Γ

Γv + |Ω|2
Re[γv]
|γv|2

, (5.532)

so that the second of Eqs. (5.530) gives the steady-state coherence

ρ̃eg =
iΩ

2γv
〈σz〉 = −

iΩΓ/2γv

Γv + |Ω|2
Re[γv]
|γv|2

= − iΩΓγ∗v/2

Γv|γv|2 + |Ω|2Re[γv]
.

(velocity-dependent coherence) (5.533)
The mean force from Eq. (5.441) as usual is then

〈F〉 = − h̄

2
[∇Ω∗(r) ρ̃eg +∇Ω(r) ρ̃ge] = −

h̄Ω∗

2
(∇ log |Ω| − i∇φ) ρ̃eg + c.c. (5.534)
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This is again somewhat complicated to interpret in general, so we will work out this expression in a couple
of special cases.

For the plane wave, we again have∇s = ∇|Ω| = 0 and∇φ = k. Then Γv = Γ and γv = Γ/2−i(∆−k·v).
Note that this is exactly the same as the static analysis for this case, except for the Doppler-shift replacement
∆ −→ ∆− k · v. Thus,

ρ̃eg = − iΩ

2[Γ/2− i(∆− k · v)](1 + s)
, (5.535)

and following the steps leading up to Eq. (5.450), the force becomes

〈Frad〉 =
h̄kΓ
2

s(v)
1 + s(v) ,

(velocity-dependent force, plane wave) (5.536)
where

s(v) = |Ω|2

2[(Γ/2)2 + (∆− k · v)2] . (5.537)

This force is only valid to first order in v, and so

s(v) =
(
1 +

2∆k · v
(Γ/2)2 +∆2

)
s,

(velocity-dependent saturation parameter) (5.538)
where s denotes s(v = 0), and

1

1 + s(v) =

(
1− s2∆k · v

(1 + s)[(Γ/2)2 +∆2]

)
1

1 + s
, (5.539)

so that

〈Frad〉 =
h̄kΓ
2

s

1 + s

(
1 +

2∆k · v
(1 + s)[(Γ/2)2 +∆2]

)
= h̄kΓρee(v = 0, t −→∞)

(
1 +

2∆k · v
(1 + s)[(Γ/2)2 +∆2]

)
.

(velocity-dependent force, plane wave) (5.540)
The velocity-dependent part of this expression is the Doppler force, which, as we saw from the classical
analysis of Section (1.4.2), is a damping, friction-like force for red detunings (∆ < 0), which is what gives
rise to optical molasses when multiple beams are present. (Note that from this expression, one beam is
sufficient to cool an atom, provided that it is trapped by some other force that cancels the mean radiation
pressure.)

For a standing wave in the x-direction, we have Ω = Ω0 cos kx as usual, so that ∇s/2s = −k tan kx
and ∇φ = 0. Then

Γv = Γ +
2s(r)

1 + s(r) (v · k) tan kx

γv =
Γ

2
− i∆−

(
1− s(r)
1 + s(r)

)
(v · k) tan kx.

(5.541)

The algebra here is more complicated, but the velocity-dependent part of the mean force reduces to

〈Fv〉 = (k · v)2h̄k∆ sin2 kx
Γ2Ω 2

0 [2(∆
2 + Γ2/4)− Ω 2

0 cos2 kx]− Ω 6
0 cos4 kx

Γ[2(∆2 + Γ2/4) + Ω 2
0 cos2 kx]3

.

(velocity-dependent force, standing wave) (5.542)
For small intensities, this expression becomes

〈Fv〉 = h̄kΓ Ω 2
0

2(∆2 + Γ2/4)2
∆(k · v) sin2 kx = h̄kΓρ̄ee(v = 0, t −→∞)

2∆(k · v)
(Γ/2)2 +∆2

sin2 kx,

(velocity-dependent force, standing wave, small intensity) (5.543)
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where
ρ̄ee(v = 0, t −→∞) =

s0
2

=
Ω 2

0

4[(Γ/2)2 +∆2]
(5.544)

is the zero-velocity equilibrium population of the atomic excited state, where the intensity is taken to be
spatially averaged over the standing wave. Comparison of this expression to Eq. (5.540) makes it clear that,
for small intensities, the velocity-dependent force in a standing wave is explained by optical molasses, but
where the strength is modulated sinusoidally with period λ/2.

The more interesting feature here is that the sign of the force changes as the intensity becomes very
large. Thus, the velocity-dependent force is damping for red detuning and small intensities, but becomes a
heating force for large detunings. The interpretation in the large-intensity regime is that the local steady-
state, dressed-level populations lag behind the atomic position.43

|eÒ

|gÒ

|eÒ

|+Ò

|-Ò

|gÒ

h—|D| h—|D|

positionv

h—W~

To visualize this, let’s consider an atom moving in a Gaussian beam, with ∆ < 0. Thus, the atom is primarily
in the |−〉 state, which is more like the ground state than the excited state. Suppose that it is moving to the
right. In an instant, when it moves a small distance to the right, the equilibrium population for the atom is
less in |−〉 and more in |+〉. (The populations are equal in the limit of large intensity.) However, the atom
doesn’t adjust its populations instantaneously, so when it arrives at the new position, it has ‘‘too much’’
population in |−〉 compared to equilibrium. Thus, the dressed-state shifts don’t cancel as much as they
would otherwise, and so the force is larger than it would otherwise be. The velocity-dependent ‘‘correction’’
is thus in the same direction as the velocity, as we expect for ∆ < 0. This argument works, of course, when
the energy gradient has the opposite sign or when the atom has the opposite velocity.

5.8.8 Doppler Cooling Limit

Now that we have the velocity-dependent force and the diffusion coefficient, we can treat the problem of
laser cooling from the quantum-mechanical viewpoint. Recall from Eq. (5.467), the steady-state solution of
the linear Fokker–Planck equation with drift coefficient A(p) = Ap and diffusion coefficient D(p) = D is a
Gaussian (‘‘thermal’’) distribution in momentum of variance

Vp(t −→∞) =
D

2|A|
. (5.545)

We will consider the case of two traveling waves, which form a standing wave. The diffusion rate is given by
the sum of the diffusion rate from the fluctuation force in Eq. (5.510) and the spontaneous-emission diffusion
rate from Eq. (5.518). To avoid a cumbersome expression (and to focus on the cooling regime), we will
consider the small-intensity limit, where the diffusion coefficients are given by Eqs. (5.511) and (5.520). The
sum is independent of position, and is given by

Dp =
h̄2k2Γs0

2
, (5.546)

43J. Dalibard and C. Cohen–Tannoudji, op. cit.
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where again s0 = Ω2
0/2[(Γ/2)

2 +∆2]. The linear drift coefficient is given from Eq. (5.543) by

A =
〈Fv〉
m

=
h̄Γk2s0
2m

∆

(Γ/2)2 +∆2
, (5.547)

where we have replaced the sin2 kx dependence by the spatially averaged value of 1/2, since we assume
the atoms are not so cold that they are stationary on wavelength distance scales. Now remember that Dp

represents diffusion in three dimensions, so to have three-dimensional cooling we must have three sets of
standing waves. This means that the cooling force is three-dimensional, with the same coefficient A, but the
diffusion rate is larger by a factor of three. Thus, the steady-state variance for negative detunings is

Vp(t −→∞) =
3Dp

2|A|
=

3h̄m

2

(Γ/2)2 +∆2

|∆|
. (5.548)

We can translate this into a kinetic energy via

Ep(t −→∞) =
Vp(t −→∞)

2m
=

3h̄

4

(Γ/2)2 +∆2

|∆|
. (5.549)

We can convert the energy to a temperature by Ep(t −→∞) = (3/2)kBT , giving

kBT =
h̄Γ

4

1 + (2∆/Γ)2

2|∆|/Γ
.

(5.550)
(Doppler limit to laser cooling)

This is precisely the same result that we obtained from our Lorentz-model treatment of Section 1.4.3.1.
Again, all the ingredients are the same: we have included the cooling force (optical molasses) via the
velocity-dependent force of Eq. (5.543), the diffusion due to absorption from a random beam in the diffusion
rate of Eq. (5.510), and the diffusion rate due to spontaneous emission from Eq. (5.518). In principle, though
the more general expressions can also treat more general situations than the weak-field case, and we have
now shown more explicitly that we expect (to lowest order in velocity) a thermal steady-state distribution.

5.9 Bloch–Siegert Shift

All of the results that we have developed for the two-level atom have involved the rotating-wave approxima-
tion. So, then, what is the effect of the neglected term? One well-known effect that is closely related to the
dipole shift is the Bloch–Siegert shift of the atomic resonance.44

Recall that, within the rotating-wave approximation, a monochromatic field of frequency ω induces an
ac Stark shift of the ground state, which we can see from Eq. (5.460) is given by

∆Eg =
h̄Ω2

4∆
, (5.551)

to lowest order in Ω2/∆2, where as usual ∆ = ω − ω0. The excited-state shift is exactly opposite the
ground-state shift:

∆Ee = − h̄Ω
2

4∆
. (5.552)

We would now like to treat the counterrotating term as another monochromatic field, but of frequency
−ω. To lowest order, the shift is just an additive shift of the same form, but with ω −→ −ω. This
treatment is corroborated by the classical treatment of the dipole potential, specifically Eq. (1.76), where
the counterrotating field gave an additional dipole shift of the same form, but with the replacement

1

∆
=

1

ω − ω0
−→ − 1

ω + ω0
. (5.553)

44After F. Bloch and A. Siegert, ‘‘Magnetic Resonance for Nonrotating Fields,’’ Physical Review 57, 522 (1940) (doi:
10.1103/PhysRev.57.522).

http://dx.doi.org/10.1103/PhysRev.57.522
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Thus, we expect a ground-state shift due to the counterrotating term of

∆Eg,c = − h̄Ω2

4(ω + ω0)
, (5.554)

while the excited state experiences an equal but opposite shift. The shift of the transition frequency due to
the counterrotating field is thus

∆ωc =
∆Ee,c −∆Eg,c

h̄
=

Ω2

2(ω + ω0)
. (5.555)

The shift in the atomic resonance is given to lowest order by setting ω = ω0 in this expression, so that

∆ωc =
Ω2

4ω0
.

(5.556)
(Bloch–Siegert shift)

This is the lowest-order expression for the Bloch–Siegert shift.45 The shift is typically quite weak: a relatively
large Rabi frequency of Ω/2π = 1 GHz is large enough to drive a 2π-pulse in only 1 ns, but at optical
frequencies (say for 1 µm light), the Bloch–Siegert shift is only 1 kHz, or a fractional shift of about 10−12.
This is well within the power-broadened line shape, and quite difficult to detect.46 Thus, the first-order
result is quite adequate for most optical situations.

An important point regarding the Bloch–Siegert shift is that it is due to a nonresonant interaction.
Nonresonance is the justification for treating an atom as a two-state system: the other levels are not reso-
nantly coupled and are therefore ignorable. However, if the detuning is large enough or the desired accuracy
of the calculation is high enough that the effects of the counterrotating term are important, then so are
the effects of couplings to other levels. That is, the two-level and rotating-wave approximations are at the
same level of accuracy. For consistency of approximations either both or neither should be made. (Of
course, in magnetic resonance it is possible to have an exact two-state system where the Bloch–Siegert shift
is significant.)

5.9.1 Magic Wavelength

In the two-level atom, the ac Stark shift always results in opposite shifts between the excited and ground
states, and thus always leads to a shift of the transition frequency. Of course, the fact that couplings to other
states exist can work to our advantage. In particular, when accounting for the counterrotating interactions
and couplings to other levels, it may be possible to find situations where the excited- and ground-state shifts
are equal, with the same sign. This situation happens when the atom is driven at particular wavelengths,
called magic wavelengths.

To illustrate this, consider the level shifts of 87Rb of the two levels in the D1 transition at 794 nm due
to a monochromatic laser field.

45It is possible to obtain higher-order expressions for the Bloch–Siegert shift. See Jon H. Shirley, ‘‘Solution of the Schrödinger
Equation with a Hamiltonian Periodic in Time,’’ Physical Review, 138, B979 (1965) (doi: 10.1103/PhysRev.138.B979); Stig
Stenholm, ‘‘Quantum theory of RF resonances: The semiclassical limit,’’ Journal of Physics B: Atomic and Molecular Physics,
6, 1650 (1973) (doi: 10.1088/0022-3700/6/8/042); C. Cohen-Tannoudji, J. Dupont-Roc and C. Fabre, ‘‘A quantum calculation
of the higher order terms in the Block Siegert shift,’’ Journal of Physics B: Atomic and Molecular Physics, 6, L214 (1973) (doi:
10.1088/0022-3700/6/8/007); P. Hannaford, D. T. Peg, and G. W. Series, ‘‘Analytical expressions for the Bloch-Siegert shift,’’
Journal of Physics B: Atomic and Molecular Physics, 6, L222 (1973) (doi: 10.1088/0022-3700/6/8/009).

46Note, however, that the shift, including higher order corrections, have been studied experimentally for microwave transitions.
See C. Cohen-Tannoudji, J. Dupont-Roc and C. Fabre, ‘‘An experimental check of higher order terms in the radiative shift of a
coherence resonance,’’ Journal of Physics B: Atomic and Molecular Physics, 6, L218 (1973) (doi: 10.1088/0022-3700/6/8/008).

http://dx.doi.org/10.1103/PhysRev.138.B979
http://dx.doi.org/10.1088/0022-3700/6/8/042
http://dx.doi.org/10.1088/0022-3700/6/8/007
http://dx.doi.org/10.1088/0022-3700/6/8/009
http://dx.doi.org/10.1088/0022-3700/6/8/008
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The plotted energy shifts correspond to those experienced by an atom at the center of a 1 W Gaussian
beam of radius w0 = 10 µm. We will defer the details of the calculation until we develop more sophisticated
technology for dealing with atomic structure. For now, we will note that we have done the calculation
accounting for 24 total atomic transitions, some of which are visible as dispersive resonances in the level-
shift curves. Magic wavelengths occur at the locations where the two curves intersect. For example, a laser
spot at 1350.39(65) nm can be used as a dipole trap for 87Rb, where the frequency of the D1 transition is
not affected.

Why is this interesting? There are two well-known application. The first is, suppose you have an atom
in a dipole trap, and you want to probe a transition with a resonant laser. Well, recall that the stochastic
dipole force is due precisely to having different dipole potentials in different states, and then stochastically
jumping between them due to spontaneous emission. Of course, the same thing will happen in this situation:
when probed, the atom will jump between the ground and excited states, where it will experience different
trapping potentials. This can be a large source of heating and decoherence. But trapping at the magic
wavelength suppresses this form of heating. This approach is used to great advantage in cavity quantum
electrodynamics to obtain long trap lifetimes of a single atom in an ultrahigh-finesse cavity.47

The other application is to atomic frequency standards. The current frequency standard is based on a
microwave hyperfine transition in 133Cs. But increasing the quality factor ω0/δω of the oscillator standard
requires both decreasing the line width δω as well as pushing the resonance frequency ω0 into the optical.
To allow for long interrogation times, the atoms must be trapped. One promising approach is the single-ion
atomic clock, where the oscillating trap fields average to zero to lowest order. Another promising approach
is to trap atoms in a magic-wavelength, three-dimensional optical lattice.48 This allows the atoms to be
trapped with little shift of the optical transition. Also, the atoms do not suffer collisions because they
are isolated at different lattice sites. So the clock does not suffer from a collisional shift, but retains the
advantage of averaging over many atoms.

47J. McKeever, J. R. Buck, A. D. Boozer, A. Kuzmich, H.-C. Nägerl, D. M. Stamper-Kurn, and H. J. Kimble, ‘‘State-
Insensitive Cooling and Trapping of Single Atoms in an Optical Cavity,’’ Physical Review Letters 90, 133602 (2003) (doi:
10.1103/PhysRevLett.90.133602).

48Masao Takamoto and Hidetoshi Katori, ‘‘Spectroscopy of the 1S0-3P0 Clock Transition of 87Sr in an Optical Lattice,’’
Physical Review Letters 91, 223001 (2003) (doi: 10.1103/PhysRevLett.91.223001); Carsten Degenhardt, Hardo Stoehr, Uwe
Sterr, Fritz Riehle, and Christian Lisdat, ‘‘Wavelength-dependent ac Stark shift of the 1S0-3P1 transition at 657 nm in Ca,’’
Physical Review A 70, 023414 (2004) (doi: 10.1103/PhysRevA.70.023414); Masao Takamoto, Feng-Lei Hong, Ryoichi Higashi,
and Hidetoshi Katori, ‘‘An optical lattice clock,’’ Nature 435, 321 (2005) (doi: 10.1038/nature03541).

http://dx.doi.org/10.1103/PhysRevLett.90.133602
http://dx.doi.org/10.1103/PhysRevLett.91.223001
http://dx.doi.org/10.1103/PhysRevA.70.023414
http://dx.doi.org/10.1038/nature03541
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5.10 Exercises

Problem 5.1
In the classical treatment of the dipole potential, we used the expression −(1/2)d · E for the dipole
energy, where the 1/2 accounts for the fact that the dipole is induced. However, for the two-level atom,
we used the interaction Hamiltonian HAF = −d ·E, which has no such factor. What gives?
Hint: the interaction Hamiltonian is also valid classically, so argue that the above two expressions are
consistent in the classical model. In particular, show that the Lorentz model assumed an interaction of
the form of HAF. Then, modeling the atom as a classical harmonic oscillator, show that a perturbation
of the form HAF leads to an energy shift −(1/2)d ·E (it suffices to assume a static perturbation).

Problem 5.2
(a) Derive the equations of motion for the amplitudes of the quantum state

|ψ〉 = cg|g〉+ ce|e〉 (5.557)

under the evolution of the Hamiltonian HA +HAF.
(b) Then make the transformation to the rotating frame by defining

c̃e := cee
iωt, (5.558)

and rewrite the equations of motion in terms of c̃e.
(c) Finally, define the rotating-frame quantum state

|ψ̃〉 = cg|g〉+ c̃e|e〉, (5.559)

and show that the equations of motion for this state under the rotating-frame Hamiltonian H̃A + H̃AF

are equivalent to your results for part (b).

Problem 5.3
Consider a quantum-mechanical particle in a double-well potential, not necessarily symmetric. For
simplicity, we will make a two-state approximation for the particle, restricting our Hilbert space to the
lowest two energy levels.
(a) In the uncoupled (i.e., no tunneling through the barrier) limit, we can write the state in the left-
hand well as |L〉, and the state in the right-hand well is |R〉. Using this basis, write down the most
general Hamiltonian that describes this system, including the tunneling interaction. Introduce new
parameters as necessary but explain what they represent and any necessary constraints.
(b) Take the double-well potential to be symmetric. Assume that |ψ(t = 0)〉 = |L〉, and let |ψ(t)〉 =
cL(t)|L〉 + cR(t)|R〉. Show that the state will oscillate periodically in time between the two wells.
Rewrite the Hamiltonian from part (a) for this case in terms of the period T of oscillation.
(c) For the case in part (b), what are the eigenstates and eigenenergies of the Hamiltonian? How does
the structure of the eigenstates and eigenenergies explain the tunneling process? (You need not derive
them if you know them, but give precise answers and explain.)

Problem 5.4

Show that the eigenstates (dressed states) of the Hamiltonian H̃A + H̃AF can be written

|+〉 = sin θ|g〉+ cos θ|e〉

|−〉 = cos θ|g〉 − sin θ|e〉,
(5.560)

where
tan 2θ = −Ω

∆

(
0 ≤ θ < π

2

)
. (5.561)
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Problem 5.5
Go through the derivation of the Landau–Zener transition probability in Section 5.3.2 carefully, filling
in the missing steps, to derive the loss probability

Plost = e−2π|ν| = exp
(
− πΩ2

2|∂t∆|

)
. (5.562)

Problem 5.6
(a) Show that the transition probability for a Ramsey-type interference experiment can be written

Pe = 4
Ω2

Ω̃2
sin2

(
Ω̃τ

2

)[
cos
(
∆T

2

)
cos

(
Ω̃τ

2

)
− ∆

Ω̃
sin
(
∆T

2

)
sin

(
Ω̃τ

2

)]2
, (5.563)

where τ is the interaction of each of the two laser pulses of Rabi frequency Ω and detuning ∆, and T
is the ‘‘drift’’ time between pulses.
(b) Make a plot of the excitation vs. the microwave detuning. Use parameters appropriate for the
NIST-7 cesium beam clock.
(c) Make another excitation plot, but this time average the fringes over the velocity distribution of
the cesium beam. Assume a temperature of 100◦C, corresponding to a velocity width of 240 m/s. (I
suggest doing the averaging numerically, not analytically.)

Problem 5.7
Solve the optical Bloch equations to obtain the population inversion 〈σz(t)〉 in the limit of weak
excitation, Ω � Γ, in the homogeneously broadened case (γ⊥ = Γ/2) and for arbitrary detuning ∆.
Assume that the atom is initially in the ground state.

Problem 5.8
Find the solution to the optical Bloch equations for 〈σz(t)〉 in the strong-drive limit Ω � γ⊥,Γ, for
arbitrary detuning ∆. Keep only lowest-order contributions in Ω−2 in your solution. Do not assume
Ω� |∆|.

Problem 5.9
(a) Summarize the effects of the nonlinear response of a two-level atom to an externally applied,
classical, monochromatic field. (Treat all aspects we covered, but ignore atomic motion.)
(b) In Problem 1.5, you found that adding nonlinearities to the Lorentz model resulted in new frequen-
cies being generated from the original, monochromatic driving field. Explain qualitatively why the
nonlinear response of the two-level atom does not similarly generate harmonics of the original driving
field. How would the two-level atom need to be generalized to model harmonic generation (assuming
that we keep the dipole approximation)?

Problem 5.10
Use the solutions of the optical Bloch equations to derive an expression for the frequency-dependent
polarizability α(ω) for the two-level atom. Show that your results are consistent with the result from
the Lorentz atom in the appropriate regime. Discuss the significance of any differences.

Problem 5.11
If the density operator of the two-level atom evolves according to

∂tρ = − i

h̄
[H, ρ] + ΓD[σ]ρ, (5.564)

derive an equation of motion for the purity in terms of the elements ρee, ρeg, ρge, and ρgg of the density
matrix.
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Problem 5.12
Go through the derivation of the Mollow triplet on resonance, including the details of the quantum
regression theorem, filling in the missing steps.

Problem 5.13
Use the quantum regression theorem to derive the inelastic spectrum for a two level atom driven far
off resonance, |∆| � Ω,Γ. What are the line widths and (integrated) weights?

Problem 5.14
Derive expressions for the elastic and inelastic emission spectra for a two-level atom with collisional
broadening, driven weakly (Ω/Γ � 1) in the presence of collisional broadening, and show that the
inelastic component is a single peak at the atomic resonance frequency.

Problem 5.15

Go through the derivation of the second-order coherence function g(2)(τ) on resonance, filling in the
missing steps.

Problem 5.16
Derive the expression for the Autler–Townes absorption correlation function ga(τ) in the case of homo-
geneous broadening but arbitrary pump intensity and detuning, Eq. (5.373) in the notes. To do this,
work out the details of the quantum regression theorem for this system, and then solve the resulting
system of equations.
Hint: the quantum regression theorem gives the correlation function in terms of a solution of 9 coupled
differential equations. However, only two of them are nonzero. Start off by eliminating the unnecessary
components.

Problem 5.17
Give an alternate derivation of the general dipole potential

Vdip =
h̄∆

2
log[1 + s(r)] (5.565)

in the dressed-state picture, and thus interpret the potential as a combination of the Stark shifts of
the two dressed levels, plus a contribution from the field due to scattering into the Mollow sidebands.
Use the following outline for your derivation.49

(a) Show that when the Rabi frequency Ω is complex, the dressed-state energies are

E± = − h̄∆

2
± h̄Ω̃

2
, (5.566)

where the generalized Rabi frequency is Ω̃ =
√
|Ω|2 +∆2, and the dressed states are given by

|+〉 = e−iφ/2 sin θ|g〉+ eiφ/2 cos θ|e〉

|−〉 = e−iφ/2 cos θ|g〉 − eiφ/2 sin θ|e〉,
(5.567)

where
tan 2θ = −|Ω|

∆

(
0 ≤ θ < π

2

)
, (5.568)

and Ω = |Ω|eiφ.
49J. Dalibard and C. Cohen-Tannoudji, ‘‘Dressed-atom approach to atomic motion in laser light: the dipole force revisited,’’

Journal of the Optical Society of America B 2, 1707 (1985).
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Hint: argue that the Hamiltonian has the form

H̃ = h̄

[
−∆ Ω/2
Ω∗/2 0

]
, (5.569)

and can be diagonalized by a unitary matrix. What is the most general form of a unitary matrix?
(b) Derive the steady-state populations ρ±± and coherences ρ±∓ for the dressed levels in the limit of
either large pumping (|Ω| � Γ) or detuning (|∆| � Γ), which is the limit in which the dressed states
are well resolved and thus give a valid description of the system.
Hint: first find the density-matrix elements in the bare basis, and make appropriate approximations
in this limit. Then use the appropriate matrix transformation to switch to the dressed basis. Your
answers should be

ρ++(t −→∞) =
1

2

[
1 +

Ω̃

∆(1 + s)

]
ρ+−(t −→∞) = 0,

(5.570)

where s = |Ω|2/2∆2.
(c) Starting with the expression from Eq. (5.441),

〈F〉 = − h̄

2
[∇Ω∗(r) 〈σ〉+ c.c.]

= − h̄ 〈σ〉
2

[
(∇|Ω|)e−iφ − i(∇φ)|Ω|eiφ

]
+ c.c.,

(5.571)

we drop the radiation-pressure contribution (the term with ∇φ) to obtain the dipole force

〈F〉dip = − h̄ 〈σ〉
2

e−iφ∇|Ω|+ c.c. (5.572)

Show that the force can be written in terms of the dressed states as

〈F〉dip = − h̄
2
∇Ω̃(ρ++ − ρ−−)− h̄Ω̃∇θ(ρ+− + ρ−+). (5.573)

(d) The work to move the atom a distance dr is

dW = −〈F〉dip · dr

=
h̄

2

(
∇Ω̃ · dr

)
(ρ++ − ρ−−) + h̄Ω̃ (∇θ · dr) (ρ+− + ρ−+).

(5.574)

For a static or slowly moving atom, only the first term contributes to the dipole force; the second term
involves the dressed-state coherences, and represents nonadiabatic transitions between the dressed
states due to the displacement. Show explicitly based on your answer from (b) that the second term
vanishes for adiabatic displacements.
(e) The displacement work can then be written as

dW =
h̄dΩ̃

2
(ρ++ − ρ−−)

= ρ++dE+ + ρ−−dE−.

(5.575)

Use your results of part (b) to evaluate this expression, and then integrate it with respect to position
to obtain the dipole potential (valid in the limit of well-resolved dressed states).
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(f) The position-dependent level shift of the dressed states, weighted by the dressed-state population,
is

UA = ∆E+ρ++ +∆E−ρ−−, (5.576)

where

∆E± = ± h̄Ω̃
2

(5.577)

are the dressed-state energy shifts relative to the mean level energy. Show that UA is not the correct
dipole potential.
(g) Show that in the limit of either large pumping (|Ω| � Γ) or detuning (|∆| � Γ) the optical Bloch
equations give

∂tρ++ = −Γ+−ρ++ + Γ−+ρ−−

∂tρ−− = Γ+−ρ++ − Γ−+ρ−−,
(5.578)

for the (position-dependent) dressed-state populations, where

Γ+− = Γ cos4 θ, Γ−+ = Γ sin4 θ (5.579)

represent the decay rates between the dressed states. To do this, make the adiabatic, or secular
approximation, where the populations and coherences evolve on very different time scales and thus
can be decoupled by replacing the coherences by their steady-state (mean) values in the population
equations. (Why do the populations vary slowly?) Then Γ+−ρ++ is the rate for |+〉 −→ |−〉 transitions,
and thus the rate for producing photons in the ω + Ω̃ Mollow side band, and Γ−+ρ−− is the rate for
|−〉 −→ |+〉 transitions, and thus the rate for producing photons in the ω − Ω̃ Mollow side band. In
equilibrium, the two rates are equal, implying a symmetric Mollow spectrum.
Note that the optical Bloch equations in the dressed-state basis reduce to simple rate equations in the
secular approximation. Otherwise, the dressed-state equations are rather more complicated than for
the bare states. Thus, the dressed basis is most useful when the secular approximation holds.
(h) Finally, show that

dW = dUA + dUF, (5.580)

where
dUF = h̄Ω̃(Γ+−ρ++ − Γ−+ρ−−) dt. (5.581)

Interpret this relation as the energy transferred to the field in time dt due to the displacement of the
atom. The dipole potential thus has contributions from both the atom and field energies.

Problem 5.18
Recall the one-dimensional Fokker–Planck equation:

∂tf(p, t) = −∂pA(p)f(p, t) +
1

2
∂ 2
pD(p)f(p, t). (5.582)

Since the drift coefficient A(p) and diffusion coefficient D(p) depend on momentum, we can’t write
down a general solution, and the interpretation of these coefficients is a bit tricky. However, computing
the equations of motion for the first two moments helps with the interpretation.
(a) Show that

∂t〈p〉 = 〈A(p)〉 . (5.583)

Here, the expectation value refers to an average with respect to the distribution f(p, t). Assume that
f(p, t) falls off quickly enough with |p| that any boundary terms are negligible. Thus, ‘‘drift’’ of the
distribution mean is caused both by the drift coefficient, averaged over the distribution.
(b) Show that

∂tVp = 2 〈pA(p)〉 − 2 〈p〉 〈A(p)〉+ 〈D(p)〉 , (5.584)
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under the same assumptions as in part (a), where Vp :=
〈
p2
〉
− 〈p〉2. Thus, the diffusion coefficient

causes spreading of the variance, again weighted by the distribution f(p, t). Also, variations in the
drift coefficient can cause the distribution to spread or contract, since different accelerations for parts
of the distribution at different momenta can tear them apart or squish them together, depending on
the relative accelerations.

Problem 5.19
Consider an atom trapped in a potential well of an optical standing wave (one-dimensional optical
lattice).
(a) The standing wave is composed of two counterpropagating traveling waves. Suppose that the
frequency of one of the traveling waves is shifted by a small amount δω. Show mathematically that the
new configuration corresponds to a moving optical lattice. Intuitively, you can see this because there
exists a moving reference frame where the Doppler-shifted frequencies of the two waves are equal, and
thus the optical lattice is at rest in this frame. What is the velocity of the standing wave? What is the
frequency shift that matches the velocity of an atom moving with momentum h̄k, where k is the wave
number of the optical lattice? Compute this last frequency shift for 87Rb, assuming that the optical
lattice is tuned close to the 780 nm resonance.
(b) If you add a linear chirp (frequency sweep) to the frequency of one of the traveling waves, then
you end up with an optical lattice of constant acceleration. An atom bound to the optical lattice
will accelerate with it, making transitions to higher momentum states. Consider the component of
the atom in the p = 0 state. Use what you know about Bragg scattering and adiabatic passage to
explain qualitatively how the atom in the accelerating optical lattice makes transitions to the states
p = 2h̄k, 4h̄k, . . . Also explain how, from the quantum-optics viewpoint (i.e., using an adiabatic passage
argument), how the atom is ‘‘lost’’ from the lattice and stops accelerating if the acceleration is too
large.
(c) Given a particular potential depth V0, estimate the critical acceleration ac, above which the atom is
lost from the lattice. Give this estimate using both a classical argument, assuming a classical potential
of the form V0 cos 2kx, as well as a quantum-mechanical argument based on adiabatic passage.

Problem 5.20
Derive the expression (5.369)

Sa(ωp) =

[
ρgg(t −→∞)− ρee(t −→∞)

] [
(Γ− i∆p)[γ⊥ + i(∆−∆p)] +

iΩ2∆p

2(γ⊥ + i∆)

]
(Γ− i∆p)[γ⊥ + i(∆−∆p)][γ⊥ − i(∆ +∆p)] + Ω2(γ⊥ − i∆p)

+ c.c. (5.585)

for the Mollow probe-absorption spectrum, using the following outline.
This problem is a good prototype for how to treat an atom interacting with a bichromatic field. By
treating one of the fields as a perturbation, the solution is greatly simplified (relatively speaking).
(a) Write down the interaction Hamiltonian for the probe field with the atom in terms of the probe Rabi
frequency Ωp and the probe frequency ωp. Then write down the same Hamiltonian in the rotating
frame of the pump laser field (of Rabi frequency Ω and frequency ω), in terms of the probe-pump
detuning ∆p := ωp − ω. You may assume both Ω and Ωp to be real.
(b) Write out the equations of motion for the atomic density-matrix elements, obtained from the master
equation

∂tρ̃ = − i
h̄

[
H̃A + H̃AF + H̃P, ρ̃

]
+ ΓD[σ]ρ̃. (5.586)

(c) Now we will treat the probe-field interaction as a perturbation to the steady-state solution of
H̃A + H̃AF by making the ansatz

ρ̃αβ = ρ̃
(0)
αβ + δρ̃

(0)
αβ + δρ̃

(+)
αβ e

−i∆pt + δρ̃
(−)
αβ e

i∆pt (5.587)
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for the long-time solution to the equations of motion. Here, the ρ̃(0)αβ are the steady-state solutions
under the evolution of H̃A + H̃AF; the δρ̃(0)αβ are the dc corrections due to the perturbation; and the
δρ̃

(±)
αβ are (complex) constants giving the amplitudes of the oscillating corrections to the long-time

solutions. Note that
δρ̃

(±)
αβ =

(
δρ̃

(∓)
βα

)∗
δρ

(α)
ee = −δρ(α)gg ,

(5.588)

so that only nine of the coefficients are independent. Justify (qualitatively) this form of the ansatz
as sufficient to describe the corrected solution to lowest order in the probe intensity. Then substitute
these equations into the above equations, and use the ‘‘steady-state’’ condition ∂tραβ = 0 to derive a
set of nine(!) coupled, linear equations for the perturbation coefficients (use the above constraints to
eliminate the coefficients ρ(α)gg ).
Check your answers:

− iΩ
2
δρ̃(0)ge +

iΩ

2
δρ̃(0)eg − Γδρ(0)ee −

iΩp

2
δρ̃(−)ge +

iΩp

2
δρ̃(+)

eg = 0

− iΩ
2
δρ̃(+)

ge −
iΩp

2
ρ̃(0)ge +

iΩ

2
δρ̃(+)

eg − Γδρ(+)
ee + i∆pδρ

(+)
ee = 0

−(γ⊥ + i∆)δρ̃(0)ge −
iΩ

2

(
δρ(0)ee − δρ(0)gg

)
− iΩp

2

(
δρ(+)

ee − δρ(+)
gg

)
= 0

−[γ⊥ + i(∆−∆p)]δρ̃
(+)
ge −

iΩ

2

(
δρ(+)

ee − δρ(+)
gg

)
= 0

−[γ⊥ + i(∆ +∆p)]δρ̃
(−)
ge −

iΩ

2

(
δρ(−)ee − δρ(−)gg

)
− iΩp

2

(
ρ(0)ee − ρ(0)gg

)
= 0.

(5.589)

(d) Solve the set of equations to obtain an expression for δρ̃(+)
eg . A computer and a symbolic algebra

program could save you both time and severe cramping in your writing hand.
(e) Recall the Bloch equation for the atom interacting with the pump field (without the probe)

∂tρee =
iΩ

2
(ρ̃eg − ρ̃ge)− Γρee. (5.590)

Identify the function of these terms and argue that in steady state, the rate of photon absorption is

Rabs =
iΩ

2
(ρ̃eg − ρ̃ge) . (5.591)

Then argue that the rate of photon absorption from the probe field is

Rabs, probe =
iΩp

2

(
δρ̃(+)

eg − δρ̃(−)ge

)
, (5.592)

and finally show that Rabs, probe is equivalent to the above absorption spectrum up to an overall factor.

Problem 5.21
Prove the following form of the quantum regression theorem, for computing a correlation function of
the form 〈A(t+ τ)B(t)〉. In this case, the correlation function may be written

lim
t→∞
〈A(t+ τ)B(t)〉 = TrS[AΛ(τ)], (5.593)

where Λ(τ) obeys the master equation with initial conditions

Λ(0) = Bρ(t→∞). (5.594)
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Problem 5.22
Prove the following form of the quantum regression theorem. Suppose that the one-time average of an
operator A can be written in the form

〈B(t)〉 =
∑
j

gj(t) 〈Bj(0)〉 , (5.595)

where gj(t) are functions representing the solution in terms of initial conditions 〈Bj(0)〉 of some set of
operators, then the two-time average 〈A(t)B(t+ τ)C(t)〉t→∞ may be written

〈A(t)B(t+ τ)C(t)〉t→∞ ≡〈A(0)B(τ)C(0)〉 =
∑
j

gj(τ) 〈ABjC〉t→∞ . (5.596)

Problem 5.23
Consider the quantum damped harmonic oscillator, with master equation

∂tρ = − i
h̄
[H0 +Hint, ρ] + γD[a]ρ, (5.597)

with free Hamiltonian
H0 = h̄ω0

(
a†a+

1

2

)
(5.598)

and driving Hamiltonian
Hint = h̄E

(
aeiωt + a†e−iωt

)
. (5.599)

(a) Derive the equations of motion for the density matrix elements ρnm in the energy basis.
(b) Find a transformation to a rotating frame, where the equations of motion for the slow variables
ρ̃nm have no explicit time dependence.
(c) Write out explicit expressions for the equations of motion for ρ11, ρ̃10, ρ̃01, and ρ00, under the
assumption that ρ̃nm = 0 if n > 1 or m > 1. Compare your results to the optical Bloch equations.

Problem 5.24
In this problem we will construct and analyze a simple model for a laser by using the optical Bloch
equations and the results of Problem 1.6 to describe the atom–field interaction. For our purposes
here, we will think of a laser as comprised of (1) an optical cavity (resonator), which traps light and
confines it in some region of space, as in a pair of parallel mirrors (Fabry–Perot cavity); (2) a gain
medium, consisting of a vapor of two-level atoms uniformly filling the cavity; and (3) some pump
source that promotes the atoms to the excited state.
(a) Derive the Maxwell–Bloch equations for the interaction of a single cavity-field mode with an
ensemble of quantum-mechanical two-level atoms of number density N that fill the cavity:

∂tE0 =
Nω0dge

ε0
〈σy〉 −

κ

2
E0

∂t〈σy〉 =
dge

h̄
E0〈σz〉 − γ⊥〈σy〉

∂t〈σz〉 = −
dge

h̄
E0〈σy〉 − ΓR [〈σz〉 −〈σz〉0] .

(5.600)

Here, E0 is the slowly varying field amplitude as defined in Problem 1.6; the field is exactly resonant
with the atoms; ΓR := Γ+R; R is a pumping rate for the atoms to the excited state (by some auxiliary
pump mechanism, not the cavity field); 〈σz〉0 := −(Γ−R)/(Γ+R) is the steady-state atomic inversion
in the absence of coupling to the cavity field; κ is the energy decay rate of the cavity; and dge := 〈g|dz|e〉
is the matrix element that appears in the Rabi frequency. To do the derivation:
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1. Start by writing down the optical Bloch equations on resonance. Assuming the atoms are initially
unexcited, argue that 〈σx〉 can be removed from the problem. Note that the Rabi frequency here
represents the coupling parameter of the atoms to the laser field.

2. Tack on an extra term of the form −R[〈σz〉 − 1] to the 〈σz〉 Bloch equation to model excitation
due to a pump field. Justify why in fact such a term gives the appropriate behavior.

3. Use the results of Problem 1.6 to write down an equation of motion for the cavity-field amplitude
E0, ignoring any spatial dependence of the field amplitude or the polarization amplitude. Also
ignore any overlap of the circulating field with itself, as in a ring cavity. Use what you know
about the polarization and the atomic dipoles to obtain the first term in the first Maxwell–Bloch
equation above. Finally, tack on a damping term to model leakage of the cavity energy through
the laser output port.

(b) Let E0ss, 〈σy〉ss, and 〈σz〉ss denote the steady-state values of E0, 〈σy〉, and 〈σz〉, respectively. Now
define the variables

r :=
〈σz〉0
〈σz〉ss

; σ :=
κ

2γ⊥
; b :=

ΓR
γ⊥

, (5.601)

and define the scaled coordinates

τ := γ⊥t; x :=
√
b(r − 1)

E0

E0ss
; y :=

√
b(r − 1)

〈σy〉
〈σy〉ss

; z :=
〈σz〉0 −〈σz〉
〈σz〉ss

. (5.602)

Show that the Maxwell–Bloch equations may be written in the form50

∂τx = −σ(x− y)
∂τy = −y − xz + rx

∂τz = xy − bz.

(5.603)

These equations are well-known in the area of nonlinear dynamics as the Lorenz model51 (not
Lorentz!), essentially one of the simplest possible nontrivial models for turbulent fluid flow or for
the global weather system. Depending on the parameter values, the Lorenz model—and thus the
Maxwell–Bloch equations for the laser—display a complex variety of dynamical behaviors, from steady
behavior to periodic oscillation to chaos.52

The fluid interpretation of the Lorenz model is briefly as follows: the Lorenz model describes a fluid
(subject to gravity) confined between two horizontal plates, where the lower plate is maintained a
temperature ∆T higher than the upper plate. Then the parameter σ is a sort of scaled fluid viscosity
(the Prandtl number), r is a scaled temperature difference ∆T (the Rayleigh number), and b is a
scaled plate separation. Physically, for small temperature differences, the fluid simply supports the
temperature gradient by conduction, without any movement. For larger temperature differences, the
stationary behavior becomes unstable due to the buoyancy of the warm fluid near the bottom plate,
and a convection pattern forms: a periodic pattern of ‘‘rolls’’ forms, transporting the warm fluid quickly
to the upper plate, where it cools and then falls back down.

50This correspondence was first shown by H. Haken, ‘‘Analogy Between Higher Instabilities in Fluids and Lasers,’’ Physics
Letters A 53, 77 (1975).

51E. N. Lorenz, ‘‘Deterministic Nonperiodic Flow,’’ Journal of Atmospheric Science 20, 130 (1963).
52Lorenz–Haken-type instability was observed in an ammonia laser, see C. O. Weiss and J. Brock, ‘‘Evidence for Lorenz-

Type Chaos in a Laser,’’ Physical Review Letters 57, 2804 (1986) (doi: 10.1103/PhysRevLett.57.2804). For a review, see
Eugenio Roldán, G. J. de Valcárcel, R. Vilaseca, R. Corbalán, V. J. Martínez, and R. Gilmore, ‘‘The dynamics of optically
pumped molecular lasers. On its relation with the Lorenz–Haken model,’’ Quantum and Semiclassical Optics 9, R1 (1997)
(doi: 10.1088/1355-5111/9/1/001).

http://dx.doi.org/10.1103/PhysRevLett.57.2804
http://dx.doi.org/10.1088/1355-5111/9/1/001


5.10 Exercises 263

 

To+o∆T

To

go

For larger temperature differences, the flow becomes more complicated, but the Lorenz model doesn’t
capture this: it assumes physical quantities to be periodic in the horizontal direction with a single
spatial frequency (i.e., truncating the Fourier series for the velocity, temperature, etc. fields after the
first term). The coordinates x, y, and z are respectively the amplitude of the velocity modulation (i.e.,
the maximum upward velocity), the amplitude of the temperature modulation (i.e., the maximum
horizontal temperature difference), and the dc offset of the temperature field from the conductive
value. This general fluid problem is called Rayleigh–Bénard convection, and the Lorenz model is
a greatly simplified description of this system.
You should find stability transitions at r = 1 and r = (σ(σ + b+ 3))/(σ − b− 1) (the latter transition
requiring σ > b+ 1).
(c) To analyze this laser model, begin by finding the fixed points or stationary solutions of the Lorenz
system. That is, find the vectors (x∗, y∗, z∗) for which ∂τ (x, y, z) = 0. You should find two types of
solutions, corresponding to conductive and convective fluid flow. Identify which is which. In terms of
laser output, what is the (correct) interpretation of each fixed point?
(d) Perform a linear stability analysis to find the ranges of the parameter r for which the conductive
and convective solutions are stable. You may assume σ, b and r to be positive for the purposes of this
problem. Make a plot (sketch) of the fixed-point solutions, plotting x∗ vs. r, indicating their stability
on your plot.
To do the stability analysis, write each dynamical variable as a small perturbation to a fixed point,

x = x∗ + δx; y = y∗ + δx; z = z∗ + δx, (5.604)

and substitute these into the Lorenz equations, keeping only first order terms in the perturbations.
The result is a set of linearized equations for δx, δy, and δz in the neighborhood of the fixed point
(x∗, y∗, z∗). Now assume a solution of the form

δx(t) = δx(0)eλt; δy(t) = δy(0)eλt; δz(t) = δz(0)eλt, (5.605)

and use the linearized equations to find expressions for λ near each fixed point. If Re[λ] > 0, then the
solution runs away, and the fixed point is linearly unstable; If Re[λ] ≤ 0, then the solution remains
bounded, and the fixed point is linearly stable.
Hint: you don’t necessarily need to find the values of λ (i.e., the eigenvalues of the evolution matrix)
in each case, you just need to determine the signs of the real parts.
(e) A universal feature in laser physics is threshold behavior. In a laser, what is a physical mechanism
that prevents the unstable conductive solution from occuring? Viewing r as a ‘‘rescaled’’ version of
the pumping rate R, interpret your solutions for the fixed points and their stability in terms of the
steady-state laser output, and explain how these result predict a threshold in the laser output as a
function of pump rate. Also, when a laser above threshold begins to oscillate (lase), when starting
from a cavity initially in the vacuum state (x = 0), it is said to undergo spontaneous symmetry
breaking. Explain what this term means in the context of your plot from part (d).
(f) Below is shown a bifurcation diagram for the x coordinate of the Lorenz model as a function of
r, produced as follows. For each value of r start with some generic initial condition (specifically, x = 0,
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y = 0.01, z = 0.01, corresponding to a bit of initial atomic excitation) and integrate the Lorenz model
forward for a long time to get rid of any transient behavior. Then, integrate it for an even longer time;
if the solution has settled to a stationary state, then plot the steady x∗ value at coordinates (r, x∗);
if it oscillates, plot a point on the graph at coordinates (r, x), each time the slope of the variable x
changes sign. Thus, each trajectory will look like a bunch of points on your bifurcation diagram, and
gives some idea of what happens at any value of r. For the purposes of this diagram, we have chosen
the common values σ = 10 and b = 8/3.
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The plot above represents the parameter region that we’ll mostly focus on. Explain how the behavior
shown here is consistent with your fixed-point stability analysis.
Note that if you were to put a photodetector in front of your laser and measure the power as a function
of the pump rate on your oscilloscope, you’d be looking at intensity, not the field amplitude, so you’d
see something more like this:
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Just for kicks, we can also look at a much wider range of r. Note that a large value of r corresponds to a
very strong pump, and thus likely puts the laser into a highly nonlinear regime where this model breaks
down. We would thus expect higher-order instabilities to make things more complicated. However,
even within this model, the bifurcation diagram is quite intricate. You can see all sorts of behavior, such
as an inverse period-doubling cascade, stability windows, and period-3 trajectories, which demonstrate
that the model must exhibit chaotic behavior53
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(g) Noting the symmetry of your steady-state sketch in (d), and the apparent reflection symmetry
of the bifurcation diagrams, find the underlying symmetry in the Lorenz equations. Give a physical
interpretation to the symmetry.
(h) Write a computer program to plot a trajectory of x vs. τ for r = 0.5, 10, 20, 30, and 350, with the
other parameters and initial conditions as noted in (f). Interpret the behavior you see in each case,
and comment on what the dynamical plot tells you about each relevant region in phase space. Note
that any noisy behavior you see is likely to be chaos (deterministic ‘‘randomness’’ in low-dimensional
systems).
(i) In part (g), for your plots at r = 10 and 20, you should have seen a phenomenon called laser
spiking or relaxation oscillation, a transient, oscillatory behavior in the laser output when a laser
parameter (usually, the pump power) is changed suddenly. It can be explained as follows. When
the pump source is suddenly ‘‘switched on,’’ the strong pump rapidly excites the gain medium, such
that the medium polarization build up to well beyond the threshold value before the cavity field can
respond. The intensity, as a result, builds up rapidly, quickly depleting (saturating) the gain medium
as the laser oscillates. The cavity field amplitude becomes so large that the gain-medium polarization
drops below threshold, and soon afterwards, the field amplitude begins to drop. This process repeats,
producing the oscillations.
For the r = 10 case, make a plot of x(τ) and y(τ) on the same graph, and explain how what you see is
consistent with this explanation. Physically, why do these oscillations damp to a steady equilibrium?
(j) 20 years from now, you find yourself in the position of Über-Manager at Acme Laser Corp., overseeing
the Nifty New Lasers division. One day, one of your many peons comes up to you in a panic, saying
that the new high-power, ultrastable laser prototype that your division is now finally testing after years
of engineering work turns out to not be very stable at all. In fact, the output intensity appears to be

53Tien-Yien Li and James A. Yorke, ‘‘Period Three Implies Chaos,’’ The American Mathematical Monthly 82, 985 (1975)
(doi: 10.2307/2318254).

http://dx.doi.org/10.2307/2318254
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very noisy whenever it is run at full power, even though the power supply is very quiet. Your first
hunch, based on years of experience in laser building and tweaking, is that an inappropriate output
coupler (output mirror) somehow made it into the design. But to fix things, should you try substituting
an output coupler with greater or lesser reflectance than the one in the prototype now? Fortunately,
ages ago, you worked out the above theory, which you can use as a semi-quantitative guide to laser
stability. By working out how the changing output-coupler reflectance modifies the parameters in the
Lorenz model, you make an intelligent guess that should put the laser back into a stable regime. What
do you advise your employee, O Sage One? (Note that when you solved this problem years ago in a
quantum optics class, you explained your reasoning.)
Here are some observations that may help:

1. Changing the mirror reflectance, and hence the value of κ, will affect both the values of r and σ.
How do these parameters change with the mirror reflectance? This will not be obvious for r, so
you should work out an expression for it in terms of κ and the other physical parameters.

2. Which way should you go in terms of r and σ to get back into a stable region?
3. You may assume that R is not much larger than Γ, as is typical for high-density gain media (for

three-level lasers, technically speaking). Also, assume nearly natural broadening, so that γ⊥ ∼ Γ.
Finally, assume the laser to be in the ‘‘bad cavity’’ regime of κ� Γ, γ⊥. This doesn’t necessarily
mean that the cavity is bad (in fact a truly bad cavity would violate the slowly varying amplitude
approximation for the electric-field envelope), if the atomic transition is very narrow.

(k) You will get a reasonable answer with the above considerations, but you should keep the following
caveat in mind. The Lorenz–Haken instability is unusual in practice, because lasers do not usually
operate in the bad-cavity limit—usually, the atomic transition is broadened well beyond the width of
the cavity resonance. Usually, though, other instabilities cause transitions to dynamical (though not
necessarily chaotic) ‘‘steady’’ states.
In the more typical limit of strong broadening (large γ⊥), when the atomic coherence can be adiabat-
ically eliminated, show that the laser can then be modeled by the rate equations

∂tI =
Γ

γ⊥
Ncσ0I〈σz〉 − κI

∂t〈σz〉 = −
Γ

γ⊥

σ0I

h̄ω0
I〈σz〉 − ΓR

[
〈σz〉 −〈σz〉0

]
,

(5.606)

which are written only in terms of the cavity intensity I and the atomic inversion. Here σ0 = λ 2
0 /2π

is the resonant cross section for homogeneous broadening, with λ0 the resonant wavelength.
Bonus question: is chaotic instability possible in this regime? Why or why not?

Problem 5.25
Consider again the forced, damped, quantum harmonic oscillator in the form

∂tρ = − i
h̄
[H0 +Hint, ρ] + γD[a]ρ, (5.607)

with free-oscillator Hamiltonian
H0 = h̄ω0

(
a†a+

1

2

)
(5.608)

and driving Hamiltonian
Hint = h̄E

(
aeiωt + a†e−iωt

)
. (5.609)

(a) Show that the expectation values evolve under the master equation as

∂t〈a〉 = i∆〈a〉 − iE − γ

2
〈a〉

∂t
〈
a†a
〉
= iE

[
〈a〉 −

〈
a†
〉 ]
− γ
〈
a†a
〉
,

(5.610)
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once a transformation to a rotating frame has been made. Find the steady-state values for 〈a〉 and〈
a†a
〉
.

(b) Use the quantum regression theorem to compute the first-order coherence function

g(1)(τ) =

〈
a†(t) a(t+ τ)

〉
t→∞

〈a†a〉t→∞
. (5.611)

What is the emission spectrum S(ωs) for the damped harmonic oscillator? Comment on how your
result compares to the two-level atom modeled by the optical Bloch equations.
Hint: Use the fact that 〈a(t)〉 may be written in the form

〈a(t)〉 = g0(t) + g1(t)〈a(0)〉+ g2(t)
〈
a†(0)

〉
+ g3(t)

〈
a†(0)a(0)

〉
, (5.612)

and find the functions gα(t). Then use the quantum regression theorem to write down an expression
for
〈
a†(0)a(τ)

〉
.

Problem 5.26
Consider the quantum damped harmonic oscillator, with master equation

∂tρ = − i
h̄
[H, ρ] + γD[a]ρ, (5.613)

with Hamiltonian
H = h̄ω

(
a†a+

1

2

)
. (5.614)

The fact that damping occurs here implies that the oscillator also experiences a stochastic (heating)
force. This is one way to view the zero-point energy: the damping tends to make the oscillator stop,
but in the ground state the damping and stochastic heating exactly balance, producing a steady state
of nonzero energy. This is also essentially the content of what is called the fluctuation–dissipation
relation (see Section 14.3.8.1).
To see this, recall that the momentum diffusion coefficient Dp is be the rate at which the momentum
variance increases,

Dp = ∂tVp

= ∂t

(〈
p2
〉
− 〈p〉2

)
= 〈pF 〉+ 〈Fp〉 − 2 〈p〉〈F 〉 ,

(5.615)

and we showed that it is given in terms of the force correlation function as

Dp =

∫ ∞
−∞

dτ
[
〈F (t)F (t+ τ)〉 − 〈F (t)〉2

]
. (5.616)

(a) Work in the weak-damping (γ � ω) regime, and use the quantum regression theorem to find the
value of the diffusion coefficient for the damped harmonic oscillator.
Hint: Express the force correlation function in terms of the ladder operators, using a(t) ≈ a(0)e−iωt in
the Heisenberg picture for t� 1/γ to carry out any time derivatives. Then use the solution for 〈a(t)〉
at arbitrary times and the quantum regression theorem to find the correlation function.
(b) Show that in steady-state, the combined effect of damping and the stochastic force leads to the
correct zero-point momentum variance (i.e., the momentum variance of the ground state) in steady
state.





Chapter 6

Three-Level Atom Interacting with a
Classical Field

Now having developed the theory of two-level atoms quite thoroughly, we will spend a bit more time ex-
amining slightly more complicated atoms, those with three levels. Some dramatic effects can take place in
such systems due to quantum coherence and interference, much more so than in the two-level atom, due to
multiple ‘‘pathways’’ between the different levels.

6.1 Stimulated Raman Transitions

One effect that we considered briefly in the context of Bragg scattering in an optical standing wave is the
stimulated Raman effect. We consider the atomic energy level structure in the Λ-configuration shown
below, where two ground states |g1,2〉 are coupled to an excited state |e〉 by two optical fields. Our goal is
to show that under suitable conditions, the atomic population can be driven between the ground states as
in an effective, two-level system. In classical, nonlinear optics, you can think of the effect this way: two
waves hitting the same atoms are mixed together by the nonlinearity of the atom, leading to an effective
polarization wave at the beat (difference) frequency of the two waves, which drives the atomic transition
between the ground states. Quantum mechanically, the coherence between the dipole moments associated
with each transition causes them to work together, transferring population between the ground states without
significantly populating the excited state. Of course, this is only possible with far-detuned excitations, so
that spontaneous emission does not ‘‘scramble’’ the phases of the dipoles and ruin the quantum coherence.
Thus, in this section we will stick to a Schrödinger-equation model, explicitly assuming far-off-resonant
excitation to the excited state and thus ignoring spontaneous emission.

The combined optical field has the form

E(r, t) = ε̂1E01 cos(k1 · r− ω1t) + ε̂2E02 cos(k2 · r− ω2t)

= E(+)(r, t) + E(−)(r, t),
(6.1)

where E(±)(r, t) are the positive and negative rotating components of the field, given by

E(±)(r, t) = 1

2

(
ε̂1E01e

±ik1·re∓iω1t + ε̂2E02e
±ik2·re∓iω2t

)
, (6.2)

and ε̂1,2 are the unit polarization vectors of the two fields.
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The free atomic Hamiltonian can then be written

HA =
p2

2m
− h̄ω01|g1〉〈g1| − h̄ω02|g2〉〈g2|, (6.3)

where we have taken the excited state to have zero energy. In the dipole and rotating-wave approximations,
the atom-field interaction Hamiltonian is

HAF = −d(+) ·E(−) − d(−) ·E(+). (6.4)

We have assumed that the ground-state splitting is much smaller than the optical transition frequencies:
ω21 := ω02 − ω01 � ω0α (for concreteness, we take |g2〉 to be of higher energy than |g1〉). Additionally, we
have decomposed the dipole operator d into its positive- and negative-rotating components,

d = d(+) + d(−)

=
[
〈g1|d|e〉σ1 + 〈g2|d|e〉σ2

]
+
[
〈g1|d|e〉σ†1 + 〈g2|d|e〉σ

†
2

]
,

(6.5)

where σα := |gα〉〈e| is an annihilation operator, and we assume the dipole matrix elements to be real (in
principle, we should include a relative phase for this to be generally true, but this disappears anyway in the
transformation to the rotating frame). Substituting (6.5) into (6.4), we find

HAF = −1

2
〈g1|ε̂1 · d|e〉E01

(
σ1e
−ik1·reiω1t + σ†1e

ik1·re−iω1t
)

− 1

2
〈g2|ε̂2 · d|e〉E02

(
σ2e
−ik2·reiω2t + σ†2e

ik2·re−iω2t
)
.

(6.6)

We will assume the detunings ∆α := ωα−ω0α are nearly equal; hence, to make this problem more tractable,
we assume that the field Eα couples only |gα〉 to |e〉. After solving this problem, we can treat the cross-
couplings as a perturbation to our solutions. If we define the Rabi frequencies

Ωα :=
−〈gα|ε̂α · d|e〉E0α

h̄
, (6.7)

which describe the strength of the coupling from level |gα〉 through field Eα to the excited level |e〉, we arrive
at

HAF =
h̄Ω1

2

(
σ1e
−ik1·reiω1t + σ†1e

ik1·re−iω1t
)

+
h̄Ω2

2

(
σ2e
−ik2·reiω2t + σ†2e

ik2·re−iω2t
) (6.8)

as a slightly more compact form for the interaction Hamiltonian.
Now, before examining the equations of motion, we transform the ground states into the rotating frame

of the laser field. This is like our transformation for the two-level atom, as in Section 5.1.5 on p. 154, but
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here it is most convenient to use the excited state as the energy reference. Thus, writing the internal part
of the state vector as

|ψ〉 = c1|g1〉+ c2|g2〉+ ce|e〉, (6.9)

we can define the rotating-frame state vector by

|ψ̃〉 = c̃1|g1〉+ c̃2|g2〉+ ce|e〉, (6.10)

where the slowly varying ground-state amplitudes are

c̃α(t) = cα(t)e
−iωαt. (6.11)

Since the extra phase factors effectively boost the energies of the |gα〉 states by h̄ωα, the dynamics in the
rotating frame are generated by the rotating-frame, free-atom Hamiltonian, given by

H̃A =
p2

2m
+ h̄∆1|g1〉〈g1|+ h̄∆2|g2〉〈g2|. (6.12)

The interaction Hamiltonian in the rotating frame is

H̃AF = −d(+) · Ẽ(−) − d(−) · Ẽ(+)

=
h̄Ω1

2

(
σ1e
−ik1·r + σ†1e

ik1·r
)
+
h̄Ω2

2

(
σ2e
−ik2·r + σ†2e

ik2·r
)
,

(6.13)

where the slowly varying field amplitudes are given by Ẽ(+)
0α := E

(+)
0α eiωαt.

6.1.1 Effective Two-Level Dynamics

Turning to the equations of motion, we will manifestly neglect spontaneous emission, since ∆α � Γ, where
Γ is the decay rate of |e〉, by using a Schrödinger-equation description of the atomic evolution. Then we have

ih̄∂t|ψ〉 = (H̃A + H̃AF)|ψ〉, (6.14)

where the state vector can be factored into external and internal components as

|ψ〉 = |ψg1
〉|g1〉+ |ψg2

〉|g2〉+ |ψe〉|e〉. (6.15)

Then if ψα(r, t) := 〈r|ψα〉, we obtain the equations of motion

ih̄∂tψe =
p2

2m
ψe +

h̄Ω1

2
eik1·rψg1

+
h̄Ω2

2
eik2·rψg2

− h̄∆ψe

ih̄∂tψg1
=

p2

2m
ψg1

+
h̄Ω1

2
e−ik1·rψe + h̄(∆1 −∆)ψg1

ih̄∂tψg2
=

p2

2m
ψg2

+
h̄Ω2

2
e−ik2·rψe + h̄(∆2 −∆)ψg2

,

(6.16)

where we have boosted all energies by −h̄∆, with ∆ := (∆1 + ∆2)/2 (i.e., setting ψα = [ψαe
i∆t] e−i∆t,

we identify the bracketed quantity [ψαe
i∆t] as the new state, which amounts to the replacement ψα −→

ψαe
−i∆t). Since we assume that |∆2 − ∆1| � |∆|, it is clear that ψe carries the fast time dependence at

frequencies of order |∆| � Γ. We are interested in motion on timescales slow compared to 1/Γ, and the fast
oscillations are damped by coupling to the vacuum on timescales of 1/Γ, so we can adiabatically eliminate
ψe by making the approximation that it damps to equilibrium instantaneously (∂tψe = 0). Also, we use
p2/2m� h̄|∆|, with the result,

ψe =
Ω1

2∆
eik1·rψg1 +

Ω2

2∆
eik2·rψg2 . (6.17)
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Notice that in deriving this relation, it was important to choose the proper energy shift −h̄∆ to minimize
the natural rotation of the states that remain after the adiabatic elimination; indeed, if the resonance
condition that we will derive is satisfied, the two ground states have no natural oscillatory time dependence.
This procedure would be much more clear in a density-matrix treatment (as in Section 5.8.3.1), where the
oscillating coherences would be eliminated, but this description is cumbersome due to the number of energy
levels in the problem. Using this relation in the remaining equations of motion, we obtain two coupled
equations of motion for the ground states,

ih̄∂tψg1 =
p2

2m
ψg1 +

[
h̄∆1 + h̄ωAC1

]
ψg1 +

h̄ΩR

2
ei(k2−k1)·rψg2

ih̄∂tψg2 =
p2

2m
ψg2 +

[
h̄∆2 + h̄ωAC2

]
ψg2 +

h̄ΩR

2
ei(k1−k2)·rψg1 ,

(6.18)

where we have removed the energy shift of −h̄∆. These equations are formally equivalent to the equations
of motion for a two level atom, with Rabi frequency (Raman or two-photon Rabi frequency)

ΩR :=
Ω1Ω2

2∆

(6.19)
(Raman Rabi frequency)

and Stark shifts

ωACα :=
Ω2
α

4∆
.

(6.20)
(ac Stark shifts)

These equations of motion are just the equations generated by the effective Raman Hamiltonian

HR =
p2

2m
+ h̄(∆1 + ωAC1)|g1〉〈g1|+ h̄(∆2 + ωAC2)|g2〉〈g2|

+
h̄ΩR

2

(
σRe

i(k2−k1)·r + σ†Re
i(k1−k2)·r

)
,

(effective, two-level Hamiltonian) (6.21)
where the Raman lowering operator is defined as σR := |g1〉〈g2|. Noting that the operator exp(−ik · r) is a
momentum-shift operator, so that exp(−ik ·r)|p〉 = |p− h̄k〉 (and thus exp(−ik ·r)ψ(p) = ψ(p+ h̄k), where
ψ(p) := 〈p|ψ〉), it is clear from the form of the effective Raman Hamiltonian that a transition from |g2〉 to
|g1〉 is accompanied by a kick of up to two photon-recoil momenta, and the reverse transition is accompanied
by the opposite kick of up to two photon recoils. We can write out the coupled equations of motion due to
the Hamiltonian (6.21) more explicitly as

ih̄∂tψg1(p) =
[
p2

2m
+ h̄∆1 + h̄ωAC1

]
ψg1(p) +

h̄ΩR

2
ψg2(p + 2h̄δk)

ih̄∂tψg2
(p + 2h̄δk) =

[
(p + 2h̄δk)2

2m
+ h̄∆2 + h̄ωAC2

]
ψg2

(p + 2h̄δk) + h̄ΩR

2
ψg1

(p),
(6.22)

where 2δk := k1 − k2. The resonance condition for this transition |p〉|g1〉 −→ |p + 2h̄δk〉|g2〉 is[
(p + 2h̄δk)2

2mh̄
+∆2 + ωAC2

]
−
[
p2

2mh̄
+∆1 + ωAC1

]
= 0, (6.23)

which can be rewritten as

∆R := 4ωR

(
p‖ + h̄δk

h̄δk

)
+ (∆2 −∆1) + (ωAC2 − ωAC1) = 0,

(Raman resonance condition) (6.24)
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Here, p‖ is the component of p along the direction of δk, and we have defined the Raman recoil energy by
h̄ωR := h̄2(δk)2/2m as the kinetic energy of an atom with momentum h̄δk/2. The first term represents the
Doppler shift of the two optical fields due to motion at the average of the upper and lower state momenta.
Thus, we see that the stimulated Raman problem reduces to an effective two-level system of splitting h̄∆R,
coupled by a dc interaction of strength h̄ΩR/2.

6.1.1.1 Cross-Couplings

Finally, we account for the effects of the cross-couplings that we previously ignored. The lifetimes of the
two ground states are in practice extremely long, so that the line width of the Raman transition is quite
narrow, being limited only by the finite interaction time. Since it is assumed that the Raman resonance
condition (6.23) is approximately true, the Raman cross-coupling is much further away from resonance than
the intended coupling (typically several orders of magnitude), so this extra Raman coupling can be neglected
in a secondary rotating-wave approximation. However, the cross-couplings can induce additional ac Stark
shifts of the ground levels. So, we simply modify (6.20) to include these extra shifts:

ωAC1 :=
Ω 2

1

4∆
+

Ω 2
1(2)

4(∆− ω21)

ωAC2 :=
Ω 2

2

4∆
+

Ω 2
2(1)

4(∆ + ω21)
.

(ac Stark shifts with cross-couplings) (6.25)
Here, Ωα(β) is the cross-coupling Rabi frequency for field α on transition |gβ〉 −→ |e〉,

Ωα(β) :=
−〈gβ |ε̂α · d|e〉E0α

h̄
, (6.26)

and we have assumed ω21 � |∆|. These additional Stark shifts may not in general be negligible compared
to the original Stark shifts.

6.1.2 Spontaneous Emission

We can also obtain an estimate of the spontaneous emission rate, which gives us a measure of how accurate
our treatment is (since we have explicitly neglected it), by using (6.17) to write the total excited state
population in terms of the density matrix elements:

Rsc = Γρee

=
ΓΩ 2

1

4∆2
ρg1g1

+
ΓΩ2

2

4∆2
ρg2g2

+
ΓΩ1Ω2

4∆2
ei(k2−k1)·rρg1g2

+
ΓΩ1Ω2

4∆2
ei(k1−k2)·rρg2g1

.

(6.27)

Here, ραα is the population in state |α〉, with ρg1g1
+ ρg2g2

' 1, and Γ is the total decay rate from the
excited state. Note that this result assumes implicitly that ∆1 ≈ ∆2. The second two terms represent an
enhancement or suppression of spontaneous scattering due to atomic coherences; for example, the state

|ψ〉 = η
[
Ω2e

−ik1·r|ψg1
〉 − Ω1e

−ik2·r|ψg2
〉
]

(6.28)

(where η is the appropriate normalization factor) is dark, since Rsc vanishes for this state. However, this state
is only dark if the cross-couplings can be ignored. More realistically, the scattering rate can be modeled as an
incoherent sum over all the couplings of the form (ΓΩ2/4∆2)ρgαgα . This ‘‘dark’’ phenomenon is coherent
population trapping, which we will treat in more detail below.

6.1.3 Multiple Excited States

It turns out we can work out this problem in the case where the ground states are coupled to multiple
excited states |en〉, as essentially always happens in real atoms. The idea is the same as above, except now
the excited states have energies δn with respect to some arbitrary reference in the excited-state manifold
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(say, one of the excited-state energies), such that |δn| � ω0α (in our notation here, α enumerates the ground
states, and n enumerates the excited states). Generalizing Eq. (6.7), we have Rabi frequencies

Ωαn :=
−〈gα|ε̂α · d|en〉E0α

h̄
, (6.29)

for each possible transition. Then in the rotating frame the free atomic Hamiltonian is

H̃A =
p2

2m
+ h̄∆1|g1〉〈g1|+ h̄∆2|g2〉〈g2|+

∑
n

h̄δn|en〉〈en|, (6.30)

and the interaction Hamiltonian in the rotating frame is

H̃AF =
∑
n

h̄Ω1n

2

(
σ1ne

−ik1·r + σ†1ne
ik1·r

)
+
∑
n

h̄Ω2n

2

(
σ2ne

−ik2·r + σ†2ne
ik2·r

)
, (6.31)

where the lowering operators are now given by σαn := |gα〉〈en|. This setup is essentially the same as before,
except for the summation of the excited states and the dependence of the detunings from the excited state
on n. Following the same procedure as above, we find that the effective Raman Hamiltonian (6.21) is still
valid, but where the Raman Rabi frequency is given by

ΩR =
∑
n

Ω1nΩ2n

2(∆− δn)
,

(Raman Rabi frequency, multiple excited states) (6.32)
and the Stark shifts are given by

ωACα =
∑
n

Ω2
αn

4(∆− δn)
,

(ac Stark shifts, multiple excited states) (6.33)
which can be generalized as above to include cross-couplings and couplings to other levels. Ignoring any
interference effects, the spontaneous-emission rate is a sum over terms of the form ΓΩ 2

n/4∆
2
n for every

transition coupled by the fields.

6.1.4 Velocity Selectivity

From Eq. (6.24), the resonance condition for the stimulated Raman transition is

∆R = 4ωR

(
p‖ + h̄δk

h̄δk

)
+ (∆2 −∆1) + (ωAC2 − ωAC1) = 0. (6.34)

If we choose to ignore the atomic motion, we can do this by letting m −→∞, in which case ωR −→ 0, and

∆R = (∆2 −∆1) + (ωAC2 − ωAC1) = 0. (6.35)

Thus, the transition is resonant if the detunings of the two fields to the excited states are equal, including
any ac Stark shifts. However, in general, the resonance condition involves the atomic momentum. Noting
that ωR ∼ (h̄δk)2, we can see that the atomic-velocity contribution is largest when δk is maximum. In
particular, for counter propagating beams, k = k2 ≈ −k1 (assuming a small ground-state splitting), we
have δk ≈ k, and the momentum change in the Raman transition is 2h̄k [this is, in fact, exact if we define
k := (k1 − k2)/2]. Solving for the atomic momentum in the resonance condition for the counterpropagating
case, we find the resonance momentum

p‖(g1) = h̄k
(∆1 −∆2) + (ωAC1 − ωAC2)

4ωR
− h̄k (6.36)

(resonant momentum)
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for atoms in the |g1〉 state, where in this case the Raman recoil frequency reduces to the usual recoil frequency:
h̄ωR = h̄2k2/2m = h̄ωr. After making the transition to the |g2〉 state, the atoms have the momentum

p‖(g2) = h̄k
(∆1 −∆2) + (ωAC1 − ωAC2)

4ωR
+ h̄k.

(6.37)
(resonant momentum)

In the copropagating case, when the ground-state splitting is small (say, a microwave transition as in the
alkali atoms), the momentum recoil h̄δk is several orders of magnitude smaller than the optical recoil h̄k1,2.
In this case, the momentum-dependent term makes an essentially negligible contribution to the resonance
condition (6.34), because the Raman recoil frequency ωR = h̄(δk)2/2m becomes h̄ω 2

21/2mc
2. For a microwave

ground-state splitting ω21/2π of 1 GHz, and a mass of 10−25 kg, we find ωR/2π = 40 nHz, compared to a
recoil frequency of ωr/2π = 4 kHz if the optical transition is ω01 ≈ ω02 = 5 × 1014 Hz. Thus, for typical
‘‘long’’ Raman pulses of ms durations, the velocity selectivity can be on the order of the atomic recoil or
better for the counterpropagating case, but has essentially no selectivity on the scale of many recoils for the
copropagating case.

Thus, in the counterpropagating configuration, the velocity dependence makes stimulated Raman
transitions a valuable tool for atomic velocity selection.1 The idea is fairly simple: to select atoms with
a particular velocity, we simply drive a π-pulse between the atomic ground states, tuning the frequency
difference between the two laser fields according to the resonance condition to select the desired velocity
group. Since the frequency difference must be stable to typically better than the kHz level, the two fields
are often generated from the same laser source by acousto-optic or electro-optic modulation, or they are
generated by two separate lasers that are actively phase-locked (by detecting the beat note on a photodiode
and using a phase-locked loop to feed back to the ‘‘slave’’ laser frequency). The line widths of the ground
states are typically quite narrow compared to any laser line width, and so the width of the velocity selection
is dominated by power-broadening of the two-photon transition. That is, there is an effective range of
detunings on the order of ΩR, so that the width of the selected momentum distribution is δp‖ ≈ ΩR/4ωr in
the counterpropagating case. We will be more quantitative about the distribution below, but for now note
that recoil-level resolution requires π-pulses of ms or longer durations. After the Raman pulse, the atoms
near the desired momentum are ‘‘tagged,’’ by their internal state: if all the atoms start in |g1〉, the atoms
with the desired momentum end up in |g2〉. This may be sufficient for some purposes, or the undesired atoms
may be ‘‘blown away’’ by a resonant beam. For example, a beam that couples |g1〉 to another excited state
(that decays only to |g1〉 and not to |g2〉) can push the atoms away via radiation pressure.

One problem with this technique is extreme sensitivity to stray fields. Magnetic fields cause Zeeman
shifts in otherwise degenerate levels of real atoms on the order of 0.1 MHz/G, where the Earth’s magnetic
field is around 0.7 G. But recoil-level velocity selection requires frequency precisions of kHz or better. Experi-
mentally, stray magnetic fields must therefore be eliminated with compensation coils, high-µ metal shielding,
and elimination of ferromagnetic materials in the vicinity of the atoms.

6.1.5 Pulse-Shape Considerations

6.1.5.1 Square Pulse

Since the velocity-selective Raman pulses (in the counterpropagating configuration) are generally used to
‘‘tag’’ a subset of an atomic distribution according to their momentum, it is important to consider the impact
of the temporal pulse profile on the tagged distribution. The simplest pulse profile is the square profile, where
the light is turned on at a constant intensity for some duration. Assuming that the atoms are all initially in
the same internal atomic state, the tagging process is described by the solution of the optical Bloch equations
for the excited state population of a two-level atom with Rabi frequency ΩR, Raman detuning ∆R (given by

1Mark Kasevich, David S. Weiss, Erling Riis, Kathryn Moler, Steven Kasapi, and Steven Chu, ‘‘Atomic velocity selection
using stimulated Raman transitions,’’ Physical Review Letters 66, 2297 (1991) (doi: 10.1103/PhysRevLett.66.2297); Kathryn
Moler, David S. Weiss, Mark Kasevich, and Steven Chu, ‘‘Theoretical analysis of velocity-selective Raman transitions,’’ Physical
Review A 45, 342 (1992) (doi: 10.1103/PhysRevA.45.342).

http://dx.doi.org/10.1103/PhysRevLett.66.2297
http://dx.doi.org/10.1103/PhysRevA.45.342
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the left-hand side of Eq. (6.24)), and with all initial population in the ground Raman state |g1〉:

ρg2g2
(t) =

Ω2
R

Ω2
R +∆2

R

sin2

(
1

2

√
Ω2

R +∆2
R t

)
. (6.38)

The dynamics here are just the familiar generalized Rabi oscillations from the two-level atom, Eq. (5.60).
From Eq. (6.24), we see that a detuning of ∆R = 4ωr corresponds to a momentum shift of h̄k. This line
shape has wings that decay relatively slowly, with a series of locations where the line shape goes to zero.
The locations of the zeros for an interaction time of δt is given by

∆R =

√
4n2π2

(δt)2
− Ω2

R (6.39)

for positive integer n. This relation simplifies for specific interaction times; for example, for a ‘‘π-pulse’’ of
duration δt = π/ΩR, the locations are at ∆R = ΩR

√
4n2 − 1, and for a π/2-pulse of duration δt = π/(2ΩR),

the locations are ∆R = ΩR

√
16n2 − 1. These zeros were important in a previous implementation of Raman

cooling,2 where the first zero of the profile (6.38) was placed at zero momentum to form a dark interval
where atoms would accumulate. The square-pulse excitation line shape is plotted in below for a π/2-pulse,
a π-pulse, and a 2π-pulse.
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Note that for the important case of the π-pulse, the central population lobe is characterized by a half width
at half maximum of 0.799 · Ω.

It is also important to note that because one typically excites a range of detunings with a velocity-
selective Raman pulse, the transferred population does not undergo simple sinusoidal Rabi oscillations. For
a square pulse, the excitation profile (6.38) must be averaged over the atomic velocity distribution. In the
limit of a broad velocity distribution, the excited population is proportional to∫ ∞

−∞
ρg2g2(t) d∆R =

πΩR

2
Ji0(ΩRt)

=
πΩ2

Rt

2

{
J0(ΩRt) +

π

2
[J1(ΩRt)H0(ΩRt)− J0(ΩRt)H1(ΩRt)]

}
,

(6.40)

where the Jn(x) are ordinary Bessel functions, the Hn(x) are Struve functions, and Jin(x) :=
∫ x
0
Jn(x

′)dx′.
The population in this case still oscillates as a function of time, but with some effective damping due to
dephasing of the different momenta.

2J. Reichel, F. Bardou, M. Ben Dahan, E. Peik, S. Rand, C. Salomon, and C. Cohen-Tannoudji, ‘‘Raman Cooling of Cesium
below 3 nK: New Approach Inspired by Lévy Flight Statistics,’’ Physical Review Letters 75, 4575 (1995) (doi: 10.1103/Phys-
RevLett.75.4575); Jakob Reichel, Refroidissement Raman et vols de Lévy: atomes de césium au nanokelvin, Thése de Doctorat,
École Normale Supérieure (1996).

http://dx.doi.org/10.1103/PhysRevLett.75.4575
http://dx.doi.org/10.1103/PhysRevLett.75.4575
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Notice that for short times, the function (6.40) reduces to (π/2)Ω2
Rt + O(t2), so that one can associate

a nonzero transition rate, proportional to Ω2
R (which is in turn proportional to the product of the laser

intensities), as long as ΩRt� 1.

6.1.5.2 Blackman Pulse

An alternative pulse profile, the Blackman pulse profile, is useful for suppressing the side lobes of the tagged
distribution.3 This profile, when normalized to have unit area, can be written as

fB(t) =
1

0.42τ
[−0.5 cos(2πt/τ) + 0.08 cos(4πt/τ) + 0.42] (6.41)

for t ∈ [0, τ ] (with fB(t) = 0 otherwise), where τ is the duration (support) of the pulse.
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The Blackman profile has compact support and also, because it is continuous, has the property that the tails
in the Fourier spectrum are suppressed relative to the square pulse. Hence, the Raman excitation spectrum
of the Blackman pulse falls off much more sharply than the corresponding square-pulse spectrum.

3Mark Kasevich and Steven Chu, ‘‘Laser Cooling below a Photon Recoil with Three-Level Atoms,’’ Physical Review Letters
69, 1741 (1992) (doi: 10.1103/PhysRevLett.69.1741); Nir Davidson, Heun Jin Lee, Mark Kasevich, and Steven Chu, ‘‘Raman
Cooling of Atoms in Two and Three Dimensions,’’ Physical Review Letters 72, 3158 (1994) (doi: 10.1103/PhysRevLett.72.3158).

http://dx.doi.org/10.1103/PhysRevLett.69.1741
http://dx.doi.org/10.1103/PhysRevLett.72.3158
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However, the implementation of Blackman pulses is more complicated if the Raman beams induce an ac
Stark shift of the transition, since the Raman frequency must be chirped to match the Stark shift in order
to get good frequency resolution.

6.1.6 Stimulated Raman Cooling

6.1.6.1 Free Space

The velocity selectivity of stimulated Raman transitions makes them very useful for cooling atoms, and
stimulated Raman cooling for neutral atoms has been successfully implemented.4 The method, while
difficult to implement in practice, has the advantage of very cold (subrecoil) temperatures without substantial
losses of atoms (as in forced evaporation).

The important preliminary conceptual step is to define a ‘‘target zone’’ near p = 0, where the atoms
will accumulate. Then we proceed with a cycle of steps. For simplicity, we’ll consider only one dimension
for the moment.

1. Start with all atoms in one state, say |g1〉.

2. Tag all atoms outside the target zone by transferring them to the |g2〉 state, using stimulated Raman
pulses in the counterpropagating configuration.

|g™Ò

|g¡oÒ

|eoÒ

When tagging a particular velocity group, the orientation of the two beams should be such that the
recoil of 2h̄k moves the atoms towards the target zone near p = 0.

4Mark Kasevich and Steven Chu, ‘‘Laser Cooling below a Photon Recoil with Three-Level Atoms,’’ Physical Review Let-
ters 69, 1741 (1992) (doi: 10.1103/PhysRevLett.69.1741); J. Reichel, O. Morice, G. M. Tino, and C. Salomon, ‘‘Subrecoil
Raman Cooling of Cesium Atoms,’’ Europhysics Letters 28, 477 (1994); J. Reichel, F. Bardou, M. Ben Dahan, E. Peik, S.
Rand, C. Salomon, and C. Cohen-Tannoudji, ‘‘Raman Cooling of Cesium below 3 nK: New Approach Inspired by Lévy Flight
Statistics,’’ Physical Review Letters 75, 4575 (1995) (doi: 10.1103/PhysRevLett.75.4575); H. J. Lee, C. S. Adams, M. Ka-
sevich, and S. Chu, ‘‘Raman Cooling of Atoms in an Optical Dipole Trap,’’ Physical Review Letters 76, 2658 (1996) (doi:
10.1103/PhysRevLett.76.2658).

http://dx.doi.org/10.1103/PhysRevLett.69.1741
http://dx.doi.org/10.1103/PhysRevLett.75.4575
http://dx.doi.org/10.1103/PhysRevLett.76.2658
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In general, a number of pulses are required to tag all of the necessary atoms. At higher momenta,
shorter pulses (tagging wider momentum distributions) may be used, while near the target zone, long,
high-resolution pulses are necessary.

3. Now ‘‘reset’’ the tagged atoms by applying light resonant with the |g2〉 −→ |e〉 transition, so that the
atoms eventually decay back to the dark |g1〉 state.

|g™Ò

|g¡oÒ

|eoÒ

This can in general be done by beams from all directions, such as the optical molasses beams that
are likely to be present anyway. In this case, the tagged atom distribution from the last step will be
broadened in momentum by an amount on the order of h̄k.

p

This spontaneous Raman step provides the dissipation or ‘‘exit channel’’ for entropy necessary for
any cooling scheme to work.

4. Repeat the above sequence many times.

Why does this work so effectively? With the above sequence, all the atoms are essentially making a biased
random walk towards the target zone. Ideally, once the atoms reach the target zone, they never leave it,
because the velocity selectivity of the simulated Raman transitions. Even though the Raman pulses transfer
momentum 2h̄k at a time, the spontaneous emission allows the atom to move by fractions of a momentum
recoil h̄k, and thus the target zone can be narrower than h̄k, and cooling below the recoil limit has been
demonstrated with this method. Of course, the above idealization where the atoms are permanently stuck
in the target zone is not quite true: the tails of the tagging distributions as well as off-resonant excitations
determine a limited lifetime for atoms in the target zone. So long as this lifetime is much longer than the
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time to iterate the above cycle, the cooling still works, and can be understood in terms of Lévy flights,5
which amounts to diffusive behavior in momentum where every so often, the atoms ‘‘stick’’ to the region
near p = 0 before diffusing again.

In three dimensions, the tagging must take place in all three dimensions on each iteration, so the
target region is a small box in the three-dimensional momentum space. The much smaller target region
(relative to the initial distribution) implies a much longer cooling time, but the method can still be made to
work. Obviously this requires more juggling of laser beams, which makes the method quite challenging to
implement. This is especially true considering the sensitivity of Raman transitions to magnetic fields that
we discussed above, and subrecoil cooling requires extensive measures against stray fields.

6.1.6.2 Resolved-Sideband Raman Cooling

If atoms are bound in a tightly confining potential, another cooling method becomes possible if the splittings
between the vibrational levels becomes much larger than the line width of the relevant atomic transition. In
this case, the spectralsidebands are well-resolved, and the cooling method is known as resolved-sideband
Raman cooling.

The basic idea is as follows. Assuming a nearly harmonic trapping potential of frequency ωtrap, we
note that the bound atom oscillates mechanically at this frequency. If a monochromatic laser field impinges
on the atom in the direction of motion, the atom thus sees a time-varying Doppler shift (phase-modulated
wave) of the form

E(+)(x, t) = E
(+)
0 ei[kx−ωt+δφ sin(ωtrapt)]. (6.42)

The instantaneous frequency is simply given by the time derivative of the phase (up to a minus sign), or
ω − δφωtrap cos(ωtrapt), but in view of the decomposition

E(+)(x, t) = E
(+)
0 eikxe−iωteiδφ sin(ωtrapt) = E

(+)
0 eikxe−iωt

∞∑
j=−∞

Jj(δφ)e
ijωtrapt, (6.43)

we see that the spectrum is the ‘‘carrier’’ at frequency ω plus a sequence of sidebands at frequencies ωj =
ω − jωtrap, where j is any nonzero integer. The above decomposition follows from the generating function
for the Bessel functions:

exp
[
x

2

(
t− 1

t

)]
=

∞∑
j=−∞

Jj(x)t
j . (6.44)

The point is that the absorption spectrum of the bound atom consists of the usual atomic resonance ω0,
plus sidebands ω0 + jωtrap spaced at the trap frequency, assuming that the sidebands are well resolved (in
the limit where ωtrap is much larger than any decay rates for the ground states). When absorbing on one of
the sidebands, energy conservation demands that along with the electronic transition, the vibrational state
change by the appropriate number of quanta.

We can write down a recipe similar to that of free-space Raman cooling as follows.

1. Begin with all atoms in the same electronic state, say in |g1〉.

2. Drive a stimulated Raman transition on the ω0 − ωtrap sideband. This implies transitions of the form
|g1, n〉 −→ |g2, n− 1〉, where the integer labels the vibrational quantum number.

5J. Reichel, F. Bardou, M. Ben Dahan, E. Peik, S. Rand, C. Salomon, and C. Cohen-Tannoudji, ‘‘Raman Cooling of Cesium
below 3 nK: New Approach Inspired by Lévy Flight Statistics,’’ Physical Review Letters 75, 4575 (1995) (doi: 10.1103/Phys-
RevLett.75.4575).

http://dx.doi.org/10.1103/PhysRevLett.75.4575
http://dx.doi.org/10.1103/PhysRevLett.75.4575


6.1 Stimulated Raman Transitions 281

|g™Ò

|g¡oÒ

The vibrational energy is thus reduced by one quantum. Note also that the |g1, 0〉 state is dark, because
the laser does not resonantly drive it to any other state.

3. Recycle the atoms to |g1〉 by resonantly exciting it to the excited state. On average, the vibrational
state does not change during the transition, particularly if the vibrational splitting is larger than the
transition line width. Thus, on average, the atoms have reduced their vibrational energies by about
one quantum.

4. Repeat.

At the end of many iterations, it is possible to find the atom in the ground state with near-unit probability.
In three dimensions, all three relevant sidebands must be driven sequentially, assuming nondegenerate trap
frequencies, and the beams must not be along a principle axis of the trap. This method has been successfully
implemented in ion traps6 as well as with neutral atoms in optical lattices.7

6.1.7 Atom Interferometry

One other application of stimulated Raman transitions is in the realization of atom interferometers, where
atoms are split and recombined to effect sensitive physical measurements. The first atom interferometers
were realized with thermal atomic beams, with the ‘‘beam splitters’’ realized by passing atoms through indi-
vidual slits in physical aperture masks8 or through microfabricated (absorptive) diffraction-grating masks.9
Ultracold-atom interferometers lend themselves naturally to measurements of increased sensitivity due to
the high degree of available control and potentially long interaction times.

6C. Monroe, D. M. Meekhof, B. E. King, S. R. Jefferts, W. M. Itano, D. J. Wineland, and P. Gould, ‘‘Resolved-Sideband
Raman Cooling of a Bound Atom to the 3D Zero-Point Energy,’’ Physical Review Letters 75, 4011 (1995) (doi: 10.1103/Phys-
RevLett.75.4011).

7S. E. Hamann, D. L. Haycock, G. Klose, P. H. Pax, I. H. Deutsch, and P. S. Jessen, ‘‘Resolved-Sideband Raman Cooling
to the Ground State of an Optical Lattice,’’ Physical Review Letters 80 4149 (1998) (doi: 10.1103/PhysRevLett.80.4149);
Vladan Vuletić , Cheng Chin, Andrew J. Kerman, and Steven Chu, ‘‘Degenerate Raman Sideband Cooling of Trapped Cesium
Atoms at Very High Atomic Densities,’’ Physical Review Letters 81 5768 (1998) (doi: 10.1103/PhysRevLett.81.5768); Andrew
J. Kerman, Vladan Vuletić, Cheng Chin, and Steven Chu, ‘‘Beyond Optical Molasses: 3D Raman Sideband Cooling of Atomic
Ceium to High Phase-Space Density,’’ Physical Review Letters 84 439 (2000) (doi: 10.1103/PhysRevLett.84.439); Dian-Jiun
Han, Steffen Wolf, Steven Oliver, Colin McCormick, Marshall T. DePue, and David S. Weiss, ‘‘3D Raman Sideband Cooling of
Cesium Atoms at High Density,’’ Physical Review Letters 85 724 (2000) (doi: 10.1103/PhysRevLett.85.724).

8O. Carnal and J. Mlynek, ‘‘Young’s Double-Slit Experiment with Atoms: A Simple Atom Interferometer,’’ Physical Review
Letters 66, 2689 (1991) (doi: 10.1103/PhysRevLett.66.2689).

9David W. Keith, Christopher R. Ekstrom, Quentin A. Turchette, and David E. Pritchard, ‘‘An Interferometer for Atoms,’’
Physical Review Letters 66, 2693 (1991) (doi: 10.1103/PhysRevLett.66.2693).

http://dx.doi.org/10.1103/PhysRevLett.75.4011
http://dx.doi.org/10.1103/PhysRevLett.75.4011
http://dx.doi.org/10.1103/PhysRevLett.80.4149
http://dx.doi.org/10.1103/PhysRevLett.81.5768
http://dx.doi.org/10.1103/PhysRevLett.84.439
http://dx.doi.org/10.1103/PhysRevLett.85.724
http://dx.doi.org/10.1103/PhysRevLett.66.2689
http://dx.doi.org/10.1103/PhysRevLett.66.2693
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An atom interferometer based on stimulated Raman transitions might work as follows.10 As atoms
move slowly along (say, in free fall after being launched in an atomic fountain), they are exposed to a set of
pulses from stimulated Raman lasers in the counterpropagating configuration.

atomic trajectory

p/2-pulse

p/2-pulse

p-pulse

If the atoms all start in one state |g1〉, a π/2 Raman pulse puts them in a superposition of |g1〉 and |g2〉.
The atoms in |g2〉 have also suffered a momentum recoil of 2h̄k in this configuration, and if the Raman lasers
are oriented normally to the atoms’ path, the atoms in the two states begin to separate transversely. Later,
the atoms are exposed to a π Raman pulse, which exchanges the ground states as well as the transverse
velocities of the two atomic groups, bringing them back together. When they again overlap, a final π/2 pulse
mixes them and produces interference fringes. Thinking of this interferometer as analogous to the optical
Mach–Zehnder interferometer, the π/2 pulses are analogous to (50/50) beam splitters, while the π pulse is
analogous to a set of high reflectors.

Of course, any interaction that induces a relative phase between the two groups of atoms can be
sensitively measured with this technique. One of the more successful applications is to the measurement of
gravity. In the above figure, we can imagine that gravity points towards the bottom of the page. In this
case, the phases accumulated by the two atomic groups during the respective ‘‘tilted segments’’ of their
journeys should be the same. However, during the ‘‘horizontal segments,’’ the two atoms travel along paths
with different gravitational potentials, and thus there is a phase shift given by mg∆z∆t/2h̄, where m is
the atomic mass, g is the local acceleration of gravity, ∆z is the spatial separation of the two interferometer
arms, and ∆t is the time between the π/2-pulses. The local gravitational acceleration g has been measured
with this system with a resolution of δg/g ∼ 10−8 for ∼ 1 s integration times and ∼ 10−10 for integration
times of ∼ 1 day,11 which begins to rival the current method of a falling corner-cube optical interferometer.
Further, implementing a simultaneous pair of these measurements at different locations enables measurement
of gravity gradients, which are otherwise quite difficult to measure.12 Further, the sensitivity of these
measurements may be greatly enhanced by using Bose–Einstein condensates in place of ordinary cold-atom
clouds.13 On the fundamental side, gravity and gravity gradient measurements enable measurements of the
gravitational constant G and tests of general relativity, while on the applied side, interferometers are of
technological interest for the detection of underground structures and reservoirs of oil and water, as well as
completely passive navigation.

An alternate, but substantially equivalent, method of atom interferometry uses Bragg scattering from
optical lattices as atomic beam splitters and mirrors.14 As we discussed before, Bragg scattering can be
viewed as a stimulated Raman process among momentum states, and thus the Bragg scatterings must be
set to the equivalents of π/2- and π-pulses for beam splitters and high reflectors, respectively.

Because the recoil energy enters the resonance condition, a variation on the above interferometer en-
ables the measurement of the fine-structure constant α, which is interesting from a fundamental perspective,
since past measurements have had statistically significant discrepancies, and there is some speculation that
the fine-structure constant may be time-dependent. The rough idea is that the resonance condition (6.24)
for stimulated Raman transitions involves the recoil energy h̄ωr for Raman beams in the counterpropagating

10Mark Kasevich and Steven Chu, ‘‘Atomic interferometry using stimulated Raman transitions,’’ Physical Review Letters 67,
181 (1991) (doi: 10.1103/PhysRevLett.67.181).

11A. Peters, K. Y. Chung, and S. Chu, ‘‘High-precision gravity measurements using atom interferometry,’’ Metrologia 38, 25
(2001) (doi: 10.1088/0026-1394/38/1/4).

12M. J. Snadden, J. M. McGuirk, P. Bouyer, K. G. Haritos, and M. A. Kasevich, ‘‘Measurement of the Earth’s Gravity Gra-
dient with an Atom Interferometer-Based Gravity Gradiometer,’’ Physical Review Letters 81, 971 (1998) (doi: 10.1103/Phys-
RevLett.81.971).

13P. Bouyer and M. A. Kasevich, ‘‘Heisenberg-limited spectroscopy with degenerate Bose-Einstein gases,’’ Physical Review A
56, R1083 (1997) (doi: 10.1103/PhysRevA.56.R1083 ).

14David M. Giltner, Roger W. McGowan, and Siu Au Lee, ‘‘Atom Interferometer Based on Bragg Scattering from Standing
Light Waves,’’ Physical Review Letters 75, 2638 (1995) (doi: 10.1103/PhysRevLett.75.2638).

http://dx.doi.org/10.1103/PhysRevLett.67.181
http://dx.doi.org/10.1088/0026-1394/38/1/4
http://dx.doi.org/10.1103/PhysRevLett.81.971
http://dx.doi.org/10.1103/PhysRevLett.81.971
http://dx.doi.org/10.1103/PhysRevA.56.R1083 
http://dx.doi.org/10.1103/PhysRevLett.75.2638
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configuration. The recoil energy gives a measurement of h/m, which can be combined with an atomic-mass
measurement to give the ratio h̄/me where me is the electron mass. This ratio can then be converted to a
measurement of α.15

6.2 Coherent Population Trapping

Another important effect, coherent population trapping16 dramatically shows the influence of quantum
interference in Λ atoms. Consider again the Λ atom from our discussion of stimulated Raman transitions of
Section 6.1.

w¡wº¡
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w™ wº™
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Following our previous treatment, but now ignoring center-of-mass motion of the atom, we can write the
free-atomic Hamiltonian in the rotating frame as

H̃A = h̄∆1|g1〉〈g1|+ h̄∆2|g2〉〈g2|. (6.45)

Similarly, the atom-field interaction Hamiltonian in the rotating frame is

H̃AF =
h̄Ω1

2

(
σ1 + σ†1

)
+
h̄Ω2

2

(
σ2 + σ†2

)
. (6.46)

It turns out that if we make a change of basis for the ground states, one of the new states decouples from
the excited state, which of course simplifies things. In particular, motivated by the spontaneous-emission
results in the context of stimulated Raman transitions from Section 6.1.2, we can make the transformation

|g+〉 =
1√

Ω 2
1 +Ω 2

2

(
Ω1|g1〉+Ω2|g2〉

)
= cos θ|g1〉+ sin θ|g2〉

|g−〉 =
1√

Ω 2
1 +Ω 2

2

(
−Ω2|g1〉+Ω1|g2〉

)
= − sin θ|g1〉+ cos θ|g2〉,

(6.47)

where the excited state is unchanged, and the rotation angle is defined by

tan θ = Ω2

Ω1
.

(6.48)
(decoupling rotation angle)

15David S. Weiss, Brenton C. Young, and Steven Chu, ‘‘Precision measurement of the photon recoil of an atom using atomic
interferometry,’’ Physical Review Letters 70, 2706 (1993) (doi: 10.1103/PhysRevLett.70.2706); Brenton Christopher Young, ‘‘A
Measurement of the Fine-Structure Constant using Atom Interferometry,’’ Ph.D. dissertation, Stanford University (1997).

16E. Arimondo and G. Orriols, ‘‘Nonabsorbing atomic coherences by coherent two-photon transitions in a three-level optical
pumping,’’ Lettere al Nuovo Cimento della Societa Italiana di Fisica 17, 333 (1976) (doi: 10.1007/BF02746514); H. R.
Gray, R. M. Whitley, and C. R. Stroud, Jr., ‘‘Coherent trapping of atomic populations,’’ Optics Letters 3, 218 (1978) (doi:
10.1364/OL.3.000218).

http://dx.doi.org/10.1103/PhysRevLett.70.2706
http://dx.doi.org/10.1007/BF02746514
http://dx.doi.org/10.1364/OL.3.000218
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Clearly, the new states |g+〉 and |g−〉 are still normalized and orthogonal. Of course, the opposite basis
change is given by reversing the rotation angle:

|g1〉 = cos θ|g+〉 − sin θ|g−〉

|g2〉 = sin θ|g+〉+ cos θ|g−〉.
(6.49)

Then, we can put these into Eq. (6.45) to find the atomic Hamiltonian in the new basis,

H̃A = h̄∆+|g+〉〈g+|+ h̄∆−|g−〉〈g−|+ h̄Ωg

(
|g+〉〈g−|+ |g−〉〈g+|

)
,

(transformed free-atom Hamiltonian) (6.50)
where the rotated detunings are

∆+ = cos2 θ∆1 + sin2 θ∆2

∆− = sin2 θ∆1 + cos2 θ∆2,
(6.51)

and the coupling rate between the new states is

Ωg = (∆2 −∆1) sin θ cos θ = (∆2 −∆1)
Ω1Ω2

Ω 2
1 +Ω 2

2

. (6.52)

Similarly, the transformations (6.49) in Eq. (6.46) give the interaction Hamiltonian in the new basis

H̃AF =
h̄Ω+

2

(
σ+ + σ†+

)
+
h̄Ω−
2

(
σ− + σ†−

)
, (6.53)

where σ± := |g±〉〈e|, and the new Rabi frequencies are

Ω+ = cos θΩ1 + sin θΩ2 =
Ω 2

1 +Ω 2
2√

Ω 2
1 +Ω 2

2

=
√
Ω 2

1 +Ω 2
2

Ω− = cos θΩ2 − sin θΩ1 =
Ω1Ω2 − Ω2Ω1√

Ω 2
1 +Ω 2

2

= 0.

(6.54)

Thus, we may write the interaction Hamiltonian as

H̃AF =
h̄
√
Ω 2

1 +Ω 2
2

2

(
σ+ + σ†+

)
,

(transformed interaction Hamiltonian) (6.55)
and thus we see that the coupling between |g−〉 and |e〉 vanishes, while the Rabi frequency for the coupling
of |g+〉 to |e〉 is Ω+.

Furthermore, at Raman resonance (∆1 = ∆2 = ∆), the free-atomic Hamiltonian simplifies quite
dramatically. This is because Ωg = 0, and ∆+ = ∆− = ∆:

H̃A = h̄∆
(
|g+〉〈g+|+ |g−〉〈g−|

)
.

(6.56)
(free evolution, Raman resonance)

Thus, we see that the free-atomic Hamiltonian becomes diagonal at Raman resonance (while H̃AF is inde-
pendent of detuning). We see in this case that under Hamiltonian evolution, |g−〉 is completely uncoupled
from |g+〉 and |e〉.

Now, what about spontaneous emission? The operator form of the master equation reads

∂tρ̃ = − i
h̄

[
H̃A + H̃AF, ρ̃

]
+ Γ1D[σ1]ρ̃+ Γ2D[σ2]ρ̃, (6.57)
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where the Γα are the decay rates of |e〉 to |gα〉, so that the total decay rate of the excited state is Γ = Γ1+Γ2.
In the new basis, the master equation becomes

∂tρ̃ = − i
h̄

[
H̃A + H̃AF, ρ̃

]
+ Γ+D[σ+]ρ̃+ Γ−D[σ−]ρ̃+ (Γ2 − Γ1) sin θ cos θ

(
σ−ρ̃σ

†
+ + σ+ρ̃σ

†
−

)
, (6.58)

where
Γ+ = cos2 θ Γ1 + sin2 θ Γ2

Γ− = sin2 θ Γ1 + cos2 θ Γ2.
(6.59)

We see that the dissipation terms have a similar form in the new basis, but the last term is a correction
term to handle asymmetric decay to |g1〉 and |g2〉. The point here is that |e〉 decays as usual to both |g+〉
and |g−〉. Our basic conclusions will thus not be affected by the simplification Γ1 = Γ2 = Γ/2 = Γ+ = Γ−,
so that

∂tρ̃ = − i
h̄

[
H̃A + H̃AF, ρ̃

]
+ ΓD[σ+]ρ̃+ ΓD[σ−]ρ̃. (6.60)

We have thus arrived at a new effective Λ atom, where the excited state decays to both ground states, but
only one ground state, |g+〉, is pumped by the external fields to the excited state.

|go–oÒ
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G G
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Again, at Raman resonance, there is no coupling between |g+〉 and |g−〉, but away from resonance there is
a coupling at rate Ωg. Thus, at Raman resonance, |g−〉 is a dark state, and for Ω+ 6= 0, all the population
will eventually end up in |g−〉. Thus, in steady state, the atom scatters no light. In the original basis, this
is because the dipole moments for the two transitions either constructively or destructively interfere. If they
destructively interfere, then the atom scatters no light, and effectively decouples from the field. If there is
constructive interference, spontaneous emission scrambles the phases of the dipoles until the interference is
purely destructive. This effect is coherent population trapping, because the population is ‘‘trapped’’ in
|g−〉 due to quantum interference.

If we look at an absorption spectrum where one frequency, say ω2, is swept, while the other is held
fixed, we should expect to get the usual Lorentzian line shape for absorption, with width Γ1 +Γ2. However,
we expect to see a dip in the absorption spectrum when ∆1 = ∆2.
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The dip can be quite narrow, and by solving for the steady state of the three-level optical Bloch equations it
is possible to show17 that the line shape is approximately the difference of two Lorentzians, one associated
with the natural width of the excited state, and a narrow Lorentzian responsible for the coherent dip, of
width (FWHM)

δω =
Ω 2

1 +Ω 2
2

Γ1 + Γ2

(6.61)
(width of coherent dip)

in the weak-driving limit. Since this is a coherent effect, the dip becomes suppressed and wider if any
dephasing process reduces the coherence of the ground states.

If the first laser is detuned from resonance, and the second laser is made much weaker and swept in
frequency across the first laser, a narrow, dispersive resonance occurs.
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This shape has been shown18 to be a Fano profile19 (an asymmetric line shape that arises due to interference
in ionization spectra).

17H. R. Gray et al., op. cit.
18B. Lounis and C. Cohen-Tannoudji, ‘‘Coherent population trapping and Fano profiles,’’ Journal de Physique II (France) 2,

579 (1992) (doi: 10.1051/jp2:1992153).
19U. Fano, ‘‘Effects of Configuration Interaction on Intensities and Phase Shifts,’’ Physical Review 124, 1866 (1961) (doi:

10.1103/PhysRev.124.1866 )

http://dx.doi.org/10.1051/jp2:1992153
http://dx.doi.org/10.1103/PhysRev.124.1866 
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6.2.1 VSCPT

If we again account for atomic motion, the dark-state condition (∆1 = ∆2) must be modified to include the
atomic momentum, and is essentially the same as the stimulated Raman resonance condition, Eq. (6.23).
Doing so leads to a clever method for cooling atoms to extremely low temperatures, known as velocity-
selective coherent population trapping, or VSCPT.20 The idea is as follows. Suppose an atom with
two degenerate ground states has both levels coupled to the excited state by two counterpropagating lasers
of equal optical frequency. (This level structure occurs for an angular-momentum transition of the form
J = 1 −→ J ′ = 1, such as occurs in He atoms.) We assume that each laser only couples one ground state to
the excited state (due, e.g., to different polarizations of the two beams).

|g™Ò|g¡oÒ

|eoÒ

Then we can see that Doppler laser cooling works as usual, assuming that the common optical detuning is
to the red of the atomic resonance: if the atom moves, it scatters photons preferentially from the opposing
beam, which is shifted into resonance, thus tending to stop the atom. However, due to the three-level
structure, there is a dark state, which for equal intensities is given by

|ψ〉dark =
1√
2

(
|g1,−h̄k〉+ |g2,+h̄k〉

)
, (6.62)

once we have included the atomic motion. The frequency width of this dark state is set mostly by the
common Rabi frequency as in Eq. (6.61), and for small intensities the dark-state width can be quite small,
corresponding to a momentum width smaller than h̄k. Thus, VSCPT gives rise to a sub-recoil cooling
method, with the final momentum distribution consisting of two subrecoil peaks about ±h̄k. Note also that
the final momentum state (the dark state) is, in fact, an entangled state between the atomic internal and
external states. In this one-dimensional configuration, this method works best for collimation of atomic
beams. However it is possible to extend this method to three dimensions.21 It is also possible to apply
this scheme to more complicated atoms with further degeneracy, so long as the lasers are pulsed to give a
Ramsey-fringe-type effect.22

6.2.2 Electromagnetically Induced Transparency

One way to view the phenomenon of coherent population trapping is that the absorption profile for a field
is modified by the presence of another field. Thinking of field 1 as a (strong) pump field, and field 2 as a
(weak) probe field, the absorption coefficient for the probe can drop to zero due to the presence of the pump.

20A. Aspect, E. Arimondo, R. Kaiser, N. Vansteenkiste, and C. Cohen-Tannoudji, ‘‘Laser Cooling below the One-Photon Re-
coil Energy by Velocity-Selective Coherent Population Trapping,’’ Physical Review Letters 61, 826 (1988) (doi: 10.1103/Phys-
RevLett.61.826); A. Aspect, Ennio Arimondo, R. Kaiser, N. Vansteenkiste, and C. Cohen-Tannoudji, ‘‘Laser cooling below
the one-photon recoil energy by velocity-selective coherent population trapping: theoretical analysis,’’ Journal of the Optical
Society of America B 6, 2112 (1989); M. Widmer, M. R. Doery, M. J. Bellanca, W. F. Buell, T. H. Bergeman, and H. J.
Metcalf, ‘‘High-velocity dark states in velocity-selective coherent population trapping,’’ Physical Review A 53, 946 (1996) (doi:
10.1103/PhysRevA.53.946).

21M. A. Ol’shanii and V. G. Minogin, ‘‘Three-dimensional velocity-selective coherent population trapping of a (3 + 3)-level
atom,’’ Optics Communications 89, 393 (1992); J. Lawall, S. Kulin, B. Saubamea, N. Bigelow, M. Leduc, and C. Cohen-
Tannoudji, ‘‘Three-Dimensional Laser Cooling of Helium Beyond the Single-Photon Recoil Limit,’’ Physical Review Letters 75,
4194 (1995) (doi: 10.1103/PhysRevLett.75.4194).

22Frank Sander, Thibaut Devolder, Tilman Esslinger, and Theodor W. Hänsch, ‘‘Ramsey-Type Subrecoil Cooling,’’ Physical
Review Letters 78, 4023 (1997) (doi: 10.1103/PhysRevLett.78.4023).

http://dx.doi.org/10.1103/PhysRevLett.61.826
http://dx.doi.org/10.1103/PhysRevLett.61.826
http://dx.doi.org/10.1103/PhysRevA.53.946
http://dx.doi.org/10.1103/PhysRevLett.75.4194
http://dx.doi.org/10.1103/PhysRevLett.78.4023
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This phenomenon is known as electromagnetically induced transparency, or EIT.23

Let’s analyze this situation in a bit more depth, taking advantage of the assumption of a weak probe
field. We will assume essentially the same form of the master equation as in (6.57)

∂tρ̃ = − i
h̄

[
H̃A + H̃AF, ρ̃

]
+ Γ1D[σ1]ρ̃+ Γ2D[σ2]ρ̃+ γgD[σg]ρ̃, (6.63)

where we have added the final term (with σg := |g2〉〈g2| − |g1〉〈g1|) to model coherence-relaxation processes
between the ground states such as collisions in atomic vapors or dephasing due to local crystal fields. This
master equation implies the equation for the probe-transition coherence

∂tρ̃eg2
=

(
−Γ2

2
+ i∆2

)
ρ̃eg2

+
iΩ2

2
(ρee − ρg2g2)−

iΩ1

2
ρ̃g1g2

≈
(
−Γ2

2
+ i∆2

)
ρ̃eg2
− iΩ2

2
− iΩ1

2
ρ̃g1g2 .

(6.64)

Here, to lowest order in Ω2 we have made the replacements ρg2g2 ≈ 1 and ρee ≈ 0 to arrive at the second
expression, since both are multiplied by Ω2. We want this coherence in steady state, since it controls the
photon-absorption rate of the probe, but it is coupled to ρ̃g1g2 . The equation of motion for this ground-state
coherence is

∂tρ̃g1g2
= i (∆2 −∆1) ρ̃g1g2

− γgρ̃g1g2
− iΩ1

2
ρ̃eg2

+
iΩ2

2
ρ̃g1e

≈ i[(∆2 −∆1) + iγg]ρ̃g1g2
− iΩ1

2
ρ̃eg2

.

(6.65)

Here, we have dropped the ρ̃g1e term, since it is unpopulated to lowest order in Ω2, and it already involves
a factor of Ω2. In steady state, ∂tρ̃g1g2

= 0, and solving the above equation gives

ρ̃g1g2
=

Ω1ρ̃eg2

2[(∆2 −∆1) + iγg]
. (6.66)

Then setting ∂tρ̃eg2
= 0 to find the steady-state coherence, we find(

−Γ2

2
+ i∆2

)
ρ̃eg2
− iΩ1

2
ρ̃g1g2 =

iΩ2

2
. (6.67)

Using Eq. (6.66) and solving for ρ̃eg2
, we find

ρ̃eg2
=

i(Ω2/2)[(∆2 −∆1) + iγg]

(i∆2 − Γ2/2)[(∆2 −∆1) + iγg]− i(Ω1/2)2
. (6.68)

23The first proposals for EIT were by Surya P. Tewari and G. S. Agarwal, ‘‘Control of Phase Matching and Nonlinear
Generation in Dense Media by Resonant Fields,’’ Physical Review Letters 56, 1811 (1986) (doi: 10.1103/PhysRevLett.56.1811);
and S. E. Harris, J. E. Field, and A. Imamoğlu, ‘‘Nonlinear optical processes using electromagnetically induced transparency,’’
Physical Review Letters 64, 1107 (1990) (doi: 10.1103/PhysRevLett.64.1107). For a good review, see Robert W. Boyd and
Daniel J. Gauthier, ‘‘‘Slow’ and ‘Fast’ Light,’’ in Progress in Optics, vol. 43, E. Wolf, ed. (Elsevier, Amsterdam, 2002), p. 497.
Our treatment here parallels part of their discussion.

http://dx.doi.org/10.1103/PhysRevLett.56.1811
http://dx.doi.org/10.1103/PhysRevLett.64.1107


6.2 Coherent Population Trapping 289

This coherence determines the optical properties of the medium, as far as the probe is concerned. The
polarization is given by the dipole moment per unit volume, or

P (+) = N〈g2|ε̂2 · d|e〉ρ̃eg2
=: ε0χE

(+), (6.69)

where χ is the linear susceptibility of the atomic vapor, N is the number density of the atomic vapor, and
E(+) is the positive-rotating electric field amplitude for the probe. Thus, we can write the susceptibility as

χ =
−iN |〈g2|ε̂2 · d|e〉|2

ε0h̄

[(∆2 −∆1) + iγg]

(i∆2 − Γ2/2)[(∆2 −∆1) + iγg]− i(Ω1/2)2
.

(EIT susceptibility) (6.70)
Recall that the complex refractive index is the square root of the dielectric constant, so

ñ =
√

1 + χ ≈ 1 +
χ

2
, (6.71)

since χ is small, assuming a rarefied medium. Also, taking the real part of the refractive index,

n = Re[ñ] ≈ 1 +
Re[χ]
2

. (6.72)

The intensity absorption coefficient is related to the imaginary part of the refractive index by comparing the
damping part of the plane-wave solution:

e−Im[ñ]k0z = e−(a/2)z, (6.73)

so that
a = 2k0Im[ñ] ≈ k0 Im[χ]. (6.74)

Thus, in this regime, the absorption coefficient for the probe is given by the imaginary part of χ.
We can thus see the induced transparency by looking at the Raman resonance ∆1 = ∆2, and for

simplicity we will also consider the resonant case ∆2 = 0. In this case the susceptibility

χ =
iN |〈g2|ε̂2 · d|e〉|2

ε0h̄

γg

(Γ2/2)γg + (Ω1/2)2

(EIT susceptibility, ∆1 = ∆2 = 0) (6.75)
becomes purely imaginary (i.e., the phase index becomes unity), and χ drops monotonically to zero with
increasing pump intensity (Ω1). Thus, we see how (on resonance) transparency for the probe is induced by
the pump field.

The atomic medium is causal, and since the refractive index represents a causal response of the medium
to the applied field, the real and imaginary parts of the complex refractive index obey the Kramers–Kronig
relations24

Re[ñ(ω)] = 1 +
1

π
–
∫ ∞
−∞

Im[ñ(ω′)]

ω′ − ω
dω′

Im[ñ(ω)] = − 1

π
–
∫ ∞
−∞

Re[ñ(ω′)]− 1

ω′ − ω
dω′.

(6.76)

The integrals here are Hilbert transforms (the cut integration symbols denote Cauchy-principal-value
integrals), which are effectively convolutions with the kernel 1/ω. Since this kernel changes sign (and is
largest in magnitude) near ω = 0, the Hilbert transform is ‘‘something like a derivative,’’ as long as you’re
willing to be not-too-quantitative. Since the coherent dip in EIT can be very narrow, as we saw from our
analysis of coherent population trapping, the imaginary part of ñ has large derivatives, and hence the real

24See Section 14.1.4.2, or for an alternate treatment see also Daniel A. Steck, Classical and Modern Optics, available online
at http://steck.us/teaching.

http://steck.us/teaching
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part of ñ (the phase index) can have large values and steep gradients. For a resonant, arbitrarily strong
pump (∆1 = 0, large Ω1), the susceptibility (6.70) becomes

χ =
N |〈g2|ε̂2 · d|e〉|2

ε0h̄

(iγg −∆2)

(Ω1/2)2
, (6.77)

so that the phase index n = Re[ñ] ≈ Re[χ]/2 becomes

n = −2N |〈g2|ε̂2 · d|e〉|2

ε0h̄

∆2

Ω 2
1

. (6.78)

The group index of refraction is given by25

ng = n+ ω
dn

dω
, (6.79)

and it measures the ratio of the vacuum speed of light to the propagation velocity (group velocity) of an
optical pulse. Assuming the second term is the most important, for the EIT medium the group index
becomes

ng ≈
2ωN |〈g2|ε̂2 · d|e〉|2

ε0h̄Ω 2
1

.

(EIT group index, ∆1 = 0, large Ω1, small ∆2) (6.80)
Putting in some typical numbers for alkali atoms (ω/2π = 5 × 1014 Hz, N = 1011 cm−3, 〈g2|ε̂2 · d|e〉 =
10−29 C·m, and Ω/2π = 10 MHz), we find ng ≈ 2 × 104! This also occurs where the medium is least
absorbing, so long as the pulse spectrum is not too wide. Using this ‘‘slow light’’ technique, optical pulses
have been slowed to 17 m/s.26

6.2.3 Stimulated Raman Adiabatic Passage

Now suppose in a three-level atom, you want to move all the population from |g1〉 to |g2〉, using two-photon
stimulated Raman transitions.

|go™oÒ

|go¡oÒ

|eoÒ

W¡
W™

You can do the good old π-pulse, and of course you can chirp the Raman frequency to do adiabatic passage like
in the two-level atom. However, because the dark states depend on the relative intensity, there is a different
form of adiabatic passage, called stimulated Raman adiabatic passage, or STIRAP.27 The idea is that
if you have two laser pulses, one for each optical transition, you should do something counterintuitive: you
should first turn on the laser coupling |g2〉 −→ |e〉, and then later turn on the laser coupling |g1〉 −→ |e〉.

25Daniel A. Steck, op. cit.
26Lene Vestergaard Hau, S. E. Harris, Zachary Dutton, and Cyrus H. Behroozi, ‘‘Light speed reduction to 17 metres per

second in an ultracold atomic gas,’’ Nature 397 (1999) (doi: 10.1038/17561). See also Michael M. Kash, Vladimir A. Sautenkov,
Alexander S. Zibrov, L. Hollberg, George R. Welch, Mikhail D. Lukin, Yuri Rostovtsev, Edward S. Fry, and Marlan O. Scully,
‘‘Ultraslow Group Velocity and Enhanced Nonlinear Optical Effects in a Coherently Driven Hot Atomic Gas,’’ Physical Review
Letters 82, 5229 (1999) (doi: 10.1103/PhysRevLett.82.5229).

27J. Oreg, F. T. Hioe, and J. H. Eberly, ‘‘Adiabatic following in multilevel systems,’’ Physical Review A 29, 690 (1984)
(doi: 10.1103/PhysRevA.29.690); U. Gaubatz, P. Rudecki, M. Becker, S. Schiemann, M. Külz, and K. Bergmann, ‘‘Population
switching between vibrational levels in molecular beams,’’ Chemical Physics Letters 149, 463 (1988) (doi: 10.1016/0009-
2614(88)80364-6); U. Gaubatz, P. Rudecki, S. Schiemann, and K. Bergmann, ‘‘Population transfer between molecular vibra-
tional levels by stimulated Raman scattering with partially overlapping laser fields. A new concept and experimental results,’’
Journal of Chemical Physics 92, 5363 (1990) (doi: 10.1063/1.458514); Martin Weitz, Brenton C. Young, and Steven Chu,
‘‘Atomic Interferometer Based on Adiabatic Population Transfer,’’ Physical Review Letters 73, 2563 (1994) (doi: 10.1103/Phys-
RevLett.73.2563).

http://dx.doi.org/10.1038/17561
http://dx.doi.org/10.1103/PhysRevLett.82.5229
http://dx.doi.org/10.1103/PhysRevA.29.690
http://dx.doi.org/10.1016/0009-2614(88)80364-6
http://dx.doi.org/10.1016/0009-2614(88)80364-6
http://dx.doi.org/10.1063/1.458514
http://dx.doi.org/10.1103/PhysRevLett.73.2563
http://dx.doi.org/10.1103/PhysRevLett.73.2563
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t

W¡W™

The key is the overlap of the pulses, and the form of the dark state. When Ω2 is large and Ω1 = 0, then
clearly the dark state is |g1〉. This represents the initial configuration. Similarly, when Ω1 is large and
Ω2 = 0, the dark state is |g2〉, the desired final state. We showed above that there is a dark state |−〉
for any pair (Ω1,Ω2), and thus if we transform the field amplitudes adiabatically, slowly on time scales of
(Ω 2

1 + Ω 2
2 )
−1/2, then the atom will follow the dark state |−〉 until it reaches the final state |g2〉. Since the

atom is always in the dark state, there is no problem with spontaneous emission, even if the lasers are near
resonance. Of course, with different pulse shapes it is possible to end in any superposition of the two ground
states.

6.2.4 Quantum Beats

Until now we have discussed only the three-level atom in the Λ-configuration, but how do atoms in other
configurations differ? One of the most significant differences is the possibility of quantum beats in resonance
fluorescence. The basic idea is fairly simple28 if we first consider the radiation from the Λ atom. The dipole
moment is proportional to the annihilation operators for the two transitions,

d(+) ∼ σ1 + σ2, (6.81)

where σα := |gα〉〈e|. For simplicity we are dropping the dipole matrix elements, which may be different for
the two transitions but do not affect our qualitative conclusions. The radiated field intensity thus scales as

〈
E(−)E(+)

〉
∝
〈
d(−)d(+)

〉
∝
〈(
σ†1 + σ†2

)
(σ1 + σ2)

〉
= 2ρee,

(6.82)
(radiated intensity, Λ-atom)

where we have used σ†ασβ = |e〉〈gα|gβ〉〈e| = |e〉〈e|δαβ . Thus, the total radiation rate is proportional to the
excited-state population.

The ‘‘vee’’ atom—where a single ground state |g〉 is coupled to two excited states |e1〉 and |e2〉—is
more complicated, however.

|e™Ò|e¡oÒ

|goÒ

If the two transitions decay into the same polarization mode, we can also write the dipole operator as

d(+) ∼ σ1 + σ2, (6.83)
28P. W. Milonni, ‘‘Semiclassical and quantum-electrodynamical approaches in nonrelativistic radiation theory,’’ Physics Re-

ports 25, 1 (1976).
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where σα := |g〉〈eα|, and we have again dropped the dipole matrix elements. In this case, we have

σ†ασβ = |eα〉〈g|g〉〈eβ | = |eα〉〈eβ |, (6.84)

and thus 〈
E(−)E(+)

〉
∝
〈
d(−)d(+)

〉
∝
〈(
σ†1 + σ†2

)
(σ1 + σ2)

〉
= ρe1e1 + ρe2e2 + ρ̃e1e2 + ρ̃e2e1 .

(6.85)
(radiated intensity, V-atom)

We see that the radiated intensity is proportional to the sum of the excited-state populations, which we
might expect, but also the last two coherence terms represent interferences between the two populations.
In the case where |e1〉 and |e2〉 have different energies, these coherences (transiently) rotate at the splitting
frequency, thus leading to the quantum beats in the resonance fluorescence. This is the same beat note that
we expect from any two radiating oscillators, but it goes to show that spontaneous emission isn’t entirely
coherent—interference effects are manifest in spontaneous emission.

The above argument leading to quantum beats rests on the assumption of decay into the same mode.
If the radiation from the two transitions is distinguishable, say, if the two transitions radiated orthogonal
polarizations, then the decay operators should not be added before taking the expectation value, and the
quantum beats are not present.

6.2.4.1 Master Equations and Quantum Beats

The above argument addresses an ambiguity that arises when writing down the master equation for the
three-level atom. For the Λ atom, we assumed in Eq. (6.57) that the master equation takes the form

∂tρ̃ = − i
h̄

[
H̃A + H̃AF, ρ̃

]
+ Γ1D[σ1]ρ̃+ Γ2D[σ2]ρ̃.

(6.86)
(distinguishable radiation)

That is, we use separate dissipation terms for each operator, recalling that the Lindblad superoperator has
the form

D[c]ρ̃ := cρ̃c† − 1

2

(
c†cρ̃+ ρ̃c†c

)
. (6.87)

Of course, we could have used a single dissipation term, had we added the operators together, to arrive at
the master equation

∂tρ̃ = − i
h̄

[
H̃A + H̃AF, ρ̃

]
+D

[√
Γ1σ1 +

√
Γ2σ2

]
ρ̃.

(indistinguishable radiation) (6.88)
Which one is correct? It depends on the physical situation. The master equation (6.86) corresponds to
the case where the radiation from the two transitions is distinguishable, while the master equation (6.88)
corresponds to the case where the radiation from the two transitions is indistinguishable (and thus we add
the ‘‘amplitudes,’’ or decay operators, for the two fields together before detection). This interpretation will
be more clear when we study master equations in the context of continuous measurement, but the general
rule is: we use separate decay terms when the decay processes can be monitored by separate detectors,
while if the decay processes can’t be distinguished, there is no ‘‘which-way’’ information, and we model the
resulting potential interference via a single decay term.

To emphasize the difference between Eqs. (6.86) and (6.88), we note that we can rewrite Eq. (6.88) for
the Λ atom as

∂tρ̃ = − i
h̄

[
H̃A + H̃AF, ρ̃

]
+ Γ1D[σ1]ρ̃+ Γ2D[σ2]ρ̃+

√
Γ1Γ2

(
σ1ρ̃σ

†
2 + σ2ρ̃σ

†
1

)
. (6.89)

These last two terms involve the excited-state population and only couple to the ground-state coherences, and
represent additional coherence induced between the ground states by spontaneous emission. Normally, the
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indistinguishability is not such an important issue for Λ atoms, because even if the radiated polarizations are
the same, the ‘‘which-way’’ information is provided by the atom itself, since we can in principle interrogate it
to see which ground state it is in. However, we have already seen the coherent version of the master equation
in the general form of Eq. (6.89) in the context of coherent population trapping, where the extra coherence
terms popped up when we switched to the dark/bright-state basis in Eq. (6.58). In that case, the point was
that each decay was to a superposition of the two ground states in the new basis, which was reflected by the
additional coherence terms.

6.2.4.2 Steady-State Quantum Beats

A dramatic manifestation of the above difference between distinguishable and indistinguishable master equa-
tions occurs in a variant of the vee atom, resulting in something termed steady-state quantum beats.29

The configuration is the vee atom from above, but in the case where the excited states are nondegenerate
with splitting δ but both coupled from the ground state by the same field.

|e™Ò

|e¡oÒ

w

d

|goÒ

If we define the rotating-frame Hamiltonians, detunings ∆α, Rabi frequencies Ωα, and decay rates Γα
(α ∈ {1, 2}) in the usual way, then the Bloch equations for the excited-state populations have the form

∂tρe1e1 =
iΩ1

2
(ρ̃e1g − ρ̃ge1) + (dissipations terms)

∂tρe2e2 =
iΩ2

2
(ρ̃e2g − ρ̃ge2) + (dissipations terms).

(6.90)

We may thus interpret the photon absorption rate to be the rate at which atoms are being excited, and thus

Rabs =
iΩ1

2
(ρ̃e1g − ρ̃ge1) +

iΩ2

2
(ρ̃e2g − ρ̃ge2) = Im [Ω1ρ̃ge1 +Ω2ρ̃ge2 ] . (6.91)

Again, there are two possible master equations that we can write down to describe this system. In the case
where there is distinguishable emission from the two excited states (say, different polarizations), we use the
master equation with separate decay terms:

∂tρ̃ = − i
h̄

[
H̃A + H̃AF, ρ̃

]
+ Γ1D[σ1]ρ̃+ Γ2D[σ2]ρ̃. (6.92)

A sample absorption spectrum (in steady state) for this system is shown below, plotted as a function of the
mean detuning (∆1 +∆2)/2, relative to the common decay rate Γ.

29D. A. Cardimona, M. G. Raymer, and C. R. Stroud, Jr., ‘‘Steady-state quantum interference in resonance fluorescence,’’
Journal of Physics B: Atomic and Molecular Physics 15, 55 (1982) (doi: 10.1088/0022-3700/15/1/012).

http://dx.doi.org/10.1088/0022-3700/15/1/012
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The spectrum consists of two peaks, as one might expect the sum of two Lorentzian peaks if there is no
‘‘interaction’’ between the transitions. For indistinguishable emission from the excited states, we again allow
for interference of the radiated fields, and we use the master equation

∂tρ̃ = − i
h̄

[
H̃A + H̃AF, ρ̃

]
+D

[√
Γ1σ1 +

√
Γ2σ2

]
ρ̃. (6.93)

In this case, for the same parameters, something remarkable happens: the absorption vanishes at the mid-
point between the peaks. This is an effect that persists even at high intensity (note that saturation effects
are not negligible for the numerical example here in the plot for Ω = 3Γ), and works even for more than two
excited states.
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This is clearly an interference effect, similar to coherent population trapping, but in a sense more remarkable
because there is still population in the excited state, even when the atom is dark, as we can see by examining
the total excited-state population.
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Of course, the absorption rate must equal the emission rate in steady state, and we have seen that the
emission rate is not just proportional to the total excited-state population, but rather to

ρe1e1 + ρe2e2 + ρ̃e1e2 + ρ̃e2e1 . (6.94)

The coherences, or interference terms, prevent the atom from decaying even though the excited states are
populated. Thus, coherent population trapping is due to interference in the Hamiltonian evolution of a Λ
atom, while steady-state quantum beating is due to interference in the dissipative evolution of a vee atom.

A final amusing thing to note is that steady-state quantum beating gives rise to an alternate interpre-
tation of EIT. In the Λ atom, you can imagine that the pump laser dresses the excited state, splitting it into
a doublet (as in the Autler–Townes doublet). The probe beam thus effectively couples to a vee atom, and
with the proper detuning, steady-state quantum beating suppresses absorption of the probe.
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6.3 Exercises

Problem 6.1
A phase-modulated optical wave has the form

E(+)(x, t) = E
(+)
0 (x)e−iωt+δφ sin(ωmodt), (6.95)

where ωmod is the modulation frequency. Such a wave could result, for example, by running the wave
through an electro-optic crystal, whose refractive index is modulated by an applied ac signal with
frequency ωmod.
(a) For a wave with time dependence exp[−iφ(t)], we can define the instantaneous frequency as

ωinst :=
dφ

dt
. (6.96)

Compute the instantaneous frequency of the phase-modulated wave and thus show that the frequency
oscillates about ω. That is, phase modulation is in some sense the same as frequency modulation.
(b) Write the phase-modulated wave as a sum of plane waves, with the general form

∞∑
j=−∞

cje
i(kx−ωjt). (6.97)

Hint: start by writing down a Bessel series for the function exp(iK sinx), using the generating function
given in the notes.
(c) From your answer to (b), argue that the intensity spectrum (as viewed through a Fabry–Perot
spectrum analyzer) consists of a series of peaks with relative intensity J 2

j (δφ). You may assume
the response of the Fabry–Perot analyzer is slow compared to the modulation frequency. This phase-
modulation technique is commonly used in the laboratory to shift the frequency of a laser or to generate
multiple laser frequencies.

Problem 6.2
Consider the vee atom, where steady-state quantum beating can be observed, where both excited states
are coupled by a single, monochromatic, electric field.

|e™Ò

|e¡oÒ

w

d

|goÒ

(a) Write down expressions for the free atomic Hamiltonian H̃A and the interaction Hamiltonian H̃AF

in the rotating frame, in terms of the appropriate detunings and Rabi frequencies.
(b) Assuming a master equation of the form

∂tρ̃ = − i
h̄

[
H̃A + H̃AF, ρ̃

]
+ Γ1D[σ1]ρ+ Γ2D[σ2]ρ̃, (6.98)

appropriate for distinguishable decay channels, write out the Bloch equations for the density-matrix
elements ρ̃αβ .
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(c) In the case of indistinguishable decay channels, with master equation of the form

∂tρ̃ = − i
h̄

[
H̃A + H̃AF, ρ̃

]
+D

[√
Γ1σ1 +

√
Γ2σ2

]
ρ̃, (6.99)

what are the new terms in the Bloch equations compared to what you wrote in part (b)? Give specific
interpretations to these extra terms where possible.

Problem 6.3
For the vee atom in Problem 6.2, consider the case of indistinguishable decay channels, with Γ1 = Γ2 =
Γ and Ω1 = Ω2, with the field tuned exactly halfway between the excited states. Solve for the steady
state of the optical Bloch equations for this system to lowest nontrivial order in Ω1 and Ω2 (i.e., find
the linear response for very weak fields), and thereby prove that steady-state quantum beats occur.
The effect does not depend on the smallness of the fields, and the analytic solution can be worked out
for arbitrary parameters, but this problem is much easier in the perturbative limit.

Problem 6.4
Consider an atomic transition between states |g〉 and |e〉, of resonance frequency ω0, driven at nearly
half the resonance frequency, so that 2ω ≈ ω0. In this case, it is possible to have two-photon
absorption and nonlinearly drive the transition.

|eÒ

|joÒ

|gÒ

wº
w

w

Of course, this happens because of Raman-type transitions involving the other states |j〉 as intermediate
states. However, our stimulated-Raman analysis does not apply here, because we cannot make the usual
rotating wave approximation, since ω does not resonantly couple |g〉 or |e〉 to any intermediate level.
Your goal is to work out the theory of two-photon transitions, and thus to show that this system
effectively reduces to a two-level system for |g〉 and |e〉. To do this, use the following outline.

1. Write down the free atomic Hamiltonian, using the following definitions: the energy of |g〉 is zero,
and the energy of the |g〉 −→ |j〉 is ωj .

2. Write down the atom–field interaction Hamiltonian, using Rabi frequencies Ωgj for the |g〉 −→ |j〉
transitions and Ωej for the |e〉 −→ |j〉 transitions. For the moment, ignore the direct coupling
between |g〉 and |e〉 (assume, for example, that the transition is dipole-forbidden). Do not make
any rotating-wave approximations at this stage.

3. Write the state vector as
|ψ〉 = cg|g〉+ ce|e〉+

∑
j

cj |j〉, (6.100)

and derive equations of motion for the coefficients.
4. Transform into a rotating frame by changing to the slowly varying coefficient

c̃e = cee
i2ωt, (6.101)

which is appropriate for ω0 ≈ 2ω, and rewrite the coefficient equations in terms of this new
variable.

5. Integrate the equation for ∂tcj to obtain an approximate expression for cj(t), assuming that cg
and c̃e are slowly varying on the time scales of optical oscillations. This is justified since we are
interested in the slow dynamics of these variables.



298 Chapter 6. Three-Level Atom Interacting with a Classical Field

6. Use your approximate result to eliminate cj from the equations of motion, and write the equations
of motion in the form of a two-level system. Now you should make appropriate rotating-wave
approximations to put the equations in the proper form.

In your answer, give expressions for the Stark shifts of |g〉 and |e〉, and also for the two-photon Rabi
frequency. At the same level of approximation, how do your results change if the transition |g〉 −→ |e〉
is also coupled directly by the field with Rabi frequency Ω?

Problem 6.5
Name as many approximations as you can that go into the result

ΩR =
Ω1Ω2

2∆
. (6.102)

Problem 6.6
Consider a transition between the two ground states of a Λ atom via the STIRAP procedure.

|go™oÒ

|go¡oÒ

|eoÒ

W¡
W™

Estimate the probability that a photon is scattered from the atom during the transition, which happens
if the pulse sequence does not drive the atom adiabatically through the transition. To do this, set this
problem up as an avoided-crossing problem, and use Landau–Zener theory to estimate the probability
that the atom ‘‘tunnels’’ out of the dark state. Model the two laser pulses as Gaussian pulses,

t

W¡W™

with pulse profile

Ω(t) = Ω0 exp
[
− t2

2 δt2

]
. (6.103)

Assume that the two laser pulses are identical, both exactly resonant with their respective transitions,
and that the peak Rabi frequencies are the same for both transitions. Take the time separation between
the two pulse peaks to be τ .
Note: strictly speaking, Landau–Zener theory only applies to an avoided crossing where the bare-state
energies are linear functions of time. However, you may approximately apply it to any avoided crossing
by noting that most of the tunneling across the gap occurs during the times when the gap is narrowest.
Thus, you should set up the problem such that the Landau–Zener problem approximates the energy
levels of this problem in the vicinity of the avoided crossing.
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Problem 6.7
Consider two two-level atoms situated near each other. No optical fields are present other than those
radiated by the atoms. Recall that the spatial profile of the atomic radiation field is given by the
classical dipole pattern.
(a) Consider the interaction of the two atoms as the usual dipole interaction of one atom with the
radiated field of the other. Show that after making a suitable rotating-wave approximation the atom–
atom interaction can be written

Hint = h̄
(
Ξ∗σ1σ

†
2 + Ξσ†1σ2

)
, (6.104)

where σ1,2 are the lowering operators for atoms 1 and 2, and the free-atom Hamiltonian is

H0 = h̄ω0

(
σ†1σ1 + σ†2σ2

)
. (6.105)

Write down an expression for the coupling rate Ξ, which depends on the separation and orientation of
the atoms. Assume the two atomic dipoles have the same orientation.
(b) Argue that in a suitable rotating frame, the interaction Hamiltonian is unchanged but the free-
evolution Hamiltonian becomes H̃0 = 0.
(c) Now consider the symmetric initial state

|ψ+〉 =
1√
2

[
|e1, g2〉+ |g1, e2〉

]
, (6.106)

and the antisymmetric initial state

|ψ−〉 =
1√
2

[
|e1, g2〉 − |g1, e2〉

]
, (6.107)

both corresponding to a single excitation. Show that in the limit of small atom separations, where
Ξ ∈ R, both states are eigenstates of the rotating-frame Hamiltonian H̃int.
(d) Assume that the atoms evolve according to a master equation of the form

∂tρ̃ = − i
h̄
[H̃int, ρ̃] + ΓD[σ1 + σ2]ρ̃. (6.108)

That is, we assume the dipole fields radiated by the two atoms to interfere perfectly, which is only
true if the atoms have the same orientation, and they are very close together. Show that the decay of
the atom pair starting in the symmetric state proceeds more quickly than for a single, isolated atom
in the excited state. (You need only show this to be true at short times.) This effect is called Dicke
superradiance,30 and arises physically due to the constructive interference of the two radiated fields.
(e) Show also that the decay of the atom pair starting in the antisymmetric state proceeds more slowly
than for a single, isolated atom in the excited state. This effect is called subradiance, and is due to
the destructive interference of the two radiated fields.
(f) Why is the description ‘‘two atoms playing photon ping-pong’’ appropriate to this problem, specif-
ically to the form of Hint?

30R. H. Dicke, ‘‘Coherence in Spontaneous Radiation Processes,’’ Physical Review 93, 99 (1954) (doi: 10.1103/PhysRev.93.99).

http://dx.doi.org/10.1103/PhysRev.93.99




Chapter 7

Atomic Angular-Momentum Structure

In this chapter, we will review and develop some of the formalism for handling angular momentum, in
particular as it applies to the structure of simple (hydrogen-like) atoms. We will use these results to look
at fine and hyperfine structure, and in particular how to handle light–matter interactions in the presence of
Zeeman-degenerate states (degenerate angular-momentum sublevels).

7.1 Angular Momentum

7.1.1 Operators and Eigenstates

The basics of the quantization of angular momentum is covered well enough in most introductory quantum-
mechanics text, so we’ll just review them here so we can get on to applications of the theory to atoms and
quantum optics. First, we will suppose that we have a set of operators Jx, Jy, and Jz, and we will take them
to be defined by the commutation relation

[Jα, Jβ ] = ih̄εαβγJγ ,
(7.1)

(angular-momentum commutator)

where εαβγ is the Levi-Civita symbol (completely antisymmetric ‘‘tensor,’’ though not technically a tensor
because it doesn’t transform correctly under rotations), having the values +1 if (αβγ) is a cyclic permutation
of (xyz), −1 if an odd permutation, and 0 otherwise. These operators will obviously represent angular
momenta associated with the three Cartesian axes, and so it will also be useful to define an operator
associated with the total angular momentum:

J2 = J 2
x + J 2

y + J 2
z . (7.2)

We assume these operators to correspond to observables, and are thus Hermitian. Out of the set of operators
{J2, Jx, Jy, Jz}, the above relations (7.1) and (7.2) show that the full set can be expressed in terms of only
two (e.g., Jx and Jy). Thus, to completely span the space of angular momentum states, we can choose to
have simultaneous eigenstates of any two such operators. This strategy is useful in spherically symmetric
systems, where such eigenstates should exist, and so any component Jα is as good as any other. However,
in view of the fundamental commutation relation, we can’t have simultaneous eigenstates for Jα and Jβ if
α 6= β. However, J2 commutes with Jα:

[Jα, J
2] = 0.

(7.3)
(angular-momentum commutator)

To see this, we can take Jα = Jx without loss of generality, in which case

[Jx, J
2] = [Jx, J

2
y ] + [Jx, J

2
z ]

= [Jx, Jy]Jy + Jy[Jx, Jy] + [Jx, Jz]Jz + Jz[Jx, Jz]

= (ih̄Jz)Jy + Jy(ih̄Jz) + (−ih̄Jy)Jz + Jz(−ih̄Jy)
= 0.

(7.4)
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Thus, we are free to construct simultaneous eigenstates of J2 and Jα. We make the arbitrary but conventional
choice of taking simultaneous eigenstates of J2 and Jz. We will thus need two quantum numbers, which we
call j and m, and define the eigenvalue λj of J2 to be some function of j,

J2|j m〉 = λj |j m〉, (7.5)

and the eigenvalue λm of Jz will similarly be some function of m,

Jz|j m〉 = λm|j m〉. (7.6)

Our goal in setting up the basic formalism will now be to work out the angular-momentum eigenvalues.

7.1.2 Ladder Operators and Eigenvalues

It is also useful to define two non-Hermitian operators, the ladder operators

J± := Jx ± iJy, (7.7)

which will turn out to be somewhat more convenient than Jx and Jy separately. Given the commutation
relation (7.3), we immediately see that the ladder operators commute with J2:

[J2, J±] = 0.
(7.8)

(ladder-operator commutator)

The commutators with Jz is not hard to work out,

[Jz, J±] = [Jz, Jx]± i[Jz, Jy] = ih̄Jy ± h̄Jx, (7.9)

or
[Jz, J±] = ±h̄J±.

(7.10)
(ladder-operator commutator)

We can also readily compute the commutator of the two ladder operators as

[J+, J−] = −2i[Jx, Jy] = 2h̄Jz. (7.11)

Now, to put the ladder operators to use, we can consider the action of J± on an eigenstate state |j m〉. In
particular, notice that since the Jα commute with J2, they transform |j m〉 to a state Jα|j m〉 such that

J2(Jα|j m〉) = JαJ
2|j m〉 = λj(Jα|j m〉). (7.12)

Thus, Jα|j m〉 is an eigenstate of J2 with the same eigenvalue as |j m〉, implying that j is unchanged. The
same conclusion of course holds for J±, and thus, since we will be considering the action of Jx,y,z,± on the
states |j,m〉 for the rest of this section, we can regard j as a fixed quantity.

We can then use the commutator (7.10) on |j m〉 to write

JzJ±|j m〉 = J±Jz|j m〉 ± h̄J±|j m〉 = (λm ± h̄)J±|j m〉. (7.13)

This shows that J±|j m〉 is an eigenstate of Jz with eigenvalue λm± h̄. Now we see the reason for the name
‘‘ladder operators,’’ since J+ acts to raise λm by h̄, and J− lowers it by the same amount. Now since m is
an arbitrary label for the states, we may define it such that λm = mh̄. That is, m represents the projection
of angular momentum along the z-axis in multiples of h̄. Then we may write

Jz|j m〉 = mh̄|j m〉 (7.14)
(Jz eigenvalues)

for the Jz eigenvalue equation, and for the ladder operators we have thus shown that

J±|j m〉 ∝ |j m± 1〉. (7.15)
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To establish the proper normalization, we note that

J∓J± = J 2
x + J 2

y ± i[Jx, Jy] = J2 − J2
z ∓ h̄Jz = J2 − Jz(Jz ± h̄), (7.16)

and thus the norm of the raised/lowered state is

〈j m|J∓J±|j m〉 = 〈j m|[J2 − Jz(Jz ± h̄)]|j m〉 = λj −m(m± 1)h̄2. (7.17)

Note that the right-hand side becomes negative for sufficiently large m, assuming λj to be fixed. However,
since 〈j m|J∓J±|j m〉 ≥ 0, we can conclude that there is a maximum value of m, say mmax, such that

J+|j mmax〉 = 0. (7.18)

Then applying Eq. (7.16) to |j mmax〉,

J−J+|j mmax〉 = [J2 − Jz(Jz + h̄)]|j mmax〉. (7.19)

The left-hand side vanishes, so

J2|j mmax〉 = Jz(Jz + h̄)|j mmax〉 = mmax(mmax + 1)h̄2|j mmax〉. (7.20)

Since j is likewise an arbitrary label for the eigenvalue λj = mmax(mmax+1)h̄2, we may thus define j := mmax,
with j ≥ 0, so that

J2|j m〉 = j(j + 1)h̄2|j m〉. (7.21)
(J2 eigenvalue equation)

Repeating this argument, Eq. (7.17) implies a smallest (negative) value of m, say mmin, so that

J−|j mmin〉 = 0. (7.22)

Again applying Eq. (7.16) to |j mmin〉,

J+J−|j mmin〉 = [J2 − Jz(Jz − h̄)]|j mmin〉, (7.23)

and since the left-hand side vanishes,

J2|j mmin〉 = Jz(Jz − h̄)|j mmin〉 = mmin(mmin − 1)h̄2|j mmin〉. (7.24)

Thus,
j(j + 1) = mmin(mmin − 1), (7.25)

which is satisfied by mmin = −j (the alternate solution, mmin = j + 1, violates the definition j = mmax).
Thus, m is constrained to be within a bounded range,

−j ≤ m ≤ j. (7.26)
(range constraint of m)

Recall that this followed from Eq. (7.17), to avoid a contradiction with the requirement 〈j m|J∓J±|j m〉 ≥ 0.
In particular, if we start with the state |j−j〉 and repeatedly apply J+, we should eventually end up with
(something proportional to) the |j+j〉 state. How do we know this? Referring again to Eq. (7.17), which
we may rewrite now as

〈j m|J∓J±|j m〉 =
[
j(j + 1)−m(m± 1)

]
h̄2. (7.27)

we see that the only state that vanishes when hit by J+ is |j (+j)〉. Thus, the only way to avoid a contradiction
(negative state norm) is for J n+ |j (−j)〉 ∝ |j (+j)〉 for some integer n. Further, we may conclude that every
state |j m〉 may be written as J n+ |j (−j)〉 (up to a scalar factor) for some integer n; otherwise we would have
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a state that, when raised arbitrarily many times by J+, would not vanish. Thus, we may conclude that m
takes on discrete, integer-separated values, according to

m ∈ {−j,−j + 1, . . . , j − 1, j} (2j + 1 possible values), (7.28)
(range constraint of m)

which means that there are 2j+1 possible values for m (i.e., because m+j ranges from 0 to 2j). Furthermore,
2j+1 must be an integer, because 2j is the number of times J+ must be applied to |j (−j)〉 to obtain |j (+j)〉.
This implies that

j ∈ Z or j +
1

2
∈ Z, (7.29)

(integer/half-integer constraint)
with j also nonnegative, as we discussed before. That is, j is either an integer or a half-integer. As we
will discuss later, only integer j can correspond to coordinate-space angular momenta; half-integer j are
restricted to representing intrinsic particle spin angular momenta (which can also have integer j).

Finally, just to tidy up loose ends, we can use Eq. (7.27) to write down

J±|j m〉 = h̄
√
j(j + 1)−m(m± 1) |j m±1〉

= h̄
√
(j ±m+ 1)(j ∓m) |j m±1〉

(7.30)
(ladder operator effects)

as the properly normalized action of the ladder operators on the angular-momentum eigenstates.

7.1.3 Addition of Two Angular Momenta: Clebsch–Gordan Coefficients

7.1.3.1 Basis States

Suppose we have two angular momenta J1 and J2, and we want to consider their sum J = J1 + J2. We
assume these angular momenta to correspond to independent degrees of freedom, and thus they commute:

[J1α, J2β ] = 0 ∀α,β . (7.31)

Treating the two angular momenta as separate entities, we can construct simultaneous eigenstates of J 2
1 ,

J 2
2 , J1z, and J2z, since everybody here commutes. We will denote these eigenstates by |j1 m1; j2 m2〉 ≡
|j1 m1〉|j2 m2〉, so that

J 2
1 |j1 m1; j2 m2〉 = j1(j1 + 1)h̄2|j1 m1; j2 m2〉
J 2
2 |j1 m1; j2 m2〉 = j2(j2 + 1)h̄2|j1 m1; j2 m2〉

J1z|j1 m1; j2 m2〉 = m1h̄|j1 m1; j2 m2〉
J2z|j1 m1; j2 m2〉 = m2h̄|j1 m1; j2 m2〉.

(7.32)

Now note that the total angular momentum J has the characteristics of an angular momentum operator,
since

[Jα, Jβ ] = [J1α + J2α, J1β + J2β ] = [J1α, J1β ] + [J2α, J2β ] = ih̄εαβγJ1γ + ih̄εαβγJ2γ = ih̄εαβγJγ . (7.33)

Thus, we may have simultaneous eigenstates of J2 and Jz. Also, it is easy to see that J 2
1 and J 2

2 both
commute with J2 and Jz (but J1z and J2z don’t commute with J2), so that we can represent our states in
terms of simultaneous eigenstates of J 2

1 , J 2
2 , J2, and Jz, which we will label by |j1, j2; j m〉, so that

J2
1 |j1, j2; j m〉 = j1(j1 + 1)h̄2|j1, j2; j m〉

J 2
2 |j1, j2; j m〉 = j2(j2 + 1)h̄2|j1, j2; j m〉
J2|j1, j2; j m〉 = j(j + 1)h̄2|j1, j2; j m〉
Jz|j1, j2; j m〉 = mh̄|j1, j2; j m〉.

(7.34)

Sometimes, the state |j1, j2; j m〉 is written more succinctly as |j,m〉 if j1 and j2 are clear from the context.
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7.1.3.2 Transformation between Bases and Clebsch–Gordan Coefficients

Now we have two distinct bases by which to represent a general state. The basic problem of angular-
momentum addition is thus to express any basis state in terms of a superposition of states from the other
basis. This is easy to do by using the representations of the identity in each basis:

|j1, j2; j m〉 =
∑

j′1j
′
2m1m2

|j′1 m1; j
′
2 m2〉〈j′1 m1; j

′
2 m2|j1, j2; j m〉

|j1 m1; j2 m2〉 =
∑

j′1j
′
2jm

|j′1, j′2; j m〉〈j′1, j′2; j m|j1 m1; j2 m2〉.
(7.35)

The inner products on the right-hand sides of the above equations are Clebsch–Gordan coefficients. Note
that J 2

1 and J 2
2 are Hermitian, and thus

〈j′1, j′2; j m|J 2
1 |j1 m1; j2 m2〉 = j′1(j

′
1 + 1)h̄2〈j′1, j′2; j m|j1 m1; j2 m2〉

= j1(j1 + 1)h̄2〈j′1, j′2; j m|j1 m1; j2 m2〉,
(7.36)

so that the Clebsch–Gordan coefficient vanishes unless j1 = j′1 (and similarly j2 = j′2). Additionally,
Jz = J1z + J2z, so

〈j1, j2; j m|Jz|j1 m1; j2 m2〉 = (m1 +m2)h̄〈j1, j2; j m|j1 m1; j2 m2〉

= mh̄〈j1, j2; j m|j1 m1; j2 m2〉,
(7.37)

and thus we must have
m = m1 +m2

(7.38)
(angular-momentum conservation)

for the Clebsch–Gordan coefficient to be nonvanishing. Thus, we may rewrite the transformation relations
(7.35) as

|j1, j2; j m〉 =
∑
m1m2

(m1+m2=m)

|j1 m1; j2 m2〉〈j1 m1; j2 m2|j1, j2; j m〉

|j1 m1; j2 m2〉 =
∑
jm

(m1+m2=m)

|j1, j2; j m〉〈j1, j2; j m|j1 m1; j2 m2〉,
(7.39)

or omitting the redundant labels,

|j m〉 =
∑
m1m2

(m1+m2=m)

|j1 m1; j2 m2〉〈j1 m1; j2 m2|j m〉

|j1 m1; j2 m2〉 =
∑
jm

(m1+m2=m)

|j m〉〈j m|j1 m1; j2 m2〉,
(7.40)

(transformation rules)

The other important constraint is

|j1 − j2| ≤ j ≤ j1 + j2
(7.41)

(triangular condition)

(recall that j1, j2 ≥ 0). To see this, first note that since m = m1 +m2, and the maximum value of m is the
maximum value of j, but is also given by j1+ j2. Thus, jmax = j1+ j2. To find the minimum value of j, note
that in the |j1 m1; j2 m2〉 basis, there are 2j1 + 1 states associated with the the |j1 m1〉 space and 2j2 + 1
states associated with the the |j2 m2〉 space, and thus the composite space is spanned by (2j1 + 1)(2j2 + 1)
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states. In the other basis, we get the correct number of states if jmin = |j1− j2|. That is, jmin is the solution
to

j1+j2∑
j=jmin

(2j + 1) = (2j1 + 1)(2j2 + 1), (7.42)

which we can see because, assuming without loss of generality that j1 ≥ j2,
j1+j2∑
j=j1−j2

(2j + 1) =

j2∑
j=−j2

[2(j1 + j) + 1] =

j2∑
j=−j2

(2j1 + 1) +

j2∑
j=−j2

2j = (2j1 + 1)(2j2 + 1). (7.43)

The cases j = |j1− j2| and j = j1 + j2 clearly correspond to antialigned and aligned constituent momentum
vectors, respectively.

The Clebsch–Gordan coefficients obey orthogonality relations as follows. From the second transforma-
tion rule in Eqs. (7.40),

〈j1 m′1; j2 m′2|j1 m1; j2 m2〉 =
∑
jm

〈j1 m′1; j2 m′2|j m〉〈j m|j1 m1; j2 m2〉, (7.44)

The left-hand side is zero unless m′1 = m1 and m′2 = m2, so∑
jm

〈j1 m′1; j2 m′2|j m〉〈j m|j1 m1; j2 m2〉 = δm1m′
1
δm2m′

2
.

(Clebsch–Gordan orthogonality relation) (7.45)
Similarly, the other transformation rule leads to∑

m1m2

〈j m|j1 m1; j2 m2〉〈j1 m1; j2 m2|j′ m′〉 = δjj′δmm′ ,

(Clebsch–Gordan orthogonality relation) (7.46)
which are reasonably obvious applications of different representations of the identity operator.

7.1.3.3 Calculation of Clebsch–Gordan Coefficients

To determine the Clebsch–Gordan coefficients, we make use of the raising and lowering operators

J1± = J1x ± iJ1y
J2± = J2x ± iJ2y
J± := J1± + J2±.

(7.47)

Then by writing out 〈j1 m1; j2 m2|J±|j m〉 = 〈j1 m1; j2 m2|(J1± + J2±)|j m〉, we find√
j(j + 1)−m(m± 1) 〈j1 m1; j2 m2|j m±1〉 =

√
j1(j1 + 1)−m1(m1 ∓ 1) 〈j1 m1∓1; j2 m2|j m〉

+
√
j2(j2 + 1)−m2(m2 ∓ 1) 〈j1 m1; j2 m2∓1|j m〉

(Clebsch–Gordan recursion relation) (7.48)
This recursion relation, in addition to some initial conditions, is sufficient to compute the coefficients. The
basic idea is as follows: Setting m = j and taking the upper sign option in Eq. (7.48) gives√

j1(j1 + 1)−m1(m1 − 1) 〈j1 m1−1; j2 m2|j j〉
+
√
j2(j2 + 1)−m2(m2 − 1) 〈j1 m1; j2 m2−1|j j〉 = 0,

(7.49)

which together with the special cases of Eq. (7.46)∑
m1m2

(m1+m2=j)

|〈j1 m1; j2 m2|j j〉|2 = 1 (7.50)



7.1 Angular Momentum 307

that pin down the normalization, all coefficients of the form 〈j1 m1 − 1; j2 m2|j j〉 can be determined up to
an arbitrary phase. It is conventional to take the coefficients 〈j1 j1; j2 j − j1|j j〉 to be real and positive.1
The recursion relation (7.49) can then generate all the rest of the Clebsch–Gordon coefficients from these
‘‘basis cases,’’ and an important consequence of the recursion relation (which only involves real recursion
coefficients) and the phase convention is that by convention all Clebsch–Gordon coefficients are real
(though not necessarily positive).

7.1.3.4 Explicit Formula

The above recursion procedure is fairly cumbersome, although sometimes useful. In a numerical calculation,
it is convenient to have explicit formulae to implement any of the coupling coefficients. Fortunately, the
Clebsch–Gordan coefficient may be computed according to the rather complicated formula2

〈j1,m1; j2,m2|j3,m3〉

= δ(m1+m2),m3

√
(j1 + j2 − j3)!(j1 + j3 − j2)!(j2 + j3 − j1)!

(j1 + j2 + j3 + 1)!

×
√
(2j3 + 1)(j1 +m1)!(j1 −m1)!(j2 +m2)!(j2 −m2)!(j3 +m3)!(j3 −m3)!

×
nmax∑
n=nmin

(−1)n

(j1 −m1 − n)!(j3 − j2 +m1 + n)!(j2 +m2 − n)!(j3 − j1 −m2 + n)!n!(j1 + j2 − j3 − n)!
,

(Clebsch–Gordan coefficient: explicit formula) (7.51)
where the summation limits

nmin = max{j2 − j3 −m1, j1 +m2 − j3, 0}
nmax = min{j1 −m1, j2 +m2, j1 + j2 − j3}

(7.52)

are chosen such that no factorial arguments are negative. For a nonzero result, we reiterate that we must
have m1 +m2 = m3, |j1 − j2| ≤ j3 ≤ |j1 + j2|, jα ≥ 0, and |mα| ≤ jα.

7.1.3.5 Symmetry Relations and Wigner 3-j Symbols

Now that we can compute the Clebsch–Gordan coefficients, we can ask, what are the shortcuts to relating
them if we just want to permute some symbols? For example, recall that the coupling of two angular
momenta according to

J1 + J2 = J3 (7.53)
is represented by the coefficient 〈j1 m1; j2 m2|j3 m3〉. However, J1 and J2 are on equal footing in being
added together to form J3, and so we should be able to switch them without a problem, at least up to an
overall phase. It turns out that according to the sign convention we have chosen,

〈j1 m1; j2 m2|j3 m3〉 = (−1)j1+j2−j3〈j2 m2; j1 m1|j3 m3〉.
(7.54)

(symmetry relation)

We can see this by redefining the index n in the explicit formula (7.51) according to n −→ (j1+ j2− j3)−n,
with the limits redefined appropriately to avoid any negative factorials, together with the simultaneous
exchanges j1 ←→ j2 and m1 ←→ m2. This transformation leaves the sum invariant, except for the sign
(−1)j1+j2−j3 (the same exchanges leave the prefactor of the sum invariant as well).

We can go even farther than this. The addition (7.53) is clearly equivalent to the addition

J3 − J1 = J2, (7.55)

and thus we expect
〈j1 −m1; j3 m3|j2 m2〉 ∝ 〈j1 m1; j2 m2|j3 m3〉. (7.56)

1This is known as the Condon–Shortley phase convention. See, e.g., D. M. Brink and G. R. Satchler, Angular Momen-
tum, 2nd ed. (Oxford, 1968), Section 2.7.2, p. 33.

2D. M. Brink and G. R. Satchler, op. cit., p. 34, Eq. (2.34).
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In fact, we can see that this is the case by noting that the recursion relation (7.48)√
j3(j3 + 1)−m3(m3 ± 1) 〈j1 m1; j2 m2|j3 m3±1〉

=
√
j1(j1 + 1)−m1(m1 ∓ 1) 〈j1 m1∓1; j2 m2|j3 m3〉
+
√
j2(j2 + 1)−m2(m2 ∓ 1) 〈j1 m1; j2 m2∓1|j3 m3〉,

(7.57)

upon the substitutions |j3m3〉 −→ |j2 m2〉, |j2m2〉 −→ |j1 −m1〉, |j1m1〉 −→ |j3 m3〉, and ± ←→ ∓, and
multiplying through by (−1)−m1 , becomes

(−1)−m1
√
j3(j3 + 1)−m3(m3 ± 1) 〈j3 m3±1; j1 −m1|j2 m2〉

= (−1)−(m1∓1)
√
j1(j1 + 1)− (−m1)[−(m1 ∓ 1)] 〈j3 m3; j1 −(m1∓1)|j2 m2〉

+ (−1)−m1
√
j2(j2 + 1)−m2(m2 ∓ 1) 〈j3 m3; j1 −m1|j2 m2∓1〉.

(7.58)

This recursion relation has the same form as the original, and indicates that (−1)−m1〈j3 m3; j1 −m1|j2 m2〉
obeys the same recursion relation as 〈j1 m1; j2 m2|j3 m3〉. Since the recursion relation determines the
m-dependence of the Clebsch–Gordan coefficients, we conclude that these two coefficients are proportional,

〈j1 m1; j2 m2|j3 m3〉 ∝ (−1)−m1〈j3 m3; j1 −m1|j2 m2〉, (7.59)

with the remaining proportionality constant to be determined depends only on the j’s. To get the j-dependent
amplitude, note that from Eq. (7.46) we may write∑

m1m2

|〈j1 m1; j2 m2|j3 m3〉|2 = 1∑
m1m3

|〈j3 m3; j1 −m1|j2 m2〉|2 = 1.
(7.60)

but since m1 +m2 = m3 holds in either case, the sums simplify to∑
m2

|〈j1 m1; j2 m2|j3 m3〉|2 = 1∑
m3

|〈j3 m3; j1 −m1|j2 m2〉|2 = 1.
(7.61)

Noting that the coefficients are equivalent in each case and that we have already taken care of the m-
dependence, we count 2j2 + 1 terms in the first sum and 2j3 + 1 in the second. Thus, for the sums to be
equivalent, we require

〈j1 m1; j2 m2|j3 m3〉 ∝ (−1)−m1

√
2j3 + 1

2j2 + 1
〈j3 m3; j1 −m1|j2 m2〉 (7.62)

where the remaining proportionality constant is a j-dependent phase. This we establish by noting the
convention we already mentioned that 〈j1 j1; j2 (j3 − j1)|j3 j3〉 is always positive. In this case, we need a
factor of (−1)j1 to cancel the factor of (−1)−m1 for this case, and so we can finally write the symmetry
relation

〈j1 m1; j2 m2|j3 m3〉 = (−1)j1−m1

√
2j3 + 1

2j2 + 1
〈j3 m3; j1 −m1|j2 m2〉.

(Clebsch–Gordan symmetry rule) (7.63)
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We can then take 〈j1 m1; j2 m2|j3 m3〉, apply Eq. (7.54), apply Eq. (7.63), and apply Eq. (7.54) again to
find

〈j1 m1; j2 m2|j3 m3〉 = (−1)j1+j2−j3〈j2 m2; j1 m1|j3 m3〉

= (−1)j1+j2−j3(−1)j2−m2

√
2j3 + 1

2j1 + 1
〈j3 m3; j2 −m2|j1 m1〉

= (−1)j1+j2−j3(−1)j2−m2(−1)j3+j2−j1
√

2j3 + 1

2j1 + 1
〈j2 −m2; j3 m3|j1 m1〉

= (−1)j2+m2(−1)2(j2−m2)

√
2j3 + 1

2j1 + 1
〈j2 −m2; j3 m3|j1 m1〉,

(7.64)

and noting that j2−m2 is always an integer, so (−1)2(j2−m2) = 1, we find the alternate symmetry relation

〈j1 m1; j2 m2|j3 m3〉 = (−1)j2+m2

√
2j3 + 1

2j1 + 1
〈j2 −m2; j3 m3|j1 m1〉.

(Clebsch–Gordan symmetry rule) (7.65)
Noting that this rule amounts to a cyclic permutation of the angular momenta while flipping the orientation
of one, we can apply this rule three times to find

〈j1 m1; j2 m2|j3 m3〉 = (−1)j2+m2

√
2j3 + 1

2j1 + 1
〈j2 −m2; j3 m3|j1 m1〉

= (−1)j2+j3+m2+m3

√
2j3 + 1

2j2 + 1
〈j3 −m3; j1 m1|j2 −m2〉

= (−1)j1+j2+j3+m1+m2+m3〈j1 −m1; j2 −m2|j3 −m3〉.

(7.66)

Noting that j3 −m3 and m1 +m2 − j3 are both integers, we can rewrite this as the final symmetry rule

〈j1 m1; j2 m2|j3 m3〉 = (−1)j1+j2−j3〈j1 −m1; j2 −m2|j3 −m3〉.
(Clebsch–Gordan symmetry rule) (7.67)

A nice way to summarize the symmetry relations here is to define the Wigner 3-j symbol in terms of the
Clebsch–Gordan coefficient as(

j1 j2 j3
m1 m2 m3

)
:=

(−1)j1−j2−m3

√
2j3 + 1

〈j1,m1; j2,m2|j3,−m3〉.
(7.68)

(Wigner 3-j symbol)

Then the symmetries are as follows: The symbol on the left-hand side of Eq. (7.68) is invariant under
even permutations of the columns, but odd permutations are accompanied by a factor (−1)j1+j2+j3 . The
simultaneous, triple replacement m1,2,3 −→ −m1,2,3 is similarly accompanied by the same factor. Finally,
the symbol is only nonvanishing if m1+m2+m3 = 0, and if j1, j2, and j3 obey the usual triangle condition.

7.1.4 Addition of Three Angular Momenta: Racah Coefficients andWigner 6-j Sym-
bols

Suppose now that we want to couple three angular momenta, J = J1 + J2 + J3. We can use the formalism
we have just developed for adding together two angular momenta, and simply iterate it. Unfortunately, the
result of doing this turns out not to be unique: it depends on which two angular momenta are coupled first.
For example, suppose we first add J12 = J1 + J2, using Eq. (7.40):

|j12 m12〉 =
∑
m1m2

(m1+m2=m12)

|j1 m1; j2 m2〉〈j1 m1; j2 m2|j12 m12〉. (7.69)
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Now we can add J = J12 + J3 to obtain

|j12, j3; j m〉 =
∑

m12m3
(m12+m3=m)

|j12 m12; j3 m3〉〈j12 m12; j3 m3|j m〉. (7.70)

Combining these two relations, we find the composite state in terms of the three original angular momenta
as

|j12, j3; j m〉 =
∑

m1m2m12m3

(m1+m2=m12)
(m12+m3=m)

|j1 m1; j2 m2; j3 m3〉 〈j12 m12; j3 m3|j m〉〈j1 m1; j2 m2|j12 m12〉. (7.71)

On the other hand, suppose we instead first added J23 = J2 + J3, and then J = J1 + J23, Then we instead
obtain

|j1, j23; j m〉 =
∑

m1m23
(m1+m23=m)

|j1 m1; j23 m23〉 〈j1 m1; j23 m23|j m〉

=
∑

m1m2m3m23

(m2+m3=m23)
(m1+m23=m)

|j1 m1; j2 m2; j3 m3〉 〈j1 m1; j23 m23|j m〉 〈j2 m2; j3 m3|j23 m23〉.
(7.72)

This expression is clearly different from Eqs. (7.70) and (7.71), but equally valid. Since we have proceeded
via the established procedure of adding two angular momenta, where the composite states form a complete
basis for the uncoupled states, we know that both |j12; j3; j m〉 and |j1; j23; j m〉 form alternate, complete
bases for the original space spanned by |j1 m1; j2 m2; j3 m3〉. Thus, there exists a unitary transformation
between the bases, which we can write in the same way as for Clebsch–Gordan coefficients as

|j12, j3; j m〉 =
∑
j23

|j1, j23; j m〉 〈j1, j23; j m|j12, j3; j m〉. (7.73)

(No sum over m is required, due to the orthogonality of the composite basis vectors in either addition
scheme.) The coefficient is in fact independent of m. To see this, set m = j,

|j12, j3; j j〉 =
∑
j23

|j1, j23; j j〉 〈j1, j23; j j|j12, j3; j j〉, (7.74)

Now apply the lowering operator J− from Eq. (7.30)

|j12, j3; j j − 1〉 =
∑
j23

|j1, j23; j j − 1〉 〈j1, j23; j j|j12, j3; j j〉, (7.75)

since the normalization coefficient will be the same on either side of the equation. We can continue to apply
the lowering operator to obtain the relation between states of any m, which are transformed with the same
coefficient as for m = j; thus, the coefficient is m-independent. Finally, we may write this ‘‘recoupling
equation’’ as

|j12, j3; j m〉 =
∑
j23

|j1, j23; j m〉
√

(2j12 + 1)(2j23 + 1)W (j1 j2 j j3; j12 j23)

=
∑
j23

|j1, j23; j m〉 (−1)j1+j2+j3+j
√
(2j12 + 1)(2j23 + 1)

{
j1 j2 j12
j3 j j23

}
,

(recoupling relation) (7.76)
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where the m-independent Racah W -coefficient3 is

W (j1 j2 j j3; j12 j23) :=
〈j1, j23; j m|j12, j3; j m〉√

(2j12 + 1)(2j23 + 1)

(7.77)
(Racah W -coefficient)

for any m, and the m-independent Wigner 6-j symbol4 is{
j1 j2 j12
j3 j j23

}
:=

(−1)j1+j2+j3+j〈j1, j23; j m|j12, j3; j m〉√
(2j12 + 1)(2j23 + 1)

.
(7.78)

(Wigner 6-j symbol)

Evidently, the two symbols are related by{
j1 j2 j3
l1 l2 l3

}
= (−1)j1+j2+l1+l2W (j1 j2 l2 l1; j3 l3).

(relation between Racah and Wigner 6-j symbols) (7.79)
The two symbols are equivalent up to a sign, with the Wigner 6-j symbol being somewhat more symmetric
in terms of permutation relations, as we discuss below. Both symbols are commonly used, though we will
generally stick with the 6-j symbol.

Note that from the definition in Eq. (7.73), the (real) inner product 〈j1; j23; j m|j12; j3; j m〉 is a unitary
and thus orthogonal matrix, with rows and columns labeled by j12 and j23. In particular, this means that√

(2j′ + 1)(2j′′ + 1)

{
j1 j2 j′

j3 j4 j′′

}
(7.80)

represents an orthogonal matrix with indices j′ and j′′. Then matrix multiplication with its transpose leads
to the identity matrix,∑

j

√
(2j + 1)(2j′ + 1)

{
j1 j2 j
j3 j4 j′

}√
(2j + 1)(2j′′ + 1)

{
j1 j2 j
j3 j4 j′′

}
= δj′j′′ . (7.81)

Since the result is nonzero only when j′ = j′′, we may instead write

∑
j

(2j + 1)(2j′′ + 1)

{
j1 j2 j
j3 j4 j′

}{
j1 j2 j
j3 j4 j′′

}
= δj′j′′

(orthogonality relation) (7.82)
as an orthogonality relation in terms of 6-j symbols.

7.1.4.1 Explicit Forms

To obtain a more useful expression for the 6-j symbol, we can first invert Eq. (7.72) to obtain

|j1 m1; j2 m2; j3 m3〉 =
∑

j23m23jm

|j1; j23; j m〉 〈j1 m1; j23 m23|j m〉〈j2 m2; j3 m3|j23 m23〉. (7.83)

Putting this into Eq. (7.71),

|j12; j3; j m〉 =
∑

m1m2m3m12
j23m23j′m′

|j1; j23; j′ m′〉 〈j12 m12; j3 m3|j′ m′〉〈j1 m1; j2 m2|j12 m12〉

× 〈j1 m1; j23 m23|j′ m′〉〈j2 m2; j3 m3|j23 m23〉,
(7.84)

3Giulio Racah, ‘‘Theory of Complex Spectra. II,’’ Physical Review 62 438 (1942) (doi: 10.1103/PhysRev.62.438); D. M.
Brink and G. R. Satchler, Angular Momentum, 2nd ed. (Oxford, 1968), Section 3.2, p. 40.

4A. R. Edmonds, Angular Momentum in Quantum Mechanics (Princeton, 1957), Section 3.3, p. 40.

http://dx.doi.org/10.1103/PhysRev.62.438
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and then projecting with 〈j1; j23; j m|, we find

〈j1; j23; j m|j12; j3; j m〉 =
∑

m1m2m3
m12m23

〈j12 m12; j3 m3|j m〉〈j1 m1; j2 m2|j12 m12〉

× 〈j1 m1; j23 m23|j m〉〈j2 m2; j3 m3|j23 m23〉.
(7.85)

Thus, we have the explicit form{
j1 j2 j12
j3 j j23

}
=

(−1)j1+j2+j3+j√
(2j12 + 1)(2j23 + 1)

∑
m1m2m3
m12m23

〈j12 m12; j3 m3|j m〉〈j1 m1; j2 m2|j12 m12〉

× 〈j1 m1; j23 m23|j m〉〈j2 m2; j3 m3|j23 m23〉.
(Wigner 6-j symbol, connection to Clebsch–Gordan coefficients) (7.86)

A somewhat simpler explicit formula due to Racah5 comes from putting in the explicit formula (7.51) for
the Clebsch–Gordan coefficients into the above expression, with the result{

j1 j2 j3
l1 l2 l3

}
= ∆(j1, j2, j3)∆(j1, l2, l3)∆(l1, j2, l3)∆(l1, l2, j3)

×
nmax∑
n=nmin

(−1)n(n+ 1)!

(n− J)!(n− k1)!(n− k2)!(n− k3)!(m1 − n)!(m2 − n)!(m3 − n)!
,

(Wigner 6-j symbol: explicit formula) (7.87)
where we have used the shorthand symbols

J = j1 + j2 + j3

k1 = j1 + l2 + l3

k2 = l1 + j2 + l3

k3 = l1 + l2 + j3

m1 = j1 + j2 + l1 + l2

m2 = j2 + j3 + l2 + l3

m3 = j3 + j1 + l3 + l1

nmin = max{j, k1, k2, k3}
nmax = min{m1,m2,m3}

∆(a, b, c) =

√
(a+ b− c)!(b+ c− a)!(c+ a− b)!

(a+ b+ c+ 1)!
.

(7.88)

The 6-j symbol must satisfy the triangular constraints for four sets of ordered triples,

(j1, j2, j3) : |j1 − j2| ≤ j3 ≤ j1 + j2, |j3 − j1| ≤ j2 ≤ j3 + j1, |j2 − j3| ≤ j1 ≤ j2 + j3,

(j1, l2, l3) : |j1 − l2| ≤ l3 ≤ j1 + l2, |l3 − j1| ≤ l2 ≤ l3 + j1, |l2 − l3| ≤ j1 ≤ l2 + l3,

(l1, j2, l3) : |l1 − j2| ≤ l3 ≤ l1 + j2, |l3 − l1| ≤ j2 ≤ l3 + l1, |j2 − l3| ≤ l1 ≤ j2 + l3,

(l1, l2, j3) : |l1 − l2| ≤ j3 ≤ l1 + l2, |j3 − l1| ≤ l2 ≤ j3 + l1, |l2 − j3| ≤ l1 ≤ l2 + j3,

(7.89)

which follow from the constraint (7.41) for the Clebsch–Gordan coefficients [where we may exchange j1 ←→
j23 and j12 ←→ j3 in view of the definition (7.85)], the expression (7.86) for the 6-j symbol, and the
permutation symmetries in the following section. (The permutation symmetries lead to yet more triangle
inequalities.) The 6-j symbols must also obviously have jα ≥ 0, lα ≥ 0 and also 2jα ∈ Z and 2lα ∈ Z

5A. R. Edmonds, op. cit., p. 99; Giulio Racah, op. cit.
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to represent angular-momentum eigenvalues (either integer or half-integer spin). For the 6-j symbol to be
nonzero, the elements of the above triples must also add up to an integer,

j1 + j2 + j3 ∈ Z
j1 + l2 + l3 ∈ Z
l1 + j2 + l3 ∈ Z
l1 + l2 + j3 ∈ Z,

(7.90)

due again to the expression (7.86) for the Clebsch–Gordan coefficients, which effectively add any two elements
of each triple to obtain the third: all integer momenta are okay, but two half-integer momenta must add to
produce an integer momentum. Of course, once the 6-j symbols are computed this way, the Racah coefficient
can then be found using Eq. (7.79).

7.1.4.2 Symmetry Relations

As we mentioned above, the 6-j symbols are simpler than the Racah coefficients under permutations of
the elements. We will simply summarize the symmetry relations, which follow from the above formulae,
in particular by recasting Eq. (7.86) in a very symmetric form as a product of four 3-j symbols. The 6-j
symbols are invariant under any exchange of columns, such as{

j1 j2 j3
l1 l2 l3

}
=

{
j2 j1 j3
l2 l1 l3

}
=

{
j3 j2 j1
l3 l2 l1

}
=

{
j1 j3 j2
l1 l3 l2

}
, (7.91)

and so on. The 6-j symbols are also invariant under the following interchanges,{
j1 j2 j3
l1 l2 l3

}
=

{
l1 l2 j3
j1 j2 l3

}
=

{
l1 j2 l3
j1 l2 j3

}
=

{
j1 l2 l3
l1 j2 j3

}
, (7.92)

where the upper and lower values are interchanged in any two columns.
The Wigner 6-j symbols will be useful in decomposing the reduced matrix elements for the dipole

operator that we will derive. We will thus consider the 6-j symbols again below.

7.1.4.3 Addition of Four Angular Momenta: Wigner 9-j Symbols

Now let’s consider the coupling of four angular momenta,6 J = J1 + J2 + J3 + J4. Obviously, from our
discussion of adding three angular momenta, there will be no unique way to add these together. For example,
suppose that we add J12 = J1 + J2 and J34 = J3 + J4, and then finally J = J12 + J34. We can denote an
eigenstate coupled in this fashion as

|j12, j34; j m〉, (7.93)

where we keep only the last addition of uncoupled momenta to make it obvious how we arrived at the result
(i.e., the dependence on j1, j2, j3, and j4 is implied). We could also couple the angular momenta in alternate
pairs, adding J13 = J1+J3 and J24 = J2+J4, and then finally J = J13+J24, where we denote the eigenstate

|j13, j24; j m〉. (7.94)

Again, there is an m-independent, orthogonal transformation between these two bases, which we use to
define the Wigner 9-j symbol:7

〈j12, j34; j|j13, j24; j〉 =:
√
(2j12 + 1)(2j34 + 1)(2j13 + 1)(2j24 + 1)

 j1 j2 j12
j3 j4 j34
j13 j24 j

 .

(Wigner 9-j symbol) (7.95)
6‘‘Four, four angular momentum vectors, ah ah ah…’’ –Count von Count
7Edmonds, op. cit., Section 6.4, p. 100.
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Note that we have dropped the m quantum number, since the result is m-independent anyway. To obtain
an expression for the 9-j symbol, we can perform the recoupling of the angular momenta in multiple steps
as

〈j12, j34; j|j13, j24; j〉 =
∑
j234

〈j12, j34; j|j1, j2(34); j〉 〈j1, j2(34); j|j13, j24; j〉

=
∑
j234

〈j12, j34; j|j1, j2(34); j〉 〈j2, j34; j2(34)|j3, j42; j3(42)〉 〈j1, j3(42); j|j13, j24; j〉

=
∑
j234

〈j1, j2(34); j|j12, j34; j〉 (−1)j2+j34−j234〈j3, j42; j3(42)|j34, j2; j(34)2〉

× (−1)j2+j4−j42〈j1, j3(42); j|j13, j42; j〉

(7.96)

where we have used parentheses in the subscripts in cases where the order of coupling is ambiguous—
though note that the numerical values are the same for the same set of subscripts, as in j24 = j42 or
j234 = j2(34) = j(34)2 = j3(42), after any summations are carried out. In the second step, we used

〈j1, j2(34); j| = 〈j1, j2(34); j|j1, j3(42); j〉 〈j1, j3(42); j|

= 〈j2, j34; j2(34)|j3, j42; j3(42)〉 〈j1, j3(42); j|,
(7.97)

while in the last step of Eq. (7.96), we used the symmetry rule (7.54) to change the order of two couplings.
These three coefficients each represent the coupling of three angular momenta, and thus we can use the
definition (7.78) of the 6-j symbol three times to obtain

〈j12, j34; j|j13, j24; j〉 =
∑
j234

(−1)−(j1+j2+j34+j)
√

(2j12 + 1)(2j234 + 1)

{
j1 j2 j12
j34 j j234

}
× (−1)j2+j34−j234(−1)−(j2+j3+j4+j234)

√
(2j24 + 1)(2j34 + 1)

{
j3 j4 j34
j2 j234 j24

}
× (−1)j2+j4−j24(−1)−(j1+j3+j24+j)

√
(2j13 + 1)(2j234 + 1)

{
j1 j3 j13
j24 j j234

}
=
∑
j234

(−1)2j234(2j234 + 1)
√
(2j12 + 1)(2j13 + 1)(2j24 + 1)(2j34 + 1)

×
{

j1 j2 j12
j34 j j234

}{
j3 j4 j34
j2 j234 j24

}{
j13 j24 j
j234 j1 j3

}
,

(7.98)
where in the last step we used j1 + j + j234 ∈ Z and j3 + j234 + j24 ∈ Z, according to the constraints of the
6-j symbols, to simplify the expression for the sign. Comparing to the definition (7.95) of the 9-j symbol,
we find the explicit formula j1 j2 j3

k1 k2 k3
`1 `2 `3

 =
∑
s

(−1)2s(2s+ 1)

{
j1 j2 j3
k3 `3 s

}{
k1 k2 k3
j2 s `2

}{
`1 `2 `3
s j1 k1

}
,

(Wigner 9-j symbol in terms of 6-j symbols) (7.99)
in terms of a sum over products of 6-j symbols, after changing to a more symmetric notation.

We will be able to accomplish what we want in terms of angular-momentum structure without having
to resort to the 9-j symbol. However, it will help to consider the coupling of four angular momenta in a
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slightly different way. First, we can couple the four angular momenta in two stages as

〈j(12)3 j4; j|j23 j14; j〉 = 〈j(12)3 j4; j|j1(23), j4; j〉 〈j1(23), j4; j|j23 j14; j〉

= 〈j1(23), j4; j|j(12)3 j4; j〉 (−1)j1+j23−j123〈j23 j14; j|j(23)1, j4; j〉

= (−1)−j1−j2−j3−j4−2j123−j
√
(2j12 + 1)(2j23 + 1)(2j123 + 1)(2j14 + 1)

×
{
j1 j2 j12
j3 j123 j23

}{
j23 j1 j123
j4 j j14

}
,

(7.100)

while we can make the same coupling in three stages, as we did for the 9-j symbol:

〈j(12)3 j4; j|j23 j14; j〉 =
∑
j124

〈j(12)3 j4; j|j(12)4, j3; j〉 〈j(12)4, j3; j|j(14)2, j3; j〉 〈j(14)2, j3; j|j23 j14; j〉

=
∑
j124

(−1)j123+j4−j(−1)j12+j4−j124〈j4 j(12)3; j|j4(12), j3; j〉

× (−1)j12+j4−j124(−1)j1+j4−j14〈j4(12), j3; j|j(41)2, j3; j〉

× (−1)j14+j23−j〈j14 j23; j|j(14)2, j3; j〉

=
∑
j124

(−1)j1−2j+2j12+j23+j123−2j124

× (−1)−(j4+j12+j3+j)
√

(2j123 + 1)(2j124 + 1)

{
j4 j12 j124
j3 j j123

}
× (−1)−(j4+j1+j2+j124)

√
(2j12 + 1)(2j14 + 1)

{
j4 j1 j14
j2 j124 j12

}
× (−1)−(j14+j2+j3+j)

√
(2j23 + 1)(2j124 + 1)

{
j14 j2 j124
j3 j j23

}
.

(7.101)

Equating these two expressions and permuting some of the 6-j symbol elements, we find the Biedenharn–
Elliott sum rule 8{

j1 j2 j12
j3 j123 j23

}{
j23 j1 j123
j4 j j14

}
=
∑
j124

(−1)j1+j2+j3+j4+j12+j23+j14+j123+j124+j(2j124 + 1)

×
{

j3 j2 j23
j14 j j124

}{
j2 j1 j12
j4 j124 j14

}{
j3 j12 j123
j4 j j124

}
(Biedenharn–Elliott sum rule) (7.102)

after using the usual tricks to simplify the sign factor.

7.2 Static Angular-Momentum Structure of Atoms

In the standard textbook version of the nonrelativistic, quantum-mechanical hydrogen-like atom,9 an electron
of reduced mass

m =
memn

me +mn
≈ me, (7.103)

where me is the electron mass, and mn is the nuclear mass, moves in the central potential

V (r) = − Ze2

4πε0r
, (7.104)

8L. C. Biedenharn, ‘‘An Identity Satisfied by the Racah Coefficients,’’ Journal of Mathematics and Physics 31, 287 (1953);
J. P. Elliott, ‘‘Theoretical Studies in Nuclear Structure. V. The Matrix Elements of Non-Central Forces with an Application to
the 2p-Shell,’’ Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 218, 345 (1953); A.
R. Edmonds, Angular Momentum in Quantum Mechanics (Princeton, 1957), p. 97, Eq. (6.2.12).

9See, e.g., John L. Powell and Bernd Crasemann, Quantum Mechanics (Addison–Wesley, 1961), Section 7-7, p. 220.
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where e is the fundamental charge, and the nuclear charge is Ze. The standard result for the energies is

En = −
(
mc2

2
(Zα)2

)
1

n2
, (7.105)

where n is the radial (principle) quantum number,

α =
e2

4πε0h̄c
≈ 1

137
(7.106)

is the fine-structure constant, and the coefficient of 1/n2 has the approximate value −Z2(13.6 eV). This
energy expression says that, at this crude level of approximation, the hydrogen-like-atom energies do not
depend on any angular-momentum quantum numbers.

In what follows, we will use the standard notation of n, l, and m as the usual quantum numbers
referring to the single-electron state |n l m〉. However, to be a bit more general, for multielectron atoms we
will refer to the total quantities using capital letters. That is, L is the quantum number for the total electron
orbital angular momentum, S is the quantum number for the total electron spin, and so on.

7.2.1 Fine Structure

At the next level of approximation, we find that angular momentum does contribute some energy shifts,
splitting some of the degenerate lines in the above simplistic treatment. Because of the relatively small
splittings, at least in lighter atoms—for example 0.58 nm for the common yellow 589 nm line of sodium (seen
in sodium lamps everywhere)—this splitting goes by the name of fine structure.10 We can treat this effect
to lowest order as follows. Because the electron orbits the nucleus, it moves through the nuclear Coulomb
field and thus ‘‘sees’’ in its rest frame an effective magnetic field

B = − v
c2
×E (7.107)

via the Lorentz transformation for electromagnetic fields.11 The Coulomb force on the electron is

F = −eE = −∇V (r) = −r
r
∂rV (r), (7.108)

and so with the orbital angular momentum

L = r× p = mr× v, (7.109)

the effective magnetic field becomes

B = −∂rV (r)

c2er
v× r =

∂rV (r)

mc2er
L. (7.110)

The electron’s magnetic moment due to its intrinsic spin is

µS = −µBgS

S
h̄
, (7.111)

where µB := eh̄/2me is the Bohr magneton (µB = 9.274 009 15(23) × 10−24 J/T = h · 1.399 624 604(35)
MHz/G12), gS is the electron g-factor (gS ≈ 2 in Dirac theory, but due to quantum effects is slightly larger,

10Fine structure was first described by A. Sommerfeld, ‘‘Zur Quantentheorie der Spektrallinien,’’ Annalen der Physik 356, 1
(1916) (doi: 10.1002/andp.19163561702).

11See David J. Griffiths, Introduction to Electrodynamics, 2nd ed. (Prentice-Hall, 1989), Eq. (10.120), p. 497.
122006 CODATA recommended value; see P. J. Mohr, B. N. Taylor, and D. B. Newell, ‘‘The 2006 CODATA Recommended

Values of the Fundamental Physical Constants, Web Version 5.1,’’ available at http://physics.nist.gov/constants (National
Institute of Standards and Technology, Gaithersburg, MD 20899, 31 December 2007).

http://dx.doi.org/10.1002/andp.19163561702
http://physics.nist.gov/constants
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gS = 2.002 319 304 3622(15)13), and S is the electron spin operator. The interaction energy of the magnetic
field (7.110) with the magnetic moment (7.111) gives the fine-structure Hamiltonian

Hfs = −µS ·B =
µBgS∂rV (r)

mc2h̄er
L · S =

(
Ze2

4πε0

)
gS

2m2c2r3
L · S. (7.112)

The problem with this expression is that we still need to transform back into the lab frame, which is a
noninertial transformation. This correction is Thomas precession, and the correction amounts to adding
the Thomas-precession Hamiltonian14

HT = −Hfs(gS −→ 1), (7.113)

so that the real fine-structure Hamiltonian is

Hfs +HT =
µB(gS − 1)∂rV (r)

mc2h̄er
L · S =

(
Ze2

4πε0

)
(gS − 1)

2m2c2r3
L · S. (7.114)

The coupling is thus proportional to L · S.
The uncoupled states are of the form |n L mL mS〉, where L are represent eigenvalues of the L2

operator, mL represent eigenvalues of the Lz operator, and mS represent eigenvalues of the Sz operator. (We
suppress dependence on the S quantum number, since it is always 1/2.) Under the L · S coupling, these are
no longer good quantum numbers. We can thus introduce the composite quantum number

J = L + S, (7.115)
(fine-structure angular momentum)

where from the triangularity condition (7.41) we have the new quantum number in the range

|L− S| ≤ J ≤ L+ S (7.116)

The magnitude of J is
J2 = L2 + S2 + 2L · S, (7.117)

or solving for the dot product,
L · S =

1

2

(
J2 − L2 − S2

)
. (7.118)

Thus, under the interaction we may still have eigenstates of L, S, J and mJ . In particular, the fine-structure
shift due to this interaction is given to by simply taking the expectation value of the interaction Hamltonian
in the coupled basis:

∆Efs = 〈n;L, S; J mJ |Hfs|n/L, S; J mJ〉

=
µBh̄(gS − 1)〈n|(1/r)∂rV (r)|n〉

2mc2e
[J(J + 1)− L(L+ 1)− S(S + 1)] .

(7.119)

The fine-structure shift then depends on J , breaking the degeneracy of different L levels. Actually, in writing
down this expression, we are ignoring a relativistic correction of similar order, which also depends on L.15

However, the form of the perturbation is the important issue; when dealing with heavier alkali atoms it is
difficult to obtain a quantitatively accurate expression anyway. Thus the main point is the introduction of
the composite angular momentum J to label the fine-structure states, where the energy levels can be taken
to be experimentally known, generally to high accuracy.

132006 CODATA recommended value.
14John David Jackson, Classical Electrodynamics, 3rd ed. (Wiley, 1999), Section 11.8, p. 548.
15David J. Griffiths, Introduction to Quantum Mechanics (Prentice-Hall, 1995), Section 6.3.1, p. 236.
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7.2.1.1 Spectroscopic Notation for Simple Atoms

Now that we have introduced the basics of atomic structure, we briefly describe the common spectroscopic
labels, of the form

n 2S+1LJ . (7.120)

The n is the principal quantum number of the active electron. The 2S + 1 gives the multiplicity of the
electron spin, or the number of possible electron-spin states. For a single-electron (hydrogen-like) atom,
2S + 1 is always 2, since S = 1/2. The L quantum number is represented by a letter: S for L = 0, P for
L = 1, D for L = 2, F for L = 3, G for L = 4, H for L = 5, and so on. The first four letters stand for
descriptors for lines in alkali spectra (sharp, principal, diffuse, fundamental), and the rest are alphabetic
continuations. Since the scheme is based on abbreviations, the letters should, in the author’s opinion, be
set in roman, not italics, as is commonly the case in the literature. Finally, the subscript indicates the J
quantum number. For example, the principle |g〉 −→ |e〉 laser-cooling transition for cesium is the D2 line,
which is written

6 2S1/2 −→ 6 2P3/2. (7.121)

The principal quantum number is 6 for both states, being the lowest available for the valence electron. Again
for a single active electron in alkali atoms, 2S + 1 = 2. The ground and excited L quantum numbers are 0
and 1, respectively. Finally, J = 1/2 for the ground state, while J = 3/2 for the excited state (since L = 1
for the excited state, either J = 1/2 or J = 3/2, corresponding to |L− S and L+ S, respectively).

As a slightly more complicated example, we consider strontium, which has two valence electrons, and
a slightly more general notation. Here, for example, the narrow, second-stage laser-cooling transition is the
‘‘intercombination line’’

5 s2 1S0 −→ 5p 3P1. (7.122)

(The 1S0 here would be read as ‘‘singlet S zero,’’ and the 3P1 would be read as ‘‘triplet P one.’’) Note that
the configurations for the two electrons are also given in lower case. In the ground state, both electrons are
in the s (l = 0) orbital, while in the excited state, one is promoted to the p (l = 1) orbital (the 5s for the
unexcited electron is implied). In these two levels the respective total orbital quantum number is given also
by S (L = 0) and P (L = 1). The ground-state 2S + 1 value reflects S = 0, while the excited-state value
reflects the other possible S = 1 value, where S now represents the total electron spin S1 + S2. Hence, the
‘‘intercombination line’’ name, since the transition flips an atomic spin, which is electric-dipole-forbidden (a
magnetic field must flip the spin). Finally J = 0 for the ground state, since S = L = 0, but for the excited
state, where S = 1 and L = 1, J could be 0, 1, or 2.

7.2.2 Hyperfine Structure

The hyperfine structure of an atom arises from the interaction between the total atomic angular momen-
tum J and the nuclear angular momentum I. We will develop this a bit more carefully, as in atomic physics
and quantum optics a single laser could interact almost resonantly with hyperfine-split states, which is not
as often the case with fine structure. The basic idea is essentially the same as for the fine-structure case.
The nuclear magnetic moment is

µI = −µBgI

I
h̄
, (7.123)

where I is the nuclear spin operator and gI is the nuclear spin g-factor.16 Again, the electron is effectively a
current loop, and generates a magnetic field of the form

B = −bJ, (7.124)

where b is some positive constant, since B and J should be antiparallel for an electron where the charge
is negative. The interaction is then given by (ignoring hyperfine couplings between different J , and thus

16Experimentally measured values for gI for the alkali atoms are given by E. Arimondo, M. Inguscio, and P. Violino, ‘‘Ex-
perimental determinations of the hyperfine structure in the alkali atoms,’’ Reviews of Modern Physics 49, 31 (1977) (doi:
10.1103/RevModPhys.49.31).

http://dx.doi.org/10.1103/RevModPhys.49.31
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assuming J is still a good quantum number)

Hhfs = −µI ·B = −µBgIb

h̄
I · J =: Ahfs

I · J
h̄2

, (7.125)

where, since we have considered the interaction of the nuclear and electron magnetic dipoles, Ahfs is called
the magnetic dipole hyperfine constant and has the dimension of energy. For all abundant alkali atoms,
Ahfs > 0, since gI < 0 (with the exception of 40K, where the sign is opposite). The form of this interaction
(I · J) is very similar to the fine-structure (L · S) interaction.

As in the fine-structure case, we can add the angular momenta to obtain the total atomic angular
momentum

F = J + I. (7.126)
(hyperfine-structure angular momentum)

Under this interaction, we can use the new hyperfine quantum number F to label the new eigenstates; as
in the fine-structure case, we square Eq. (7.126) to obtain the operator equation

F2 = J2 + I2 + 2I · J, (7.127)

and thus when the operator I · J acts on a hyperfine state |JIF 〉 we find that it is an eigenstate,

(I · J)|JIF 〉 = h̄2K

2
|JIF 〉, (7.128)

where the eigenvalue is written in terms of the combination

K = F (F + 1)− I(I + 1)− J(J + 1) (7.129)

of angular-momentum quantum numbers. Thus, the energy shift due to this interaction is simply

∆Ehfs =
1

2
AhfsK. (7.130)

Here Ahfs can be computed, though the calculation can be complex, or simply experimentally measured. The
hyperfine shift is much smaller than the fine-structure shift. This is because of the weak nuclear magnetic
moment: while the electron moment was of the order of µB = eh̄/2me, the nuclear moment is of the order of
µN = eh̄/2mp, where mp is the proton mass. The nuclear moment is thus smaller by a factor on the order
of me/mp ≈ 1/1836, and so the hyperfine interaction should be smaller than the fine-structure interaction
by a factor on the same order.

The higher-order corrections to this simple theory become quite involved, and so we summarize the
main points here.17 In general, the interaction between the nuclear and electron angular momenta can be
expanded in a multipole series,

Hhfs =
∑
k

T(k)
e ·T(k)

n , (7.131)

where T(k)
e and T(k)

n are spherical tensor operators of rank k (defined below in Section 7.3.3), that respectively
operate on only the electronic and nuclear Hilbert spaces. The k = 0 monopole term has already been
included in the fine-structure calculation. We have treated the k = 1 magnetic-dipole term above. The k = 2
and k = 3 terms correspond respectively to the electric-quadrupole and magnetic-octupole terms. Because
we will compute expectation values with respect to |J I F 〉 states, due to parity considerations either the
electric or magnetic interaction will alternatingly vanish at each multipole order (with the electric dipole
operator coupling only states of opposite parity, for example). The interaction between the electron and

17Charles Schwartz, ‘‘Theory of Hyperfine Structure,’’ Physical Review 97, 380 (1955) (doi: 10.1103/PhysRev.97.380). The
electric hexadecapole term is given here in addition to the ones we have shown. See also Lloyd Armstrong, Jr., Theory of the
Hyperfine Structure of Free Atoms (Wiley-Interscience, New York, 1971), Eqs. (IV-25), (IV-28), and (IV-31).

http://dx.doi.org/10.1103/PhysRev.97.380
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nuclear angular momenta is given by evaluating these operators, with the result up to the magnetic-octupole
contribution reading

Hhfs = Ahfs
I · J
h̄2

+Bhfs

3
h̄2 (I · J)2 + 3

2h̄ (I · J)− I(I + 1)J(J + 1)

2I(2I − 1)J(2J − 1)

+ Chfs

10
h̄3 (I · J)3 + 20

h̄2 (I · J)2 + 2
h̄ (I · J)[I(I + 1) + J(J + 1) + 3− 3I(I + 1)J(J + 1)]− 5I(I + 1)J(J + 1)

I(I − 1)(2I − 1)J(J − 1)(2J − 1)
.

(7.132)
Again, the three terms on the right-hand side respectively represent magnetic-dipole (applicable for I, J > 0),
electric-quadrupole (applicable for I, J > 1/2), and magnetic-octupole (applicable for I, J > 1) couplings.
Thus, Ahfs is the magnetic-dipole hyperfine constant, Bhfs is the electric-quadrupole hyperfine constant, and
Chfs is the magnetic-octupole hyperfine constant. We can see which terms are applicable to a given transition
from the general product rule (7.267) that we prove later for commuting tensor operators,

〈J, I;F mF |T(k)
e ·T(k)

n |J, I;F mF 〉 = (−1)J+I+F
√
(2J + 1)(2I + 1)

{
F I J
k J I

}
〈J ||T(k)

e ||J〉 〈I||T(k)
n ||I〉,

(7.133)
where to satisfy the triangle inequalities for the 6-j symbol, we must have J ≥ k/2 and I ≥ k/2.

The eigenenergies under the hyperfine interaction may then be written in terms of the shift

∆Ehfs =
1

2
AhfsK +Bhfs

3
2K(K + 1)− 2I(I + 1)J(J + 1)

4I(2I − 1)J(2J − 1)

+ Chfs
5K2(K/4 + 1) +K[I(I + 1) + J(J + 1) + 3− 3I(I + 1)J(J + 1)]− 5I(I + 1)J(J + 1)

I(I − 1)(2I − 1)J(J − 1)(2J − 1)
.

(7.134)
Generally the effect of the last octupole term is quite difficult to observe, but it has been observed in
the hyperfine structure of cesium,18 where for example the values Ahfs = 50.288 27(23) MHz, Bhfs =
−0.4934(17) MHz, and Chfs = 0.56(7) kHz were reported for the 62P3/2 (D2 excited) level manifold. Thus,
the octupole interaction contributes in cesium to the hyperfine splittings only at the kHz level, a very difficult
level of accuracy to achieve in observing optical transitions.

To illustrate the hyperfine structure, the hyperfine structure of the cesium D2 (laser-cooling) transition
is shown here.19 Note that the ground-state hyperfine splitting of 133Cs is particularly significant, as it defines
our measure of time: the second is defined such that the ground-state hyperfine splitting of an isolated 133Cs
atom is exactly 9.192 631 770 GHz.

18Vladislav Gerginov, Andrei Derevianko, and Carol E. Tanner, ‘‘Observation of the Nuclear Magnetic Octupole Moment of
133Cs,’’ Physical Review Letters 91, 072501 (2003) (doi: 10.1103/PhysRevLett.91.072501).

19For sources of the measured values, along with more compiled data and a more terse description of hyperfine structure, see
Daniel A. Steck, ‘‘Cesium D2 Line Data,’’ available online at http://steck.us/alkalidata.

http://dx.doi.org/10.1103/PhysRevLett.91.072501
http://steck.us/alkalidata
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62S1/2

62P3/2

852.347 275 82(27) nm
351.725 718 50(11) THz

11 732.307 104 9(37) cm-1

1.454 620 563(35) eV

4.021 776 399 375 GHz (exact)

5.170 855 370 625 GHz (exact)

9.192 631 770 GHz (exact)

F = 4

F = 3

gF o=o1/4

(0.35 MHz/G)

gF o=o-1/4

(-o0.35 MHz/G)

263.8906(24) MHz

12.798 51(82) MHz

188.4885(13) MHz

339.7128(39) MHz

251.0916(20) MHz

201.2871(11) MHz

151.2247(16) MHz

F = 5

F = 4

F = 3

F = 2

gF o=o2/5

(0.56 MHz/G)

gF o=o4/15

(0.37 MHz/G)

gF o=o0

(0.00 MHz/G)

gF o=o-2/3

(-o0.93 MHz/G)

7.3 Rotations and Irreducible Tensor Operators

7.3.1 Rotation Operator

What is the operator that induces a rotation in quantum mechanics? Rather than deduce it directly, we
will ‘‘cheat’’ and simply quantize the classical version of a rotation. Consider the classical angle (generalized
coordinate) ζ, with conjugate (angular) momentum J . The HamiltonianH = J leads to Hamilton’s equations
∂tζ = 1 and ∂tJ = 0. That is, J is a constant of the motion, and ζ evolves linearly in time as ζ(t) = t.
Thus, time evolution according to this Hamiltonian is equivalent to a rotation through an angle t. Quantum
mechanically, since this Hamiltonian is time-independent, the time-evolution operator is

U(t, 0) = exp
(
− iHt

h̄

)
= exp

(
− iJζ

h̄

)
=: R(ζ), (7.135)

then we have the rotation operator (for a two-dimensional system) for a rotation through angle ζ. General-
izing the Hamiltonian to H = Jx + Jy + Jz, a rotation by angle ζ (that is, a rotation about the ζ-axis by
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angle ζ) is induced by the unitary rotation operator

R(ζ) := exp
(
− iJ · ζ

h̄

)
.

(7.136)
(rotation operator)

Note that a rotation of an angular-momentum state |j m〉 about the z-axis (the quantization axis) is partic-
ularly simple, as

R(ζẑ)|j m〉 = exp
(
− iJzζ

h̄

)
|j m〉 = e−imζ |j m〉. (7.137)

(rotation operator)

However, a rotation about any other axis is more complicated, as the result will in general be a superposition
of angular-momentum states. Being a rotation, the j quantum number must be left unchanged (following
directly from [J2,J] = 0, since this implies [J2, R(ζ)] = 0), but the superposition will involve states of other
m values. This is a good way to see that the angular orientation of a state is encoded in the m quantum
number; the j quantum number by itself doesn’t tell you about orientation.

7.3.1.1 Rotation Matrix

To formalize the transformation of |j m〉 into a superposition of states |j m′〉 by a rotation we can write out
an explicit rotation matrix in the basis of angular-momentum states. Wigner’s convention is to write such
a matrix as

R(ζ)|j m〉 =
j∑

m′=−j
|j m′〉 d(j)m′m(ζ),

(7.138)
(action of rotation matrix)

where
d
(j)
m′m(ζ) := 〈j m′|R(ζ)|j m〉 = 〈j m′|e−iJ·ζ/h̄|j m〉. (7.139)

(rotation matrix)

Note the ‘‘backwards’’ convention for the matrix indices for the matrix-vector product in Eq. (7.138). The
point is that there is a (2j+1)× (2j+1) rotation matrix d(j)(ζ) associated with the rotation operator R(ζ)
when it acts on a subspace of angular-momentum states with fixed quantum number j.

If we follow one rotation R(α) by another rotation R(β), we can represent the total rotation by a
composite rotation operator R:

R = R(β)R(α). (7.140)

Projecting into the angular-momentum representation and using the completeness relation,

〈j m|R|j m′〉 =
∑
m′′

〈j m|R(β)|j m′′〉〈j m′′|R(α)|j m′〉. (7.141)

The corresponding rotation matrices thus compose by normal matrix multiplication, so long as the first
rotation to operate is the rightmost:

d(j) = d(j)(β)d(j)(α).
(7.142)

(composition of rotations)

This property is very useful in decomposing arbitrary rotations, as we now discuss.

7.3.1.2 Euler Angles

As in classical mechanics, a general rotation may be represented as a composition of rotations through the
three Euler angles: first rotate about the z-axis by angle α, then rotate about the new y-axis by angle β,
and finally rotate about the new z-axis by angle γ. These angles are illustrated in the diagrams below. Note
that the rotation operators act on the state, not the coordinate system; however, we are also considering
rotations of the axes solely to define the second and third rotations.
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Thus an arbitrary rotation R may always decomposed in the form

R(α, β, γ) = R(γ)R(β)R(α), (7.143)

where again α = αẑ, β = βŷ′, where ŷ′ is along the new y-direction after the α rotation, and γ = γẑ′′,
where ẑ′′ is along the new z-direction after the β rotation. Clearly, R(α) is written to the right since it is the
first rotation, and thus must operate first on the state vector. (The order is important, because in general
rotation operators for different axes do not commute.) Writing these operators out explicitly,

R(α, β, γ) = e−iγJz′′/h̄ e−iβJy′/h̄ e−iαJz/h̄. (7.144)

But now, since R(β) is written in terms of the coordinate system after the R(α) rotation, we can write this
rotation as a rotated version of the operator in the original coordinate system:

e−iβJy′/h̄ = R(α) e−iβJy/h̄R†(α) = e−iαJz/h̄ e−iβJy/h̄ eiαJz/h̄. (7.145)

Similarly, for the last rotation, we can write

e−iγJz′′/h̄ = R(β) e−iγJz′/h̄R†(β) = e−iβJy′/h̄ e−iγJz′/h̄ eiβJy′/h̄, (7.146)

and putting this into Eq. (7.144), we find

R(α, β, γ) = e−iβJy′/h̄ e−iγJz′/h̄ e−iαJz/h̄. (7.147)

Now putting in Eq. (7.145) and the analogous result with Jz′ ,

R(α, β, γ) = e−iαJz/h̄ e−iβJy/h̄ e−iγJz/h̄.
(7.148)

(rotation operator, Euler angles)
Conveniently, then, a rotation according to the Euler angles may be implemented solely in the original
coordinate system, if the order of the rotations is reversed.

Now to return to the rotation matrix. Using the definition (7.139) for the matrix corresponding to this
rotation operator,

d
(j)
m′m(α, β, γ) = 〈j m′|R|j m〉 = 〈j m′|e−iαJz/h̄ e−iβJy/h̄ e−iγJz/h̄|j m〉. (7.149)

The first and last rotations are thus easy to represent, leaving the second rotation as the only nontrivial
one:

d
(j)
m′m(α, β, γ) = e−im

′α d
(j)
m′m(βŷ) e−imγ .

(7.150)
(rotation matrix, Euler angles)

Wigner’s explicit expression for the remaining rotation matrix is20

d
(j)
m′m(βŷ) =

√
(j +m)!(j −m)!(j +m′)!(j −m′)!

×
∑
s

(−1)s

(j −m′ − s)!(j +m− s)!(s+m′ −m)!s!

(
cos β

2

)2j+m−m′−2s(
− sin β

2

)m′−m+2s

,

(middle rotation matrix, explicit form) (7.151)
20M. E. Rose, Elementary Theory of Angular Momentum (Wiley, 1957), p. 52.
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where the sum is over all values of s where the factorials are nonnegative. This form is particularly useful
for computer implementation of the rotation matrices. We can also see from this formula that under the
replacement β −→ −β, only the sin factor changes sign, so that

d
(j)
m′m(−βŷ) = (−1)m

′−md
(j)
m′m(βŷ), (7.152)

since the 2s part never contributes a minus sign. Furthermore, this formula is invariant under the replace-
ments m −→ −m′ and m′ −→ −m,

d
(j)
−m,−m′(βŷ) = d

(j)
m′m(βŷ). (7.153)

Finally, since the rotation by −β is the transpose of the rotation by β (this rotation matrix is orthogonal),

d
(j)
m,m′(−βŷ) = d

(j)
m′m(βŷ). (7.154)

Combining these last three expressions, we find

d
(j)
mm′(βŷ) = (−1)m

′−md
(j)
−m,−m′(βŷ). (7.155)

This last expression may be generalized to arbitrary axes. Combining it with Eq. (7.150) gives

d
(j)
m′m(ζ) = (−1)m−m

′
d
(j)∗
−m′,−m(ζ),

(7.156)
(rotation matrix conjugation)

where the complex conjugation ‘‘undoes’’ the minus signs of m and m′ in the exponents of the general
rotation matrix.

7.3.1.3 Clebsch–Gordan Series

One other useful relation comes by considering the rotation matrix for an arbitrary rotation operator R:

d
(j)
m′m = 〈j m′|R|j m〉. (7.157)

If we regard the vector J associated with j to be the sum J1 + J2, we may write

d
(j)
m′m =

∑
m1m′

1m2m′
2

〈j m′|j1 m′1, j2 m′2〉〈j1 m′1, j2 m′2|R|j1 m1, j2 m2〉〈j1 m1, j2 m2|j m〉. (7.158)

Since the rotation acts on each subspace,

d
(j)
m′m =

∑
m1m′

1m2m′
2

〈j m′|j1 m′1, j2 m′2〉 d
(j1)
m′

1m1
d
(j2)
m′

2m2
〈j1 m1, j2 m2|j m〉.

(Clebsch–Gordan-series inverse) (7.159)
This relation acts as a recursion relation by which rotation matrices can be constructed from other rotation
matrices of smaller angular momentum. It is also easy to write down the inverse relation, where we find

d
(j1)
m′

1m1
d
(j2)
m′

2m2
=
∑
jmm′

〈j1 m′1, j2 m′2|j m′〉 d
(j)
m′m〈j m|j1 m1, j2 m2〉.

(Clebsch–Gordan series) (7.160)
This relation is called the Clebsch–Gordan series.21 Obviously, the summations in both this relation and
its inverse are constrained heavily by the triangularity of the Clebsch–Gordan coefficients.

21M. E. Rose, op. cit., Eq. (4.25), p. 58.
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7.3.2 Spherical Harmonics

Now we consider the physical-space representation of angular-momentum states |j m〉, in particular the
projection into angular states 〈θ, φ|j m〉. First, consider what happens under a simple rotation, say about
the z-axis. This rotation corresponds to β = γ = 0 in the Euler angles above, giving a rotation operator of
simply

R(α) = e−iαJz/h̄, (7.161)

or a rotation matrix
d
(j)
m′m(α) = e−imα. (7.162)

Now if α = 2π, then
d
(j)
m′m(α) = e−im2π, (7.163)

but if j is a half-integer, then so is m, and the rotation operator amounts to a factor of −1. On the other
hand, if j is an integer, then so is m, and the rotation operator is just the identity. The latter corresponds
to what we expect for a vector in coordinate space: a rotation by 2π should amount to nothing. However,
this is not the case for half-integer angular momenta, and so we conclude that these do not represent angular
momenta of, say, particles (i.e., orbital angular momentum). However, for intrinsic particle spins, half-
integer angular momenta are just fine, since we don’t require 2π-periodicity in that case. Nonetheless, it
seems rather strange that, say a qubit (spin-1/2 particle), under a 2π-rotation, flips its sign; only under a
4π-rotation is it invariant.22

Thus, for coordinate representations of angular-momenta, we will only consider the case of integer j.
We will thus use the alternate notation for such ‘‘orbital’’ angular momenta of |` m〉 being a simultaneous
eigenstate of L2 and Lz, with L := r × p. We can thus define the spherical harmonic as the projection
onto the usual spherical angles

Y m` (θ, φ) := 〈θ, φ|` m〉. (7.164)
(spherical harmonic)

Later, in Section 8.4.4.1, we show that the spherical harmonics have the form

Y m` (θ, φ) =

√
(2`+ 1)(`−m)!

4π(`+m)!
Pm` (cos θ) eimφ, (7.165)

(spherical harmonic)

where Pm` (cos θ) is an associated Legendre function, by solving the scalar wave equation in spherical coordi-
nates, which applies to the present case of the Schrödinger equation. Some examples of low-order spherical
harmonics are

Y 0
0 (θ, φ) =

1√
4π
, Y 0

1 (θ, φ) =

√
3

4π
cos θ, Y ±11 (θ, φ) = ∓

√
3

8π
sin θ e±iφ, (7.166)

corresponding to monopole and dipole angular patterns.
The spherical harmonics are orthonormal, being representations of |` m〉. Thus, using 〈`′ m′|` m〉 =

δ``′δmm′ , we can insert the identity ∫
dΩ |θ, φ〉〈θ, φ| = 1 (7.167)

in terms of angular states to obtain∫
dΩY m` (θ, φ)Y m

′

`′ (θ, φ) = δ``′δmm′ ,
(7.168)

(orthonormality relation)

which is simply the expicit statement of orthonormality of the spherical harmonics.
22Thus when the qubit is mapped to the sphere, as in the Bloch sphere, you really have to keep track of whether the particle

is ‘‘inside’’ or ‘‘outside’’ the sphere, which is one representation of the minus sign. See, e.g., F. De Zela, ‘‘Topological phase
for entangled two-qubit states and the representation of the SO(3) group,’’ Journal of Optics B: Quantum and Semiclassical
Optics 7, 372 (2005) (doi: 10.1088/1464-4266/7/11/009).

http://dx.doi.org/10.1088/1464-4266/7/11/009
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7.3.2.1 Sum Rule and Addition Theorem

Another important relation comes from considering the sum∑
m

〈θ2, φ2|` m〉〈` m|θ1, φ1〉 =
∑
m

Y m∗` (θ1, φ1)Y
m
` (θ2, φ2), (7.169)

for two spherical angles (θ1, φ1) and (θ2, φ2). We now intend to show that this expression is independent of
orientation (i.e., it is a scalar under rotations) by showing it is equivalent to the rotated version∑

m

〈θ2, φ2|R|` m〉 〈` m|R−1|θ1, φ1〉 =
∑
m

Y m∗` (θ′1, φ
′
1)Y

m
` (θ′2, φ

′
2), (7.170)

for some rotation operator R, where R|`,m〉 is the rotated state. Recall that there are two ways to think of
a rotation: the first is that the rotation operator acts on (and rotates) the state vector, while the other is
that the rotation operator acts on the basis vectors |θ, φ〉 and rotates the coordinate system in the opposite
sense. Thus, the rotated angles (θ′1, φ

′
1) and (θ′2, φ

′
2) are defined by |θ′α, φ′α〉 := R−1|θα, φα〉. The rotation

operator has a matrix representation that we will denote by d(`)m′m, which is unitary matrix. Thus, Eq. (7.170)
becomes ∑

m

Y m∗` (θ′1, φ
′
1)Y

m
` (θ′2, φ

′
2) =

∑
mm′m′′

d
(`)
m′m d

(`)∗
mm′′〈θ2, φ2|` m′〉 〈` m′′|θ1, φ1〉, (7.171)

where we have used the unitarity of the rotation matrix. We can carry out the sum over m by again using
the unitarity of the rotation matrix, which we may write as∑

m

d
(`)
m′m d

(`)∗
mm′′ = δm′m′′ , (7.172)

so that we arrive at ∑
m

Y m∗` (θ′1, φ
′
1)Y

m
` (θ′2, φ

′
2) =

∑
m

〈θ2, φ2|` m〉 〈` m|θ1, φ1〉, (7.173)

after dropping primes from the remaining dummy index. Then comparing to Eq. (7.169), we now see the
independence of the sum under rotations:∑

m

Y m∗` (θ′1, φ
′
1)Y

m
` (θ′2, φ

′
2) =

∑
m

Y m∗` (θ1, φ1)Y
m
` (θ2, φ2). (7.174)

In particular, we may choose the rotation such that (θ′1, φ
′
1) point along the z-axis, and φ′2 = 0. Now we use

the fact that Pml (cos 0) = Pml (1) = δm0, and thus from Eq. (7.165), we have

Y m` (0, φ) =

√
2l + 1

4π
δm0. (7.175)

Thus we arrive at the spherical-harmonic addition theorem

Y 0
` (θ, 0) =

√
4π

2l + 1

∑
m

Y m∗` (θ1, φ1)Y
m
` (θ2, φ2),

(7.176)
(addition theorem)

where θ = θ′2 is the angle between the radial vectors corresponding to the two directions (θ1, φ1) and (θ2, φ2).
Taking θ1 = θ2 and φ1 = φ2, so that θ = 0 in the addition theorem, we can drop the subscripts and

write the sum rule ∑̀
m=−`

|Y m` (θ, φ)|2 =
2`+ 1

4π
,

(7.177)
(sum rule)

where we have again used Eq. (7.175). This sum rule is essentially just another statement of the rotational
invariance of products of spherical harmonics when summed over m. This statement indicates indirectly that
the m quantum number determines the orientation of the modes; summing over it results in an isotropic
angular distribution.
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7.3.2.2 Relation to the Rotation Matrix

As in the previous section, when a spherical harmonic

〈θ, φ|` m〉 = Y m` (θ, φ) (7.178)

is rotated, we can express the result in primed coordinates

〈θ, φ|R|` m〉 = Y m` (θ′, φ′), (7.179)

and then expressing the rotation operator as a matrix and using the first expression,∑
m′

Y m
′

` (θ, φ) d
(`)
m′m = Y m` (θ′, φ′). (7.180)

In general, the rotation matrix can be specified in terms of the Euler angles. Writing this explicitly while
omitting the last one (i.e., taking γ = 0),

Y m` (θ′, φ′) =
∑
m′

d
(`)
m′m(α, β, 0)Y m

′

` (θ, φ). (7.181)

Now we set θ −→ θ2, φ −→ φ2, m = 0, α −→ θ1, β −→ θ2, θ′ −→ θ, and we take the rotation to be such
that φ′ = 0:

Y 0
` (θ, 0) =

∑
m′

d
(`)
m′0(φ1, θ1, 0)Y

m′

` (θ2, φ2). (7.182)

We can now compare this result to the spherical-harmonic sum rule (7.176) and see that they have the same
form if we identify

Y m∗` (θ, φ) =

√
2`+ 1

4π
d
(`)
m0(φ, θ, 0)

(spherical harmonic as rotation matrix) (7.183)
Indeed, in our setup here, θ is still the angle between the vectors along (θ1, φ1) and (θ2, φ2). We have chosen
the rotation φ1 to bring the vector along (θ2, φ2) to the x-z plane, and thus with this particular orientation
of the problem, φ1 = φ2. The remaining rotation indicated by θ1 determines the separation angle between
θ1 and θ2 via θ = θ2 − θ1. (Recall that the rotation matrices acting on the coordinate systems induce the
opposite rotation as on the states.) In particular, this representation of the spherical harmonics implies the
conjugation relation

Y m∗l (θ, φ) = (−1)mY −ml (θ, φ)
(7.184)

(spherical-harmonic conjugation)
as a direct consequence of Eq. (7.156).

Furthermore, if we use the Clebsch–Gordan series (7.160) with the second indices set to zero,

d
(`1)
m10

d
(`2)
m20

=
∑
`m

〈`1 m1, `2 m2|` m〉 d(`)m0〈` 0|`1 0, `2 0〉. (7.185)

we can then use the representation (7.183) to write

Y m1

`1
(θ, φ)Y m2

`2
(θ, φ) =

∑
`m

√
(2`1 + 1)(2`2 + 1)

4π(2`+ 1)
〈`1 m1, `2 m2|` m〉 〈` 0|`1 0, `2 0〉Y m` (θ, φ)

(recoupling relation) (7.186)
after complex conjugation. This is the recoupling relation for spherical harmonics. Using Eq. (7.68) to
relate the Clebsch–Gordan coefficients to 3-j symbols, we find the alternate form23

Y m1

`1
(θ, φ)Y m2

`2
(θ, φ) =

∑
`m

(−1)m
√

(2`1 + 1)(2`2 + 1)(2`+ 1)

4π

(
`1 `2 `
m1 m2 m

)(
`1 `2 `
0 0 0

)
Y −m` (θ, φ)

(recoupling relation) (7.187)
23Note that this relation is referred to as the ‘‘addition theorem’’ by A. R. Edmonds, Angular Momentum in Quantum

Mechanics (Princeton, 1957), p. 63, Eq. (4.6.5).
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after letting m −→ −m. Again, ` ranges from |`1 − `2| to `1 + `2 and m1 +m2 = −m for the 3-j symbols to
be nonvanishing.

7.3.3 Irreducible Tensor Operators

7.3.3.1 Spherical Basis

As a prelude to introducing irreducible tensor operators, we will examine the spherical basis, which will
be important in treating dipole interactions with angular momentum. The spherical basis is simply an
alternative to the Cartesian vector basis that is especially convenient when dealing with angular momentum.
In terms of the Cartesian basis vectors x̂, ŷ, and ẑ, the spherical basis vectors are defined as

ê±1 := ∓ 1√
2
(x̂± iŷ) = −(ê∓1)∗

ê0 := ẑ = (ê0)∗,

(7.188)
(spherical basis vectors)

Likewise, if the Cartesian components of a vector A are defined such that A = Axx̂+Ay ŷ +Az ẑ, then the
components of A in the spherical basis are given in the same way by

A±1 = ∓ 1√
2
(Ax ± iAy)

A0 = Az,

(7.189)
(vector components in spherical basis)

which is to say Aq := êq ·A, and

A =
∑
q

(−1)qAq ê−q =
∑
q

ê∗qAq.
(7.190)

(vector in spherical basis)

This funny form for the vector in spherical components comes about because ê∗q · êq′ = δqq′ , so we really need
to think about products of vectors, where one of them is conjugated (which is, of course, a natural idea in
quantum mechanics). Inverting Eqs. (7.189) gives

Ax = − 1√
2
(A1 −A−1)

Ay =
i√
2
(A1 +A−1)

Az = A0,

(7.191)

with, of course, the same relations for the Cartesian basis vectors in terms of the spherical basis vectors. In
the spherical basis, the dot product of two vectors is given by

A ·B =
∑
q

(−1)qAq ê−q ·B =
∑
q

(−1)qAqB−q =
∑
q

Aq(B∗)∗q .

(dot product in spherical basis) (7.192)
The conjugation in the last expression should be read as: conjugate the full vector B [by conjugation
in Cartesian coordinates or via the conjugate of Eq. (7.190)], then project the qth coordinate via the inner
product with êq, so that (B∗)q ≡ êq ·(B∗), and then conjugate the (scalar) result. It follows from Eqs. (7.192)
that

A∗ ·B =
∑
q

(Aq)
∗Bq, |A|2 =

∑
q

|Aq|2.

(dot product and norm in spherical basis) (7.193)
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These expressions are a bit more sensible because A∗ ·B is a more natural inner product in this basis than
A ·B. Finally, we note that the components of the position vector r can be written

r±1 = ∓ r√
2

sin θ e±iφ

r0 = r cos θ,

(7.194)
(position operator in spherical basis)

or more compactly,

rq = r

√
4π

3
Y q1 (θ, φ).

(7.195)
(position operator as spherical harmonic)

These forms will be useful, for example, when evaluating the dipole radiation pattern, and they show explicitly
the connection of spherical-basis vector operators to the dipolar spherical harmonics.

7.3.3.2 General Definition

The position vector here (as with any Cartesian three-vector) in the spherical basis is a vector operator,
because of the way the three components transform among each other under rotations. We will now generalize
this notion of sets of operators that are closed under rotations. An irreducible tensor operator of rank k
(specifically, a spherical tensor operator), which we denote by T(k) is a set of 2k+1 operators that transform
among themselves under rotations in the same way as the angular-momentum states |j m〉, where j = k:

R(ζ)T (k)
q R†(ζ) =

k∑
q′=−k

T
(k)
q′ d

(k)
q′q(ζ).

(7.196)
(spherical tensor operator)

Equivalently, they transform in the same way under rotations as the spherical harmonics, as in Eq. (7.180).
In this context, irreducible means that there is no proper subset of the component operators that transform
among themselves in a similar way. This is already guaranteed by the definition, as the set of angular-
momentum basis states |j m〉 is irreducible in the same sense.

This definition actually introduces spherical tensors in general: that is, sets of components that
transform into each other. Since again we require that they transform as the spherical harmonics, then the
spherical harmonics Y m` give a particular example of a spherical tensor of rank `. The tensor operator comes
about when we take each component of the tensor to be an operator. Since we have already seen that the
position operator in the spherical basis is proportional to Y m1 , as in Eq. (7.195), we know that r transforms
as a spherical tensor of rank 1. Thus, r is an example of a rank-1 irreducible tensor operator according to
the definition here, which is again also a vector operator.

7.3.3.3 Cartesian Tensors

The more familiar type of tensor is the Cartesian tensor, of the form Mαβ , for example, for a rank-2
tensor, where α and β range from 1 to 3 (or x to z). A rank-k Cartesian tensor is generally represented by
k indices, and transforms under rotations according to

M̃α1α2···αk
= Rα1β1

Rα2β2
· · ·Rαkβk

Mβ1β2···βk
, (7.197)

where
Rαβ = 〈α|R|β〉 (7.198)

is the rotation operator expressed in Cartesian coordinates. That is, the rotation operator is applied to each
dimension, represented by each index.

How is the Cartesian tensor related to the irreducible tensors? Well, returning to the rank-2 example,
the Cartesian tensor operator has nine independent component operator, whereas the irreducible, rank-2
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tensor has only five. The Cartesian tensor must be reducible, and we can reduce it as follows. We may
construct a scalar, or rank-0 operator, by computing the trace,

M (0) = Tr[Mαβ ] =Mαα.
(7.199)

(scalar part)

This is invariant under rotations, since computing the trace after a rotation gives Tr[RMR†] = Tr[M] after
cyclic permutation under the trace. We can then form a vector (rank-1) operator as

M (1)
µ = εµαβ(Mαβ −Mβα),

(7.200)
(vector part)

which has three independent components and is clearly related to the antisymmetric part of Mαβ . To see
that it transforms as a vector under rotations, we can compute the vector after rotation of the tensor, with
the result

M̃
(1)
µ = εµαβ [RασMστ (R

†)τβ −RβτMτσ(R
†)σα]

= εµαβ(RασRβτMστ −RβτRασMτσ).
(7.201)

Now note that the cross product A×B of two vectors, after rotating each vector, is the same as the rotation
of the cross product itself, or

(RA)× (RB) = R(A×B), (7.202)

where R is the rotation matrix. Expressed in components, this becomes

εµαβ(RασAσ)(RβτBτ ) = Rµν(ενστAσBτ ). (7.203)

Since this holds for any A and B, we may drop them and write

εµαβRασRβτ = Rµνενστ . (7.204)

Putting this into Eq. (7.201),
M̃ (1)
µ = Rµνενστ (Mστ −Mτσ), (7.205)

which is the proper vector rotation of Eq. (7.200). Obviously, this vector operator is still expressed in
Cartesian components, but can be transformed to a spherical tensor by Eqs. (7.189).

Finally, the reduced (now irreducible) rank-2 tensor is what remains, or is in other words the original
tensor with the trace and antisymmetric parts subtracted away:

M
(2)
αβ =M(αβ) −

1

3
Mµµδαβ ,

(7.206)
(irreducible tensor part)

where M(αβ) = (Mαβ +Mβα)/2 denotes the symmetrized Cartesian tensor. The resulting tensor is clearly
symmetric and traceless, and has only 5 independent components, as is consistent with the irreducible rank-2
form. It is also still obviously a rank-2 tensor, since it is a linear combination of Mαβ , Mβα, and δαβ , which
are all rank-2 tensors. However, the transformation of the remaining components to a spherical rank-2 tensor
is more complicated than for the vector-operator case.

In any case, we may now write the original tensor in terms of its irreducible components as

Mαβ =
1

3
M (0)δαβ +

1

4
M (1)
µ εµαβ +M

(2)
αβ .

(7.207)
(reduced Cartensian tensor)
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We can see this by using Eqs. (7.199), (7.200), and (7.206) to write

1

3
M (0)δαβ +

1

4
M (1)
µ εµαβ +M

(2)
αβ =

1

3
Mµµδαβ +

1

4

[
εµστ (Mστ −Mτσ)

]
εµαβ +

[
M(αβ) −

1

3
Mµµδαβ

]
=

1

4
εµαβεµστ (Mστ −Mτσ) +M(αβ)

=
1

4
(δασδβτ − δατδβσ)(Mστ −Mτσ) +M(αβ)

=
1

4

[
(Mαβ −Mβα)− (Mβα −Mαβ)

]
+

1

2
(Mαβ +Mβα)

=Mαβ ,

(7.208)

where we have used the relation
εµαβεµστ = δασδβτ − δατδβσ, (7.209)

which is essentially the ‘‘bac-cab’’ vector identity A × (B × C) = B(A · C) − C(A · B) written in tensor
notation (Problem 7.2).

7.3.3.4 Products of Tensors

With Cartesian tensors, taking the product of two tensors to form a higher-rank tensor is straightforward:
just multiply them as usual. For example, to take two vectors to form a tensor, we write

Mαβ = AαBβ .
(7.210)

(Cartesian tensor product)

In general, the tensor product of two Cartesian tensors of rank k1 and k2 will be of rank k = k1 + k2.
However, the case of spherical tensors is a bit more complicated. If we take the addition rules (7.40) for two
angular momenta, and then project the first one into angular states |θ, φ〉, we find that the combination of
two spherical harmonics is

Y m` (θ, φ) =
∑
m1m2

(m1+m2=m)

Y m1

`1
(θ, φ)Y m2

`2
(θ, φ) 〈`1 m1; `2 m2|` m〉, (7.211)

where |`1− `2| ≤ ` ≤ `1+ `2. Spherical harmonics are an example of spherical tensors, and in fact we defined
spherical tensors to transform in the same way as spherical harmonics. Thus, we conclude that

T (k)
q =

∑
q1q2

(q1+q2=q)

T (k1)
q1 T (k2)

q2 〈k1 q1; k2 q2|k q〉,
(7.212)

(spherical tensor product)

where |k1 − k2| ≤ k ≤ k1 + k2. This is how products of spherical tensors work: spherical tensors of rank k1
and k2 can be combined to form a spherical tensor with a range of different ranks. For example, suppose we
want to take a product of two vector operators A and B. The resulting product tensor T(k) could have a
rank of k = 0, 1, or 2. The rank-0 combination is

T
(0)
0 =

1∑
q=−1

AqB−q 〈1 q; 1 −q|0 0〉 = −
1∑

q=−1

(−1)q√
3
AqB−q, (7.213)

which we see is the scalar product of the two vectors, up to a constant factor.

T
(0)
0 = −A ·B√

3
,

(7.214)
(rank-0 vector product)
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The rank-1 combination is

T (1)
q =

1∑
q′=−1

Aq′Bq−q′ 〈1 q′; 1 q − q′|1 q〉. (7.215)

Writing out the three components of the resulting vector,

T
(1)
1 =

1√
2
(A1B0 −A0B1)

T
(1)
0 =

1√
2
(A1B−1 −A−1B1)

T
(1)
−1 =

1√
2
(A0B−1 −A−1B0),

(7.216)

and then putting in the definitions of the spherical-vector components, we see that the vector product is the
usual cross product, expressed in the spherical basis:

T (1)
q =

i√
2
(A×B)q.

(7.217)
(rank-1 vector product)

Finally, the rank-2 combination is

T (2)
q =

1∑
q′=−1

Aq′Bq−q′ 〈1 q′; 1 q − q′|2 q〉. (7.218)

Writing out the resulting five tensor components,

T
(2)
±2 = A±1B±1

T
(2)
±1 =

1√
2
(A±1B0 +A0B±1)

T
(2)
0 =

1√
6
(A1B−1 + 2A0B0 +A−1B1).

(7.219)
(rank-2 vector product)

In fact, what we have rederived here is the reduction of the previous section of the rank-2 Cartesian tensor
Mαβ = AαBβ into its irreducible parts. Up to constant overall factors, the scalar product (7.214) is the
trace (7.199), the cross product (7.217) is the antisymmetric part (7.200) of the tensor, and the rank-2 tensor
(7.219) is the traceless, symmetric part (7.206) of the tensor, but here written out in spherical components
(which works for arbitrary Cartesian tensors under the identification Mαβ = AαBβ).

Finally, we note that with Cartesian tensors, tensor products of lower rank than we have already
considered are possible via contraction, or making two indices the same and summing over the result. For
example, the scalar product of two Cartesian vectors is AαBα, which is of course lower rank than the tensor
product AαBβ . The usual matrix product Mαγ = AαβBβγ is the same idea, giving a rank-2 tensor as the
product of two rank-2 tensors, which could give instead a rank-4 tensor without contraction. A scalar can
then be obtained by a second contraction, Mαα = AαβBβα. In general, the product of a rank-k1 tensor and
a rank-k2 tensor is of rank k1 + k2, and this composite rank can be reduced by 2 at a time by contraction.
We have already seen how this works for spherical vectors above, and in fact we have also seen that it is
possible to reduce the rank by only one, by multiplying by εαβγ and then contracting the resulting tensor
product (i.e., to give a cross product between vectors). We will simply note here that given two spherical
tensors of the same rank k, it is always possible to construct a scalar product. Using Eq. (7.212),

T
(0)
0 =

∑
q

T (k)
q U

(k)
−q 〈k q; k −q|0 0〉 =

∑
q

(−1)k+q√
2k + 1

T (k)
q U

(k)
−q , (7.220)
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after evaluating the Clebsch–Gordan coefficient. Usually we move the invariant factor out of the sum

(−1)−k
√
2k + 1T

(0)
0 =

∑
q

(−1)q T (k)
q U

(k)
−q , (7.221)

and then define the result to be the scalar product of the two spherical tensors:

T(k) ·U(k) :=

k∑
q=−k

(−1)q T (k)
q U

(k)
−q .

(spherical tensor product) (7.222)
This extra factor is precisely the factor of −1/

√
3 from Eq. (7.214) beyond the usual scalar product of two

vectors. Thus, the definition (7.222) of the scalar product reduces to the usual Cartesian definition for k = 1,
as we see from Eq. (7.192) in our discussion of spherical vectors.

7.3.3.5 Commutation Rules

Consider the operator for an infinitesimal rotation δφ:

R(δφ) = 1− i

h̄
δφ · J. (7.223)

The tensor operator T (k)
q transforms under this rotation as in Eq. (7.196), where the rotation matrix corre-

sponding to the rotation is

d
(k)
q′q(δφ) = 〈k q

′|
(
1− i

h̄
δφ · J

)
|k q〉. (7.224)

Thus, Eq. (7.196) becomes(
1− i

h̄
δφ · J

)
T (k)
q

(
1 +

i

h̄
δφ · J

)
=
∑
q′

T
(k)
q′ 〈k q

′|
(
1− i

h̄
δφ · J

)
|k q〉. (7.225)

Multiplying this out and dropping second-order terms in δφ gives[
δφ · J, T (k)

q

]
=
∑
q′

T
(k)
q′ 〈k q

′|δφ · J|k q〉. (7.226)

Setting δφ −→ ẑδφ then gives [
Jz, T

(k)
q

]
=
∑
q′

T
(k)
q′ 〈k q

′|Jz|k q〉, (7.227)

and using Eq. (7.14) leads to the commutation rule[
Jz, T

(k)
q

]
= h̄qT (k)

q .
(7.228)

(Jz commutator)

On the other hand, setting δφ −→ [∓(x̂± iŷ)/
√
2]δφ gives[

J±, T
(k)
q

]
=
∑
q′

T
(k)
q′ 〈k q

′|J±|k q〉. (7.229)

Then using Eq. (7.30) leads to the commutation rule[
J±, T

(k)
q

]
=
√
(k ± q + 1)(k ∓ q) T (k)

q .
(7.230)

(J± commutator)

These commutation rules are the analogous relations to the effects of Jz and J± on kets |j m〉 in Eqs. (7.14)
and (7.30).
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7.3.4 Wigner–Eckart Theorem

Now we come to an extremely important result in angular momentum algebra. Consider the action of a
tensor-operator component on an angular-momentum state,

T (k)
q |α′ j′ m′〉, (7.231)

where α′ represents other (i.e., radial) quantum numbers that do not represent angular dependence of the
state. How does this state transform under a rotation? Since we may write the rotated form as

RT (k)
q |α′ j′ m′〉 = (RT (k)

q R†)R|α′ j′ m′〉, (7.232)

evidently T (k)
q and |α′ j′ m′〉 transform separately. In particular, by definition the state |α′ j′ m′〉 transforms

as the ket |j′ m′〉, while by comparing Eq. (7.196) to Eq. (7.138) we recall that T (k)
q transforms via the rotation

matrix in the same way as the angular-momentum ket |k q〉. Thus, the state T (k)
q |α′ j′ m′〉 transforms as

the composite state |k q〉|j′ m′〉, or in the way we’ll set it up, |j′ m′〉|k q〉 (there is in principle a phase in
making this rearrangement, and ignoring it amounts to absorbing it into the definition of the |α′〉).

We can then consider the usual angular-momentum-addition relation

|j′ m′; k q〉 =
∑
k′q′

|k′ q′〉〈k′ q′|j′ m′; k q〉 (7.233)

and write in analogy to it the same superposition

T (k)
q |α′ j′ m′〉 =

∑
k′q′

|α̃ k′ q′〉〈k′ q′|j′ m′; k q〉, (7.234)

where α̃ is some set of transformed radial quantum numbers, since the states in the two relations transform
equivalently. This is the crux of the argument: since we know that the tensor operator transforms like
angular-momentum states, the action of the tensor operator on an angular-momentum state is just like a
mixing of two angular momenta. In fact, the form of the transformed vector is quite constrained: Note that
the vector in Eq. (7.234) is an eigenvector of Jz with eigenvalue h̄(m′+q)—although it is a linear combination
of vectors of the form |k′ q′〉, the Clebsch–Gordan coefficients constrain these such that q′ = m′ + q.

Now we can operate from the left on Eq. (7.234) with 〈α j m|, we then find the matrix element

〈α j m|T (k)
q |α′ j′ m′〉 =

∑
k′q′

〈α j m|α̃ k′ q′〉 〈k′ q′|j′ m′; k q〉

= 〈α|α̃〉 〈j m|j′ m′; k q〉,
(7.235)

where we have used the orthogonality of the angular-momentum states to obtain the second equality. Now
we note that the inner product 〈α j m|α̃ j m〉 is, in fact, independent of m, just as the inner product
〈j m|j m〉 = 1 is m-independent. We may thus define the m-independent reduced matrix element

〈α j‖T(k)‖α′ j′〉 := (−1)2k〈α|α̃〉, (7.236)
(reduced matrix element)

where the dependence on j, j′, and T(k) comes in via the way α transforms into α̃. (The transformation
α −→ α̃ of course introduces no m-dependence because by assumption α represented the radial and thus
orientation-independent part of the quantum state.) Note that the reduced matrix element, while using the
notation of a tensor, is in fact a scalar quantity, as is clear from the right-hand side of the definition.

Finally, using the reduced matrix element in Eq. (7.235), we arrive at the Wigner–Eckart theo-
rem24

〈α j m|T (k)
q |α′ j′ m′〉 = (−1)2k〈α j‖T(k)‖α′ j′〉 〈j m|j′ m′; k q〉.

(Wigner–Eckart theorem) (7.237)
24Carl Eckart, ‘‘The Application of Group Theory to the Quantum Dynamics of Monatomic Systems,’’ Reviews of Modern

Physics 2, 305 (1930) (doi: 10.1103/RevModPhys.2.305); Eugene P. Wigner, ‘‘Group Theory and Its Application to Quantum
Mechanics of Atomic Spectra,’’ (Academic Press, 1959).

http://dx.doi.org/10.1103/RevModPhys.2.305
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Many sign and normalization conventions abound, particularly for the Wigner–Eckart theorem and the
reduced matrix elements. By using the orthogonality relation (7.46), we can invert (7.237) to give

〈α j‖T(k)‖α′ j′〉 = (−1)2k
∑
m′q

〈α j m|T (k)
q |α′ j′ m′〉 〈j m|j′ m′; k q〉.

(reduced matrix element) (7.238)
as an expression for the reduced matrix element in terms of a sum over matrix elements. The Wigner–Eckart
theorem thus factors a matrix element of a component of an irreducible tensor operator into an orientation-
independent part (the reduced matrix element) and a Clebsch–Gordan coefficient (which encapsulates all
the orientation dependence of the matrix element).

Note that for the reduced matrix elements, we are following here the normalization convention of Brink
and Satchler.25 A common alternate convention for the Wigner–Eckart theorem may be written as26

〈α j m|T (k)
q |α′ j′ m′〉 =

(α j‖T(k)‖α′ j′)√
2j + 1

〈j m|j′ m′; k q〉, (7.239)

where the alternate reduced matrix element is related to the first one by

(α j‖T(k)‖α′ j′) = (−1)2k
√
2j + 1 〈α j‖T(k)‖α′ j′〉. (7.240)

However, we shall stick exclusively to the matrix element 〈α j‖T(k)‖α′ j′〉. This normalization convention
is thus defined by

|〈α j‖T(k)‖α′ j′〉|2 =
∑
m′q

|〈α j m|T (k)
q |α′ j′ m′〉|2 =

∑
m′

|〈α j m|T(k)|α′ j′ m′〉|2,

(normalization convention for reduced matrix element) (7.241)
which follows from squaring the Wigner–Eckart theorem (7.237) and then summing over all m′ and q, along
with the orthogonality relation (7.46) to eliminate the Clebsch–Gordan coefficient.

The Clebsch–Gordan coefficient in Eq. (7.237) requires that j take values between |k−j′| and k+j′. In
particular, this indicates that T (k)

q can only be of integer rank k. A tensor of half-integer rank would have the
awkward consequence of inducing transitions between integer and half-integer states (i.e., between bosonic
and fermionic states, which would only be acceptable if a particles are changing or being created/destroyed).

7.3.4.1 Dipole Operator

As we mentioned above, the Wigner–Eckart theorem is so powerful, because it completely pins down the
angular part of a matrix element of a tensor operator: the angular dependence of the matrix element can
be factored out completely and written solely in terms of a Clebsch–Gordan coefficient (or equivalently, a
Wigner 3-j symbol). Of course, this is because of an implicit spherical symmetry to the problem, since we
assumed the existence of radial and angular-momentum quantum numbers.

The real utility of the Wigner–Eckart theorem in quantum optics comes from its application to the
dipole operator. Recalling that the dipole operator is proportional to the position operator, we know that it
transforms as a tensor of rank k = 1. Thus, the Wigner–Eckart theorem (7.237) becomes

〈J mJ |dq|J ′ m′J〉 = 〈J‖d‖J ′〉 〈J mJ |J ′ m′J ; 1 q〉

= 〈J‖d‖J ′〉 (−1)J
′−J+m′−m

√
2J + 1

2J ′ + 1
〈J ′ m′|J m; 1 −q〉,

(Wigner–Eckart theorem, dipole operator) (7.242)
25D. M. Brink and G. R. Satchler, Angular Momentum, 2nd ed. (Oxford, 1968), Section 4.7, p. 56 (ISBN: 0198514190).
26See, for example, Gordon Baym, Lectures on Quantum Mechanics (Westview Press, 1969); or A. R. Edmonds, Angular

Momentum in Quantum Mechanics (Princeton, 1957).

http://www.amazon.com/gp/search/?field-isbn=0198514190
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where the second form follows upon application of the symmetry relation (7.65) followed by an application
of (7.54). Again, the orientation dependence of the dipole matrix element appears simply as a Clebsch–
Gordan coefficient, while the radial dependence appears in the reduced matrix element. The reduced matrix
elements of an atom may, as indicated above, be calculated from the radial parts of the atomic wave functions.
However, the simplest way to obtain the reduced matrix element is via the following relation to the atomic
spontaneous decay rate from the Je fine-structure level to the Jg level

ΓJgJe =
ω 3
0

3πε0h̄c3
2Jg + 1

2Je + 1
|〈Jg‖d‖Je〉|2,

(spontaneous decay rate and reduced dipole matrix element) (7.243)
as we show later in Chapter 11. This relates the reduced matrix element to a quantity readily accessible to
experiment.

We will return to the implications of the Wigner–Eckart theorem in detail below in Section 7.3.7.

7.3.4.2 Projection Theorem

A useful special case of the Wigner–Eckart theorem arises if we consider the scalar product of a vector
operator A with angular momentum J.27 Considering a matrix element of the scalar combination and
expanding in the spherical basis using the scalar product (7.192),

〈α j m|J ·A|α′ j m〉 =
∑
q

(−1)q〈α j m|JqA−q|α′ j m〉

= 〈α j m|
(
J0A0 − J1A−1 − J−1A1

)
|α′ j m〉

(7.244)

Then comparing Eqs. (7.7) and (7.189) to identify the spherical components of J in terms of the ladder
operators,

J±1 = ∓ 1√
2
J±, (7.245)

we can use the action (7.30) of the ladder operators on angular-momentum eigenstates (with J†± = J∓) to
write

〈α j m|J ·A|α′ j m〉 = mh̄〈α j m|A0|α′ j m〉+
h̄√
2

√
(j +m)(j −m+ 1)〈α j m− 1|A−1|α′ j m〉

− h̄√
2

√
(j −m)(j +m+ 1)〈α j m+ 1|A−1|α′ j m〉.

(7.246)

Although this result is actually straying a bit from the main point, it shows how the matrix elements here
can be expressed solely in terms of matrix elements of A. For our purposes, the more useful result comes
from applying the Wigner–Eckart theorem (7.237) to the scalar operator J ·A, for which the matrix element
must be orientation-independent (and thus m-independent):

〈α j m|J ·A|α′ j m〉 =: cj〈α j‖V‖α′ j〉 . (7.247)

Here, cj is again independent of m, and also independent of A (except that it is a vector operator) and α
and α′. Now to compute cj , we take advantage of the A-independence of this last relation, setting A −→ J
and α′ −→ α to obtain

cj〈α j‖J‖α′ j〉 = 〈α j m|J2|α′ j m〉 = h̄2j(j + 1). (7.248)

Using this relation to eliminate cj in Eq. (7.247), we have

〈α j m|J ·A|α′ j m〉
h̄2j(j + 1)

=
〈α j‖A‖α′ j〉
〈α j‖J‖α j〉 . (7.249)

27Here we are following J. J. Sakurai and Jim Napolitano, Modern Quantum Mechanics, 2nd ed. (Cambridge, 2017), pp. 254-5
(ISBN: 9781108422413).

http://www.amazon.com/gp/search/?field-isbn=9781108422413
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Applying the Wigner–Eckart theorem (7.237) again but now for k = 1, the last ratio transforms to

〈α j m|J ·A|α′ j m〉
h̄2j(j + 1)

=
〈α j m|Aq|α′ j m′〉
〈α j m|Jq|α j m′〉

, (7.250)

assuming that the Jq matrix element does not vanish. Rearranging, we come to

〈α j m|Aq|α′ j m′〉 =
〈α j m|J ·A|α′ j m〉

h̄2j(j + 1)
〈α j m|Jq|α j m′〉,

(7.251)
(projection theorem)

which is known as the projection theorem. This is sometimes a handy special case of the Wigner–Eckart
theorem where the reduced matrix element has already been eliminated. This will be useful later, for example,
when we discuss the Zeeman effect (Section 7.4.1).

7.3.5 Hermitian Conjugates of Tensor Operators

Now we can ask, what is the Hermitian conjugate of an irreducible tensor operator? This is not too hard to
establish, given the commutation relations (7.228) and (7.230). First, we can establish the commutator of
Jz with the conjugate of T (k)

q , using the fact that Jz is Hermitian and Eq. (7.228):[
Jz,
(
T (k)
q

)†]
= −

[
Jz, T

(k)
q

]†
= −h̄q

(
T (k)
q

)†
. (7.252)

Similarly, we find the commutator of J± with the conjugate of T (k)
q , using the fact that J†± = J∓ is Hermitian

and Eq. (7.230): [
J±,

(
T (k)
q

)†]
= −

[
J∓, T

(k)
q

]†
= −

√
(k ∓ q + 1)(k ± q)

(
T

(k)
q∓1

)†
. (7.253)

Notice that if we introduce the operator

T̃ (k)
q := (−1)q

(
T

(k)
−q

)†
, (7.254)

then the above commutation relations take the form (after letting q −→ −q)[
Jz, T̃

(k)
q

]
= h̄qT̃ (k)

q[
J±, T̃

(k)
q

]
=
√
(k ± q + 1)(k ∓ q) T̃ (k)

q±1.
(7.255)

These are precisely the commutation rules (7.228) and (7.230) for T (k)
q . From our derivation of the commu-

tators, we recall that they determine the behavior of the operators under rotations, and since the operators
are irreducible we can identify T̃ (k)

q with T (k)
q . Thus, the Hermitian conjugate of T (k)

q is (up to an arbitrary
phase) (

T (k)
q

)†
= (−1)q T (k)

−q .
(7.256)

(tensor operator conjugate)
Evidently, only the q = 0 component of a tensor operator is Hermitian.

7.3.5.1 Conjugates of Reduced Matrix Elements

By considering the Wigner–Eckart theorem from both Eqs. (7.237) and (7.242), we can write

〈J m|T (k)
q |J ′ m′〉 = (−1)2k〈J‖T(k)‖J ′〉 〈J m|J ′ m′; 1 q〉

= (−1)2k〈J‖T(k)‖J ′〉 (−1)J
′−J+m′−m

√
2J + 1

2J ′ + 1
〈J ′ m′|J m; 1 −q〉.

(7.257)
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Clearly the reduced matrix element is not symmetric in J and J ′, for we may exchange the primed and
unprimed numbers and let q −→ −q to write

〈J ′ m′|T (k)
−q |J m〉 = (−1)2k〈J ′‖T(k)‖J〉 〈J ′ m′|J m; 1 −q〉. (7.258)

Noting from Eq. (7.256) that 〈J ′ m′|T (k)
−q |J m〉 = (−1)q 〈J m|T (k)

q |J ′ m′〉∗, we can compare the above
two expressions, using q = m − m′, to write the following relation between the reduced matrix elements
〈J ′‖T(k)‖J〉 and 〈J‖T(k)‖J ′〉:

〈J ′‖T(k)‖J〉 = (−1)J
′−J
√

2J + 1

2J ′ + 1
〈J‖T(k)‖J ′〉∗.

(reduced matrix element conjugate) (7.259)
Of course, this relation applies as well to reduced matrix elements of the dipole operator, and thus when
using reduced matrix elements to compute transition probabilities, it is important to pay attention to the
ordering of the J and J ′ (F and F ′ for a hyperfine transition) quantum numbers.

7.3.6 Relations Between Reduced Matrix Elements of Tensor Operators

7.3.6.1 Tensor Operator Acting on One Component

Suppose we have a reduced matrix element

〈j‖T(k)‖j′〉 ≡ 〈j1, j2; j‖T(k)‖j′1, j′2; j′〉 (7.260)

between angular-momentum states of the composite angular momentum J = J1 + J2. Suppose further that
T(k) acts only on the states associated with J1, but not those of J2. We can then reduce this matrix element
to a form in terms of an uncoupled matrix element:

〈j‖T(k)‖j′〉 = δj2j′2(−1)
j′+j1+k+j2

√
(2j′ + 1)(2j1 + 1)

{
j1 j′1 k
j′ j j2

}
〈j1‖T(k)‖j′1〉.

(reduced matrix element, single subsystem) (7.261)
Obviously, if T(k) doesn’t couple at all to the J2 space, the matrix element should only be determined in
terms of J1 matrix elements. Further, this result sensibly says that states of different j2 are not coupled by
this operator.

To prove this result, we start with the expression (7.238) for the reduced matrix element, and then
transform into the uncoupled states:

〈j‖T(k)‖j′〉 = (−1)2k
∑
m′q

〈j m|T (k)
q |j′ m′〉 〈j m|j′ m′; k q〉

= (−1)2k
∑
m′q

m1m2m′
1m

′
2

〈j m|j1 m1; j2 m2〉 〈j1 m1; j2 m2|T (k)
q |j′1 m′1; j′2 m′2〉 〈j′1 m′1; j′2 m′2|j′ m′〉

× 〈j m|j′ m′; k q〉

= (−1)2kδj2j′2
∑
m′q

m1m2m′
1m

′
2

〈j m|j1 m1; j2 m2〉 〈j′1 m′1; j′2 m′2|j′ m′〉 〈j m|j′ m′; k q〉

× 〈j1 m1|T (k)
q |j′1 m′1〉 δm2m′

2

= (−1)2kδj2j′2
∑
m′q

m1m2m′
1m

′
2

〈j m|j1 m1; j2 m2〉 〈j′1 m′1; j2 m2|j′ m′〉 〈j m|j′ m′; k q〉

× 〈j1 m1|T (k)
q |j′1 m′1〉.

(7.262)
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Now applying the Wigner–Eckart theorem (7.237) to the matrix element,

〈j‖T(k)‖j′〉 = (−1)2kδj2j′2
∑
m′q

m1m2m′
1m

′
2

〈j m|j1 m1; j2 m2〉 〈j′1 m′1; j2 m2|j′ m′〉 〈j m|j′ m′; k q〉

× (−1)2k〈j1‖T(k)‖j′1〉 〈j1 m1|j′1 m′1; k q〉

= δj2j′2

∑
m′q

m1m2m′
1m

′
2

〈j1 m1; j2 m2|j m〉 〈j′1 m′1; j2 m2|j′ m′〉

× 〈j′ m′; k q|j m〉 〈j′1 m′1; k q|j1 m1〉 〈j1‖T(k)‖j′1〉

= δj2j′2

∑
m′q

m1m2m′
1m

′
2

〈j1 m1; j2 m2|j m〉 〈j′1 m′1; j2 m2|j′ m′〉

× (−1)j
′+k−j(−1)j

′
1+k−j1〈k q; j′ m′|j m〉 〈k q; j′1 m′1|j1 m1〉 〈j1‖T(k)‖j′1〉,

(7.263)
where in the last step we used the symmetry relation (7.54) to exchange the first two angular momenta in
each of the last two Clebsch–Gordan coefficients. The combination of Clebsch–Gordan coefficients here, if
we make the identifications k −→ j1, j′1 −→ j2, j2 −→ j3, j −→ j, j1 −→ j12, and j′ −→ j23, has the same
form as in the expression (7.86) for the 6-j symbol, and thus

〈j‖T(k)‖j′〉 = δj2j′2(−1)
j′+k−j(−1)j

′
1+k−j1(−1)−k−j

′
1−j2−j

√
(2j1 + 1)(2j′ + 1)

{
k j′1 j1
j2 j j′

}
〈j1‖T(k)‖j′1〉

= δj2j′2(−1)
j′−j1+k−j2−2j

√
(2j′ + 1)(2j1 + 1)

{
j1 j′1 k
j′ j j2

}
〈j1‖T(k)‖j′1〉,

(7.264)
after exchanging the first and last rows of the 6-j symbol. Finally, we use the fact from Eq. (7.90) that
j1 + j2 + j is an integer, and thus we can add 2(j1 + j2 + j) to the exponent of the (−1), and thus we arrive
at the result (7.261).

7.3.6.2 Scalar Products of Tensor Operators

Suppose we have two tensor operators, T(k) and U(k). We will assume that components of the different
tensors commute, [T

(k)
q , U

(k)
q ] = 0, so that the two tensors represent independent systems and thus can

support simultaneous eigenstates of each system. However, we can suppose that the two systems are coupled
according to the product of the two operators,

Hint = T(k) ·U(k) =
∑
q

(−1)qT (k)
q U

(k)
−q . (7.265)

Now consider the composite angular momentum J = J1 + J2, where T(k) is diagonal in the eigenstates
|j1 m1〉 of J 2

1 and J1z, U(k) is diagonal in the eigenstates |j2 m2〉 of J 2
2 and J2z, and the interaction Hint is

diagonal in the coupled eigenstates |j m〉 of J2 and Jz. We can treat this problem essentially just as in the
previous section. But first, if we apply the Wigner–Eckart theorem (7.237), we obtain

〈j m|T(k) ·U(k)|j′ m′〉 = 〈j‖T(k) ·U(k)‖j′〉 〈j m|j′ m′; 0 0〉 = 〈j‖T(k) ·U(k)‖j′〉 δjj′δmm′ . (7.266)

Thus, we need only consider diagonal matrix elements of the scalar product. What we will show is the
result

〈j m|T(k) ·U(k)|j′ m′〉 = 〈j‖T(k) ·U(k)‖j′〉 δmm′

= (−1)j1+j2+j
√
(2j1 + 1)(2j2 + 1)

{
j j2 j1
k j1 j2

}
〈j1‖T(k)‖j1〉 〈j2‖U(k)‖j2〉

× δjj′δmm′ ,

(matrix element of scalar product) (7.267)
where the interaction is represented by a product of reduced matrix elements on each subspace and then
coupled by a 6-j symbol.
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To prove this, we start by taking matrix elements of the interaction in the coupled basis and trans-
forming to the uncoupled basis,

〈j m|T(k) ·U(k)|j m〉 =
∑
q

(−1)q〈j m|T (k)
q U

(k)
−q |j m〉

=
∑

qm1m2m′
1m

′
2

(−1)q〈j m|j1 m1; j2 m2〉

× 〈j1 m1; j2 m2|T (k)
q U

(k)
−q |j1 m′1; j2 m′2〉 〈j1 m′1; j2 m′2|j m〉

=
∑

qm1m2m′
1m

′
2

(−1)q〈j1 m1; j2 m2|j m〉 〈j1 m′1; j2 m′2|j m〉

× 〈j1 m1|T (k)
q |j1 m′1〉 〈j2 m2|U (k)

−q |j2 m′2〉.

(7.268)

Applying the Wigner–Eckart theorem (7.237) twice,

〈j m|T(k) ·U(k)|j′ m′〉 =
∑

qm1m2m′
1m

′
2

(−1)q〈j1 m1; j2 m2|j m〉 〈j1 m′1; j2 m′2|j m〉

× 〈j1 m′1; k q|j1 m1〉 〈j2 m′2; k −q|j2 m2〉 〈j1‖T(k)‖j1〉 〈j2‖U(k)‖j2〉.
(7.269)

Permuting the symbols in the last Clebsch–Gordan coefficient via (7.65),

〈j m|T(k) ·U(k)|j′ m′〉 =
∑

qm1m2m′
1m

′
2

(−1)q(−1)k−q〈j1 m1; j2 m2|j m〉 〈j1 m′1; j2 m′2|j m〉

× 〈j1 m′1; k q|j1 m1〉 〈k q; j2 m2|j2 m′2〉 〈j1‖T(k)‖j1〉 〈j2‖U(k)‖j2〉.
(7.270)

Now again if we identify j1 −→ j12, j2 −→ j3, j′1 −→ j1, j′2 −→ j23, j −→ j, and k −→ j2, we can again use
Eq. (7.86) for the 6-j symbol, with the result

〈j m|T(k)·U(k)|j′ m′〉 = (−1)k(−1)−(j1+j2+j+k)
√
(2j1 + 1)(2j2 + 1)

{
j1 k j1
j2 j j2

}
〈j1‖T(k)‖j1〉〈j2‖U(k)‖j2〉.

(7.271)
Using the fact that j1 + j2 + j ∈ Z, as required for the 6-j symbol, and permuting the elements of the 6-j
symbol as permitted by its symmetries, we obtain the result (7.267).

The general case of the tensor product of two commuting tensor operators is more complicated, as it
involves a 9-j symbol.28 Since we will not use this case, we will avoid it here.

7.3.6.3 Matrix Elements of Tensor Products Operating on the Same System

One last variation on the above theme is to consider a tensor product

T(k) = U(k1)V(k2), (7.272)

where as usual |k1 − k2| ≤ k ≤ k1 + k2, but now both component tensors U(k1) and V(k2) act on the same
angular-momentum space of J. In this case, we have the reduced matrix element29

〈J‖T(k)‖J ′〉 = (−1)k+J+J
′ ∑
J′′

√
(2J ′′ + 1)(2k + 1)

{
k1 k2 k
J ′ J J ′′

}
〈J‖U(k1)‖J ′′〉 〈J ′′‖V(k2)‖J ′〉,

(matrix element of operators on same space) (7.273)
so that we have a rule for splitting reduced matrix elements of operator products into products of reduced
matrix elements.

28D. M. Brink and G. R. Satchler, Angular Momentum, 2nd ed. (Oxford, 1968), Section 5.3, p. 80.
29Brink and Satchler, op. cit., Eq. (5.5).
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To prove this, we start with the matrix elements of T(k), as given by the inverse (7.238) of the Wigner–
Eckart theorem:

〈J‖T(k)‖J ′〉 = (−1)2k
∑
m′q

〈J m|T (k)
q |J ′ m′J〉 〈J mJ |J ′ m′J ; k q〉. (7.274)

Now using Eq. (7.272) in the product-component form of Eq. (7.212),

T (k)
q =

∑
q1q2

(q1+q2=q)

U (k1)
q1 V (k2)

q2 〈k1 q1; k2 q2|k q〉, (7.275)

we can replace T (k)
q and introducing the identity to find

〈J‖T(k)‖J ′〉 = (−1)2k
∑

m′qq1q2

〈J mJ |U (k1)
q1 V (k2)

q2 |J ′ m′J〉 〈k1 q1; k2 q2|k q〉 〈J mJ |J ′ m′J ; k q〉

= (−1)2k
∑

m′qq1q2
J′′m′′

〈J mJ |U (k1)
q1 |J

′′ m′′J 〉 〈J ′′ m′′J |V (k2)
q2 |J ′ m′J〉 〈k1 q1; k2 q2|k q〉 〈J mJ |J ′ m′J ; k q〉.

(7.276)
Using the Wigner–Eckart theorem (7.237) twice, and introducing the identity to find

〈J‖T(k)‖J ′〉 = (−1)2(k+k1+k2)
∑

m′qq1q2
J′′m′′

〈J‖U(k1)‖J ′′〉 〈J mJ |J ′′ m′′J ; k1 q1〉 〈J ′′‖V(k2)‖J ′〉 〈J ′′ m′′J |J ′ m′J ; k2 q2〉

× 〈k1 q1; k2 q2|k q〉 〈J mJ |J ′ m′J ; k q〉

= (−1)2(k+k1+k2)
∑

m′qq1q2
J′′m′′

〈J ′′ m′′J ; k1 q1|J mJ〉 〈J ′ m′J ; k2 q2|J ′′ m′′J 〉

× 〈J ′ m′J ; k q|J mJ〉 〈k1 q1; k2 q2|k q〉 〈J‖U(k1)‖J ′′〉 〈J ′′‖V(k2)‖J ′〉

= (−1)3k+k1+k2
∑

m′qq1q2
J′′m′′

〈J ′′ m′′J ; k1 q1|J mJ〉 〈J ′ m′J ; k2 q2|J ′′ m′′J 〉

× 〈J ′ m′J ; k q|J mJ〉 〈k2 q2; k1 q1|k q〉 〈J‖U(k1)‖J ′′〉 〈J ′′‖V(k2)‖J ′〉,
(7.277)

where we used the symmetry rule (7.54) for the last Clebsch–Gordan coefficient. Again identifying J ′ −→ j1,
J ′′ −→ j12, J −→ j, k1 −→ j3, k2 −→ j2, and k −→ j23, we can again use Eq. (7.86) to introduce the 6-j
symbol, with the result

〈J‖T(k)‖J ′〉 = (−1)3k+k1+k2(−1)−(J
′+k1+k2+J)

×
∑
J′′

√
(2J ′′ + 1)(2k + 1)

{
J ′ k2 J ′′

k1 J k

}
〈J‖U(k1)‖J ′′〉 〈J ′′‖V(k2)‖J ′〉

= (−1)3k−J−J
′ ∑
J′′

√
(2J ′′ + 1)(2k + 1)

{
k1 k2 k
J ′ J J ′′

}
〈J‖U(k1)‖J ′′〉 〈J ′′‖V(k2)‖J ′〉.

(7.278)

Finally, using (−1)4k = 1 and the fact that k + J + J ′ ∈ Z, we arrive at the result (7.273).

7.3.7 Application to Atomic Transitions

7.3.7.1 Decomposition and Calculation of Reduced Matrix Elements

The Wigner–Eckart theorem (7.237) and the decomposition rule (7.261) for reduced matrix elements apply
immediately to the matrix elements of the dipole operator that govern atomic electric-dipole transitions.
Obviously the dipole operator has rank k = 1, and so applying the Wigner–Eckart theorem (7.237) to a
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transition between two fine-structure sublevels |J mJ〉 −→ |J ′ m′J〉, we find

〈J mJ |dq|J ′ m′J〉 = 〈J‖d‖J ′〉 〈J mJ |J ′ m′J ; 1 q〉

= 〈J‖d‖J ′〉 (−1)J
′−J+m′

J−mJ

√
2J + 1

2J ′ + 1
〈J ′ m′J |J mJ ; 1 −q〉,

(Wigner–Eckart theorem, fine-structure transition) (7.279)
where to write the last expression, we used the symmetry rules (7.65) and (7.54) to write

〈J ′ m′J ; 1 q|J mJ〉 = (−1)1+q
√

2J + 1

2J ′ + 1
〈1 −q; J mJ |J ′ m′J〉 = (−1)J−J

′+q

√
2J + 1

2J ′ + 1
〈J mJ ; 1 −q|J ′ m′J〉,

(7.280)
with (−1)q = (−1)mJ−m′

J = (−1)m′
J−mJ for nonvanishing coefficients. The Wigner–Eckart theorem applies

in exactly the same way to a hyperfine transition |F mF 〉 −→ |F ′ m′F 〉, so that

〈F mF |dq|F ′ m′F 〉 = 〈F‖d‖F ′〉 〈F mF |F ′ m′F ; 1 q〉

= 〈F‖d‖F ′〉 (−1)F
′−F+m′

F−mF

√
2F + 1

2F ′ + 1
〈F ′ m′F |F mF ; 1 −q〉.

(Wigner–Eckart theorem, hyperfine transition) (7.281)
In both cases, the Wigner–Eckart theorem gives the rather convenient result that the dependence on the two
m levels of the matrix element (which, for example, measures the relative transition rate of the transition)
is given entirely by a Clebsch–Gordan coefficient. Stated another way: the entire angular dependence of the
dipole matrix elements is given simply by a Clebsch–Gordan coefficient. Of course, the dependence on the J
or F quantum numbers still appears in what remains in the reduced matrix element.

However, for the reduced matrix element we can make further progress according to Eq. (7.261). The
crucial point is that the dipole operator refers to the position of the electron. However, a hyperfine transition
is a coupling between two states corresponding to different F = J+I, where in terms of the uncoupled states
|J mJ〉|I mI〉, the dipole operator acts only on the electron angular-momentum state |J mJ〉, not the nuclear
state |I mI〉. Thus, applying the decompostion (7.261) to the reduced hyperfine matrix element,

〈F‖d‖F ′〉 ≡ 〈J I F‖d‖J ′ I F ′〉

= 〈J‖d‖J ′〉 (−1)F ′+J+1+I
√
(2F ′ + 1)(2J + 1)

{
J J ′ 1
F ′ F I

}
.

(decomposition of hyperfine reduced matrix element) (7.282)
Note again that since the dipole operator doesn’t refer to the nucleus, the nuclear spin I is preserved in the
transition. Thus we see that the hyperfine reduced matrix element is just given in terms of the fine-structure
(electronic) reduced matrix element, multiplied by a factor that essentially represents the orientation of the
electron with respect to the nucleus. Recalling that the 6-j symbol represents a transformation between
two different ways to couple three angular momenta, the interpretation in this sense is a bit more murky.
However, the basic idea is that one can view the photon as either changing J or F ; this amounts to coupling
the photon (of unit angular momentum) to the electron either before or after coupling the electron to the
nucleus, and thus the appearance of the 6-j symbol.

By exactly the same procedure, the fine-structure reduced matrix element can be further factored into
another 6-j symbol and a reduced matrix element involving only the L quantum number:

〈J‖d‖J ′〉 ≡ 〈L S J‖d‖L′ S J ′〉

= 〈L‖d‖L′〉 (−1)J′+L+1+S
√
(2J ′ + 1)(2L+ 1)

{
L L′ 1
J ′ J S

}
.

(decomposition of fine-structure reduced matrix element) (7.283)
This, of course, works out because the dipole operator again represents the atomic position, but does not
refer to its spin. Thus, the dipole operator couples states of different orbital angular momentum L, but
doesn’t touch the spin S of the electron. Essentially the same interpretations as for the hyperfine case apply
here, with the nuclear spin replaced by the electron spin.
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7.3.7.2 Fine-Structure Selection Rules

The Wigner–Eckart theorem immediately leads to selection rules for ‘‘dipole-allowed’’ transitions. That
is, for a transition |J mJ〉 −→ |J ′ m′J〉 represented by the matrix element 〈J mJ |dq|J ′ m′J〉 to be a non-
vanishing matrix element, several conditions are required. In particular, the Clebsch–Gordan coefficient
〈J mJ |J ′ m′J ; 1 q〉, representing the angular dependence of the matrix element according to the Wigner–
Eckart theorem, represents the addition of angular momenta |J ′ m′J〉 and |1 q〉 to form the composite state
|J mJ〉. Recall from the triangular condition (7.41) that for such an addition the allowed range of J is
bounded below by |J ′ − 1| and above by J ′ + 1. This leads to the first selection rule

J ′ = J or J ′ = J ± 1.
(7.284)

(first selection rule)

Next, the addition of angular momentum requires first requires

mJ = m′J + q
(7.285)

(angular-momentum conservation)

to conserve angular momentum. Since the dipole component index q can take on the values −1, 0, or +1
(we will see these correspond to interactions with different polarizations of the electromagnetic field), the
second selection rule becomes

m′J = mJ or m′J = mJ ± 1.
(7.286)

(second selection rule)

Finally, one can show from Eq. (7.67) that the Clebsch–Gordan coefficient 〈J 0|J 0; 1 q〉 vanishes for any J
and q, leading to the final selection rule

J ′ 6= J if m′J = mJ = 0.
(7.287)

(third selection rule)

In particular, J = J ′ = 0 represents a forbidden transition; intuitively, this is because the atom must
‘‘absorb’’ the angular momentum of the photon (a spin-1 particle), which is not possible if J = 0 both before
and after absorbing the photon.

In all other cases, the corresponding dipole matrix element vanishes, or in other words the transition
is dipole forbidden.

As a final note, the dipole interaction couples the electric field to the electron’s position and not to its
spin, and thus the electron spin S (and mS) should not change in an electric-dipole transition.

S′ = S, m′S = mS .
(7.288)

(electric-dipole spin selection rules)

Furthermore, we can note that the above selection rules for J also apply to the orbital angular momentum
L, so we may write

L′ = L or L′ = L± 1
L 6= 0 or L′ 6= 0.

(7.289)
(orbital selection rules)

In particular, from the second rule any fine-structure transition of the form nS1/2 −→ n′S1/2 is dipole
forbidden. Of course, analogous rules should hold for mL, but this often isn’t a useful quantum number, so
we’ll skip it.

We recall also that the dipole operator only couples states of opposite parity (Section 5.1.1). A
hydrogen-atom state |nlm〉 has an angular dependence given by the spherical harmonic Y m` (θ, φ). But under
a parity transformation

Y m` (π − θ, φ+ π) = (−1)`Y m` (θ, φ), (7.290)

so evidently

∆` = ±1 (7.291)
(single-electron orbital selection rules)
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for exactly one electron in the atom. (Recall that l is the orbital quantum number for a single electron, while
L is the combined orbital quantum number for all the electrons.) This selection rule is often interpreted as
conservation of angular momentum when a photon is absorbed or emitted. Thus for a single electron atom,
or in two-electron atoms in low-energy transitions where only one electron is active, this rule implies that
∆L = ±1 as well.

One final selection rule is a bit more subtle, and is specific to fine-structure transitions where S = 1/2.
Because J = L + S, we have

|L− 1/2| ≤ J ≤ L+ 1/2, (7.292)

and since J′ = L′ + S, we have
|L′ − 1/2| ≤ J ′ ≤ L′ + 1/2. (7.293)

Now consider a transition where L′ = L+ 1 but J ′ = J − 1. Then the second condition becomes

L+ 3/2 ≤ J ≤ L+ 5/2, (7.294)

but this contradicts J ≤ L + 1/2 from Eq. (7.292). Similarly, if L′ = L − 1 but J ′ = J + 1, then (7.293)
becomes

|L− 3/2| − 1 ≤ J ≤ L− 3/2, (7.295)

but this contradicts J ≥ L − 1/2 from Eq. (7.292). Thus we may write the fourth fine-structure selection
rule

if L′ = L± 1 then J ′ 6= J ∓ 1.
(7.296)

(fourth selection rule)

This argument assumed S = 1/2, and so will not in general carry over to, for example, the hyperfine
transitions we consider later.

In any case, the selection rules for l, L, and S are approximate, since they assume that these are good
quantum numbers. In heavy, many-electron atoms, this may not be the case, and so these rules may be
violated to some extent.30

7.3.7.3 Hyperfine Selection Rules

Just as in Section 7.3.7.2, the constraints on the Clebsch–Gordan coefficient in the hyperfine Wigner–Eckart
theorem (7.281) induce selection rules on the hyperfine quantum numbers. Of course, the selection rules on
J and mJ of Section 7.3.7.2 still apply, but because the involved Clebsch–Gordan coefficients are the same,
the same constraints apply to F and mF . In particular, the rules

F ′ = F or F ′ = F ± 1
m′F = mF or m′F = mF ± 1
F ′ 6= F if m′F = mF = 0

(7.297)
(hyperfine selection rules)

apply to the hyperfine transition |F mF 〉 −→ |F ′ m′F 〉.
Finally, since the dipole interaction couples only the field to the electron dipole, there is no nuclear

coupling and thus the nuclear spin I should not change in an electric-dipole transition (nor should mI , if
that is the preferred basis). Thus, we may write the extra selection rules

I ′ = I, m′I = mI ,

(electric-dipole nuclear-spin selection rules) (7.298)
Of course, the nuclear spin may effectively change relative to the electron angular momentum, which is why
it is meaningful to have hyperfine states and, say, to optically pump into particular hyperfine sublevels.

30See Alan Corney, Atomic and Laser Spectroscopy (Oxford, 1977), Chapters 5-7.
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7.3.7.4 Decay Rate and the Reduced Matrix Element

But now the question remains, how do we compute the dipole matrix elements? The basic answer is to
know the decay rate Γ (equivalently, the lifetime) of the excited level, and here we will relate the decay rate
to the reduced matrix elements. For the two level atom, the spontaneous emission rate from the quantum
treatment of the atom–field interaction, Eq. (11.29), from |e〉 −→ |g〉 (with transition frequency ω0) is

Γ =
ω 3
0 |〈g|d|e〉|2

3πε0h̄c3
. (7.299)

This result is only for two levels, but now we are confronted with the physically important case of decay
between levels with angular-momentum degeneracy.

Consider the decay of the Jg −→ Je fine-structure transition (with Je being the excited state as usual).
Then the decay rate from sublevel |Je me〉 −→ |Jg mg〉 is just given by Eq. (7.299) with the appropriate
matrix element:

ΓJg,mg;Je,me =
ω 3
0

3πε0h̄c3
|〈Jg mg|d|Je me〉|2. (7.300)

The quantum vacuum is isotropic, and so spontaneous emission is as well. Thus, all magnetic sublevels of
the excited manifold decay at the same rate, and we can drop the explicit dependence on me. The total
decay rate out of any excited sublevel (and thus of the whole excited manifold) is this decay rate summed
over all ground sublevels:

ΓJgJe =
ω 3
0

3πε0h̄c3

∑
mg

|〈Jg mg|d|Je me〉|2. (7.301)

Summing over the excited sublevels as well, we can write

ΓJgJe =
ω 3
0

3πε0h̄c3
1

2Je + 1

∑
mg,me

|〈Jg mg|d|Je me〉|2. (7.302)

Recalling the normalization convention (7.241) for the reduced dipole matrix element,∑
me

|〈Jg mg|d|Je me〉|2 =
∑
meq

|〈Jg mg|dq|Je me〉|2 = |〈Jg‖d‖Je〉|2 , (7.303)

we can eliminate the excited-state sum:

ΓJgJe =
ω 3
0

3πε0h̄c3
1

2Je + 1

∑
mg

|〈Jg‖d‖Je〉|2. (7.304)

The summand no longer depends on mg, so we arrive at the final result:

ΓJgJe =
ω 3
0

3πε0h̄c3
2Jg + 1

2Je + 1
|〈Jg‖d‖Je〉|2.

(spontaneous decay rate, fine-structure transition) (7.305)
This expression can also effectively define the normalization convention of the matrix elements. More impor-
tantly, this is generally how you compute the dipole matrix elements, since lifetimes are a commonly measured
quantity used to define the strength of transitions (and even better, the lifetimes are free of ambiguities from
normalization conventions!).

A similar argument applies for hyperfine levels. However, when summing the dipole matrix elements
over all ground sublevels |Fg mg〉 connected to an excited sublevel, the explicit dependence on all hyperfine
quantum numbers vanishes: ∑

Fgmg

|〈Fg mg|d|Fe me〉|2 =
2Jg + 1

2Je + 1
|〈Jg‖d‖Je〉|2 . (7.306)
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Thus, the only dependence of the decay rate on the hyperfine quantum numbers enters through differences
in the transition frequencies. Even for the larger alkali atoms, this amounts to a difference of less than
0.1% in the decay rate, too small to be resolved so far in lifetime measurments. We can therefore ignore the
hyperfine splittings and use Eq. (7.305) as the decay rate for hyperfine levels.

Of course, these arguments establish the magnitude of the reduced matrix elements, but not the phase.
By convention, all dipole matrix elements are real, but may be positive or negative. For the interaction of
a field with only a single fine-structure transition, the reduced matrix element 〈J‖d‖J ′〉 can be assigned
an arbitrary sign, say positive. The correct signs for the hyperfine matrix elements are then assured by
the decomposition formula (7.282). If the interactions with multiple fine-structure levels are important,
the relative signs of the different matrix elements must be set according to the further decomposition rule
(7.283).

7.4 Interaction with Static Fields

7.4.1 Static Magnetic Fields: Zeeman Effect

Each of the fine-structure (J) energy levels contains 2J + 1 magnetic sublevels that determine the angular
distribution of the electron wave function. These states are labeled by the quantum numbers mJ associated
with the Jz operator, satisfying −J ≤ mJ ≤ J . In the absence of external fields, these sublevels are
degenerate: as we saw above, the shift only depended on the J quantum number, not mJ .

However, when an external magnetic field is applied, their degeneracy is broken. Both the magnetic
moments due to the electron spin and orbit couple to the field, and the Hamiltonian describing the atomic
interaction with the magnetic field is simply the magnetic-dipole-interaction Hamiltonian

H
(fs)
B = −µS ·B− µL ·B

=
µB

h̄
(gSS + gLL) ·B

=
µB

h̄
(gSSz + gLLz)B,

(7.307)

if we take the magnetic field to be along the z-direction (i.e., along the atomic quantization axis), B = Bẑ.
Again, the quantities gS and gL are respectively the electron spin and orbital ‘‘g-factors’’ or fudge-factors
that account for various modifications to the corresponding magnetic dipole moments. We already saw gS

in Section 7.2.1; the value for gL is approximately 1, as we assumed in the same section, but to account for
the finite nuclear mass, we can take to lowest order

gL =
m

me
=

1

1 +me/mnuc
≈ 1− me

mnuc
, (7.308)

where again me is the electron mass and mnuc is the nuclear mass to account for the fact that the electron’s
mass in the expression (7.109) for the orbital angular momentum is really its reduced mass, while the Bohr
magneton µB = eh̄/2me instead uses the electron mass.

7.4.1.1 Anomalous Zeeman Effect: Weak Fields

If we assume the magnetic-field interaction to be a small perturbation to the fine-structure Hamiltonian,
then to first order in perturbation theory we ignore any mixing of the fine-structure states |J mJ〉 and the
energy shift is

∆E
(fs)
B (J,mJ) = 〈J mJ |H(fs)

B |J mJ〉

=
µBB

h̄
〈J mJ |(gSSz + gLLz)|J mJ〉

=
µBBgL

h̄
〈J mJ |Jz|J mJ〉+

µBB(gS − gL)

h̄
〈J mJ |Sz|J mJ〉

= µBBgLmJ +
µBB(gS − gL)

h̄
〈J mJ |Sz|J mJ〉,

(7.309)
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where we used Jz = Lz + Sz and of course Jz|J mJ〉 = mJ h̄|J mJ〉. To evaluate the second term, we first
note that since J = L + S, squaring this relation gives

S · J =
1

2

(
J2 + S2 − L2

)
. (7.310)

Using the projection theorem (7.251), we can write

〈J mJ |Sz|J mJ〉 =
mJ

J(J + 1)h̄
〈J mJ |S · J|J mJ〉

=
mJ

2J(J + 1)h̄
〈J mJ |

(
J2 + S2 − L2

)
|J mJ〉

=
J(J + 1) + S(S + 1)− L(L+ 1)

2J(J + 1)
mJ h̄,

(7.311)

where we used Eq. (7.310) for the dot product, and we recall that |J mJ〉 ≡ |LS J mJ〉. Putting this
expectation value into Eq. (7.309), we obtain the perturbative shift

∆E
(fs)
B = µBgJmJB,

(7.312)
(fine-structure Zeeman shift, small B)

where the Landé gJ factor31 is

gJ := gL + (gS − gL)
J(J + 1) + S(S + 1)− L(L+ 1)

2J(J + 1)
.

(7.313)
(Landé gJ factor)

Note that this expression does not include corrections due to multielectron32 and QED33 effects, and thus
measured values may differ slightly from this. Note also that since gL ≈ 1 and gS ≈ 2, the gJ factor is
commonly written as

gJ ≈ 1 +
J(J + 1) + S(S + 1)− L(L+ 1)

2J(J + 1)
. (7.314)

The shift in this regime is thus proportional to both the mJ quantum number and the magnetic field. Recall
that this is only valid when the magnetic field is along the ẑ direction; otherwise, you must compute the
energy shifts according to this method for the states quantized along the magnetic field, and then use the
rotation operators below to obtain the states with the desired quantization axis, which will no longer be
eigenstates of the system. Thus, with other quantization axes, a given state will ‘‘remix’’ with the others
due to precession along the magnetic-field axis.

For the hyperfine case, if the energy shift due to the magnetic field is small compared to the fine-
structure splitting, then as we just argued J is a good quantum number. Then the interaction Hamiltonian
can be written as the fine-structure interaction plus the magnetic-dipole interaction of the nuclear magnetic
moment with the magnetic field:

H
(hfs)
B = H

(fs)
B − µI ·B =

µB

h̄
(gJJz + gIIz)Bz. (7.315)

Again, if the energy shift due to the magnetic field is small compared to the hyperfine splittings, then the
fine-structure treatment carries through with J −→ F , S −→ I, and L −→ J , so that

∆E
(hfs)
B = µBgFmFB,

(7.316)
(hyperfine Zeeman shift, small B)

31S. Goudsmit, ‘‘Nuclear Magnetic Moments,’’ Physical Review 43, 636 (1933) (doi: 10.1103/PhysRev.43.636); Alfred Landé,
‘‘The Magnetic Moment of the Proton,’’ Physical Review 44, 1028 (1933) (doi: 10.1103/PhysRev.44.1028); Alfred Landé,
‘‘Nuclear Magnetic Moments and Their Origin,’’ Physical Review 46, 477 (1934) (doi: 10.1103/PhysRev.46.477); Paul Forman,
‘‘Alfred Landé and the anomalous Zeeman Effect, 1919-1921,’’ Historical Studies in the Physical Sciences 2, 153 (1970).

32Hans A. Bethe and Edwin E. Salpeter, Quantum Mechanics of One- and Two-Electron Atoms (Springer-Verlag, 1957).
33Leonti Labzowsky, Igor Goidenko, and Pekka Pyykkö, ‘‘Estimates of the bound-state QED contributions to the g-factor of

valence ns electrons in alkali metal atoms,’’ Physics Letters A 258, 31 (1999).

http://dx.doi.org/10.1103/PhysRev.43.636
http://dx.doi.org/10.1103/PhysRev.44.1028
http://dx.doi.org/10.1103/PhysRev.46.477
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where the gF factor is

gF := gJ + (gI − gJ)
F (F + 1) + I(I + 1)− J(J + 1)

2F (F + 1)
, (7.317)

or in a more symmetric form,

gF := gJ

F (F + 1)− I(I + 1) + J(J + 1)

2F (F + 1)
+ gI

F (F + 1) + I(I + 1)− J(J + 1)

2F (F + 1)
.

(Landé gF factor) (7.318)
Recalling that gI is much smaller than gJ , this is commonly written

gF ≈ gJ

F (F + 1)− I(I + 1) + J(J + 1)

2F (F + 1)
, (7.319)

which is correct at the 0.1% level.
The shifts proportional to the magnetic fields in this weak-field regime were historically referred to

as the anomalous Zeeman effect, after Zeeman’s observation of the splitting of spectral lines.34 The
‘‘normal’’ case was based on the predicted splittings due only to orbital angular momentum. However,
‘‘anomalous’’ cases—which included spin effects—were observed before spin was known.

7.4.1.2 Paschen–Back Effect: Strong Fields

In the case of fine structure, when the field is large enough that the shifts due to the magnetic-field interaction
Hamiltonian (7.307) dominate the fine-structure splittings, the interaction is again simple, but J is no longer
a good quantum number. Ignoring the fine-structure Hamiltonian, the eigenstates of the interaction are
the uncoupled, or ‘‘high-field’’ fine-structure states |LmL;S mS〉. The energy shifts are thus given by the
expectation value of the interaction Hamiltonian, or

∆E|LmL;SmS〉 =
〈
H

(fs)
B

〉
=
µB

h̄
〈(gSSz + gLLz)〉B = µB(gSmS + gLmL)B. (7.320)

The energies again shift linearly with the applied field amplitude, but now the shifts have contributions
proportional to mS and mL rather than simply being proportional to mJ . The shift in this large-field regime
is called the Paschen–Back effect.35

We will consider in a bit more detail the hyperfine case, since it is easier to enter the Paschen–Back
regime for the much smaller hyperfine splittings. For strong fields where the appropriate interaction is
described by Eq. (7.315), the interaction Hamiltonian dominates the hyperfine Hamiltonian (7.132), so that
the hyperfine Hamiltonian perturbs the strong-field eigenstates |J mJ ; I mI〉. For this treatment to hold,
the energy perturbations must still be small compared to the fine-structure splitting, otherwise we need to
account for that effect as well. We can compute the energies to first order in perturbation theory (lowest
order in 1/B) by computing the expectation value

E|J mJ ;I mI〉 =
〈
Hhfs +H

(hfs)
B

〉
(7.321)

with respect to the strong-field states |J mJ I mI〉. To do this, we first invert the defining relations (7.7) for
the ladder operators to find Jx = (J+ + J−)/2 and Jy = (J+ − J−)/2i, so that

I · J = IzJz + IxJx + IyJy

= IzJz +
(I+ + I−)(J+ + J−)

4
− (I+ − I−)(J+ − J−)

4

= IzJz +
I+J− + I−J+

2
.

(7.322)

34P. Zeeman, ‘‘The Effect of Magnetisation on the Nature of Light Emitted by a Substance,’’ Nature 55, 347 (1897) (doi:
10.1038/055347a0); P. Zeeman, ‘‘On the influence of Magnetism on the Nature of the Light emitted by a Substance,’’ Philo-
sophical Magazine 43, 226 (1897); P. Zeeman, ‘‘Doubles and triplets in the spectrum produced by external magnetic forces,’’
Philosophical Magazine 44 55 (1897).

35Named for F. Paschen and E. Back, ‘‘Normale und anomale Zeemaneffekte,’’ Annalen der Physik 344, 897 (1912) (doi:
10.1002/andp.19123441502).

http://dx.doi.org/10.1038/055347a0
http://dx.doi.org/10.1002/andp.19123441502
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In the expectation value, the second term vanishes, leaving

〈J mJ ; I mI |(I · J)|J mJ ; I mI〉 = mImJ h̄
2. (7.323)

Squaring Eq. (7.322) then gives

(I · J)2 = (IzJz)
2 +

1

2
[(IzJz), (I+J− + I−J+)]+ +

(I+J− + I−J+)
2

4

= (IzJz)
2 +

1

2
[(IzJz), (I+J− + I−J+)]+ +

(I+J−)
2 + (I−J+)

2

4
+
I+I−J−J+ + I−I+J+J−

4
,

(7.324)

and then computing the expectation value, the middle terms vanish, while the last term can be computed
from Eq. (7.27) to obtain36

〈J mJ ; I mI |(I · J)2|J mJ ; I mI〉 = h̄4(mImJ)
2 +

h̄4

4
[I(I + 1)−mI(mI − 1)][J(J + 1)−mJ(mJ + 1)]

+
h̄4

4
[I(I + 1)−mI(mI + 1)][J(J + 1)−mJ(mJ − 1)]

= h̄4(mImJ)
2 +

h̄4

2
[I(I + 1)−m 2

I ][J(J + 1)−m 2
J ]−

h̄4

2
mImJ .

(7.325)
Now we can evaluate Eq. (7.321) by putting the above expectation values into (7.132), while dropping the
small Chfs term for (relative) simplicity, with the result

E|J mJ ;I mI〉 ≈ AhfsmImJ +Bhfs
9(mImJ)

2 − 3J(J + 1)m 2
I − 3I(I + 1)m 2

J + I(I + 1)J(J + 1)

4J(2J − 1)I(2I − 1)

+ µB(gJ mJ + gI mI)B.

(hyperfine Paschen–Back effect) (7.326)
The expectation of the interaction Hamiltonian is trivial in this case. Clearly, the hyperfine Hamiltonian,
while not contributing a B-dependent energy, is important in determining the correct splittings between the
states, even for strong fields. The energy shift in this regime is called the hyperfine Paschen-Back effect.

Note that for both instances of the Paschen–Back effect, we are considering fields that cause large
shifts on the scale of the unperturbed splittings. However, we don’t want the fields to be too large, where for
example the diamagnetic interaction, which in the dipole approximation is Hdiamagnetic = [d×B(0)]2/8me,
as we recall from Eq. (9.119), which leads to a quadratic Zeeman effect.

7.4.1.3 Incomplete Paschen–Back Effect: Intermediate Fields

For intermediate fields, where for example in hyperfine structure the interaction Hamiltonian neither weakly
perturbs nor dominates the hyperfine Hamiltonian, the energy shift is more difficult to calculate, and in
general one must numerically diagonalize Hhfs + H

(hfs)
B . A notable exception comes about in hyperfine

structure when either J = 1/2 or I = 1/2. In this case, the hyperfine Hamiltonian (7.132) is given only by
the magnetic-dipole term,

Hhfs = Ahfs
I · J
h̄2

. (7.327)

In the strong-field basis, we have from Eq. (7.322) again the diagonal matrix elements

〈J mJ ; I mI |Hhfs|J mJ ; I mI〉 = AhfsmImJ (7.328)
36This expression differs from that of E. B. Alexandrov, M. P. Chaika, and G. I. Khvostenko, Interference of Atomic States

(Springer–Verlag, 1993), p. 222, Eq. (5.160), where the authors neglected the contributions from the last term in Eq. (7.324).
Comparison of the two expressions to energies from numerical diagonalization confirms that the expression shown here is a
better approximation.
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and also from Eq. (7.30) the off-diagonal matrix elements

〈J (mJ − 1); I (mI + 1)|Hhfs|J mJ ; I mI〉 =
Ahfs

2

√
(J −mJ + 1)(J +mJ)(I +mI + 1)(I −mI)

〈J (mJ + 1); I (mI − 1)|Hhfs|J mJ ; I mI〉 =
Ahfs

2

√
(J +mJ + 1)(J −mJ)(I −mI + 1)(I +mI),

(7.329)

with all other matrix elements vanishing. The interaction Hamiltonian is diagonal in the strong-field basis,
with diagonal matrix elements

〈J mJ ; I mI |H(hfs)
B |J mJ ; I mI〉 = µB(gJmJ + gImI)B. (7.330)

Suppose now for concreteness that J = 1/2. Then states with mJ = 1/2 are only coupled to states with
mJ = −1/2 (and mI increased by 1), and states with mJ = −1/2 are only coupled to states with mJ = 1/2
(and mI decreased by 1). Thus, the combined Hamiltonian is block diagonal, with blocks of the form Ahfs

mI

2
+ µB

(gJ

2
+ gImI

)
B

Ahfs

2

√
(I +mI + 1)(I −mI)

Ahfs

2

√
(I +mI + 1)(I −mI) −Ahfs

(mI + 1)

2
+ µB

(
−gJ

2
+ gI(mI + 1)

)
B

 . (7.331)

Then we have a matrix with eigenvalues of the form[
A C
C D

]
−→ eigenvalues: A+D

2
± 1

2

√
(A−D)2 + 4C2, (7.332)

so that the new hyperfine eigenvalues are

E|J=1/2mJ ;I mI〉 = −
Ahfs

4
+ µBgI

(
mI +

1

2

)
B

± 1

2

{[
Ahfs

2
(2mI + 1) + µB(gJ − gI)B

]2
+A 2

hfs[I(I + 1)−mI(mI + 1)]

}1/2

.

(7.333)

Introducing the notations

∆Ehfs = Ahfs

(
I +

1

2

)
x =

µB(gJ − gI)B

∆Ehfs
,

(7.334)

where ∆Ehfs is the hyperfine splitting and x is a scaled magnetic-field strength,

E|J=1/2mJ ;I mI〉 = −
∆Ehfs

2(2I + 1)
+ µBgI

(
mI +

1

2

)
B

± ∆Ehfs

2

[(
(2mI + 1)

(2I + 1)
+ x

)2

+
4I(I + 1)

(2I + 1)2
− 4mI(mI + 1)

(2I + 1)2

]1/2
= − ∆Ehfs

2(2I + 1)
+ µBgI

(
mI +

1

2

)
B ± ∆Ehfs

2

[
1

(2I + 1)
+ 2x

(2mI + 1)

(2I + 1)
+

4I(I + 1)

(2I + 1)2
+ x2

]1/2
= − ∆Ehfs

2(2I + 1)
+ µBgI

(
mI +

1

2

)
B ± ∆Ehfs

2

[
1 + 2x

(2mI + 1)

(2I + 1)
+ x2

]1/2
(7.335)

Now recall that without the couplings (off-diagonal matrix elements), the mJ = +1/2 state is of higher
energy than the mJ = −1/2 state (recall gI is small compared to gJ). The couplings, just as was the case
for the dressed states of the two-level atom, will simply be spread further due to the interaction. Thus, we
can associate the ± energy with the mJ = ±1/2 state. Further, we can define m = mI +1/2; noting that we
labeled the upper (+) state as having quantum number mI while the lower (−) state has quantum number
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mI + 1, we can thus also interpret m = mI ±mJ , where mI and mJ are the literal quantum numbers for
each state, and thus we obtain the Breit–Rabi formula37

E|J=1/2mJ ;I mI〉 = −
∆Ehfs

2(2I + 1)
+ gIµBmB ±

∆Ehfs

2

(
1 +

4mx

2I + 1
+ x2

)1/2

.

(Breit–Rabi formula) (7.336)
Again, this formula applies to states with J = 1/2 and arbitrary I (but can of course be adapted to states
with I = 1/2 and arbitrary J). In order to avoid a sign ambiguity in evaluating (7.336), the more direct
formula

E|J=1/2 mJ ;I mI〉 = ∆Ehfs
I

2I + 1
± 1

2
(gJ + 2IgI)µBB (7.337)

can be used for the two states m = ±(I+1/2). The Breit–Rabi formula is useful, for example, in computing
the shifts of the ground states of the alkali atoms, which are of the form n2S1/2. For example, recall above
that the ground-state hyperfine F = 2 −→ F ′ = 3 splitting of 133Cs defines the second, but of course the
hyperfine transitions can depend on the local magnetic field. For this reason the mF = 0 −→ m′F = 0
transition is used, because both states have no Zeeman shift to lowest order. However, they do shift to
higher order, and the small frequency shift is

∆ωclock =
(gJ − gI)

2µ2
B

2h̄∆Ehfs
B2 (7.338)

to second order in the field strength, an important systematic effect to keep in mind when designing an
atomic clock.

As an example, shown below is the magnetic-field-dependent hyperfine structure of the ground (62S1/2)
state of 133Cs, ranging from the weak-field (Zeeman) regime through the hyperfine Paschen-Back regime.
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For the ground state, the Breit–Rabi formula applies and can be used to compute the energy levels. How-
ever, it does not apply to the D2 excited (62P3/2) state, where the level structure, shown below, is more
complicated.

37G. Breit and I. I. Rabi, ‘‘Measurement of Nuclear Spin,’’ Physical Review 38, 2082 (1931) (doi: 10.1103/PhysRev.38.2082.2).

http://dx.doi.org/10.1103/PhysRev.38.2082.2
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In both cases, the features we have discussed are visible. For small magnetic fields, the levels cluster around
the hyperfine energies and have shifts proportional to B. For large magnetic fields, the states instead cluster
according to their mJ value, with small splittings induced according to the value of mI . In the incomplete
Paschen–Back regime, there is a smooth crossover between the two types of level spacings.

7.4.2 Static Electric Fields: Stark Effect

Like static magnetic fields in the Zeeman effect, static electric fields also shift the fine- and hyperfine-structure
sublevels. However, the details of the electric-field shifts, or dc Stark shifts38 turn out to be quite different
from the case of the Zeeman effect. We will take the atom–field interaction Hamiltonian to be the usual
electric-dipole interaction,

HAF = −d ·E, (7.339)

where E is a static electric-field amplitude, and d is the atomic dipole operator as usual. The atomic
energy-level shifts in level |α〉 is given up to second order in perturbation theory by

∆Eα = 〈α|HAF|α〉+
∑
j

|〈α|HAF|βj〉|2

Eα − Eβj

, (7.340)

where the |βj〉 label all the other atomic states, and Eα and Eβj
are the atomic level energies. Recalling

that the dipole operator only couples states of opposite parity (Section 5.1.1), the first-order shift vanishes
and we are left only with the second-order term. Thus, the remaining effect is second order in E, and is thus
called the quadratic Stark effect. (A notable exception to this occurs in hydrogen, where degeneracy of
opposite-parity states leads to a first-order shift and thus a linear Stark effect.)

38J. Stark, ‘‘Beobachtungen über den Effekt des elektrischen Feldes auf Spektrallinien I. Quereffekt,’’ Annalen der Physik 43,
965 (1914).
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7.4.2.1 Effective, First-Order Interaction

It is conventional to define an effective Stark interaction Hamiltonian by39

HStark :=
∑
j

HAF|βj〉〈βj |HAF

Eα − Eβj

=
∑
j

dµ|βj〉〈βj |dν
Eα − Eβj

EµEν , (7.341)

where Eµ and Eν are the electric-field components (make sure to keep track of which E’s are energies and
which are fields!). With this effective Hamiltonian, we get the same shift, but now it looks like a first-order
shift:

∆Eα = 〈α|HStark|α〉. (7.342)

However, it’s important to realize that this result is really second order in perturbation theory. Now we note
that the Stark Hamiltonian has the form of a rank-2 tensor operator, contracted twice with the electric-field
vector:

HStark = SµνEµEν , (7.343)

where the tensor operator is

Sµν =
∑
j

dµ|βj〉〈βj |dν
Eα − Eβj

. (7.344)

This is a symmetric Cartesian tensor of rank 2. Recall from Section (7.3.3.3) that a rank-2 Cartesian tensor
may be decomposed into irreducible parts of rank 0, 1, and 2, where the rank-0 part is related to the trace,
the rank-1 part is related to the antisymmetric part of the tensor, and the rank-2 part is effectively what is
left. Writing the decomposition as in Eq. (7.207),

Sµν =
1

3
S(0)δµν + S(2)

µν , (7.345)

where the vector term vanishes since (7.344) is obviously a symmetric tensor, the scalar part is

S(0) = Sµµ, (7.346)

as in Eq. (7.199), and the irreducible tensor part is

S(2)
µν = Sµν −

1

3
Sσσδµν , (7.347)

as in Eq. (7.206). Thus, the Stark shift from Eq. (7.342) becomes

∆Eα = 〈α|Sµν |α〉EµEν =
1

3
〈α|S(0)|α〉E2 + 〈α|S(2)

µν |α〉EµEν , (7.348)

which is now separated into scalar and tensor parts: the first is the orientation-independent part of the shift,
while the second is the anisotropic part.

7.4.2.2 Scalar Shift: Fine Structure

The scalar part of the shift is given by the first term of Eq. (7.348). For a fine-structure state |J mJ〉, we
may write the shift as

∆E
(0)
|J mJ 〉 =

∑
J′m′

J

〈J mJ |dµ|J ′ m′J〉〈J ′ m′J |dµ|J ′ m′J〉
3(EJ − EJ′)

E2. (7.349)

39For other treatments and more details, see J. R. P. Angel and P. G. H. Sandars, ‘‘The Hyperfine Structure Stark Effect. I.
Theory,’’ Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 305, 125 (1968); Abbas
Khadjavi, Allen Lurio, and W. Happer, ‘‘Stark Effect in the Excited States of Rb, Cs, Cd, and Hg,’’ Physical Review 167 128
(1968) (doi: 10.1103/PhysRev.167.128); and Robert W. Schmieder, ‘‘Matrix Elements of the Quadratic Stark Effect on Atoms
with Hyperfine Structure,’’ American Journal of Physics 40, 297 (1972) (doi: 10.1119/1.1986513).

http://www.jstor.org/stable/2416177
http://dx.doi.org/10.1103/PhysRev.167.128
http://dx.doi.org/10.1119/1.1986513
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Using the Wigner–Eckart theorem (7.237) for the matrix elements, we find

∆E
(0)
J =

∑
J′m′

J µ

|〈J‖d‖J ′〉|2

3(EJ − EJ′)
〈J mJ |J ′ m′J ; 1 µ〉2E2. (7.350)

Note that we transposed the second matrix element so that we could apply the Wigner–Eckart theorem in
exactly the same form on each matrix element, ending up with one form of the reduced matrix element and
the Clebsch–Gordan coefficient. From the orthogonality relation (7.46), we can evaluate the double sum∑

m′
J µ

〈J mJ |J ′ m′J ; 1 µ〉2 = 1. (7.351)

Then, by analogy with the classical polarizability, as in Eq. (1.60), we then define a scalar polarizability
for the fine-structure level J by

α(0)(J) := −2

3

∑
J′

|〈J‖d‖J ′〉|2

EJ − EJ′
,

(7.352)
(scalar polarizability)

so that the scalar shift becomes

∆E
(0)
J = −1

2
α(0)(J)E2.

(7.353)
(scalar Stark shift)

The sum in the polarizability here extends over the other (i.e., radial) quantum numbers as well as J ′.

7.4.2.3 Tensor Shift: Fine Structure

The remaining (tensor) part of the Stark shift is given by the second term of Eq. (7.348). Again, for a
fine-structure state |J mJ〉, we may write the shift as

∆E
(2)
|J mJ 〉 =

2∑
q=−2

(−1)q〈J mJ |S(2)
q |J mJ〉 [EE]

(2)
−q, (7.354)

where we have switched to the scalar product (7.222) of spherical-tensors from the scalar product of the
irreducible Cartesian tensors S(2)

µν and the traceless part of EµEν . (Note that the scalar part of EµEν
has a vanishing interaction with S

(2)
µν , since its trace has been removed.) Recall that the spherical-tensor

components for the rank-2 tensors are given in Eq. (7.219). Again using the Wigner–Eckart theorem (7.237)
for the matrix element, we can write

∆E
(2)
|J mJ 〉 =

2∑
q=−2

(−1)q〈J‖S(2)‖J〉 [EE]
(2)
−q 〈J mJ |J mJ ; 2 q〉, (7.355)

where the only nonvanishing Clebsch–Gordan coefficient is

〈J mJ |J mJ ; 2 0〉 = 3m 2
J − J(J + 1)√

J(2J − 1)(J + 1)(2J + 3)
(J ≥ 1), (7.356)

where the constraint on J ensures that the triangularity constraint of the Clebsch–Gordan coefficient is
satisfied (|J −2| ≤ J ≤ J +2 here). That is, the tensor shift vanishes if J = 0 or J = 1/2. From Eq. (7.219),
the relevant component of the field tensor is

[EE]
(2)
0 =

1√
6
(E1E−1 + 2E 2

0 + E−1E1) =
1√
6
(3E 2

z − E2). (7.357)

Putting these pieces together, we can define a tensor polarizability

α(2)(J) := −〈J‖S(2)
q ‖J〉

√
8J(2J − 1)

3(J + 1)(2J + 3)
,

(7.358)
(tensor polarizability)
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so that the tensor shift is

∆E
(2)
|J mJ 〉 = −

1

4
α(2)(J) (3E 2

z − E2)

(
3m 2

J − J(J + 1)

J(2J − 1)

)
.

(7.359)
(tensor Stark shift)

Combining this with the scalar shift from Eq. (7.353), we can write the total shift as

∆E|J mJ 〉 = −
1

2
α(0)(J)E2 − 1

4
α(2)(J) (3E 2

z − E2)

(
3m 2

J − J(J + 1)

J(2J − 1)

)
.

(fine-structure Stark shift) (7.360)
The shift is largest when E = Ez ẑ (e.g., when we take the quantization axis to be along the E field), when
the Stark shift simplifies to

∆E|J mJ 〉 = −
1

2
α(0)(J)E 2

z −
1

2
α(2)(J)E 2

z

(
3m 2

J − J(J + 1)

J(2J − 1)

)
.

(fine-structure Stark shift) (7.361)
This latter form explains the normalization of the tensor term: for mJ = ±J , the shift becomes

∆E|J ±J〉 = −
1

2
α(0)(J)E 2

z −
1

2
α(2)(J)E 2

z , (7.362)

where the tensor term has the same form as the scalar term. Because of these forms for the Stark shift, we
can write down yet another effective Stark Hamiltonian,

HStark(J) = −
1

2
α(0)(J)E 2

z −
1

4
α(2)(J) (3E 2

z − E2)

(
3J 2
z /h̄

2 − J(J + 1)

J(2J − 1)

)
,

(effective Stark Hamiltonian) (7.363)
which has the same eigenvalues as the effective Hamiltonian (7.341) for fine-structure states |J mJ〉. Again,
we have taken the quantization axis to coincide with the electric-field direction. This is because the matrix
〈J mJ |HStark|J m′J〉 for the original Hamiltonian is only diagonal for E = Ez ẑ. Only for this choice of E
is [EE]

(2)
0 the only nonvanishing tensor component, as is evident from Eqs. (7.219), and the off-diagonal

analogue of Eq. (7.355) has a Clebsch–Gordan coefficient that vanishes except when mJ = m′J , since q = 0.
Obviously, this effective applies so long as the shift is weak enough that states of different J do not

mix. Again, we reiterate that the tensor polarizability vanishes if J = 0 or J = 1/2. More intuitively, we can
understand this by noting that if J = 0, then there is only one mJ level, and so there can be no orientation
dependence; the entire Stark shift is accounted for by the scalar term. Similarly, if J = 1/2, the tensor
Stark shift as we have seen only depends on |mJ |, so the two sublevels are degenerate. Again there is no
orientation dependence, and thus no tensor shift.

A more explicit expression for the tensor polarizability comes about if we factorize the reduced matrix
element 〈J‖S(2)‖J〉 into reduced matrix elements of dipole operators. We wish to apply Eq. (7.273) to
perform the factorizaton, regarding S(2)

q to be the rank-2 product of the vector dµ and the vector∑
j

|βj〉〈βj |
Eα − Eβj

dν (7.364)

from the definition in Eq. (7.344). The factorized matrix element then becomes

〈J‖S(2)‖J〉 = (−1)2J
∑
J′

√
5(2J ′ + 1)

{
1 1 2
J J J ′

}
〈J‖d‖J ′〉 〈J ′‖

∑
j

|βj〉〈βj |
EJ − Eβj

d‖J〉

= (−1)2J
∑
J′

√
5(2J ′ + 1)

{
1 1 2
J J J ′

}
〈J‖d‖J ′〉 〈J ′‖d‖J〉

EJ − EJ′

=
∑
J′

(−1)J+J
′√

5(2J + 1)

{
1 1 2
J J J ′

}
|〈J‖d‖J ′〉|2

EJ − EJ′
,

(7.365)
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where in the last step we used Eq. (7.259) to conjugate the second matrix element:

〈J ′‖d‖J〉 = (−1)J−J
′
√

2J + 1

2J ′ + 1
〈J‖d‖J ′〉∗. (7.366)

Putting this matrix element into the expression (7.358) for the tensor polarizability, we arrive at the expres-
sion40

α(2)(J) =
∑
J′

(−1)J+J
′+1

√
40J(2J + 1)(2J − 1)

3(J + 1)(2J + 3)

{
1 1 2
J J J ′

}
|〈J‖d‖J ′〉|2

EJ − EJ′
,

(tensor polarizability) (7.367)
thus giving the tensor polarizability as a direct sum over dipole matrix elements. Again, EJ is the energy
of level J , and in the sum over J ′ we also implicitly sum over any other necessary quantum numbers to
enumerate all possible states of the same J ′.

7.4.2.4 Hyperfine Structure: Weak Fields

In the case of hyperfine structure, we can make exactly the same arguments as we did for fine structure, but
using the hyperfine quantum number F instead of J . Thus, the effective hyperfine Stark Hamiltonian as in
Eq. (7.363) is

HStark(F ) = −
1

2
α(0)(F )E 2

z −
1

2
α(2)(F ) (3E 2

z − E2)

(
3F 2

z /h̄
2 − F (F + 1)

F (2F − 1)

)
,

(effective hyperfine Stark Hamiltonian) (7.368)
such that the quadratic Stark shift as in Eq. (7.360) is

∆E|F mF 〉 = −
1

2
α(0)(F )E 2

z −
1

4
α(2)(F ) (3E 2

z − E2)

(
3m 2

F − F (F + 1)

F (2F − 1)

)
,

(hyperfine-structure Stark shift) (7.369)
the hyperfine scalar polarizability defined as in Eq. (7.352) by

α(0)(F ) := −2

3

∑
F ′

|〈F‖d‖F ′〉|2

EF − EF ′
,

(7.370)
(hyperfine scalar polarizability)

and the hyperfine tensor polarizability is given as in Eq. (7.367) by

α(2)(F ) =
∑
F ′

(−1)F+F ′+1

√
40F (2F + 1)(2F − 1)

3(F + 1)(2F + 3)

{
1 1 2
F F F ′

}
|〈F‖d‖F ′〉|2

EF − EF ′
.

(tensor polarizability) (7.371)
These expressions suffice to compute the Stark shift due to static electric fields in the case of hyperfine
structure.

However, recalling that the electric field coupled only to the electron and not to the nucleus, the
effective Stark Hamiltonian (7.363) in terms of the electron angular momentum J must also be a perfectly
good Hamiltonian for the hyperfine Stark shift. For example, we may illustrate this by relating the fine-
structure polarizabilities to the hyperfine versions. Starting with the scalar hyperfine polarizability, we
can start with Eq. (7.282) to reduce the hyperfine matrix element to a fine-structure matrix element in

40cf. Khadjavi et al. and Angel et al., noting the difference in convention for the reduced dipole matrix element.
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Eq. (7.370),

α(0)(F ) = −2

3

∑
F ′J′

(2F ′ + 1)(2J + 1)

{
J J ′ 1
F ′ F I

}2 |〈J‖d‖J ′〉|2

EF − EF ′

≈ −2

3

∑
F ′J′

(2F ′ + 1)(2J + 1)

{
J J ′ 1
F ′ F I

}2 |〈J‖d‖J ′〉|2

EJ − EJ′

= −2

3

∑
J′

|〈J‖d‖J ′〉|2

EJ − EJ′
,

(7.372)

where we used the orthogonality relation (7.82) for the 6-j symbols in the last step, and we assumed that
the hyperfine splittings were small enough that EF ≈ EJ . Then comparing to Eq. (7.352), we see that the
scalar polarizability is the same in either case,

α(0)(F ) ≈ α(0)(J),

(hyperfine and fine-structure scalar polarizabilities) (7.373)
at least to the extent that the hyperfine splittings lend a negligible contribution to the polarizability (which is
generally true to within modern experimental error in precision measurements of polarizabilities). Similarly,
for the tensor polarizability,

α(2)(F ) =
∑
F ′J′

(−1)F+F ′+1

√
40F (2F + 1)(2F − 1)

3(F + 1)(2F + 3)

{
1 1 2
F F F ′

}
× (2F ′ + 1)(2J + 1)

{
J J ′ 1
F ′ F I

}2 |〈J‖d‖J ′〉|2

EF − EF ′
.

(7.374)

Again, making the approximation EF ≈ EJ , we can then carry out the sum over F ′ via the Biedenharn–
Elliott sum rule (7.102), which gives

∑
F ′

(−1)F
′
(2F ′ + 1)

{
1 1 2
F F F ′

}{
J J ′ 1
F ′ F I

}2

= (−1)−(2J+J
′+2F+I)

{
1 1 2
J J J ′

}{
J J 2
F F I

}
.

(7.375)
Putting this into the above expression for the tensor polarizability, we have

α(2)(F ) ≈
∑
J′

(−1)−2J−J
′−F−I+1(2J + 1)

√
40F (2F + 1)(2F − 1)

3(F + 1)(2F + 3)

{
1 1 2
J J J ′

}{
J J 2
F F I

}
|〈J‖d‖J ′〉|2

EJ − EJ′
,

(7.376)
and on comparison to Eq. (7.367), we can relate the hyperfine and fine-structure polarizabilities by

α(2)(F ) ≈ (−1)−3J−2J
′−F−I

√
(J + 1)(2J + 1)(2J + 3)F (2F + 1)(2F − 1)

J(2J − 1)(F + 1)(2F + 3)

{
J J 2
F F I

}
α(2)(J). (7.377)

From the 6-j symbol, the combination J + F + I ∈ Z, and since J and J ′ differ by 0 or 1, we conclude that
J ′ + F + I ∈ Z. Thus, we can multiply by (−1)2(J′+F+I)(−1)4J = 1 to obtain the result

α(2)(F ) ≈ (−1)J+I+F
√

(J + 1)(2J + 1)(2J + 3)F (2F + 1)(2F − 1)

J(2J − 1)(F + 1)(2F + 3)

{
J J 2
F F I

}
α(2)(J). (7.378)

We can evaluate the 6-j coefficient here, with the result

α(2)(F ) ≈ 3X(X − 1)− 4F (F + 1)J(J + 1)

(2F + 3)(2F + 2)J(2J − 1)
α(2)(J),

(hyperfine and fine-structure tensor polarizabilities) (7.379)
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where
X := F (F + 1)− I(I + 1) + J(J + 1). (7.380)

Then the total hyperfine Stark shift is

∆E|F mF 〉 ≈ −
1

2
α(0)(J)E 2

z − α(2)(J) (3E 2
z − E2)

[3m 2
F − F (F + 1)][3X(X − 1)− 4F (F + 1)J(J + 1)]

(2F + 3)(2F + 2)(2F )(2F − 1)(2J)(2J − 1)
,

(hyperfine-structure Stark shift) (7.381)
Again, these expression makes the (generally good) approximation of neglecting hyperfine shifts in computing
the relevant transition energies. Also, note that we have assumed in writing down these expressions that
F is a good quantum number, and thus we assume the tensor shifts to be much smaller than the hyperfine
splittings.

Recalling that the tensor polarizability vanished in the fine-structure cases of J = 0 and J = 1/2, we
can see by the coefficient in this expression that the tensor hyperfine polarizability also vanishes for F = 0
or F = 1/2 (and also still vanishes if J = 0 or J = 1/2). In particular, for the ground state of alkali atoms,
where J = 1/2, there is no tensor Stark shift. This statement predicts that for the cesium-clock hyperfine
transition, for example, the transition frequency is independent of a dc electric field, because the levels shift
together. Actually, this statement is only true in second-order perturbation theory, as we have used here;
in third-order perturbation theory, it turns out that, with hyperfine structure, there is still a small tensor
Stark shift.41

7.4.2.5 Hyperfine Structure: Stronger Fields

In the case of stronger fields, when F is no longer a good quantum number, the formulae of the previous
section no longer apply. However, the effective Stark interaction Hamiltonian (7.363) for the interaction
of the electron with the static electric field is still valid. In the limit of a very strong electric field, the
interaction HStark(J) will dominate the hyperfine Hamiltonian Hhfs, and as in the Paschen–Back (strong-
field) interaction for magnetic fields, the appropriate basis is |J mJ ; I mI〉, where HStark(J) is diagonal. In
this case, ignoring the hyperfine splittings, the energies are given by the fine-structure expression (7.360).
Also, in the same way as in Eq. (7.326) for the Paschen–Back effect, we can keep the lowest-order contribution
of Hhfs by taking its expectation value in the strong-field basis, with the result

E|J mJ ;I mI〉 ≈ AhfsmImJ +Bhfs
9(mImJ)

2 − 3J(J + 1)m 2
I − 3I(I + 1)m 2

J + I(I + 1)J(J + 1)

4J(2J − 1)I(2I − 1)

− 1

2
α(0)(J)E2 − 1

4
α(2)(J) (3E 2

z − E2)

(
3m 2

J − J(J + 1)

J(2J − 1)

)
.

(hyperfine Stark shift, strong field) (7.382)
Thus, in this ‘‘electric Paschen–Back’’ regime, we expect the hyperfine sublevels to split into major groups
according to the value of |mJ |, with smaller splittings according to mI . Obviously this only works if the
shifts are not so large that they mix state of different J .

However, for general (intermediate) electric fields, we must in general diagonalize Hhfs +HStark(J), as
is the case in general for magnetic fields. For example, using

〈F mF |J 2
z |F ′ m′F 〉 =

∑
mJmIm′

Jm
′
I

〈F mF |J mJ ; I mI〉 〈J mJ ; I mI |J 2
z |J m′J ; I m′I〉 〈J m′J ; I m′I |F ′ m′F 〉

=
∑
mJmI

h̄2m 2
J 〈J mJ ; I mI |F mF 〉 〈J mJ ; I mI |F ′ m′F 〉,

(7.383)
41A. Weis and S. Ulzega ‘‘The Stark effect of the hyperfine structure of cesium,’’ Proceedings of SPIE 6604, 660408 (2007)

(doi: 10.1117/12.726805).

http://dx.doi.org/10.1117/12.726805
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we can write the matrix elements of the Stark interaction in the hyperfine basis as

〈F mF |HStark(J)|F ′ m′F 〉 = −
1

2
α(0)(J)E 2

z δFF ′δmFm′
F

− 1

4
α(2)(J)

(3E 2
z − E2)

J(2J − 1)

(
3
∑
mJmI

m 2
J 〈J mJ ; I mI |F mF 〉 〈J mJ ; I mI |F ′ m′F 〉

− J(J + 1)δFF ′δmFm′
F

)
,

(7.384)
and then diagonalize the resulting matrix numerically. A somewhat nicer expression comes from using the
fact that (3J 2

z − J2) is the q = 0 component of a rank-2 spherical tensor operator. Applying the Wigner–
Eckart theorem (7.237),

〈F mF |(3J 2
z − J2)|F ′ m′F 〉 = 〈F‖(3J 2

z − J2)‖F ′〉 〈F mF |F ′ m′F ; 2 0〉

= δmFm′
F
〈F‖(3J 2

z − J2)‖F ′〉 〈F mF |F ′ mF ; 2 0〉

= δmFm′
F
(−1)F

′+J+I
√

(2F ′ + 1)(2J + 1)

{
J J ′ 2
F ′ F I

}
× 〈J‖(3J 2

z − J2)‖J ′〉 〈F mF |F ′ mF ; 2 0〉

= δmFm′
F
(−1)F

′+J+I
√

(2F ′ + 1)(2J + 1)

{
J J 2
F ′ F I

}
× δJJ ′ h̄2

√
J(J + 1)(2J − 1)(2J + 3)〈F mF |F ′ mF ; 2 0〉

(7.385)
where we used Eq. (7.261) to change to the fine-structure reduced matrix element, and we also used the
Wigner–Eckart theorem (7.237) to evaluate the reduced matrix element:

〈J‖(3J 2
z − J2)‖J ′〉 〈J mJ |J ′ mJ ; k 0〉 = 〈J mJ |(3J 2

z − J2)|J ′ mJ〉

= δJJ ′ h̄2[3m 2
J − J(J + 1)]

= δJJ ′ h̄2〈J mJ |J mJ ; 2 0〉
√
J(J + 1)(2J − 1)(2J + 3).

(7.386)

Thus, the hyperfine matrix elements of the Stark Hamiltonian become

〈F mF |HStark(J)|F ′ m′F 〉 = −
1

2
α(0)(J)E 2

z −
1

4
α(2)(J) (3E 2

z − E2)δJJ ′δmFm′
F

× (−1)F
′+J+I

√
(2F ′ + 1)(2J + 1)(2J + 2)(2J + 3)

2J(2J − 1)

×
{

J J 2
F ′ F I

}
〈F mF |F ′ mF ; 2 0〉

(7.387)
After adding the diagonal matrix Hhfs, the result can be diagonalized to obtain the energies. Alternately,
of course, the hyperfine Hamiltonian can be written in the strong-field basis |J mJ ; I mI〉 and then added
to the Stark Hamiltonian in the same way; this method also conveniently carries over to the magnetic-field
case. Shown below are the energies of the 6 2P3/2 hyperfine manifold of 133Cs, as in the magnetic-field
example above, as obtained via numerical diagonalization. The overall scalar shift is visible as a quadratic
downward trend of all the energy levels. The tensor part of the Stark shift is visible as a splitting of the
initially degenerate hyperfine sublevels, which break up at the largest fields according to |mJ | in the ‘‘electric
Paschen–Back’’ regime that we mentioned above.
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7.5 Interactions with Optical Fields

7.5.1 Atomic Fine-Structure Hamiltonian

We will now consider the interaction of a monochromatic laser field with an atomic Zeeman-degenerate
fine-structure transition Jg −→ Je, making the simplifying assumption of a closed transition (i.e., no other
ground or excited levels are involved), and of course recalling that the selection rule |Je − Jg| ≤ 1 applies.
The atomic Hamiltonian is

HA = h̄ω0

∑
me

|Je me〉〈Je me|, (7.388)

if we assume degenerate magnetic sublevels and a transition frequency of ω0, while choosing the ground level
to have zero energy. Since we will further consider an interaction with a field of frequency ω, we can follow
the example from the two-level atom and transform into the rotating frame of the laser field, which we recall
amounts to shifting the excited states down in energy by h̄ω. The rotating-frame Hamiltonian is thus

H̃A = −h̄∆
∑
me

|Je me〉〈Je me|, (7.389)

where the field detuning from the atomic resonance is ∆ := ω−ω0 as usual. Effects that break the degeneracy
of the sublevels are easily accounted for here by including extram-dependent shifts, such as to include Zeeman
or dc Stark shifts.

7.5.2 Dipole and Atomic Lowering Operators

We turn now to the dipole interaction between atom and field. Just as in the case of the two-level atom, if
we assume the ground and excited levels to be of opposite parity, we can now decompose the q component
of the dipole operator in the spherical basis into positive- and negative-rotating parts. Recall that we did
this equivalently in terms of the time dependence of expectation values or the lowering/raising character of
the operators. Denoting the projection operators for the excited and ground levels by

Pe :=
∑
me

|Je me〉〈Je me|, Pg :=
∑
mg

|Jg mg〉〈Jg mg|, (7.390)
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respectively, we can conveniently separate the two parts by writing

dq = (Pe + Pg)dq(Pe + Pg)

= PgdqPe + PedqPg

= d(+)
q + d(−)q ,

(7.391)

since the dipole operator does not couple states within the same level as a consequence of its parity properties.
Then the positive-rotating part becomes

d
(+)
q = PgdqPe

=
∑
memg

〈Jg mg|dq|Je me〉 |Jg mg〉〈Je me|

=
∑
memg

〈Jg‖d‖Je〉 〈Jg mg|Je me; 1 q〉 |Jg mg〉〈Je me|,

(7.392)

where we have used the Wigner–Eckart theorem (7.242) in the second step. In each term of the sum, the
projection quantum numbers are of course subject to the constraints mg = me + q for the term to be
nonvanishing. Introducing the notation

σ(mg,me) := |Jg mg〉〈Je me| (7.393)

for individual lowering operators, we have

d
(+)
q =

∑
memg

〈Jg‖d‖Je〉 〈Jg mg|Je me; 1 q〉 σ(mg,me). (7.394)

Recall from Section 7.3.5 that dq is only a Hermitian operator in the case q = 0. Thus, d(+)
q and d

(−)
q are

not Hermitian conjugates unless q = 0, but rather

d
(−)
q = PedqPg

=
∑
memg

〈Je me|dq|Jg mg〉 |Je me〉〈Jg mg|

=
∑
memg

〈Je‖d‖Jg〉 〈Je me|Jg mg; 1 q〉 |Je me〉〈Jg mg|

=
∑
memg

(−1)q〈Jg‖d‖Je〉 〈Jg mg|Je me; 1 −q〉 |Je me〉〈Jg mg|

=
∑
memg

(−1)q〈Jg‖d‖Je〉 〈Jg mg|Je me; 1 −q〉 σ†(mg,me),

(7.395)

where we switched the forms of the Clebsch–Gordan coefficient as in Eq. (7.242) along with the reduced-
matrix-element fomula (7.259). This operator thus lowers me to mg, but the constraint is now mg = me− q,
so the transition is not the reverse of that in d

(+)
q unless q = 0. Evidently, then, d(−)q is the Hermitian

conjugate of (−1)qd(+)
−q , as we expected from Section 7.3.5. Introducing the weighted lowering operators for

the entire Jg −→ Je transition by

Σq :=
∑
mgme

〈Jg mg|Je me; 1 q〉 |Jg mg〉〈Je me|

=
∑
mgme

〈Jg mg|Je me; 1 q〉 σ(mg,me),
(7.396)
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we can additionally implement the constraint mg = me + q on the sublevels to write

Σq =
∑
me

〈Jg me + q|Je me; 1 q〉 |Jg me + q〉〈Je me|

=
∑
mg

〈Jg mg|Je mg − q; 1 q〉 |Jg mg〉〈Je mg − q|.

(atomic lowering operators, spherical basis) (7.397)
Thus, we see that when Σq lowers an excited sublevel me, it ‘‘returns’’ the sublevel labeled by me + q. Note,
however, that Σq is not a proper tensor operator, in the sense that Σ†q 6= (−1)qΣ−q.

Then using Eq. (7.396), we may rewrite the dipole-operator part of Eqs. (7.394) and (7.395) as

dq = d(+)
q + d(−)q

= 〈Jg‖d‖Je〉
(
Σq + (−1)qΣ†−q

)
.

(dipole operator in terms of lowering operators) (7.398)
This form is the generalization of the two-level-atom expression for the dipole operator [cf. Eq. (5.12)] to a
fine-structure transition in a physical atom.

7.5.3 Dipole Interaction

Now considering the usual interaction Hamiltonian

HAF = −d ·E = −
∑
q

(−1)qdqE−q (7.399)

for the atom with a monochromatic optical field of frequency ω, we can make the rotating-wave approximation
and implement the spherical-basis dot product as in Eq. (7.192) to obtain

HAF = −d(+) ·E(−) − d(−) ·E(+) = −
∑
q

(−1)q
(
d(+)
q E

(−)
−q + d(−)q E

(+)
−q

)
. (7.400)

Then using Eq. (7.398) for the dipole operator, the interaction Hamiltonian becomes

HAF = −
∑
q

〈Jg‖d‖Je〉
[
(−1)qE(−)

−q (t)Σq + E
(+)
−q (t)Σ

†
−q

]
. (7.401)

Defining the vector Rabi frequency

Ωq := −
2〈Jg‖d‖Je〉E(+)

q (0)

h̄
,

(7.402)
(vector Rabi frequency)

and noting that this implies

(Ωq)
∗ = −(−1)q

2〈Jg‖d‖Je〉E(−)
−q (0)

h̄
, (7.403)

we can write the atom–field interaction as

HAF =
h̄

2

∑
q

[
Ω∗qΣqe

iωt +Ω−qΣ
†
−qe
−iωt

]
, (7.404)

or letting q −→ −q in the second term,

HAF =
h̄

2

∑
q

[
Ω∗qΣqe

iωt +ΩqΣ
†
qe
−iωt] .

(atom–field interaction, fine-structure transition) (7.405)
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As usual, we transform into the rotating frame of the laser field, say, by moving the excited states down in
energy by h̄ω, the time dependence of the interaction goes away:

H̃AF =
h̄

2

∑
q

[
Ω∗qΣq +ΩqΣ

†
q

]
.

(atom–field interaction, rotating frame) (7.406)
We can similarly write out the interaction Hamiltonian in terms of all pairs of coupled sublevels as

H̃AF =
h̄

2

∑
mgme

[
Ω∗(mg,me)σ(mg,me) + Ω(mg,me)σ

†(mg,me)
]
,

(atom–field interaction, rotating frame) (7.407)
where

Ω(mg,me) := 〈Jg mg|Je me; 1 −(me −mg)〉 Ω−(me−mg).

(sublevel Rabi frequencies) (7.408)
is the Rabi frequency for the |Jg mg〉 −→ |Je me〉 sublevel transition in terms of the vector Rabi frequency.

7.5.3.1 Magnetic-Sublevel Transitions: Notation

To illustrate the couplings in the above dipole Hamiltonian, we will consider as an example the possible
transitions occurring in a Jg = 1/2 −→ Je = 3/2 transition. Recall that the selection rules in this case
dictate that m can change by at most 1 in a dipole-allowed transition. The transitions where ∆m = 0 are
referred to as π transitions, and since q = −(me−mg), these transitions correspond to q = 0 and are thus
coupled by the q = 0 polarization of the electric field (i.e., by linearly polarized light along the ẑ-direction).
Correspondingly these transitions are coupled by the Σ0 operator. There are two possible π transitions in
this example atom, shown here.

Jo=o1/2

p transitions:

mo=o1/2 mo=o3/2mo=o-1/2mo=o-3/2

Jo=o3/2

The transitions where me = mg + 1 are referred to as σ+ transitions, and they correspond to q = −1 and
are thus coupled by the q = −1 polarization of the electric field (i.e., by circularly polarized light in the
x-y plane). Correspondingly these transitions are coupled by the Σ−1 operator. There are two possible σ+

transitions in this example atom, shown here.

Jo=o1/2

s ô transitions:

mo=o1/2 mo=o3/2mo=o-1/2mo=o-3/2

Jo=o3/2

Finally, the transitions where me = mg − 1 are referred to as σ− transitions, and they correspond to
q = +1 and are thus coupled by the q = +1 polarization of the electric field (i.e., by circularly polarized
light in the x-y plane, but rotating in the opposite sense to σ− light). Correspondingly these transitions are
coupled by the Σ+1 operator. There are of course two possible σ− transitions in this example atom, shown
here.

Jo=o1/2

s — transitions:

mo=o1/2 mo=o3/2mo=o-1/2mo=o-3/2

Jo=o3/2
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To reiterate, because the notation is a bit strange: π transitions are coupled by the E0 = Ez component of
the field, or linear polarization along ẑ. (Of course, z here defines the ‘‘quantization axis’’ for the angular-
momentum states, since m is the quantum number for Jz.) The σ± transitions are coupled by the E∓1
components, respectively, of the electric field, corresponding to the two circular polarizations orthogonal to
ẑ.

7.5.4 Dipole Interaction: Hyperfine Structure

7.5.4.1 Atomic Hyperfine Hamiltonian

The treatment of hyperfine structure is much the same as for fine structure, but there is some extra compli-
cation in typically having more hyperfine levels to deal with and in further decomposing the dipole matrix
elements. We will consider transitions from a manifold of ground hyperfine levels to a manifold of excited
hyperfine levels. The relevant hyperfine levels are again essentially determined by the quantum numbers
of the fine-structure transition Jg −→ Je (where dipole constraint |Je − Jg| ≤ 1 is satisfied) as well as the
nuclear quantum number I. We still assume the fine-structure transition to be closed, but we include all
possible hyperfine ground states |Jg − I| ≤ Fg ≤ Jg + I and excited states |Je − I| ≤ Fe ≤ Je + I, noting
that only transitions satisfying |Fe − Fg| ≤ 1 will occur.

The atomic Hamiltonian is

HA = h̄
∑
Fgmg

δωFg |Fg mg〉〈Fg mg|+ h̄
∑
me

(ω0 + δωFe)|Fe me〉〈Fe me|, (7.409)

if we assume degenerate magnetic sublevels within each hyperfine level. Here ω0 is the transition frequency,
which we can choose, for example, to correspond to the frequency difference between the centers of gravity
of the hyperfine manifolds. Then δωFg and δωFe are the hyperfine shifts from each respective center of
gravity. (Alternately, ω0 could be chosen to correspond to a particular hyperfine transition of interest such
as a laser-cooling transition, with the δωFg and δωFe corresponding to shifts from these levels within each
manifold.) Again, with a coupling to a field of frequency ω, it is convenient to work within the rotating
frame of the field, where the Hamiltonian is

H̃A = h̄
∑
Fgmg

δωFg |Fg mg〉〈Fg mg|+ h̄
∑
me

(δωFe −∆)|Fe me〉〈Fe me|, (7.410)

where ∆ := ω − ω0 is the usual field detuning from the atomic resonance.

7.5.4.2 Atom–Field Interaction

Then the appropriate projection operators require summations over the hyperfine quantum numbers Fe and
Fg as well as the sublevel indices me and mg:

Pe :=
∑
Feme

|Fe me〉〈Fe me|, Pg :=
∑
Fgmg

|Fg mg〉〈Fg mg|. (7.411)

Then again in our restricted Hilbert space, Pe+Pg is the identity, and we can again write the dipole operator
as

dq = (Pe + Pg)dq(Pe + Pg)

= PgdqPe + PedqPg

= d(+)
q + d(−)q ,

(7.412)
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since the dipole operator does not couple states within the same hyperfine manifold. Then the positive-
rotating part becomes

d
(+)
q = PgdqPe

=
∑

FemeFgmg

〈Fg mg|dq|Fe me〉 |Fg mg〉〈Fe me|

=
∑

FemeFgmg

〈Fg‖d‖Fe〉〈Fg mg|Fe me; 1 q〉 |Fg mg〉〈Fe me|

=
∑

FemeFgmg

〈Jg‖d‖Je〉(−1)Fe+Jg+1+I
√
(2Fe + 1)(2Jg + 1)

{
Jg Je 1
Fe Fg I

}
×〈Fg mg|Fe me; 1 q〉 |Fg mg〉〈Fe me|,

(7.413)

where we have used the Wigner–Eckart theorem (7.242) and the decomposition rule (7.282). Clearly, mg =
me + q must still hold for the nonvanishing terms in the sum. Similarly, we may verify directly using
Eqs. (7.91), (7.259), and (7.281), that

d
(−)
q = PedqPg

=
∑

FemeFgmg

〈Je‖d‖Jg〉(−1)Fg+Je+1+I
√

(2Fg + 1)(2Je + 1)

{
Je Jg 1
Fg Fe I

}
×〈Fe me|Fg mg; 1 q〉 |Fe me〉〈Fg mg|

=
∑

FemeFgmg

〈Jg‖d‖Je〉(−1)Fe+Jg+1+I(−1)q
√
(2Fe + 1)(2Jg + 1)

{
Jg Je 1
Fe Fg I

}
×〈Fg mg|Fe me; 1 −q〉 |Fe me〉〈Fg mg|

= (−1)q
(
d(+)
q

)†
.

(7.414)

We can then indicate the rather complicated dependence in the dipole operator here by defining as before
the weighted lowering operator

Σq :=
∑

FgmgFeme

(−1)Fe+Jg+1+I
√
(2Fe + 1)(2Jg + 1) 〈Fg mg|Fe me; 1 q〉

{
Je Jg 1
Fg Fe I

}
|Fg mg〉〈Fe me|

=
∑

FgmgFeme

(−1)Fe+Jg+1+I
√
(2Fe + 1)(2Jg + 1) 〈Fg mg|Fe me; 1 q〉

{
Je Jg 1
Fg Fe I

}
σ(Fg,mg;Fe,me),

(hyperfine lowering operator) (7.415)
where the individual lowering operators are

σ(Fg,mg;Fe,me) := |Fg mg〉〈Fe me|. (7.416)

We can then write the dipole operator in the same form as for the fine-structure transition as

dq = d(+)
q + d(−)q

= 〈Jg‖d‖Je〉
(
Σq + (−1)qΣ†−q

)
.

(hyperfine dipole operator) (7.417)
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Then the dipole-interaction Hamiltonian becomes

HAF = −d(+) ·E(−) − d(−) ·E(+)

= −
∑
q

(−1)q
(
d(+)
q E

(−)
−q + d(−)q E

(+)
−q

)
= −

∑
q

〈Jg‖d‖Je〉
[
(−1)qE(−)

−q (t)Σq + E
(+)
−q (t)Σ

†
−q

]
,

(7.418)

and defining the same vector Rabi frequency as before,

Ωq := −
2〈Jg‖d‖Je〉E(+)

q (0)

h̄
,

(7.419)
(vector hyperfine Rabi frequency)

we switch to the rotating frame of the laser field and write the atom–field interaction in the same form as
before:

H̃AF =
h̄

2

∑
q

[
Ω∗qΣq +ΩqΣ

†
q

]
.

(atom–field interaction, hyperfine transition) (7.420)
The same form, that is, except that the raising and lowering operators are considerably more complicated.
Putting these in explicitly yields the expression

H̃AF =
h̄

2

∑
FgmgFeme

[
Ω∗(Fg,mg;Fe,me)σ(Fg,mg;Fe,me) + Ω(Fg,mg;Fe,me)σ

†(Fg,mg;Fe,me)
]
,

(hyperfine atom–field interaction, rotating frame) (7.421)
where

Ω(Fg,mg;Fe,me)

:= (−1)Fe+Jg+1+I
√
(2Fe + 1)(2Jg + 1) 〈Fg mg|Fe me; 1 −(me −mg)〉

{
Je Jg 1
Fg Fe I

}
Ω−(me−mg).

(sublevel Rabi frequencies) (7.422)
is the Rabi frequency for the |Fg mg〉 −→ |Fe me〉 hyperfine sublevel transition in terms of the vector Rabi
frequency.

7.6 Angular Distribution of Dipolar Resonance Fluorescence

Recall from Eq. (5.256) that the scattered intensity can be represented in terms of the scattered field as

I(r, ω) = 1

πη

∫ ∞
−∞

〈
E(−)(r, t) ·E(+)(r, t+ τ)

〉
eiωτ dτ, (7.423)

when written in terms of the vector electric field. Recall that the classical field due to an oscillating dipole
in the radiation zone is

E(+)(r, t) = 1

4πε0c2
[(ε̂ · r̂)r̂ − ε̂] d̈

(+)(tr)

r
, (7.424)

for a dipole orientation ε̂. This carries over to the quantum atom here, as we are still treating the field
classically. However, we need to be careful in the spherical basis. Specifically, in the above notation, we
mean

[(ε̂ · r̂) r̂ − ε̂] d(+) =
[(

d(+) · r̂
)
r̂ − d(+)

]
, (7.425)

and in the spherical basis, the dipole operator may be resolved into components as

d(+) =
∑
q

ê∗qdq =
∑
q

ε̂∗qdq, (7.426)
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if we choose to represent the polarization-vector components as in terms of the usual basis vectors

ε̂q = êq. (7.427)

Thus, the polarization vector becomes[(
d(+) · r̂

)
r̂ − d(+)

]
=
[
(ε̂∗q · r̂)r̂ − ε̂∗q

]
d(+), (7.428)

and so the radiated electric field becomes

E(+)(r, t) = 1

4πε0c2

∑
q

[
(ε̂∗q · r̂)r̂ − ε̂∗q

] d̈(+)
q (tr)

r
(7.429)

in terms of the dipole-vector components. We can then label the radiated field due to each dipole-vector
component as

E(+)
q (r, t) = 1

4πε0c2
[
(ε̂∗q · r̂)r̂ − ε̂∗q

] d̈(+)
q (tr)

r
, (7.430)

where the polarization vectors are again

ε̂0 = ê0 = ẑ, ε̂±1 = ê±1 = ∓(x̂± iŷ)/
√
2 (7.431)

for linear and circular polarizations, respectively. That is, ε̂q is just the unit spherical basis vector êq. Note
that Eq is not a spherical vector, but dq is, so we should be careful to observe that

E(−)
q (r, t) = 1

4πε0c2
[(ε̂q · r̂)r̂ − ε̂q]

(−1)−qd̈(−)−q (tr)
r

, (7.432)

to ensure that we appropriately conjugate the dipole operator.
The fields that appear in (7.423) are, as we defined them, sums of all three component fields, and so

we may write the sum explicitly as

I(r, ω) = 1

πη

∑
qq′

∫ ∞
−∞

〈
E(−)
q (r, t) ·E(+)

q′ (r, t+ τ)
〉
eiωτ dτ. (7.433)

Paralleling our previous treatment in Section 5.7, we may now write the scattered intensity as

Isc(r, ω) =
ω 4
0

6π2ε0c3r2

∑
qq′

fqq′(θ, φ) (−1)q
∫ ∞
−∞

〈
d
(−)
−q (r, t) d

(+)
q′ (r, t+ τ)

〉
eiωτ dτ, (7.434)

where we have defined the angular-distribution tensor

fqq′(θ, φ) :=
3

8π
[(ε̂q · r̂)r̂ − ε̂q] ·

[
(ε̂∗q′ · r̂)r̂ − ε̂∗q′

]
=

3

8π

[
ε̂q · ε̂∗q′ − (ε̂q · r̂)(ε̂∗q′ · r̂)

] (7.435)

We will now reduce this to a more explicit form in terms of the angle variables θ and φ.

7.6.1 Angular-Distribution Tensor

We can first use the orthogonality relation ε̂q · ε̂∗q′ = δqq′ to evaluate the first term in Eq. (7.435). For the
second, we can use the relation

ε̂q · r̂ =
√

4π

3
Y q1 (θ, φ) (7.436)
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for the projection of r̂ into basis vectors in terms of the spherical harmonics, which can be verified directly
(but certainly makes sense since Y q1 is the right tensor for representing three-vectors). Along with the
conjugation rule

[Y m` (θ, φ)]
∗
= (−1)mY −m` (θ, φ), (7.437)

we can write the angular scattering tensor as

fqq′(θ, φ) =
3

8π

[
δqq′ −

4π

3
(−1)q

′
Y q1 (θ, φ)Y

−q′
1 (θ, φ)

]
. (7.438)

To reduce this yet more, we may use the recoupling relation (7.187), which in this special case reads

Y q1 (θ, φ)Y
−q′
1 (θ, φ) =

2∑
`=0

(−1)q
′−q

√
9(2`+ 1)

4π

(
1 1 `
q −q′ q′ − q

)(
1 1 `
0 0 0

)
Y q−q

′

` (θ, φ), (7.439)

Writing the terms out explicitly and using the 3-j symbols(
1 1 2
0 0 0

)
=

√
2

15
;

(
1 1 1
0 0 0

)
= 0;

(
1 1 0
0 0 0

)
=

√
1

3
;

(
1 1 0
q −q′ 0

)
= − (−1)q√

3
δqq′ ,

(7.440)
as well as the symmetry rule(

J1 J2 J
m1 m2 m

)
= (−1)J1+J2+J

(
J1 J2 J
−m1 −m2 −m

)
, (7.441)

we find

Y q1 (θ, φ)Y
−q′
1 (θ, φ) =

(−1)q

4π
δqq′ +

√
3

2π
(−1)q−q

′
(

1 1 2
−q q′ q − q′

)
Y q−q

′

` (θ, φ). (7.442)

Putting these together, we find the form

fqq′(θ, φ) =
1

4π

[
δqq′ −

√
6π (−1)q Y q−q

′

2 (θ, φ)

(
1 1 2
−q q′ q − q′

)]
,

(angular-scattering tensor) (7.443)
for the scattering tensor. Written out explicitly, the components are shown in the following table.

fqq′(θ, φ)
q′

− 1 0 1

−1 3

16π
(1 + cos2 θ) − 3√

2 16π
sin 2θe−iφ

3

16π
sin2 θe−i2φ

q 0 − 3√
2 16π

sin 2θeiφ
3

8π
sin2 θ

3√
2 16π

sin 2θe−iφ

1
3

16π
sin2 θei2φ

3√
2 16π

sin 2θeiφ
3

16π
(1 + cos2 θ)

(7.444)

7.6.2 Spectral Tensor and Total Scattered Power

We now continue with the intensity spectrum by writing the dipole-operator components using Eq. (7.398),
assuming we are dealing with a single J −→ J ′ transition. Then defining the spectral tensor

Sqq′(ωs) :=
1

2π

∫ ∞
−∞

dτ eiωsτ
〈
Σ†q(t)Σq′(t+ τ)

〉
, (7.445)
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we can write the intensity spectrum (7.434) as

Isc(r, ωs) =
h̄ω0Γ

r2

(
2Je + 1

2Jg + 1

)∑
qq′

fqq′(θ, φ)Sqq′(ωs). (7.446)

Here again, from Eq. (7.396), Σq is the lowering operator for all transitions coupled by polarization q,
corresponding to the radiative decay |J ′m′〉 −→ |J m′ + q〉.

The expression (7.446) for the intensity spectrum is valid in the resonant approximation for a single
J −→ J ′ Zeeman-degenerate transition. In principle, it should then be summed over all possible transitions
(accounting for the various detunings in each case).

Physically, the diagonal terms with q = q′ in Eq. (7.446) correspond to the radiation of a purely
oriented dipole, that is, with an orientation ε̂ = ê∗q . In general, the atom will oscillate in some mixture
of the various components, and the off-diagonal terms with q 6= q′ in the sum represent interference due
to coherence between the different dipole components. These interference terms do not change the total
radiated power, but rather they change the angular distribution of the radiated power, as we can see by
integrating the scattered intensity over all angles:

Psc(ωs) =

∫
dΩ r2Isc(r, ωs) = h̄ω0Γ

(
2Je + 1

2Jg + 1

)∑
q

Sqq(ωs). (7.447)

Here, we have used ∫
dΩ fqq′(θ, φ) = δqq′ , (7.448)

which follows from Eq. (7.443), where the second term always vanished under the angular integration in view
of the orthogonality of the spherical harmonics.

Of course, integrating the power spectrum over all frequencies gives

Psc =

∫ ∞
0

dωs Psc(ωs) = h̄ω0Γ

(
2Je + 1

2Jg + 1

)∑
q

〈
Σ†q Σq

〉
. (7.449)

We can compute the operator sum as

∑
q

Σ†qΣq =
∑

qmgmem′
e

〈Jg mg|Je m
′
e; 1 q〉 〈Jg mg|Je me; 1 q〉 |Je m

′
e〉〈Je me|

=
∑

qmgme

〈Jg mg|Je me; 1 q〉2 |Je me〉〈Je me|

=

(
2Jg + 1

2Je + 1

) ∑
qmgme

〈Je me|Jg mg; 1 −q〉2 |Je me〉〈Je me|

=

(
2Jg + 1

2Je + 1

)∑
me

|Je me〉〈Je me|,

(7.450)

where we used the conservation constraint mg = m′e + q = me + q to get to the second expression, and
we used completeness of the angular-momentum states to get to the last expression. Thus, we may rewrite
Eq. (7.449) as

Psc = h̄ω0Γ〈Pe〉 , (7.451)

where recall that Pe, defined in Eq. (7.390), is the sum over projection operators for all excited sublevels, so
that 〈Pe〉 is the total excited-level population. Thus, the total photon scattering rate is sensibly given by Γ
times the total excited-state population.
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7.6.2.1 Hyperfine Structure and Interference

Of course, this assumes that only one excited level Je is substantially populated. To see this, note that in the
case of a hyperfine transition, the formulae in the last section are valid, except that the lowering operators
Σq are given by the hyperfine expression (7.415), and thus we have

∑
q

Σ†qΣq =
∑

qFgmgFemeF ′
e

(−1)Fe−F ′
e
√
(2F ′e + 1)(2Fe + 1) (2Jg + 1)

× 〈Fg mg|F ′e me; 1 q〉 〈Fg mg|Fe me; 1 q〉
{
Je Jg 1
Fg F ′e I

}{
Je Jg 1
Fg Fe I

}
|F ′e me〉〈Fe me|

=
∑

qFgmgFemeF ′
e

(−1)2Fe−2Fg+2me−2mg(2Fg + 1) (2Jg + 1)

× 〈F ′e me|Fg mg; 1 −q〉 〈Fe me|Fg mg; 1 −q〉
{
Je Jg 1
Fg F ′e I

}{
Je Jg 1
Fg Fe I

}
|F ′e me〉〈Fe me|

=
∑

FgFemeF ′
e

(2Fg + 1) (2Jg + 1) δFeF ′
e

{
Je Jg 1
Fg F ′e I

}{
Je Jg 1
Fg Fe I

}
|F ′e me〉〈Fe me|

=
∑

FgFeme

(2Fg + 1) (2Jg + 1)

{
Je Jg 1
Fg Fe I

}2

|Fe me〉〈Fe me|.

(7.452)
In the second step we used the Clebsch–Gordan symmetry relations [see the Wigner–Eckart theorem in the
forms of Eq. (7.281)], and then we used the orthogonality relation (7.46). Then using the orthogonality
relation (7.82), we find ∑

q

Σ†qΣq =

(
2Jg + 1

2Je + 1

) ∑
Feme

|Fe me〉〈Fe me|, (7.453)

which is essentially the same result as for the fine-structure case above: this operator is diagonal in the
hyperfine basis, and every state decays at the same rate Γ. Note that it is important to work this out to see
if the fluorescence operator (7.453) contains off-diagonal terms, representing interference between two states
with the same me, but different Fe. This is possible in principle because such decays are indistinguishable:
if the atom starts in a superposition of these states, we can’t tell by the decay which state the atom ‘‘came
from.’’ This is true even if the states are not degenerate, since, for example, with a steady-state drive, the
dipoles corresponding to |Fg mg〉 −→ |Fe me〉, |F ′e m′e〉 oscillate at the same frequency. Of course, decay
from states with different me don’t interfere: we can infer ‘‘which-state’’ information by analyzing the
polarization of the fluorescence and the final state of the atom to determine what the initial atomic state
was. These interferences correspond to quantum beats between particular excited states, as we discussed
before in Section (6.2.4). Evidently, however, while such interferences may influence the decay rates to
individual ground states, and hence the angular distribution of light, they do not affect the total decay rate
from any excited state.

7.7 Optical Stark Shifts

Now we would like to handle the Stark shifts due to laser light. In terms of hyperfine states, we may write the
Kramers–Heisenberg formula for the polarizability tensor (assuming linear polarization) as see Eq. (14.147)

αµν(F,mF ;ω) =
∑
F ′m′

F

2ωF ′F 〈F mF |dν |F ′ m′F 〉〈F ′ m′F |dµ|F mF 〉
h̄(ω 2

F ′F − ω2)
.

(hyperfine polarizability tensor, linear polarization) (7.454)
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For circular polarization, the formula for the polarizability tensor is

α(1)
µν (F,mF ;ω) =

∑
F ′m′

F

2ω〈F mF |dν |F ′ m′F 〉〈F ′ m′F |dµ|F mF 〉
h̄(ω 2

F ′F − ω2)
.

(hyperfine polarizability tensor, circular polarization) (7.455)
The tensor polarizability is defined such that to lowest order (i.e., for weak field intensities), the mean
induced dipole moment vector is 〈

d(+)
µ (ω)

〉
= αµν(ω)(E

(+)
0 )ν , (7.456)

and thus according to the electric-dipole interaction, the energy shift (ac Stark shift) due to the optical field
is [cf. Eq. (1.65)]

∆E(F,mF ;ω) = −
1

2

〈
d(+)(ω)

〉
·E(−) − 1

2

〈
d(−)(ω)

〉
·E(+)

= −Re[αµν(F,mF ;ω)](E
(−)
0 )µ(E

(+)
0 )ν .

(7.457)
(ac Stark shift)

In principle, this is the expression we’re after, but now we will break this expression down into parts according
to its symmetry and express the result explicitly in terms of the quantum numbers of the states.

7.7.1 Irreducible Parts

Given that the polarizability is a rank-2 tensor, it is convenient to decompose it into its irreducible parts.
To simplify notation, we will write the polarizability as

αµν(F,mF ;ω) =
∑
F ′

2ωF ′FTµν
h̄(ω 2

F ′F − ω2)
α(1)
µν (F,mF ;ω) =

∑
F ′

2ωTµν
h̄(ω 2

F ′F − ω2)
, (7.458)

where we have defined the dipole-product tensor

Tµν :=
∑
m′

F

〈F mF |dµ|F ′ m′F 〉〈F ′ m′F |dν |F mF 〉. (7.459)

Note that we include the sum over m′F here to avoid any orientation dependence in this tensor, since this
is what we will decompose into its irreducible components. Recall from Eqs. (7.199), (7.200), (7.206), and
(7.207) that we may write Tµν in terms of its scalar, vector, and tensor parts as

Tµν =
1

3
T (0)δµν +

1

4
T (1)
σ εσµν + T (2)

µν

T (0) = Tµµ

T
(1)
σ = εσµν(Tµν − Tνµ)

T
(2)
µν = T(µν) −

1

3
Tσσδµν .

(7.460)

We will handle each irreducible component here separately.42

7.7.1.1 Scalar Part

The scalar part is simply the trace,

T (0) = Tµµ

=
∑
m′

F

〈F mF |dµ|F ′ m′F 〉〈F ′ m′F |dµ|F mF 〉

= |〈F‖d‖F 〉|2.

(7.461)

42The treatment here more or less follows Ivan H. Deutsch and Poul S. Jessen, ‘‘Quantum measurement and dynamics of
atomic spins in polarization spectroscopy,’’ (2007, to be published). However, the notation here is somewhat different, as it is
designed to be close to that of the dc case.
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where we used the normalization formula (7.241) for the reduced matrix element. That was simple enough,
but let’s redo this a more complicated way to see a couple details that will make the other components easier
to calculate. First, recall that when two rank-1 spherical tensors (vectors) A and B are multiplied to form
a rank-0 (scalar) tensor, the result from Eq. (7.214) is

T
(0)
0 = − 1√

3
A ·B. (7.462)

It is important to keep the extra overall factors to make use of factorization formulae for matrix elements.
Thus, we can rewrite the dipole-vector dot product as a rank-0 spherical tensor and use the Wigner–Eckart
theorem (7.237) to find

T (0) =
∑
m′

F

〈F mF |dµ|F ′ m′F 〉〈F ′ m′F |dµ|F mF 〉

= −
√
3 〈F mF |

(∑
m′

F

d|F ′ m′F 〉〈F ′ m′F |d
)(0)
|F mF 〉

= −
√
3 〈F‖

(∑
m′

F

d|F ′ m′F 〉〈F ′ m′F |d
)(0)
‖F 〉 〈F mF |F mF ; 0 0〉

= −
√
3 (−1)2F

√
2F ′ + 1

{
1 1 0
F F F ′

}
〈F‖d‖F ′〉 〈F ′‖d‖F 〉

= −
√
3 (−1)F+F ′√

2F + 1

{
1 1 0
F F F ′

}
|〈F‖d‖F ′〉|2

= |〈F‖d‖F ′〉|2,

(7.463)

where we used the factorization formula (7.273) for the first matrix element, and then the conjugation
formula (7.259) for the last reduced matrix element. We also used 〈F mF |F mF ; 0 0〉 = 1, and the value of
the 6-j symbol is (−1)−F−F ′−1/

√
3(2F + 1).

7.7.1.2 Vector Part

The vector part is related to the cross product of the dipole vectors.

T (1)
σ = εσµν(Tµν − Tνµ) = 2εσµνTµν . (7.464)

In the case of the dc Stark shift, this component vanished due to the symmetry of the tensor Hamiltonian;
however, here this component does not necessarily vanish, because the electric fields and dipole vectors may
be complex (corresponding to circular polarization, which is meaningless in the dc limit). Again, to use the
Wigner–Eckart theorem and the subsequent decomposition formula, we must express the vector product of
the dipole operators as a rank-1 spherical tensor. From Eq. (7.217), we can express this in terms of the
vector cross product as

T (1)
q =

i√
2
(A×B)q, (7.465)
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where Roman indices to indicate spherical components and Greek indices to indicate Cartesian components.
The procedure is otherwise as outlined for the scalar case, with the result

T
(1)
q = i2

√
2 〈F mF |

(∑
m′

F

d|F ′ m′F 〉 × 〈F ′ m′F |d
)(1)
q

|F mF 〉

= i2
√
2 〈F‖

(∑
m′

F

d|F ′ m′F 〉 × 〈F ′ m′F |d
)(1)
‖F 〉 〈F mF |F mF ; 1 q〉

= −i(−1)2F 2
√
2√

F (F + 1)

√
3(2F ′ + 1)

{
1 1 1
F F F ′

}
〈F‖d‖F ′〉 〈F ′‖d‖F 〉mF δq0

= (−1)F+F ′
(−i)

√
24(2F + 1)

F (F + 1)

{
1 1 1
F F F ′

}
|〈F‖d‖F ′〉|2mF δq0,

(7.466)

where we used 〈F mF |F mF ; 1 q〉 = δq0mF/
√
F (F + 1).

7.7.1.3 Tensor Part

Finally, the tensor part is
T (2)
µν = T(µν) −

1

3
Tσσδµν . (7.467)

Converted to the spherical basis, there is no scaling factor in this case, and thus, with the usual procedure,

T
(2)
q = 〈F mF |

(∑
m′

F

d|F ′ m′F 〉〈F ′ m′F |d
)(2)
|F mF 〉

= 〈F‖
(∑
m′

F

d|F ′ m′F 〉〈F ′‖d
)(2)
‖F 〉 〈F mF |F mF ; 2 0〉

= (−1)F+F ′

√
5(2F + 1)

F (F + 1)(2F − 1)(2F + 3)

{
1 1 2
F F F ′

}
|〈F‖d‖F ′〉|2 [m 2

F − F (F + 1)] δq0,

(7.468)

where we used 〈F mF |F mF ; 2 0〉 = δq0 [m
2
F − F (F + 1)]/

√
F (F + 1)(2F − 1)(2F + 3).

7.7.2 Total Shift

Now we can write the total ac Stark shift (7.457) using the polarizability tensor (7.458), along with
Eq. (7.460), we can write

∆E(F,mF ;ω) = −
∑
F ′

2

h̄(ω 2
F ′F − ω2)

×
{
ωF ′F

3
T (0)

[
E(−)

0 E(+)
0

](0)
+
ω

4
T

(1)
0 (−i

√
2)
[
E(−)

0 ×E(+)
0

](1)
0

+ ωF ′FT
(2)
0

[
E(−)

0 E(+)
0

](2)
0

}
.

(7.469)
Note that the tensor products in spherical form are particularly simple because only the q = 0 components
are involved. Writing out the relevant field components,

∆E(F,mF ;ω) = −
∑
F ′

2

h̄(ω 2
F ′F − ω2)

×
{
ωF ′F

3
T (0)|E(+)

0 |2 + ω

4
T

(1)
0 (E(−)

0 ×E(+)
0 )z +

ωF ′F√
6
T

(2)
0

(
3|E(+)

0z |2 − |E
(+)
0 |2

)}
.

(7.470)
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Now using Eqs. (7.463), (7.466), and (7.468) for the irreducible tensors, we can write the shift as

∆E(F,mF ;ω) = −α(0)(F ;ω) |E(+)
0 |2 − α(1)(F ;ω) (iE(−)

0 ×E(+)
0 )z

mF

F

− α(2)(F ;ω)

(
3|E(+)

0z |2 − |E
(+)
0 |2

)
2

(
3m 2

F − F (F + 1)

F (2F − 1)

)
,

(7.471)
(ac Stark shift)

where we have defined the scalar, vector, and tensor polarizabilities as

α(0)(F ;ω) =
∑
F ′

2ωF ′F |〈F‖d‖F ′〉|2

3h̄(ω 2
F ′F − ω2)

α(1)(F ;ω) =
∑
F ′

(−1)F+F ′+1

√
6F (2F + 1)

F + 1

{
1 1 1
F F F ′

}
ω|〈F‖d‖F ′〉|2

h̄(ω 2
F ′F − ω2)

α(2)(F ;ω) =
∑
F ′

(−1)F+F ′

√
40F (2F + 1)(2F − 1)

3(F + 1)(2F + 3)

{
1 1 2
F F F ′

}
ωF ′F |〈F‖d‖F ′〉|2

h̄(ω 2
F ′F − ω2)

,

(scalar, vector, and tensor polarizabilities) (7.472)
respectively. As in the dc case, the scalar shift causes a level-independent shift, while the tensor shift has the
same quadratic dependence on mF . The vector field causes a shift linear in mF , which has the same form as
a weak-field Zeeman shift. We will see below that the vector shift is ‘‘activated’’ by circular polarizations,
and thus in terms of the level shift, circularly polarized light acts as an effective magnetic field. Linearly
polarized light drives the tensor shift, and thus acts as an effective dc electric field.

Also as in the dc case, we have chosen the normalization of the tensor polarizability such that the
maximum shift (where E(+)

0 = E
(+)
0 ẑ) for mF = F has the form −α(2)(F ;ω)|E(+)

0 |2. Indeed, both the scalar
and tensor polarizabilities here reduce to the respective dc polarizabilities (7.370) and (7.371) in the dc limit
ω = 0. The vector polarizability is similarly normalized such that the maximum shift for mF = F and σ+

polarization, E(+)
0 = (E

(+)
0 )−1, has the same form −α(1)(F ;ω)|E(+)

0 |2. To see this, we can write out the
field-vector cross product as

(iE(−)
0 ×E(+)

0 )z = iE(−)
0x ×E(+)

0y − iE
(−)
0y ×E(+)

0x

=
1

2

(
E(−)

0,1 −E(−)
0,−1

)(
E(−)

0,1 + E(−)
0,−1

)
− 1

2

(
E(−)

0,1 + E(−)
0,−1

)(
E(−)

0,1 −E(−)
0,−1

)
= E(−)

0,1 E(+)
0,−1 −E(−)

0,−1E(+)
0,1

= |E(+)
0,−1|2 − |E

(+)
0,1 |2,

(7.473)

so that σ+ (E(+)
0,−1) and σ− (E(+)

0,1 ) light lead to contributions of opposite sign.

7.7.2.1 Excited States

Note that these formulae also apply to the ac Stark shifts of excited states, so long as ωF ′F = ωF ′ − ωF is
interpreted with the proper sign: the excited state of a two-level atom has opposite Stark shifts for the two
levels, and the sign of ωF ′F keeps appropriate track of this in the sum over all levels.

7.7.3 Example: Stark Shifts of the F = 1 −→ F ′ = 0 Transition

As a simple example of the formalism we have presented so far, we will consider an F = 1 −→ F ′ = 0
transition, such that the ground level has three sublevels, but there is only one excited level. We will assume
the field to be sufficiently close to resonance with this transitions that other terms in the polarizability sum
are negligible in comparison. In this case, we may drop the summations over F ′ in Eqs. (7.472) and write
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the polarizabilities as

α(0)(F, F ′;ω) =
2ωF ′F |〈F‖d‖F ′〉|2

3h̄(ω 2
F ′F − ω2)

≈ −|〈F‖d‖F
′〉|2

3h̄∆F ′F

α(1)(F, F ′;ω) = (−1)F+F ′+1

√
27F (2F + 1)

2(F + 1)

{
1 1 1
F F F ′

}
α(0)(F, F ′;ω)

α(2)(F, F ′;ω) = (−1)F+F ′

√
30F (2F + 1)(2F − 1)

(F + 1)(2F + 3)

{
1 1 2
F F F ′

}
α(0)(F, F ′;ω),

(polarizabilities for single hyperfine transition) (7.474)
where ∆F ′F := ω − ωF ′F , and we have neglected the counterrotating term in the scalar polarizability (i.e.,
making the rotating-wave approximation), as is consistent with the two-level approximation. Plugging in
F = 1, F ′ = 0, we can write the vector and tensor polarizabilities for this example as

α(1)(F, F ′;ω) = −3

2
α(0)(F, F ′;ω)

α(2)(F, F ′;ω) = −α(0)(F, F ′;ω),
(7.475)

and thus the ac Stark shift (7.474) becomes

∆E(F = 1,mF ;ω) = −α(0)(F = 1, F ′ = 0;ω)

{
|E(+)

0 |2 − 3

2
(iE(−)

0 ×E(+)
0 )zmF

−
(
3|E(+)

0z |2 − |E
(+)
0 |2

)(3

2
m 2

F − 1

)}
= −α(0)(F = 1, F ′ = 0;ω)

{
|E(+)

0 |2 − 3

2

(
|E(+)

0,−1|2 − |E
(+)
0,1 |2

)
mF

−
(
3|E(+)

0z |2 − |E
(+)
0 |2

)(3

2
m 2

F − 1

)}
,

(7.476)

where we have explicitly written the dependence on the three spherical components in the last expression.
For circularly polarized light, say σ+ light, with E

(+)
0,−1 = E

(+)
0 , this expression reduces to

∆E(F = 1,mF ;ω) = −3α(0)(F = 1, F ′ = 0;ω)|E(+)
0 |2

{
mF (mF − 1)

2

}
. (7.477)

Note that this shift is zero unless mF = −1, where the bracketed expression is unity, which is consistent
with our expectation from noting that the mF = −1 state is the only state coupled to the excited state by
σ+-polarized light.

Fo=o1

s ô light:

mo=o0 mo=o1mo=o-1

Fo=o0

For linearly (π) polarized light, where E(+)
0z = E

(+)
0 , the ac Stark shift (7.476) becomes

∆E(F = 1,mF ;ω) = −3α(0)(F = 1, F ′ = 0;ω)|E(+)
0 |2

{
1−m 2

F

}
, (7.478)

which vanishes unless mF = 0, when the bracketed factor is again unity. This is again in accordance with
our expectation that the only level coupled to the excited level by the π-polarized light is Stark shifted.

Fo=o1

p light:

mo=o0 mo=o1mo=o-1

Fo=o0
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Note that the magnitudes of the Stark shifts in both cases are the same, which is a consequence of the simple
level structure of this transition.

7.7.4 Polarizability Tensor Revisited

As in the dc case, the expression (7.471) for the ac Stark shift allows us to write down an effective Hamiltonian
for the ac Stark shift:

HStark(F ;ω) = −α(0)(F ;ω) |E(+)
0 |2 − α(1)(F ;ω) (iE(−)

0 ×E(+)
0 )z

Fz
F

− α(2)(F ;ω)

(
3|E(+)

0z |2 − |E
(+)
0 |2

)
2

(
3F 2

z − F2

F (2F − 1)

)
.

(effective ac Stark Hamiltonian) (7.479)
Here, Fz and F2 are the operators, an obviously this Hamiltonian applies to a single hyperfine level, where
we have defined the polarizabilities as in (7.472), and the energy shift for the level |F mF 〉 is given by the
expectation value of the effective Hamiltonian,

∆E|F mF 〉(ω) = 〈F mF |HStark(F ;ω)|F mF 〉.
(shift in terms of effective Hamiltonian) (7.480)

Another, basis-independent way to write the Stark shift comes about if we define the tensor polarizability
operator43

αµν(F ;ω) = α(0)(F ;ω) δµν + α(1)(F ;ω) iεσµν
Fσ
F

+ α(2)(F ;ω)
3

F (2F − 1)

[
1

2
(FµFν + FνFµ)−

1

3
F2 δµν

]
,

(tensor polarizability operator) (7.481)
such that the effective Hamiltonian (7.479) becomes

HStark(F ;ω) = −αµν(F ;ω)E(−)
0µ E

(+)
0ν .

(effective ac Stark Hamiltonian) (7.482)
Note that the operator parts of the polarizability in terms of F are the scalar, vector, and tensor reductions
of FF; when computing the expectation value with respect to the |F mF 〉 state, the Wigner–Eckart theorem
guarantees that only the q = 0 spherical-tensor components are projected out, in agreement with the basis-
dependent expression (7.479).

7.7.5 Large Detuning

A crucial aspect of the ac polarizabilities lies in the relative detunings of the optical field with respect to the
relevant atomic transitions. In particular, depending on the detunings involved, cancellations may occur. To
see examples of this, we can take the polarizabilities (7.472) and factor the reduced matrix elements based

43Deutsch and Jessen, op. cit.
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on the decoupling rule (7.282):

α(0)(F ;ω) =
∑
F ′

2ωF ′F |〈J‖d‖J ′〉|2

3h̄(ω 2
F ′F − ω2)

(2F ′ + 1)(2J + 1)

{
J J ′ 1
F ′ F I

}2

α(1)(F ;ω) =
∑
F ′

(−1)F+F ′+1

√
6F (2F + 1)

F + 1

{
1 1 1
F F F ′

}
ω|〈J‖d‖J ′〉|2

h̄(ω 2
F ′F − ω2)

× (2F ′ + 1)(2J + 1)

{
J J ′ 1
F ′ F I

}2

α(2)(F ;ω) =
∑
F ′

(−1)F+F ′

√
40F (2F + 1)(2F − 1)

3(F + 1)(2F + 3)

{
1 1 2
F F F ′

}
ωF ′F |〈J‖d‖J ′〉|2

h̄(ω 2
F ′F − ω2)

× (2F ′ + 1)(2J + 1)

{
J J ′ 1
F ′ F I

}2

.

(7.483)

In the limit of large detunings compared to the hyperfine splittings, we can use ωF ′F ≈ ωJ′J , so that the only
dependence on F ′ in the sums is in the sign and the 6-j symbols. We can then use the orthogonality relation
(7.82) in the scalar case and the Biedenharn–Elliott sum rule (7.102) in the forms [the second expression has
the form of (7.375)]

∑
F ′

(−1)F
′
(2F ′ + 1)

{
1 1 1
F F F ′

}{
J J ′ 1
F ′ F I

}2

= (−1)−(2J+J
′+2F+I+1)

{
1 1 1
J J J ′

}{
J J 1
F F I

}
∑
F ′

(−1)F
′
(2F ′ + 1)

{
1 1 2
F F F ′

}{
J J ′ 1
F ′ F I

}2

= (−1)−(2J+J
′+2F+I)

{
1 1 2
J J J ′

}{
J J 2
F F I

}
(7.484)

for the vector and tensor cases, with the somewhat simpler result

α(0)(F ;ω) ≈
∑
J′

2ωJ′J |〈J‖d‖J ′〉|2

3h̄(ω 2
J′J − ω2)

α(1)(F ;ω) ≈
∑
J′

(−1)−2J−J
′−F−I

√
6F (2F + 1)

F + 1
(2J + 1)

ω|〈J‖d‖J ′〉|2

h̄(ω 2
J′J − ω2)

{
1 1 1
J J J ′

}{
J J 1
F F I

}
α(2)(F ;ω) ≈

∑
J′

(−1)−2J−J
′−F−I

√
40F (2F + 1)(2F − 1)

3(F + 1)(2F + 3)
(2J + 1)

ωJ′J |〈J‖d‖J ′〉|2

h̄(ω 2
J′J − ω2)

×
{

1 1 2
J J J ′

}{
J J 2
F F I

}
.

(far-detuned polarizabilities) (7.485)
Thus, as in the dc case, the hyperfine polarizabilities may be expressed for large detunings directly in terms
of the fine-structure dipole matrix elements.

7.7.5.1 Effective Dipole Moment

Returning to the ac Stark shift (7.471), the scalar part is

∆E(0)(F,mF ;ω) = −α(0)(F ;ω) |E(+)
0 |2. (7.486)

For detunings large compared to the hyperfine splitting, we can use Eq. (7.485) for the scalar shift so that

∆E(0)(F,mF ;ω) = −
∑
J′

2ωJ′J |〈J‖d‖J ′〉|2

3h̄(ω 2
J′J − ω2)

|E(+)
0 |2. (7.487)

Suppose that although the detuning is large compared to the hyperfine splitting, only one fine-structure
level J ′ is dominantly resonant. Then we can keep only one term in the sum and make the rotating-wave
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approximation via ω 2
J′J − ω2 ≈ 2ωJ′J(ωJ′J − ω):

∆E(0)(F,mF ;ω) =
|〈J‖d‖J ′〉|2

3h̄∆J′J
|E(+)

0 |2. (7.488)

Again, ∆J′J := ω − ωJ′J is the detuning of the optical field from the atomic transition. Comparing (7.487)
to the ground-state Stark shift from the two-level atom from Section 5.8, Eq. (5.415),

∆E =
h̄|Ω|2

4∆
, (7.489)

where Ω is the local Rabi frequency

Ω := −2〈g|ε̂ · d|e〉E(+)
0

h̄
, (7.490)

we see that the expressions are equivalent provided we identify

|〈g|ε̂ · d|e〉|2 =
|〈J‖d‖J ′〉|2

3
, (7.491)

or simply

〈g|ε̂ · d|e〉 = 〈J‖d‖J
′〉√

3
.

(7.492)
(effective dipole moment, large detuning)

The interpretation here is that the field interacts directly with the fine-structure transition if the hyperfine
shifts are negligible. The factor of 1/3 simply comes from representing the dipole as d2 = d 2

x +d
2
y +d

2
z = 3d 2

z

if the atom is spherically symmetric. Since the polarization vector ε̂ picks out a particular direction, the
field interacts with only one of three possible components of the dipole operator, and thus the factor 1/3. Of
course, the scalar polarizability only represents the average behavior for the transition, ignoring any vector or
tensor (and thus mF -dependent) shifts. However, as we will see below, the vector and tensor shifts disappear
anyway in some important cases for large detunings. In any case, it is best to regard this effective matrix
element as being for linearly polarized light, where there is no approximation in neglecting the vector shift.

In this case, the saturation intensity is defined as usual by

I

Isat
=

2Ω 2

Γ2
, (7.493)

with I = 2ε0c|E(+)
0 |2 [Eq. (1.68)], and Ω from Eq. (7.490), so that we have

Isat =
3cε0Γ

2h̄2

4|〈J‖d‖J ′〉|2
(saturation intensity, linear polarization, far detuned) (7.494)

for the far-detuned saturation intensity of the fine-structure transition (without a hyperfine-resolved excited
level).

For the shifts where the atom–field interaction is dominated by one hyperfine transition, we can instead
compare Eq. (7.483) to the two-level atom, so that the effective dipole moment is

|〈g|ε̂ · d|e〉|2 =
|〈J‖d‖J ′〉|2

3
SFF ′ ,

(7.495)
(hyperfine effective dipole moment)

where the hyperfine transition-strength factor is

SFF ′ := (2F ′ + 1)(2J + 1)

{
J J ′ 1
F ′ F I

}2

.

(hyperfine relative transition strength) (7.496)
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Or, including the proper sign from Eq. (7.282),

〈g|ε̂ · d|e〉 = (−1)F
′+J+1+I 〈J‖d‖J ′〉√

3

√
SFF ′ ,

(hyperfine effective dipole moment) (7.497)
From the orthogonality relation (7.82), we have∑

F ′

SFF ′ = 1.
(7.498)

(hyperfine strength sum rule)

Thus, the factor SFF ′ acts as a ‘‘relative oscillator strength’’ for the hyperfine transitions in a particular fine-
structure line. Again, except in certain special cases, this effective dipole moment only captures orientation-
averaged behavior, as for example happens with excitation by isotropic light.

7.7.5.2 Alkali Ground States

The expressions above are still rather complicated, so we can get a bit more insight by considering the specific
case of the ground state of alkali atoms, where L = 0 and J = 1/2. Using the 6-j symbols{

1 1 2
1/2 1/2 J ′

}
= 0{

1 1 2
1/2 1/2 J ′

}
= − 2

3(2J + 1){
J J 1
F F I

}
= (−1)−(F+I+J+1) F (F + 1)− I(I + 1) + J(J + 1)

2
√
F (F + 1)(2F + 1)J(J + 1)(2J + 1)

,

(7.499)

the ground-state polarizabilities become

α(0)(F ;ω) ≈
∑
J′

2ωJ′J |〈J = 1/2‖d‖J ′〉|2

3h̄(ω 2
J′J − ω2)

α(1)(F ;ω) ≈
∑
J′

(−1)J
′+3/2

√
6

J(J + 1)(2J + 1)
F gF

ω

ωF ′F
α(0)(F ;ω)

α(2)(F ;ω) ≈ 0.

(far-detuned polarizabilities) (7.500)
Here, we have used Eq. (7.319) for the Landé gF factor

gF ≈ gJ

F (F + 1)− I(I + 1) + J(J + 1)

2F (F + 1)
, (7.501)

ignoring the term proportional to gI . Thus, in the regime of large detuning compared to the excited-state
hyperfine splitting—when the excited states are effectively degenerate—the tensor component of the ground-
state polarizability vanishes. We expect this from the dc case (corresponding to ω = 0 here), where the tensor
polarizability vanished for J = 0 or J = 1/2. Note, however, that the vector polarizability remains in this
regime.

In the yet-farther-detuned regime, where the two excited fine-structure states J ′ = 1/2, 3/2 are ef-
fectively degenerate, the two terms in the vector polarizability become −2FgFα

(0)(F ;ω) for J ′ = 1/2 and
2FgFα

(0)(F ;ω) for J ′ = 3/2. These two contributions cancel, and thus in this regime

α(1)(F ;ω) ≈ 0.
(7.502)

(far-detuned vector polarizability)

Again, we also expected this for the dc case, where the vector polarizability vanished for any atomic configu-
ration. (This is because the dc field must be real, and thus the σ± components must always be present with
equal weight.) For the alkali-atom ground state, in the regime of far detuning compared to the fine-structure
aplitting, the shift is purely scalar.
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7.8 Atomic Master Equation

7.8.1 Fine Structure

To consider a fine structure transition |Jg〉 −→ |Je〉, we will of course need to consider all possible transitions
between sublevels |Jg mg〉 −→ |Je me〉. We showed in Section (7.3.7.4) that the decay rate (7.305) of a
fine-structure transition is

Γ =
ω 3
0

3πε0h̄c3
2Jg + 1

2Je + 1
|〈Jg‖d‖Je〉|2, (7.503)

while the rate for the |Je me〉 −→ |Jg mg〉 decay process is [Eq. (11.38)]

Γmg,me =
ω 3
0

3πε0h̄c3
|〈Jg mg|d|Je me〉|2, (7.504)

which using the Wigner–Eckart theorem (7.242) gives

Γmg,me = |〈Je me|Jg mg; 1 (me −mg)〉|2 Γ. (7.505)

However, note that any decay corresponding to emission into polarization q is indistinguishable as far as
measurement of the radiated field is concerned. Thus, amplitudes for such decays should be added together,
while decay rates for decays of different polarization should be added together. We have already concluded
this from our above discussion of the spontaneous decay, where in particular from Eq. (7.449) we may
conclude that the rate at which photons are scattered is

Rsc = Γ

(
2Je + 1

2Jg + 1

)∑
q

〈
Σ†q Σq

〉
. (7.506)

This expression has precisely the form we want. The master equation that properly accomplishes this decay
along with the appropriate Hamiltonian evolution is

∂tρ̃ = − i
h̄

[
H̃A + H̃AF, ρ̃

]
+ Γ

(
2Je + 1

2Jg + 1

)∑
q

D[Σq]ρ̃,

(master equation, fine-structure transition) (7.507)
where H̃A is defined in Eq. (7.389), where H̃AF is defined in Eq. (7.407), Σq is defined in Eq. (7.396) as

Σq =
∑
mgme

〈Jg mg|Je me; 1 q〉 |Jg mg〉〈Je me|, (7.508)

and Γ is the total decay rate of any excited sublevel. To verify the action of the decay term here, consider
the evolution of the matrix elements ρ̃α mα,β mβ

≡ 〈Jα mα|ρ̃|Jβ mβ〉 due only to the decay term:

∂tρ̃α mα,β mβ

= Γ

(
2Je + 1

2Jg + 1

)∑
q

〈Jα mα|
(
Σqρ̃Σ

†
q −

1

2
Σ†qΣqρ̃−

1

2
ρ̃Σ†qΣq

)
|Jβ mβ〉

= Γ

(
2Je + 1

2Jg + 1

)[∑
q

δαgδgβ〈Jg mα|Je (mα − q); 1 q〉〈Jg mβ |Je (mβ − q); 1 q〉ρ̃Je,(mα−q);Je,(mβ−q)

− 1

2
δαe

(
2Jg + 1

2Je + 1

)
ρ̃Je,mα;Jβ ,mβ

− 1

2
δeβ

(
2Jg + 1

2Je + 1

)
ρ̃Jα,mα;Je,mβ

]

= Γ

[∑
q

δαgδβg〈Je (mα + q)|Jg mα; 1 q〉〈Je (mβ + q)|Jg mβ ; 1 q〉ρ̃Je,(mα+q);Je,(mβ+q)

− 1

2
(δαeδgβ)ρ̃Je,mα;Jg,mβ

− 1

2
(δαgδeβ)ρ̃Jg,mα;Je,mβ

− (δαeδeβ)ρ̃Je,mα;Je,mβ

]
.

(7.509)
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Thus, we can see that the excited-state populations (and coherences) decay at rate Γ, excited-ground coher-
ences decay at rate Γ/2, and ground-state populations (and coherences) increase according to the decay of
the excited states and the branching factors (Clebsch–Gordan coefficients) into each state. Working out the
similar terms for Hamiltonian evolution is relatively straightforward, and thus we can write out the evolution
equations for the density matrix elements according to the master equation (7.507) as

∂

∂t
ρ̃α mα, β mβ

=− i
2

δαe
∑
mg

Ω(mg,mα) ρ̃g mg, β mβ
− δgβ

∑
me

Ω(mβ ,me) ρ̃α mα, e me

+ δαg
∑
me

Ω∗(mα,me) ρ̃e me, β mβ
− δeβ

∑
mg

Ω∗(mg,mβ) ρ̃α mα, g mg




(pump field)

− δαeδeβ Γ ρ̃α mα, β mβ

− δαeδgβ
Γ

2
ρ̃α mα, β mβ

− δαgδeβ
Γ

2
ρ̃α mα, β mβ

+ δαgδgβ Γ

1∑
q=−1

[
ρ̃e (mα+q), e (mβ+q)

〈Je (mα + q)|Jg mα; 1 q〉〈Je (mβ + q)|Jg mβ ; 1 q〉
]



(dissipation)

+ i(δαeδgβ − δαgδeβ) ∆ ρ̃α mα, β mβ
.

}
(free evolution)

(master equation, fine-structure transition) (7.510)
The Rabi frequencies Ω(mg,me) here were defined before in Eq. (7.408) by

Ω(mg,me) := 〈Jg mg|Je me; 1 −(me −mg)〉 Ω−(me−mg). (7.511)

The form here is rather complicated but is suited for numerical computations.

7.8.2 Hyperfine Structure

For an atom with hyperfine structure, the interaction still occurs between the atom and the atomic dipole,
and thus the master equation still has exactly the same form as for fine structure:

∂tρ̃ = − i
h̄

[
H̃A + H̃AF, ρ̃

]
+ Γ

(
2Je + 1

2Jg + 1

)∑
q

D[Σq]ρ̃.

(master equation, fine-structure transition) (7.512)
However, the dipole-related symbols here must be interpreted in terms of hyperfine structure. The atomic
Hamiltonian is given in the rotating frame by shifting the center of gravity of the excited state down by h̄ω,
where ω is the laser frequency, combined with the hyperfine energy shifts expressed in Eq. (7.134) in the
hyperfine basis,

∆Ehfs(J, I, F ) =
1

2
AhfsK +Bhfs

3
2K(K + 1)− 2I(I + 1)J(J + 1)

4I(2I − 1)J(2J − 1)

+ Chfs
5K2(K/4 + 1) +K[I(I + 1) + J(J + 1) + 3]− 3I(I + 1)J(J + 1)− 5I(I + 1)J(J + 1)

I(I − 1)(2I − 1)J(J − 1)(2J − 1)
,

(7.513)
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so that for a single fine-structure transition,

H̃A =
∑
Feme

[
∆Ehfs(Je, I, Fe)− h̄∆

]
|Je, I;Fe me〉〈Je, I;Fe me|

+
∑
Fgmg

∆Ehfs(Jg, I, Fg) |Jg, I;Fg mg〉〈Jg, I;Fg mg|,
(7.514)

where as usual ∆ := ω − ω0, but now ω0 is the transition frequency for the transition center of gravity
(i.e., corresponding to the energy difference in the absence of the hyperfine interaction). The atom–field
interaction Hamiltonian in the rotating frame is given in Eq. (7.420) by

H̃AF =
h̄

2

∑
q

[
Ω∗qΣq +ΩqΣ

†
q

]
, (7.515)

where the lowering operator from Eq. (7.415) is

Σq =
∑

FgmgFeme

(−1)Fe+Jg+1+I
√
(2Fe + 1)(2Jg + 1) 〈Fg mg|Fe me; 1 q〉

{
Je Jg 1
Fg Fe I

}
|Fg mg〉〈Fe me|

=
∑

FgmgFeme

(−1)Fe+Jg+1+I
√
SFgFe 〈Fg mg|Fe me; 1 q〉 |Fg mg〉〈Fe me|,

(7.516)
where SFgFe is defined by Eq. (7.496), and the vector Rabi frequency is given in Eq. (7.402) by

Ωq = −
2〈Jg‖d‖Je〉E(+)

0q

h̄
(7.517)

for a field of the form [cf. Eq. (7.190)]

E(t) =
∑
q

(−1)q ê−qE(+)
0q eiωt + c.c. (7.518)

Often, it is most useful to consider the interaction of multiple fields with hyperfine transitions (as in laser
cooling of alkali atoms). From Eq. (7.405) we can get the time-dependent form of the interaction Hamiltonian
for an additional ‘‘probe’’ field of frequency ωp and transform to the rotating frame by shifting the frequency
by ω, obtaining

H ′AF =
h̄

2

∑
q

[
Ω∗qΣqe

i∆pt +ΩqΣ
†
qe
−i∆pt

]
, (7.519)

where ∆p = ωp − ω is the detuning of the probe field from the main (‘‘pump’’) field. Of course, as many
extra fields as necessary may be added in this way.

7.8.3 Rate-Equation Limit

In certain cases, the atom–field master equation (optical Bloch equations) including Zeeman degeneracy may
be excessively difficult to solve. This happens, for example, when the detuning from a fine-structure level,
or with well-resolved hyperfine structure, where the hyperfine splittings are much larger than the natural
linewidths, necessarily leading to large detunings of the field from some levels. If we don’t care about the fast
oscillations due to the large detunings, but choose instead to focus on other, relatively slow dynamics, we can
make an adiabatic approximation to obtain a rate-equation formalism to replace the full master equation.

First, we will consider a transition Jg −→ Je between two fine-structure levels, ignoring any hyperfine
structure. From Eq. (7.510), the equations of motion for the excited-state populations and Zeeman coherences
(coherences between different excited states) are

∂tρe me,e m′
e
= − i

2

∑
mg

[
Ω(mg,me) ρ̃g mg,e m′

e
− Ω∗(mg,m

′
e) ρ̃e me,g mg

]
− Γρe me,e m′

e
, (7.520)
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while the equations of motion for the ground-state populations and Zeeman coherences are

∂tρg mg,g m′
g
=
i

2

∑
me

[
Ω(m′g,me) ρ̃g mg,e me − Ω∗(mg,me) ρ̃e me,g m′

g

]
+ Γ

∑
q

ρe (mg+q),e (m′
g+q)
〈Je mg + q|Jg mg; 1 q〉 〈Je m

′
g + q|Jg m

′
g; 1 q〉.

(7.521)

Similarly, the optical coherences (coherences between ground and excited states) evolve as

∂tρ̃e me,g mg = − i
2

∑
m′

g

Ω(m′g,me) ρg m′
g,g mg +

i

2

∑
m′

e

Ω(mg,m
′
e) ρe me,e m′

e
−
(
Γ

2
− i∆

)
ρ̃e me,g mg

∂tρ̃g mg,e me =
i

2

∑
m′

g

Ω∗(m′g,me) ρg mg,g m′
g
− i

2

∑
m′

e

Ω∗(mg,m
′
e) ρe m′

e,e me −
(
Γ

2
+ i∆

)
ρ̃g mg,e me .

(7.522)

Now to make the adiabatic approximation, we set ∂tρ̃e me,g mg ≈ ∂tρ̃g mg,e me ≈ 0, so that we assume the
coherences to be always in equilibrium with respect to the populations. This is justified, for example, when
the detuning is much larger than the damping rate, where the large separation of time scales justifies ignoring
the fast rotations caused by the terms proportional to ∆ (recall this argument for the two-level atom in
Section 5.8.3). It also may be that the optical coherences are damped quickly, as would be the case for strong
collisional dephasing (Section 5.6.2). Then solving Eqs. (7.522) for the coherences in this approximation, we
find that we can write the optical coherences in terms of populations and Zeeman coherences as

ρ̃e me,g mg = − i

2(Γ/2− i∆)

∑
m′

g

Ω(m′g,me) ρg m′
g,g mg −

∑
m′

e

Ω(mg,m
′
e) ρe me,e m′

e


ρ̃g mg,e me =

i

2(Γ/2 + i∆)

∑
m′

g

Ω∗(m′g,me) ρg mg,g m′
g
−
∑
m′

e

Ω∗(mg,m
′
e) ρe m′

e,e me

 .
(7.523)

Putting these expressions into Eqs. (7.520) and (7.521), we obtain the following ‘‘rate equations’’ for the
populations and Zeeman coherences of a fine-structure transition coupled to a single field:

∂tρe me,e m′
e
=
∑
mgm′

g

[
Ω∗(mg,m

′
e)Ω(m

′
g,me)

4(Γ/2− i∆)
+

Ω(mg,me)Ω
∗(m′g,m

′
e)

4(Γ/2 + i∆)

]
ρg mg,g m′

g

−
∑
mgm′′

e

[
Ω∗(mg,m

′
e)Ω(mg,m

′′
e )

4(Γ/2− i∆)
ρe me,e m′′

e
+

Ω(mg,me)Ω
∗(mg,m

′′
e )

4(Γ/2 + i∆)
ρe m′′

e ,e m′
e

]

− Γρe me,e m′
e

∂tρg mg,g m′
g
=
∑
mem′

e

[
Ω∗(mg,me)Ω(m

′
g,m

′
e)

4(Γ/2− i∆)
+

Ω(m′g,m
′
e)Ω

∗(mg,me)

4(Γ/2 + i∆)

]
ρe me,e m′

e

−
∑
mem′′

g

[
Ω∗(mg,me)Ω(m

′′
g ,me)

4(Γ/2− i∆)
ρg m′′

g ,g m′
g
+

Ω(m′g,me)Ω
∗(m′′g ,me)

4(Γ/2 + i∆)
ρg mg,g m′′

g

]

+ Γ
∑
q

ρe (mg+q),e (m′
g+q)
〈Je mg + q|Jg mg; 1 q〉 〈Je m

′
g + q|Jg m

′
g; 1 q〉.

(fine-structure rate equations) (7.524)
These equations greatly reduce the complexity of the full master equation, since now the optical coherences
are eliminated, and only the populations and Zeeman coherences must be tracked.
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7.8.3.1 Single Field Polarization

At first glance, it may seem strange that the rate equations (7.524) should still contain the Zeeman coherences,
since rate equations explicitly ignore coherences. In fact, for a single polarization of the field in the spherical
basis (i.e., not more than one of Ω−1,0,1 is nonzero), the rate equations simplify. Noting that due to the
Clebsch–Gordan coefficients involved, products such as Ω(mg,me)Ω

∗(mg,m
′
e) are proportional to Kronecker

symbols like δmem′
e
, since as in this example, a single polarization couples a ground state to at most one

excited state. Then the equation of motion for the excited-state populations reduces to

∂tρe me,e me = −
∑
mg

|Ω(mg,me)|2

Γ(1 + 4∆2/Γ2)
(ρe me,e me − ρg mg,g mg)− Γρe me,e me .

(fine-structure rate equations, single polarization) (7.525)
We can perform a similar reduction for the ground-state populations, but to simplify the decay terms we
will also assume that the excited-state Zeeman coherences vanish, ρe me,e m′

e
= 0 (me 6= m′e). The resulting

equation is

∂tρg mg,g mg =
∑
me

|Ω(mg,me)|2

Γ(1 + 4∆2/Γ2)
(ρe me,e me − ρg mg,g mg) + Γ

∑
me

ρe me,e me〈Je me|Jg mg; 1 (me −mg)〉2.

(fine-structure rate equations, single polarization, no Zeeman coherence) (7.526)
Under these conditions, the rate equations for the populations only are closed, and thus we need not consider
the Zeeman coherences. Note that from the original rate equations (7.524), we can see that the excited-
state coherences, if initially zero, will remain so if the ground-state coherences are also zero, and vice
versa. This is because the field transfers coherence between the excited and ground levels via Rabi flopping.
Thus, for a single polarization, our neglecting Zeeman coherences is justified if they all start out as zero
(including the ground-state coherences). This may be due to an unoriented atom, but note that since the
Zeeman coherences decay with time but are not otherwise excited by the field (for a single polarization), this
assumption is eventually justified anyway.

Thus we see the importance of the Zeeman coherences in the rate equations (7.524): they are necessary
to represent an arbitrary orientation of the atom in the ground or excited state. When the atom is in an
initial state with no Zeeman coherence, such as a single ground sublevel, light with an arbitrary polarization
will in general put the atom in a coherent superposition of excited states, thus inducing Zeeman coherence
that represents the field-induced orientation of the atom.

7.8.3.2 Multiple Fields

We already indicated above in Eq. (7.519) that adding a second field introduces an extra Hamiltonian
interaction with explicit time dependence if the second field is of a different frequency from the main field.
This is because the rotating-frame transformation can only eliminate explicit time dependence at a single
frequency; a second frequency must be dealt with directly. This is difficult to handle analytically, as the
nonlinear response of the atom will in general generate slowly varying dynamics as well as dynamics at the
probe detuning ∆p, and multiples thereof. We have already studied the interaction of atoms with bichromatic
fields, for example, in the probe absorption by a driven two-level atom (Section 5.7.6, Problem 5.20), in the
Autler-Townes doublet (Section 5.7.6.1 Problem 5.16), in stimulated Raman scattering (Section 6.1), and
in coherent population trapping (Section 6.2). We have seen in these cases that the nonlinear mixing of the
two fields can lead to strong, coherent effects such as level splittings and population transfer, and in general
these effects can only be fully caputured in a full master-equation treatement. Under conditions where these
effects are negligible or unimportant, however, the interaction of an atom with multiple fields can still be
treated within a rate-equation formalism. The basic assumption required here is that all fields perturb the
atom in the linear-response regime, and thus there are no cooperative effects induced by the multiple fields.
This requires that the fields are weak (with either intensities well below the saturation intensities, or far
detuned compared to the Rabi frequency from any transition), and that no multiphoton resonance (e.g.,
Raman resonance) occurs. Also, we should assume that any beat frequencies between the multiple fields are
fast on time scales of interest (slow beats can be crudely modeled using a slowly varying Rabi frequency).
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At this level of approximation, rate-equation terms involving Ω, for example as in Eqs. (7.524), are simply
repeated for each field.

7.8.3.3 Hyperfine Structure

The hyperfine case is somewhat more complicated by the proliferation of states and the fact that not all
sublevels are degenerate in view of the hyperfine shifts. From the master equation (7.512), the equation of
motion for the excited-state populations and coherences is

∂tρ̃Fe me,F ′
e m

′
e
= −

(
Γ + iωFeF ′

e

)
ρ̃Fe me,F ′

e m
′
e

− i

2

∑
Fgmg

[
Ω(Fg,mg;Fe,me) ρ̃Fg mg,F ′

e m
′
e
− Ω∗(Fg,mg;F

′
e,m

′
e) ρ̃Fe me,Fg mg

]
,

(7.527)

where the hyperfine splittings are given in terms of the hyperfine shifts (7.134) as

ωFeF ′
e
:=

∆Ehfs(Je, I, Fe)−∆Ehfs(Je, I, F
′
e)

h̄
, (7.528)

the hyperfine Rabi frequencies are defined by Eq. (7.422), and we used the form (7.453) for the decay operator
to work out the decay term. Using essentially the same procedure leading to Eq. (7.453) we can also work
out the remaining decay term ΣqρΣ

†
q to find the equation of motion

∂tρ̃Fg mg,F ′
g m

′
g
= −iωFgF ′

g
ρ̃Fg mg,F ′

g m
′
g
+
∑
FeF ′

e

1∑
q=−1

Γ(Fg,mg;F
′
g,m

′
g;Fe;F

′
e; q) ρ̃Fe mg+q,F ′

e m
′
g+q

+
i

2

∑
Feme

[
Ω(F ′g,m

′
g;Fe,me) ρ̃Fg mg,Fe me − Ω∗(Fg,mg;Fe,me) ρ̃Fe me,F ′

g m
′
g

]
,

(7.529)

where we have defined

Γ(Fg,mg;F
′
g,m

′
g;Fe;F

′
e; q) := Γ(−1)F

′
g−Fg

√
(2F ′g + 1)(2Fg + 1) (2Je + 1)

{
Je Jg 1
F ′g F ′e I

}{
Je Jg 1
Fg Fe I

}
× 〈F ′e m′g + q|F ′g m′g; 1 q〉 〈Fe mg + q|Fg mg; 1 q〉

(7.530)
as the return rate for the ground-state populations and coherences, and the ground-state hyperfine splittings
are defined in the same way as for the excited states:

ωFgF ′
g
:=

∆Ehfs(Jg, I, Fg)−∆Ehfs(Jg, I, F
′
g)

h̄
. (7.531)

The equations of motion for the optical coherences are

∂tρ̃Fe me,Fg mg = −
(
Γ

2
− i∆(Fg,mg;Fe,me)

)
ρ̃Fe me,Fg mg

− i

2

∑
F ′

gm
′
g

Ω(F ′g,m
′
g;Fe,me) ρ̃F ′

g m
′
g,Fg mg +

i

2

∑
F ′

em
′
e

Ω(Fg,mg;F
′
e,m

′
e) ρ̃Fe me,F ′

e m
′
e

∂tρ̃Fg mg,Fe me = −
(
Γ

2
+ i∆(Fg,mg;Fe,me)

)
ρ̃Fg mg,Fe me

+
i

2

∑
F ′

gm
′
g

Ω∗(F ′g,m
′
g;Fe,me) ρ̃Fg mg,F ′

g m
′
g
− i

2

∑
F ′

em
′
e

Ω∗(Fg,mg;F
′
e,m

′
e) ρ̃F ′

e m
′
e,Fe me ,

(7.532)
where ∆(Fg,mg;Fe,me) is the detuning from the |Fg〉 −→ |Fe〉 hyperfine transitions,

∆(Fg,mg;Fe,me) = ω −
(
ω0 +

∆Ehfs(Je, I, Fe)−∆Ehfs(Jg, I, Fg)

h̄

)
= ∆−

∆Ehfs(Je, I, Fe)−∆Ehfs(Jg, I, Fg)

h̄
,

(7.533)
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where again ω0 is the transition frequency of the center of gravity of the hyperfine transition, and ∆ is the
laser detuning with respect to ω0. In the adiabatic approximation, Eqs. (7.532) become

ρ̃Fe me,Fg mg = − i

2[Γ/2− i∆(Fg,mg;Fe,me)]

[ ∑
F ′

gm
′
g

Ω(F ′g,m
′
g;Fe,me) ρ̃F ′

g m
′
g,Fg mg

−
∑
F ′

em
′
e

Ω(Fg,mg;F
′
e,m

′
e) ρ̃Fe me,F ′

e m
′
e

]
ρ̃Fg mg,Fe me =

i

2[Γ/2 + i∆(Fg,mg;Fe,me)]

[ ∑
F ′

gm
′
g

Ω∗(F ′g,m
′
g;Fe,me) ρ̃Fg mg,F ′

g m
′
g

−
∑
F ′

em
′
e

Ω∗(Fg,mg;F
′
e,m

′
e) ρ̃F ′

e m
′
e,Fe me

]
,

(7.534)
and putting these into the equations of motion for the populations and hyperfine coherences, we obtain the
rather complicated rate equations

∂tρ̃Fe me,F ′
e m

′
e
=

∑
FgmgF ′

gm
′
g

[
Ω∗(Fg,mg;F

′
e,m

′
e)Ω(F

′
g,m

′
g;Fe,me)

4[Γ/2− i∆(Fg,mg;Fe,me)]

+
Ω(Fg,mg;Fe,me)Ω

∗(F ′g,m
′
g;F

′
e,m

′
e)

4[Γ/2 + i∆(Fg,mg;F ′e,m
′
e)]

]
ρ̃Fg mg,F ′

g m
′
g

−
∑

FgmgF ′′
e m

′′
e

[
Ω∗(Fg,mg;F

′
e,m

′
e)Ω(Fg,mg;F

′′
e ,m

′′
e )

4[Γ/2− i∆(Fg,mg;Fe,me)]
ρ̃Fe me,F ′′

e m′′
e

+
Ω(Fg,mg;Fe,me)Ω

∗(Fg,mg;F
′′
e ,m

′′
e )

4[Γ/2 + i∆(Fg,mg;F ′e,m
′
e)]

ρ̃F ′′
e m′′

e ,F
′
e m

′
e

]
−
(
Γ + iωFeF ′

e

)
ρ̃Fe me,F ′

e m
′
e

∂tρ̃Fg mg,F ′
g m

′
g
=

∑
FemeF ′

em
′
e

[
Ω∗(Fg,mg;Fe,me)Ω(F

′
g,m

′
g;F

′
e,m

′
e)

4[Γ/2− i∆(F ′g,m
′
g;Fe,me)]

+
Ω(F ′g,m

′
g;F

′
e,m

′
e)Ω

∗(Fg,mg;Fe,me)

4[Γ/2 + i∆(Fg,mg;Fe,me)]

]
ρ̃Fe me,F ′

e m
′
e

−
∑

FemeF ′′
g m

′′
g

[
Ω∗(Fg,mg;Fe,me)Ω(F

′′
g ,m

′′
g ;Fe,me)

4[Γ/2− i∆(F ′g,m
′
g;Fe,me)]

ρ̃F ′′
g m′′

g ,F
′
g m

′
g

+
Ω(F ′g,m

′
g;Fe,me)Ω

∗(F ′′g ,m
′′
g ;Fe,me)

4[Γ/2 + i∆(Fg,mg;Fe,me)]
ρ̃Fg mg,F ′′

g m′′
g

]
+
∑
FeF ′

eq

Γ(Fg,mg;F
′
g,m

′
g;Fe;F

′
e; q) ρ̃Fe mg+q,F ′

e m
′
g+q
− iωFgF ′

g
ρ̃Fg mg,F ′

g m
′
g
.

(hyperfine-structure rate equations) (7.535)
Note that we still have coherences between hyperfine levels (say, between levels Fg 6= F ′g and Fe 6= F ′e) that
rotate at the hyperfine splittings. If the hyperfine structure is well-resolved, so that the hyperfine splittings
are much larger than Γ, then it may be that we are similarly uninterested in these fast oscillations, and we
can adiabatically eliminate these hyperfine coherences as well. We can obtain the adiabatic relations for
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F ′e 6= Fe by setting ∂tρ̃Fe me,F ′
e m

′
e
≈ 0, with the result

ρ̃Fe me,F ′
e m

′
e
=

∑
FgmgF ′

gm
′
g

[
Ω∗(Fg,mg;F

′
e,m

′
e)Ω(F

′
g,m

′
g;Fe,me)

4(Γ + iωFeF ′
e
)[Γ/2− i∆(Fg,mg;Fe,me)]

+
Ω(Fg,mg;Fe,me)Ω

∗(F ′g,m
′
g;F

′
e,m

′
e)

4(Γ + iωFeF ′
e
)[Γ/2 + i∆(Fg,mg;F ′e,m

′
e)]

]
ρ̃Fg mg,F ′

g m
′
g

−
∑

FgmgF ′′
e m

′′
e

[
Ω∗(Fg,mg;F

′
e,m

′
e)Ω(Fg,mg;F

′′
e ,m

′′
e )

4(Γ + iωFeF ′
e
)[Γ/2− i∆(Fg,mg;Fe,me)]

ρ̃Fe me,F ′′
e m′′

e

+
Ω(Fg,mg;Fe,me)Ω

∗(Fg,mg;F
′′
e ,m

′′
e )

4(Γ + iωFeF ′
e
)[Γ/2 + i∆(Fg,mg;F ′e,m

′
e)]
ρ̃F ′′

e m′′
e ,F

′
e m

′
e

]
,

(7.536)
and the relations for F ′g 6= Fg follow by setting ∂tρ̃Fg mg,F ′

g m
′
g
≈ 0, with the result

ρ̃Fg mg,F ′
g m

′
g
=

∑
FemeF ′

em
′
e

[
Ω∗(Fg,mg;Fe,me)Ω(F

′
g,m

′
g;F

′
e,m

′
e)

4iωFgF ′
g
[Γ/2− i∆(F ′g,m

′
g;Fe,me)]

+
Ω(F ′g,m

′
g;F

′
e,m

′
e)Ω

∗(Fg,mg;Fe,me)

4iωFgF ′
g
[Γ/2 + i∆(Fg,mg;Fe,me)]

]
ρ̃Fe me,F ′

e m
′
e

−
∑

FemeF ′′
g m

′′
g

[
Ω∗(Fg,mg;Fe,me)Ω(F

′′
g ,m

′′
g ;Fe,me)

4iωFgF ′
g
[Γ/2− i∆(F ′g,m

′
g;Fe,me)]

ρ̃gm′′
g ,gm′

g

+
Ω(F ′g,m

′
g;Fe,me)Ω

∗(F ′′g ,m
′′
g ;Fe,me)

4iωFgF ′
g
[Γ/2 + i∆(Fg,mg;Fe,me)]

ρ̃Fg mg,F ′′
g m′′

g

]
+

1

iωFgF ′
g

∑
FeF ′

eq

Γ(Fg,mg;F
′
g,m

′
g;Fe;F

′
e; q) ρ̃Fe mg+q,F ′

e m
′
g+q

.

(7.537)
Putting these two relations into the rate equations (7.535) leads to a yet more complicated set of rate equa-
tions, but that only retain coherences between degenerate levels (which properly accounts for the orientation
of the atom in the various levels). Note that the terms generated by this adiabatic elimination are quartic in
the field Ω, whereas there are also quadratic terms in the field. If we work in the weak-field approximation,
where all Rabi frequencies are small compared to the hyperfine splittings, Γ, or the detunings from the
hyperfine resonances (or even better, small compared to all of these), then we can ignore these higher-order
terms. This corresponds to taking

ρ̃Fe me,F ′
e m

′
e
≈ 0

ρ̃Fg mg,F ′
g m

′
g
≈ 1

iωFgF ′
g

∑
Feq

Γ(Fg,mg;F
′
g,m

′
g;Fe;Fe; q) ρ̃Fe mg+q,Fe m′

g+q
,

(7.538)
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again for Fg 6= F ′g and Fe 6= F ′e. Putting these into the rate equations (7.535), we obtain the low-intensity
rate equations

∂tρ̃Fe me,Fe m′
e
=

∑
Fgmgm′

g

[
Ω∗(Fg,mg;Fe,m

′
e)Ω(Fg,m

′
g;Fe,me)

4[Γ/2− i∆(Fg,mg;Fe,me)]
+

Ω(Fg,mg;Fe,me)Ω
∗(Fg,m

′
g;Fe,m

′
e)

4[Γ/2 + i∆(Fg,mg;Fe,m′e)]

]
× ρ̃Fg mg,Fg m′

g

+
∑

FgmgF
′
gm

′
gFeq

(Fg 6=F ′
g)

[
Ω∗(Fg,mg;Fe,m

′
e)Ω(F

′
g,m

′
g;Fe,me)

4[Γ/2− i∆(Fg,mg;Fe,me)]
+

Ω(Fg,mg;Fe,me)Ω
∗(F ′g,m

′
g;Fe,m

′
e)

4[Γ/2 + i∆(Fg,mg;Fe,m′e)]

]
× 1

iωFgF ′
g

Γ(Fg,mg;F
′
g,m

′
g;Fe;Fe; q) ρ̃Fe mg+q,Fe m′

g+q

−
∑

Fgmgm′′
e

[
Ω∗(Fg,mg;Fe,m

′
e)Ω(Fg,mg;Fe,m

′′
e )

4[Γ/2− i∆(Fg,mg;Fe,me)]
ρ̃Fe me,Fe m′′

e

+
Ω(Fg,mg;Fe,me)Ω

∗(Fg,mg;Fe,m
′′
e )

4[Γ/2 + i∆(Fg,mg;Fe,m′e)]
ρ̃Fe m′′

e ,Fe m′
e

]
− Γρ̃Fe me,Fe m′

e

(hyperfine-structure rate equations, small intensity) (7.539)
for the excited states and

∂tρ̃Fg mg,Fg m′
g
=

∑
Femem′

e

[
Ω∗(Fg,mg;Fe,me)Ω(Fg,m

′
g;Fe,m

′
e)

4[Γ/2− i∆(Fg,m′g;Fe,me)]

+
Ω(Fg,m

′
g;Fe,m

′
e)Ω

∗(Fg,mg;Fe,me)

4[Γ/2 + i∆(Fg,mg;Fe,me)]

]
ρ̃Fe me,Fe m′

e

−
∑

Femem′′
g

[
Ω∗(Fg,mg;Fe,me)Ω(Fg,m

′′
g ;Fe,me)

4[Γ/2− i∆(F ′g,m
′
g;Fe,me)]

ρ̃Fg m′′
g ,Fg m′

g

+
Ω(Fg,m

′
g;Fe,me)Ω

∗(Fg,m
′′
g ;Fe,me)

4[Γ/2 + i∆(Fg,mg;Fe,me)]
ρ̃Fg mg,Fg m′′

g

]
−

∑
FemeF

′′
g m

′′
gF

′
eq

(F ′′
g 6=Fg)

[
Ω∗(Fg,mg;Fe,me)Ω(F

′′
g ,m

′′
g ;Fe,me)

4iωF ′′
g Fg [Γ/2− i∆(Fg,m′g;Fe,me)]

× Γ(F ′′g ,m
′′
g ;Fg,m

′
g;F

′
e;F

′
e; q) ρ̃F ′

e m
′′
g +q,F ′

e m
′
g+q

+
Ω(Fg,m

′
g;Fe,me)Ω

∗(F ′′g ,m
′′
g ;Fe,me)

4iωFgF ′′
g
[Γ/2 + i∆(Fg,mg;Fe,me)]

× Γ(Fg,mg;F
′′
g ,m

′′
g ;F

′
e;F

′
e; q) ρ̃F ′

e mg+q,F ′
e m

′′
g +q

]
+
∑
Feq

Γ(Fg,mg;Fg,m
′
g;Fe;Fe; q) ρ̃Fe mg+q,Fe m′

g+q
.

(hyperfine-structure rate equations, small intensity) (7.540)
for the ground states.

7.9 Whither has Wandered the Two-Level Atom?

As we have seen, the real situation with atomic angular-momentum structure is considerably more com-
plicated than the idealized model of a two-level atom. So to what extent is the two-level atom a useful
model? Actually, there are some important situations under which atoms with angular-momentum degen-
eracy behave as two-level atoms. One obvious candidate is the a transition of the form J = 0 −→ J ′ = 0
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(equivalently, F = 0 −→ F ′ = 0, though for simplicity here we will only refer to fine-structure quantum
numbers), where each level has only one sublevel. Unfortunately, we have already seen according to the
dipole selection rules that this transition is forbidden.

The most direct realization of the two-level atom comes in the form of a J = 0 −→ J ′ = 1 transition,
where depending on the polarization, the ground state can be coupled to one of three excited states.

Jo=o0

mo=o0 mo=o1mo=o-1

Jo=o1

The important thing to realize is that, given an arbitrary polarization of the field, the ground state is coupled
to some linear combination of the three excited states, while two other linear combinations are not coupled.
The transition matrix elements from the Wigner–Eckart theorem (7.237) are

〈J = 0, mJ = 0|dq|J ′ = 1, m′J〉 = 〈J = 0‖d‖J ′ = 1〉 〈0 0|1 m′J ; 1 q〉 = 〈J = 0‖d‖J ′ = 1〉 (−1)
1+q

√
3

δm′
J ,−q

(7.541)
Thus, we see that the amplitude of the matrix element for every polarization is identical, and in fact equal
to the effective matrix element (7.492) for linear polarization that we wrote down before, up to a minus sign.
The point is that an any polarization couples to the atom with the same strength, and so except for the
atomic orientation in the excited state (corresponding to the orientation of the induced dipole moment) there
is no dependence of any of the physics on the polarization. Further, since only one excited state is coupled,
we may regard this system as a two-level atom. Any decay will be back to the ground state, corresponding
to dipole radiation with the same orientation as the inducing field.

Of course, this argument breaks down if there are two fields present with different orientation, such
as a second laser with another polarization, or a static magnetic or electric field. Then one field induces an
orientation that modifies the interaction with the other field.

7.9.1 Optical Pumping to Stretched States

Another important situation comes in the form of a J −→ J ′ = J + 1 transition pumped by circularly
polarized light. As a concrete example, we can consider a J = 1 −→ J ′ = 2 transition coupled by σ+=po-
larized light. Recall that this light drives sublevel transitions of the form mJ −→ m′J = mJ + 1. However,
spontaneous decay occurs from any possible m′J −→ mJ = m′J ± 1, 0.

Jo=o1

mo=1 mo=o2mo=o0mo=o-1mo=o-2

Jo=o2

The J = 1,mJ = 1 −→ J ′ = 2,m′J = 2 transition is thus closed in this scheme. Atoms starting in any other
state will eventually become pumped into this cycling transition (on the ‘‘stretched states’’), and thus, at
least in steady state, we effectively have a two-level atom.

Jo=o1

mo=1 mo=o2mo=o0mo=o-1mo=o-2

Jo=o2
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The dipole matrix element for this transition is given by the Wigner–Eckart theorem (7.237) as

〈J, mJ = J |d−1|J ′ = J + 1, m′J = J ′〉 = 〈J‖d‖J + 1〉 〈J J |J + 1 J + 1; 1 − 1〉

= 〈J‖d‖J + 1〉

√
2J + 1

2(J + 1) + 1

= 〈J‖d‖J ′〉
√

2J + 1

2J ′ + 1
.

(7.542)

The matrix element is thus the reduced matrix element for the hyperfine transition multiplied by a degeneracy
ratio for the transition. Notice that this is precisely the same degeneracy ratio that appears in the decay-rate
formula (7.305). That is, if we define the effective dipole moment

dstretch := 〈J‖d‖J ′〉
√

2J + 1

2J ′ + 1
,

(7.543)
(effective stretched-transition dipole)

for the stretched-state transition, then we obtain the two-level-atom formula (7.299) when we write the decay
rate in terms of this transition:

ΓJgJe =
ω 3
0

3πε0h̄c3
|dstretch|2. (7.544)

Physically, this is because the stretched excited state has only one decay path, which decays at the full rate
ΓJgJe . Thus, no summation—as is implied in the reduced matrix element—is necessary to compute the full
decay rate ΓJgJe .

The same thing happens in a closed hyperfine transition between stretched states, in the case where the
excited state also has only one decay path. This happens again for the fine structure transition J −→ J ′ =
J+1, in particular for the σ+ hyperfine transition F = J+I,mF = F −→ F ′ = J ′+I = F +1,m′F = F ′. In
the hyperfine-structure diagram for 133Cs on p. 321, we are referring to the F = 4 −→ F ′ = 5 (laser-cooling)
transition. The transition here is closed because the F ′ excited level can only decay to a ground level with
F = F ′ ± 1, 0, and thus only has one decay option. As in the fine-structure case, the stretched excited state
only decays to the stretched ground state. The dipole moment for this hyperfine transition is

〈F, mF = F |d−1|F ′ = F + 1, m′F = F ′〉 = 〈F‖d‖F + 1〉 〈F F |F + 1 F + 1; 1 − 1〉

= 〈F‖d‖F ′〉
√

2F + 1

2F ′ + 1

= 〈J‖d‖J ′〉 (−1)F
′+J+1+I

×
√
(2F ′ + 1)(2J + 1)

{
J J ′ 1
F ′ F I

}√
2F + 1

2F ′ + 1

= 〈J‖d‖J ′〉 (−1)F
′−J+1−I

√
2J + 1

2J ′ + 1

= 〈J‖d‖J ′〉
√

2J + 1

2J ′ + 1
(7.545)

after using the hyperfine Wigner–Eckart theorem (7.281), the decomposition rule (7.282), the 6-j symbol{
J J ′ 1
F ′ F I

}
=

{
J J + 1 1

I + J + 1 I + J I

}
=

(−1)−2(I+J)√
(2J ′ + 1)(2F + 1)

, (7.546)

and F ′ − J + 1 − I = F − J − I + 2 = 2. Thus, exactly the same effective dipole moment applies to the
hyperfine stretched-state transition as to the similar fine-structure transition.

Typically, the effective dipole moment defined here is larger than that for large detunings, as in
Eq. (7.492), because the optical pumping of the atom towards the stretched state produces an atomic
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orientation that is aligned with the field. For J = 0, of course, the stretched-state transition has an
effective squared dipole moment of |〈J‖d‖J ′〉|2/3, while in the limit as J −→∞, the effective squared dipole
approaches |〈J‖d‖J ′〉|2, corresponding to perfect alignment with the field (so that the full weight of the
atomic dipole is represented by only one spherical component).

While the effect here is restricted to transitions of certain forms, obviously some alignment occurs
when an atom is pumped by a circularly polarized field, even for transitions of arbitrary form. However,
for J −→ J ′ = J transition interacting with circularly polarized light, the atoms still become completely
aligned in a stretched state, which is a dark state, in a way that is essentially equivalent to the mechanism
described below.

7.9.2 Optical Pumping with Linearly Polarized Light

When pumping atoms with linearly polarized light, alignment phenomena occur that are similar to the
circular-polarization case. Consider a J −→ J ′ = J transition pumped by linearly polarized light, where J
is some integer. For concreteness, we can consider a J = 2 −→ J ′ = 2 transition.

Jo=o2

mo=1 mo=o2mo=o0mo=o-1mo=o-2

Jo=o2

Because the mJ = 0 −→ m′J = 0 transition is forbidden, the mJ = 0 ground sublevel is not excited, but all
the other sublevels are. However, other states can decay into the mJ = 0 sublevel by σ± transitions.

Jo=o2

mo=1 mo=o2mo=o0mo=o-1mo=o-2

Jo=o2

Since the mJ = 0 sublevel has no excitation path, but there are excitation/decay routes from any other state
into mJ = 0, in steady state the atom will end up entirely in mJ = 0. Again, this state is not coupled to
an excited level by the linearly polarized light, so the atoms are in a dark state, no longer interacting with
the light. Of course, particularly in the hyperfine case, there are other levels around for which transitions
are not dipole-forbidden, so there will be leakage to some extent; furthermore there may be multiple ground
hyperfine levels, in which case repumping from the other ground level(s) is necessary to pump the atoms
into the dark state.

In a general J −→ J ′ fine-structure transition, some degree of alignment towards mJ = 0 tends to
occur. The exception is the case of J −→ J ′ = J − 1, where the mJ = ±J stretched ground states are dark,
and thus the atoms tend to accumulate in those states. However, the less trivial cases are J −→ J ′ = J + 1
for arbitrary J or J −→ J ′ = J for half-integer J . In steady state, the transition takes on a well-defined
alignment, and behaves as a two level atom, so long as the transition is taken to have an appropriate
(geometry-dependent) dipole moment. To find the explicit steady-state solutions in this case,44 we can start
with the rate equations (7.525) and (7.526). In deriving these equations, we assumed a single polarization
and that the coherences were in quasi-steady state; thus, for computing steady states of the full master
equation (7.507) or (7.510), they will produce exact results. Starting with the ground-state rate equation
(7.525), the steady-state condition ∂tPe,m = 0 for the population Pe,m := ρe m,e m = 0 in state |Je m〉 gives

|Ω(m,m)|2

Γ(1 + 4∆2/Γ2)
(Pe,m − Pg,m) = −ΓPe,m, (7.547)

44These solutions were derived with the resolvent method by Bo Gao, ‘‘Effects of Zeeman degeneracy on the steady-state
properties of an atom interacting with a near-resonant laser field: Analytic results,’’ Physical Review A 48, 2443 (1993)
(doi: 10.1103/PhysRevA.48.2443). For further results, see also Bo Gao, ‘‘Effects of Zeeman degeneracy on the steady-state
properties of an atom interacting with a near-resonant laser field: Probe spectra,’’ Physical Review A 49, 3391 (1994) (doi:
10.1103/PhysRevA.49.3391); Bo Gao, ‘‘Effects of Zeeman degeneracy on the steady-state properties of an atom interacting with
a near-resonant laser field: Resonance fluorescence,’’ Physical Review A 50, 4139 (1994). (doi: 10.1103/PhysRevA.50.4139).

http://dx.doi.org/10.1103/PhysRevA.48.2443
http://dx.doi.org/10.1103/PhysRevA.49.3391
http://dx.doi.org/10.1103/PhysRevA.50.4139
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while the same condition ∂tPg,m = 0 for the population Pg,m := ρg m,g m = 0 in the ground state |Jg m〉
gives

|Ω(m,m)|2

Γ(1 + 4∆2/Γ2)
(Pe,m − Pg,m) = −Γ

∑
m′

Pe,m′〈Je m
′|Jg m; 1 (m′ −m)〉2. (7.548)

Combining these two relations to eliminate the Rabi frequency, we find a closed equation for the excited-state
populations:

Pe,m =
∑
m′

Pe,m′ 〈Je m
′|Jg m; 1 (m′ −m)〉2. (7.549)

This is somewhat surprising: for a linearly polarized pump, the relative populations of the excited states
(i.e., the orientation of the atomic excitation) is completely independent of the driving intensity. If we define
the tridiagonal matrix

Amm′ := 〈Je m
′|Jg m; 1 (m′ −m)〉2, (7.550)

then Eq. (7.549) amounts to the homogeneous, tridiagonal linear system

(Amm′ − δmm′)xm′ = 0, (7.551)

which we must now solve for the populations xm. Note that the matrix Amm′ has the extra constraints
Amm′ = A−m,−m′ from Eq. (7.67) and

∑
m′ Amm′ = 1 from the orthogonality relation (7.46), and by the

symmetry of the problem, the populations satisfy xm = x−m. The solution for m > 0 is given by the
recursion formula (Problem 7.3)

xm+1 =
Am+1,m

Am,m+1
xm, (7.552)

which we may explicitly iterate to find

xm =


m−1∏
m′=0

Am′+1,m′

m−1∏
m′=0

Am′,m′+1

x0 =


m−1∏
m′=0

〈Je m
′|Jg m

′ + 1; 1 (−1)〉2

m−1∏
m′=0

〈Je m
′ + 1|Jg m

′; 1 1〉2

x0 (7.553)

for m > 0. Since we will explicitly normalize these populations anyway, we can take a convenient normal-
ization by writingJg−1∏

m′=0

〈Je m
′ + 1|Jg m

′; 1 1〉2
 xm

x0
=

(
m−1∏
m′=0

〈Je m
′|Jg m

′ + 1; 1 (−1)〉2
)( Jg−1∏

m′=m

〈Je m
′ + 1|Jg m

′; 1 1〉2
)
,

(7.554)
then using Eq. (7.67) to reverse the mJ quantum numbers in the first factor while letting m′ −→ m′ − 1 in
the second,Jg−1∏
m′=0

〈Je m
′ + 1|Jg m

′; 1 1〉2
xm
x0

=

(
m−1∏
m′=0

〈Je −m′|Jg (−m′−1); 1 1〉2
)( Jg∏

m′=m+1

〈Je m
′|Jg m

′−1; 1 1〉2
)
,

(7.555)
then letting m′ −→ −m′ in the first factor,Jg−1∏
m′=0

〈Je m
′ + 1|Jg m

′; 1 1〉2
 xm

x0
=

(
0∏

m′=−m+1

〈Je m
′|Jg m

′ − 1; 1 1〉2
)( Jg∏

m′=m+1

〈Je m
′|Jg m

′ − 1; 1 1〉2
)
,

(7.556)
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and finally multiplying through by the same factor on the left,Jg−1∏
m′=0

〈Je m
′ + 1|Jg m

′; 1 1〉2
2

xm
x0

=

( Jg∏
m′=−m+1

〈Je m
′|Jg m

′−1; 1 1〉2
)( Jg∏

m′=m+1

〈Je m
′1|Jg m

′−1; 1 1〉2
)
.

(7.557)
This expression is explicitly invariant under m −→ −m, and so we can write out these weights explicitly
normalized by defining a new symbol for the left-hand side of the above equation and then normalizing it:

χe,m :=

( Jg∏
m′=−m+1

〈Je m
′|Jg m

′ − 1; 1 1〉2
)( Jg∏

m′=m+1

〈Je m
′|Jg m

′ − 1; 1 1〉2
)

we,m :=
χe,m

Jg∑
m′=−Jg

χe,m′

.

(relative excited-state weighting factors) (7.558)
Then the relative excited-state populations are given by the normalized weights we,m,

Pe,m = we,mPe,
(7.559)

(excited-state populations)

where the total excited-state population is

Pe :=

Jg∑
m′=−Jg

Pe,m′ . (7.560)

To find the total excited-state population, we can write Eq. (7.547) in the form(
|Ω(m,m)|2

Γ(1 + 4∆2/Γ2)
+ Γ

)
Pe,m =

|Ω(m,m)|2

Γ(1 + 4∆2/Γ2)
Pg,m, (7.561)

or (
1 +

Γ2 + 4∆2

|Ω(m,m)|2

)
we,mPe = Pg,m. (7.562)

Summing over m, we find [
1 + (Γ2 + 4∆2)

(∑
m

we,m

|Ω(m,m)|2

)]
Pe = Pg, (7.563)

where the total ground-state population is

Pg :=

Jg∑
m=−Jg

Pg,m. (7.564)

Now using Eq. (7.408) to factor the Rabi frequencies, we can define the geometric factor

g :=

 Jg∑
m=−Jg

we,m

〈Jg m|Je m; 1 0〉2

−1 , (7.565)
(geometric factor)

so that (
1 +

Γ2 + 4∆2

gΩ 2
0

)
Pe = Pg, (7.566)
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where again Ω0 is the q = 0 component of the Rabi-frequency vector defined by Eq. (7.402). Using Pg+Pe = 1,
we can solve this equation to write the total excited-state population

Pe(t −→∞) =

gΩ 2
0

Γ2

1 +

(
2∆

Γ

)2

+
2gΩ 2

0

Γ2

.

(steady-state excitation, linearly polarized drive) (7.567)
Note that this expression is exactly the same as the corresponding expression (5.137) for the excited-state
population of the two-level atom if we identify the two-level-atom Rabi frequency via Ω2 −→ gΩ 2

0 . Alter-
nately, we can write the excitation in the standard form [as in Eq. (5.250) for the two-level atom]

Pe(t −→∞) =

(
1

2

)
I/Isat

1 + 4∆2/Γ2 + I/Isat
, (7.568)

so long as we identify
I

Isat
=

2gΩ 2
0

Γ2
. (7.569)

Using Eq. (7.402), we can solve this to obtain the effective saturation intensity

Isat =
cε0Γ

2h̄2

4g|〈Jg‖d‖Je〉|2

(effective saturation intensity, linear polarization) (7.570)
in terms of the reduced dipole matrix element for linearly-polarized excitation. Surprisingly, the entire effect
of the atomic Zeeman-degenerate structure is wrapped up in the single geometric factor g, at least as far as
the total excitation is concerned. For some representative values, for a Jg = 0 −→ Je = 1 transition, g = 1/3;
for Jg = 1 −→ Je = 2, g = 6/17 ≈ 0.35294; Jg = 2 −→ Je = 3, g = 180/461 ≈ 0.39046; Jg = 3 −→ Je = 4,
g = 4004/9651 ≈ 0.41488; Jg = 4 −→ Je = 5, g = 39780/92377 ≈ 0.43063; Jg = 50 −→ Je = 51,
g ≈ 0.49271; and Jg = 100 −→ Je = 101, g ≈ 0.49630.45 Evidently, g −→ 1/2 as Jg −→ ∞ (at least for
the case of integer angular momenta), though this is certainly not obvious from its definition. As in the
circular-polarization case, the effective squared dipole moment of the transition is |〈Jg‖d‖Je〉|2/3 for Jg = 0
and increases with Jg. However, it saturates at a smaller value than in the circular case, indicating that the
atomic alignment is not as complete. This is not entirely surprising, as when excited with linearly polarized
light the emitted photons may have any polarization, whereas with a circular pump, the emitted photons
may have only one polarization.

Explicitly, then, the individual excited-state populations in steady state are

Pe,m(t −→∞) =
we,m

gΩ 2
0

Γ2

1 +

(
2∆

Γ

)2

+
2gΩ 2

0

Γ2

,

(excited-state populations, linearly polarized drive) (7.571)
and using Eq. (7.562), the ground-state populations are

Pg,m(t −→∞) =

we,m g

(
Ω 2

0

Γ2
+

1 + (2∆/Γ)2

〈Jg m|Je m; 1 0〉2

)
1 +

(
2∆

Γ

)2

+
2gΩ 2

0

Γ2

.

(ground-state populations, linearly polarized drive) (7.572)
Note that unlike the excited-state case, the relative ground-state populations depend on the intensity of the
field.

45Note that the analogous factor gs defined by Gao, op. cit., is related to the factor g here by g = (2Jg + 1)gs, due to the
difference in conventions for the Rabi frequency (and hence the reduced dipole matrix element).
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7.10 Exercises

Problem 7.1

Show that the frequency shift of the 133Cs 62S1/2(F = 3,mF = 0) −→ 62S1/2(F = 4,mF = 0) ‘‘clock’’
transition due to a constant applied magnetic field is given by

∆ωclock =
(gJ − gI)

2µ2
B

2h̄∆Ehfs
B2 (7.573)

for small fields, to second order the in the field B. Put in numbers appropriate for the transition
(gJ = 2.0025, gI = −0.000 398 95, I = 7/2, and ∆Ehfs = h · 9.192 631 770 GHz, and express the shift
in Hz/G2.

Problem 7.2
Prove the identity

εµαβεµστ = δασδβτ − δατδβσ (7.574)

for the Levi-Civita symbol by writing out the ‘‘bac-cab’’ vector identity A × (B ×C) = B(A ·C) −
C(A ·B), in terms of components.

Problem 7.3
Given the homogeneous linear system from (7.551),

(Amm′ − δmm′)xm′ = 0, (7.575)

where m,m′ are either integers or half-integers, −Jg ≤ m,m′ ≤ Jg, and the tridiagonal matrix Amm′

satisfies Amm′ = A−m,−m′ and
∑
m′ Amm′ = 1, prove by induction that

xm+1 =
Am+1,m

Am,m+1
xm (7.576)

for m > 0.

Problem 7.4
(a) Consider the following expression for the ground-state dipole shift of an atom with fine structure
in a linearly polarized laser field of frequency ω,

Vdip =
h̄

4

∑
J′

Ω 2
JJ ′ |〈J m|J ′ m; 1 0〉|2

(
1

ω − ωJ′J
− 1

ω + ωJ′J

)
, (7.577)

where J is the angular-momentum quantum number of the ground state, the sum is over the excited-
state quantum numbers J ′ (with an implied sum over other quantum numbers labeling relevant excited
states), the frequency of the J −→ J ′ transition is

ωJ′J :=
EJ′ − EJ

h̄
, (7.578)

and the Rabi frequency is given in terms of the reduced dipole matrix element by

ΩJJ ′ := −2〈J ||dz||J ′〉E(+)
0

h̄
, (7.579)

where E(+)
0 is the positive-rotating electric-field amplitude. Argue that this expression is correct to

lowest order in the field intensity, and interpret all the factors. Note that the atom is assumed to be
in the state |J m〉, but the shift is independent of m.
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Note that in the case of a ground state with J = 0 or J = 1/2, the expression above simplifies, since
|〈J m|J ′ m; 1 0〉|2 = 1/3, so that

Vdip =
h̄

4

∑
J′

Ω 2
JJ ′

3

(
1

ω − ωJ′J
− 1

ω + ωJ′J

)
. (7.580)

The reduction in complexity is sensible in these cases because for such simple ground states there can
be no dependence on the m quantum number.
(b) Consider the following estimate for the scattering rate for the above atom–field system,

Rsc =
1

4

∑
q

[∑
J′

ΩJJ ′〈J m|J ′ m; 1 0〉
√

ΓJ′〈J ′ m|J m− q; 1 q〉

×
(

ω

ωJ′J

)3/2(
1

ω − ωJ′J
− 1

ω + ωJ′J

)]2 (7.581)

where we sum over the (spherical) polarization index q for the scattered light, and ΓJ′ is the total
decay rate of level J ′. Note that this expression assumes the atom to be in the particular state |J m〉,
and thus the scattering rate should be averaged over all populated ground states, weighted by their
steady-state population. This expression assumes that all spontaneous-scattering events return the
atom to one of the J levels. Argue that this expression is correct to lowest order in the field intensity,
subject to the above assumptions.
(c) Argue that for an atom with hyperfine structure, the expression for the ac Stark shift should be
modified to read

Vdip =
h̄

4

∑
F ′

Ω 2
FF ′ |〈F mF |F ′ mF ; 1 0〉|2

(
1

ω − ωF ′F
− 1

ω + ωF ′F

)
, (7.582)

where the overall hyperfine Rabi frequency is

ΩFF ′ := −2〈F ||dz||F ′〉E(+)
0

h̄

= −2〈J ||dz||J ′〉E(+)
0

h̄
(−1)F

′+J+1+I
√
(2F ′ + 1)(2J + 1)

{
J J ′ 1
F ′ F I

}
,

(7.583)

where I is the nuclear angular momentum, and the hyperfine states F and F ′ are also labeled by J
and J ′, respectively, while the scattering rate becomes

Rsc =
1

4

∑
q F ′′

[∑
F ′

ΩFF ′〈F mF |F ′ mF ; 1 0〉
√
ΓF ′F ′′〈F ′ mF |F ′′ mF − q; 1 q〉

×
(

ω

ωF ′F

)3/2(
1

ω − ωF ′F
− 1

ω + ωF ′F

)]2 (7.584)

where the decay-rate factor, with the proper emission phase factor, is√
ΓF ′F ′′ =

√
ΓJ′(−1)F

′′+J′+1+I
√
(2F ′′ + 1)(2J ′ + 1)

{
J ′ J ′′ 1
F ′′ F ′ I

}
(7.585)

for small hyperfine splittings. Note that we now sum over all possible final hyperfine levels F ′′, in the
case of hyperfine-changing Raman scattering events. This expression also ignores cascading transitions
(i.e., it only accounts for two-photon processes), and assumes that the final states |F ′′ mF − q〉 are
nearly degenerate with |F mF 〉, so that ωF ′F ≈ ωF ′F ′′ .
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Problem 7.5
The D-line fine-structure doublet in hydrogen and hydrogen-like (alkali) atoms is a transition doublet
from an S1/2 ground state to a pair of excited states, P1/2 and a P3/2, with the P3/2 at higher energy.
(a) Derive an expression for the ac Stark shift for σ+ light for the mJ = ±1/2 fine-structure ground
states, in terms of the fine-structure reduced matrix element 〈J‖d‖J ′〉. Exclude the contributions due
to states outside the D line.
(b) For 87Rb, estimate the laser wavelength for which the shift of the |J,mJ = −1/2〉 ground state
vanishes. Also estimate the shift of the |J,mF = +J〉 state at this wavelength.
(c) Derive an expression for the ac Stark shift for σ+ light for the hyperfine ground states, assuming
the hyperfine splittings are negligibly small. Exclude the contributions due to states outside the D
line.
(d) For 87Rb, estimate the laser wavelengths for which the shift of the |F,mF = ±F 〉 ground states
vanish. What is the (intensity-dependent) shift of the other |F,mF 〉 states at these wavelengths?

Problem 7.6
Work out the reduced matrix element 〈F = 1‖µ‖F ′ = 2〉 as well as the transition matrix element
〈F = 1,mF = 0|µz|F ′ = 2,m′F = 0〉 for the 6.8 GHz ground-state hyperfine ‘‘clock’’ transition in 87Rb
(L = L′ = 0, S = S′ = 1/2, I = I ′ = 3/2). Here, the magnetic-dipole operator is

µ = −µB

h̄
(gSS + gLL + gII) (7.586)

[cf. Eqs. (7.307) and (7.315)].

Problem 7.7
(a) Use the Breit–Rabi formula to show that the splitting between the two states with mF = −1 (i.e.,
m = −1 in the formula) reaches a minimum for some magnetic-field strength. Hence, at this field
value, the splitting is insensitive to first order to fluctuations in the field. Derive an expression for the
field strength and the minimum splitting.
(b) Put in numbers for the ground-state hyperfine transition, F = 1,mF = −1 −→ F = 2,mF = −1 in
87Rb (I = 3/2), where ∆Ehfs = 6.835 GHz, gI = −0.0009951, and gJ = 2.002331.





Part II

Quantum Light–Matter Interactions





Chapter 8

Quantization of the Electromagnetic
Field

Now we will switch to exclusively quantum-mechanical models. Before, we had treated the atom quantum
mechanically, and introduced the idea of the photon, but now we will give a proper description of the
quantum electromagnetic field.

8.1 Classical Electromagnetic Field

Recall that we can write the source-free Maxwell equations in free space as

∇ ·E = 0

∇ ·B = 0

∇×E = −∂tB

∇×B =
1

c2
∂tE.

(8.1)
(Maxwell’s equations)

In addition to the fields, we can consider the potentials A and φ. For nonrelativistic calculations in vacuum,
it is convenient to choose the Coulomb gauge,1 where ∇ · A = 0. In this gauge, φ = 0 in the absence of
charges (we will reintroduce the sources later when we treat the atom–field interaction), so the fields are
given by

E = −∂tA, B = ∇×A. (8.2)
(Coulomb gauge)

The last of the Maxwell equations thus implies the wave equation for the vector potential [using the gauge
relations and ∇×∇×A = ∇(∇ ·A)−∇2A]:

∇2A− 1

c2
∂ 2
t A = 0.

(8.3)
(vector-potential wave equation)

This equation is essentially the entire content of the Maxwell equations in this gauge, since the other three
equations are implied by the Coulomb-gauge condition and the relations between the fields and the potentials.
The first equation follows from

∇ ·E = −∂t∇ ·A = 0, (8.4)
1The choice of Coulomb gauge is common in quantum optics, where the calculations are typically nonrelativistic, though

relativistic field theorists prefer the Lorenz gauge. See L. Lorenz, ‘‘On the Identity of the Vibrations of Light with Electrical
Currents,’’ Philosophical Magazine 34, 287 (1867). Incidentally, the Lorenz gauge is still commonly misattributed to Hendrik
A. Lorentz; see J. van Bladel, ‘‘Lorenz or Lorentz?’’ IEEE Antennas and Propagation Magazine 33, No. 2 (April 1991); and
Robert Nevels and Chang-Seok Shin, ‘‘Lorenz, Lorentz, and the Gauge,’’ IEEE Antennas and Propagation Magazine 43, No.
3 (June 2001) (doi: 10.1109/74.934904).

http://dx.doi.org/10.1109/74.934904
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the second follows from
∇ ·B = ∇ · (∇×A) = 0, (8.5)

and the third follows from
∇×E = −∂t∇×A = −∂tB. (8.6)

The vector potential A thus compactly represents the fields. It also turns out to be fundamentally important
in preserving the locality of quantum-mechanical particle-field interactions, so we will often work with it.

8.2 Hamiltonian Structure of the Classical Electromagnetic Field

In order to quantize the field, we need the Lagrangian (and action principle), to identify the canonical
coordinates and the Hamiltonian for the field, and then promote the canonical coordinates to operators.2
Before doing this, though, we will review briefly the ideas that underlie the Hamiltonian.

8.2.1 Variational Calculus

First off, a (real-valued) functional3 is a function F : F −→ R, where F is a space of functions. Usually a
functional will involve an integral to reduce functions to scalars, as in the action functional that we consider
below. Let x(t) ∈ F; then F [x] is a real number, and the first variation of the functional F [x] is given by

δF [x; δx] := lim
ε→0

F [x+ εδx]− F [x]
ε

=
d

dε
F [x+ εδx]

∣∣∣∣
ε=0

,
(8.7)

(first variation)

where ε and δx are subject to the constraint that x + εδx ∈ F. The first variation is essentially the ‘‘linear
response’’ of F [x] to a small perturbation x(t) −→ x(t) + εδx(t).

We will then define the functional derivative δF/δx such that〈
δF

δx
, δx

〉
:=

∫ t2

t1

δF

δx
δx dt := δF [x; δx].

(8.8)
(functional derivative)

Note that the brackets here denote an inner product of two vectors (here, functions), which is defined by
the integral over the two vectors (functions). Thus, the functional derivative is the part of the first variation
after dropping the integral and the variation δx.

We can generalize this derivative in a couple of ways. A functional may depend on derivatives of the
function; suppose that

F [x, xt, xtt, . . . ; t] =

∫ t2

t1

f(t, x, xt, xtt, . . .) dt, (8.9)

where xt ≡ ∂x/∂t. Then the first variation becomes

δF [x, xt, xtt, · · · ; t] =
∫ t2

t1

[
∂f

∂x
δx+

∂f

∂xt
δxt +

∂f

∂xtt
δxtt + · · ·

]
dt. (8.10)

Integrating by parts,

δF [x, xt, xtt, · · · ; t] =
∫ t2

t1

[
∂f

∂x
− d

dt

∂f

∂xt
+
d2

dt2
∂f

∂xtt
+ · · ·

]
δx dt+

[
∂f

∂xt
δx+ · · ·

]t2
t1

, (8.11)

2Dirac discusses this basic ‘‘quantization recipe’’ and its advantages compared to alternatives in: Paul A. M. Dirac, Lectures
on Quantum Mechanics (Belfer Graduate School of Science, 1964), Lecture 1.

3For more details on variational calculus and action principles, see P. J. Morrison, ‘‘Hamiltonian description of the ideal
fluid,’’ Reviews of Modern Physics 70, 467 (1998) (doi: 10.1103/RevModPhys.70.467).

http://dx.doi.org/10.1103/RevModPhys.70.467
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and typically the variation is arranged such that the surface terms vanish. This is usually enforced via
fixed-endpoint variations δx(t1) = δx(t2) = 0. Then, using the definition (8.8), we can read off the
functional derivative,

δF

δx
=
∂f

∂x
− d

dt

∂f

∂xt
+
d2

dt2
∂f

∂xtt
+ · · · , (8.12)

being just the remaining bracketed expression in the integrand.
The other generalization to the functional derivative is to many functions and dimensions, which occurs

in the natural way, 〈
δF

δy , δy
〉

:=

∫
D

δF

δyα
δyα d

nx := δF [y; δy] (8.13)

for functions y(x), where D is the domain of integration, and recall that we are implicitly summing over the
repeated index α.

8.2.2 Action Principles

The calculus of variations is important in physics in setting up action principles, where equations of motion
follow from the stationary points of some functional. For example, in a least-action principle, functions that
minimize the functional correspond to physical solutions.

As a concrete example, we can state an ‘‘action principle’’ for straight lines, in the sense of constructing
an action principle that says that the shortest path between two points p1 and p2 is a straight line. That is,
consider the length functional ` for the curve y(x), with x1,2 marking the points p1,2:

`[y] =

∫ x2

x1

√
1 +

(
dy

dx

)2

dx. (8.14)

Then the condition δ` = 0 (under fixed-endpoint variations) implies that y(x) is a straight line. We can see
this from

δ`[y] =

∫ x2

x1

[
− d

dx

yx√
1 + y 2

x

]
dx = 0. (8.15)

Setting the integrand to zero, after a bit of algebra we see that the only way the integrand can vanish is for
y = αx+ β, where α and β are constants.

8.2.2.1 Lagrangian

In general, we will define a scalar Lagrangian function L(q, q̇; t) to describe our system. Naturally, this
may be generalized to higher time derivatives. The action functional is defined by the integral

S[L] :=

∫ t2

t1

L(q, q̇; t) dt, (8.16)

where the Lagrangian L is typically of the form L = T (q̇)− V (q) in particle mechanics. Then Hamilton’s
principle

δS[L] = 0
(8.17)

(Hamilton’s principle)

implies the Euler–Lagrange equation

∂L

∂qα
− d

dt

∂L

∂q̇α
= 0

(8.18)
(Euler–Lagrange equation)

under the condition of fixed-endpoint variation δq(t1) = δq(t2) = 0, by applying the vector generalization
of Eq. (8.11). This proceeds along the lines of Eq. (8.13), noting that each variation δqα(t) is independent.
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For a particle Lagrangian of the form

L =
1

2
mq̇2 − V (q), (8.19)

the Euler–Lagrange equation implies
mq̈ = −∂qV, (8.20)

which is Newton’s Second Law.

8.2.2.2 Hamiltonian

The Hamiltonian is defined by a Legendre transformation of the Lagrangian via

H(q,p; t) := q̇αpα − L(q, q̇; t),
(8.21)

(Hamiltonian)

where the conjugate momentum to the generalized coordinate qα is

pα :=
∂L

∂q̇α
.

(8.22)
(conjugate momentum)

The conjugate momentum is used to eliminate dependence on q̇ in the Hamiltonian introduced by the
Lagrangian. Then the phase-space action

S[q,p] :=
∫ t2

t1

[
q̇αpα −H(q,p; t)

]
dt

(8.23)
(phase-space action)

(note the bracketed quantity is basically the Lagrangian) along with the action principle

δS

δqα
= 0,

δS

δpα
= 0,

(8.24)
(phase-space action principle)

imply Hamilton’s equations,

∂tpα = − ∂H
∂qα

, ∂tq
α =

∂H

∂pα
,

(8.25)
(Hamilton’s equations)

again under the condition of fixed position endpoints δq(t1) = δq(t2) = 0, but now p(t1) and p(t2) are allowed
to vary. For example, for the particle Lagrangian (8.19), the conjugate momentum is p = ∂L/∂q̇ = mq̇, so
the Hamiltonian becomes

H =
p2

2m
+ V (q). (8.26)

Then Hamilton’s equations become

∂tp = −∂qH = −∂qV, ∂tq = ∂pH =
p

m
. (8.27)

The first is again Newton’s Second Law, while the second is just the definition of the momentum.

8.2.3 Electromagnetic Lagrangian and Hamiltonian

We now identify the Lagrangian for the electromagnetic field, which in terms of the vector potential is

L =
ε0
2

∫
d3r
[
(∂tA)2 − c2(∇×A)2

]
.

(8.28)
(electromagnetic Lagrangian)
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We can see that this is the appropriate Lagrangian by employing the Euler–Lagrange equation (generalized
for functional derivatives, since the generalized coordinates are fields)

δL

δA − ∂t
δL

δ(∂tA)
= 0, (8.29)

where we take the generalized coordinate to be the vector potential A. Computing the functional derivatives
(see below), we find

−ε0c2(∇× (∇×A))− ∂tε0(∂tA) = 0, (8.30)

which we see is equivalent to the wave equation (8.3) for the vector potential.
Since A is the ‘‘position’’ coordinate, which we can see from the ‘‘kinetic energy’’ term (∂tA)2 term

in the Lagrangian, the conjugate momentum is given by

Π :=
δL

δ(∂tA)
= ε0∂tA = −ε0E. (8.31)

(conjugate momentum to A)

Then the Hamiltonian is given by the Legendre transform of the Lagrangian:

H :=

∫
d3r (Π · ∂tA)− L

= ε0

∫
d3r (∂tA)2 − L

=
ε0
2

∫
d3r
[
(∂tA)2 + c2(∇×A)2

]
=

ε0
2

∫
d3r
[
E2 + c2(∇×A)2

]
.

(8.32)

In terms of the conjugate variables, the Hamiltonian is

H =

∫
d3r

[
Π2

2ε0
+

1

2
ε0c

2(∇×A)2
]
,

(8.33)
(electromagnetic Hamiltonian)

while in terms of the fields,

H =
ε0
2

∫
d3r
[
E2 + c2B2

]
,

(8.34)
(electromagnetic Hamiltonian)

it is clear that the Hamiltonian is just the total energy of the electromagnetic field.
Hamilton’s equations then recover the Maxwell equations. The first Hamilton equation is

∂tΠ = −δH
δA , (8.35)

which gives
−ε0∂tE = −ε0c2∇× (∇×A) = −ε0c2∇×B, (8.36)

and thus yields the last Maxwell equation of Eqs. (8.1). The other Hamilton equation,

∂tA =
δH

δΠ
, (8.37)

contains essentially no information, as it implies

−ε0E =
δH

−δE . (8.38)

The other three Maxwell equations, as we indicated before, follow simply from the fact that the fields derive
from the vector potential. Thus, we see how the Hamiltonian structure of the electromagnetic field arises
within the Coulomb gauge, which will now allow us to quantize the field.
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8.2.3.1 Electromagnetic Functional Derivatives

Here we compute the functional derivatives that arise in Eqs. (8.29), (8.35), and (8.37) as follows. Recall that
a functional is a function that maps functions to scalars. The Lagrangian and Hamiltonian here satisfy this
definition, due to the spatial integration, in the same way as the action integral above. The first variation
of the Lagrangian is

δL(A, ∂tA) :=
d

dε
L(A + εδA, ∂tA + εδ(∂tA))

∣∣∣
ε=0

(8.39)

for variations δA and δ(∂tA) of the potential. This is easy to evaluate, as this is just a linearization in the
variations, giving

δL(A, ∂tA) = ε0

∫
d3r
[
(∂tA) · δ(∂tA)− c2(∇×A) · (∇× δA)

]
. (8.40)

Using the vector identity

∇ · (δA× (∇×A)) = (∇×A) · (∇× δA)− δA · (∇× (∇×A)), (8.41)

we can use the divergence theorem and integrate by parts to obtain

δL(A, ∂tA) = ε0

∫
d3r
[
(∂tA) · δ(∂tA)− c2(∇× (∇×A)) · δA

]
+ ε0c

2

∫
surface

(δA×B) · da. (8.42)

We will assume a fixed-boundary variation, so that δA = 0 on the surface of the integration volume, so that
the surface term vanishes.

We defined the functional derivatives in terms of the first variation via inner products with the varia-
tions

δL(A, ∂tA) =:

〈
δL

δ(∂tA)
, δ(∂tA)

〉
+

〈
δL

δA , δA
〉
. (8.43)

Interpreting the spatial integral with the dot product as the inner product here, we can write down the
functional derivatives:

δL

δ(∂tA)
= ε0∂tA

δL

δA = −ε0c2∇× (∇×A).

(8.44)

Note that from the form of the Hamiltonian, the same functional derivatives of the Hamiltonian have the
same forms, except that the functional derivative with respect to A changes sign.

8.3 Quantization of a Single Field Mode

Now we can proceed to quantize the field, considering only a single field mode.4 The idea is to take advantage
of the fact that we have a linear field theory (because the QED Hamiltonian is quadratic in Π and A), so
we can perform separation of variables and decompose the field operators into noninteracting normal modes.
These normal modes are much simpler to deal with than the full fields. Taking an implicit Fourier transform,
we can assume a monochromatic solution of frequency ω:

A(r, t) = α(t)f(r) + c.c.
= α(0)e−iωtf(r) + c.c.

(8.45)

4For further reading, see Peter W. Milonni, The Quantum Vacuum (Academic Press, 1993), Section 2.4, p. 40. The first
quantum treatment of the electromagnetic field was M. Born, W. Heisenberg, and P. Jordan, ‘‘Zur Quantenmechanik II,’’
Zeitschrift für Physik 35, 557 (1926) (doi: 10.1007/BF01379806). Other important early papers on field quantization include
P. A. M. Dirac, ‘‘The Quantum Theory of the Emission and Absorption of Radiation,’’ Proceedings of the Royal Society of
London. Series A 114, 243 (1927) (doi: 10.1098/rspa.1927.0039); W. Heisenberg and W. Pauli, ‘‘Zur Quantendynamik der
Wellenfelder,’’ Zeitschrift für Physik 56, 1 (1929) (doi: 10.1007/BF01340129); and Enrico Fermi, ‘‘Sopra l’etettrodinamica
quantistica,’’ Atti della Reale Accademia Nazionale dei Lincei, 12, 431 (1930).

http://dx.doi.org/10.1007/BF01379806
http://links.jstor.org/sici?sici=0950-1207%2819270301%29114%3A767%3C243%3ATQTOTE%3E2.0.CO%3B2-L
http://dx.doi.org/10.1098/rspa.1927.0039
http://dx.doi.org/10.1007/BF01340129
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The space and time dependences are now explicitly separated—the separation of variables is allowed by the
form of the wave equation for A. The function f(r) is the mode function, which contains all the spatial
dependence of the field. (In general, there are many possible mode functions for a given frequency, so we
will simply choose one.) We assume them to be normalized such that∫

d3r |f(r)|2 = 1. (8.46)

The wave equation (8.3) then implies that the mode function satisfies the Helmholtz equation(
∇2 + k2

)
f(r) = 0,

(8.47)
(Helmholtz equation for mode function)

where k = ω/c.
We can now simplify the field Hamiltonian in the case of a single mode. We will need the relation∫

d3r (∇×A)2 =

∫
d3rA · (∇× (∇×A))

= −
∫
d3rA · (∇2A)

= k2
∫
d3r A2,

(8.48)

where we again integrated by parts and discarded the surface term, then used the fact that the vector
potential (8.45) satisfies the Helmholtz equation. Then the Hamiltonian becomes

H =

∫
d3r

[
Π2

2ε0
+

1

2
ε0ω

2A2

]
. (8.49)

This form suggests the Hamiltonian for a harmonic oscillator of frequency ω and mass ε0, again with mo-
mentum Π = −ε0E and position A.

Of course, the spatial integral does not appear in the usual harmonic-oscillator Hamiltonian. However,
the spatial dependence of the mode is fixed, so we can go ahead and carry out the integral to complete the
analogy. Noting that the mode electric field is given by

E = −∂tA = −iωα(t)f(r) + c.c., (8.50)

we can define a momentum coordinate to be the temporal part of Π, but with a different phase choice for
α(0),

p := −ωε0[α(t) + c.c.], (8.51)

and a position coordinate to be the temporal part of A, with the same phase choice,

q := −[iα(t) + c.c.], (8.52)

so that p = ε0∂tq. Then we can rewrite the Hamiltonian as

H =
ε0
2

∫
d3r
[
E2 + ω2A2

]
=
ε0
2

∫
d3r
[
4ω2|α(t)|2|f(r)|2

]
=
ε0
2

[
4ω2|α(t)|2

]
=

p2

2m
+

1

2
mω2q2,

(8.53)

with m = ε0. Here, the connection to the harmonic oscillator is more obvious, and the variables p and q are
still clearly canonically conjugate.
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The usual quantum relations for the coordinate operators in terms of the creation and annihilation
operators are

q =

√
h̄

2mω

(
a+ a†

)
p =

√
mh̄ω

2

(
a− a†

i

)
,

(8.54)

and the usual commutation relation is [a, a†] = 1. Comparing the relations (8.51) and (8.52) to the quantum
relations, we can identify

α(t) −→ i

√
h̄

2ωε0
a(t),

(quantization replacement, single field mode) (8.55)
which will be our ‘‘recipe’’ for quantization: after a rescaling, we replace the function α(t) with the annihi-
lation operator a(t) (and a scaling factor). We can thus write the quantum fields as

A(r, t) = i

√
h̄

2ωε0
f(r) a(t) + H.c.

E(r, t) = −
√
h̄ω

2ε0
f(r) a(t) + H.c.

B(r, t) = i

√
h̄

2ωε0
[∇× f(r)] a(t) + H.c.

(8.56)
(quantized fields)

Note that the mode functions in the quantum fields are entirely classical; the quantum part of the field modes
only enters in the ‘‘time dependence.’’

Also, with the relations (8.54), the Hamiltonian (8.53) becomes

H =
h̄ω

2

(
a†a+ aa†

)
= h̄ω

(
a†a+

1

2

)
.

(8.57)
(Hamiltonian for single field mode)

Of course, this is the usual quantum Hamiltonian for the harmonic oscillator. Thus, we have explicitly
shown that a single field mode behaves both classically and quantum-mechanically as an ordinary harmonic
oscillator, and we have defined the annihilation operator for this oscillator. Of course, the energy level |n〉 is
colloquially called the ‘‘number of photons,’’ and a(t) is the annihilation operator that removes a photon
from the field.

8.4 Quantization of Many Modes

Classically, there are orthogonal modes corresponding to different wave vectors k: different frequencies
correspond to different magnitudes |k|, and for the same frequency, different directions correspond to different
spatial mode profiles. Also, there are two distinct polarizations for each possible wave vector (due the the
three-vector nature of A and the constraint ∇ ·A = 0), which we will label by ζ (ζ = 1 or 2). In this case,
we have the orthonormal mode functions fk,ζ(r), satisfying∫

V

d3r fk,ζ(r) · f∗k′,ζ′(r) = δ3k,k′δζ,ζ′ ,
(8.58)

(mode orthnormality)

where V is the volume of the cavity enclosing the mode functions (the quantization volume). Then
each mode is completely independent of the others, and by extending the above analysis, the Hamiltonian
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becomes

H =
∑
k,ζ

h̄ωk

(
a†k,ζak,ζ +

1

2

)
,

(8.59)
(many-mode Hamiltonian)

where ωk = c|k|. In this case, we also have[
ak,ζ , a

†
k′,ζ′

]
= δ3k,k′δζ,ζ′

(8.60)
(bosonic commutation relation)

for the bosonic commutation relations for the field operators. We can now write the field operators as a sum
over the field modes, including the operator parts:

A(r, t) =
∑
k,ζ

i

√
h̄

2ωkε0
fk,ζ(r) ak,ζ(t) + H.c.

E(r, t) =
∑
k,ζ

−
√
h̄ωk

2ε0
fk,ζ(r) ak,ζ(t) + H.c.

B(r, t) =
∑
k,ζ

i

√
h̄

2ωkε0
[∇× fk,ζ(r)] ak,ζ(t) + H.c.

(8.61)
(quantized fields)

Since we have quantized the classical field theory while preserving its Hamiltonian structure, we have per-
formed canonical quantization or second quantization of the electromagnetic field.

8.4.1 Example: Quantization in a Perfectly Conducting Box

For a perfectly conducting box of lengths Lx, Ly, and Lz (with one corner at the origin), the transverse
components of the electric fields must vanish at the boundaries, and thus the mode functions become

fk,ζ(r) =
√

8

V

[
x̂(ε̂k,ζ · x̂) cos(kxx) sin(kyy) sin(kzz)

+ ŷ(ε̂k,ζ · ŷ) sin(kxx) cos(kyy) sin(kzz)

+ ẑ(ε̂k,ζ · ẑ) sin(kxx) sin(kyy) cos(kzz)
]
,

(mode functions, perfectly conducting box) (8.62)
where V := LxLyLz, ε̂k,ζ is the unit polarization vector of the mode, and the x̂j are the Cartesian unit
vectors along the xj-direction. The wave vectors are given by

kx =
πnx
Lx

, ky =
πny
Ly

, kz =
πnz
Lz

, (8.63)

where the nα are nonnegative integers (and not all zero). Since ∇ ·E = 0, we have
nxEx
Lx

+
nyEy
Ly

+
nzEz
Lz

= 0, (8.64)

which constrains the number of independent polarizations per (nx, ny, nz) triple to at most 2.

8.4.2 Example: Quantization in Free Space

Quantization in free space5 is similar to the case of the box cavity, and in fact free-space results can be
obtained with some care as the limit of a box where V −→ ∞.6 However, it is aesthetically better to have

5For further reading, see Peter W. Milonni, The Quantum Vacuum (Academic Press, 1993), Section 2.5, p. 43.
6Note that in principle, we should always quantize in free space, if we treat all matter quantum mechanically. However, it

should be a good approximation to treat macroscopic ‘‘boundaries’’ of matter in terms of classical boundary conditions, which
justifies our quantization inside a cavity and in half space. See P. W. Milonni, ‘‘Casimir forces without the vacuum radiation
field,’’ Physical Review A, 25, 1315 (1982) (doi: 10.1103/PhysRevA.25.1315); and J. D. Cresser, ‘‘Unequal Time EM Field
Commutators in Quantum Optics,’’ Physica Scripta T21, 52 (1988) (doi: 10.1088/0031-8949/1988/T21/010).

http://dx.doi.org/10.1103/PhysRevA.25.1315
http://dx.doi.org/10.1088/0031-8949/1988/T21/010
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mode functions that have amplitudes that are independent of r. To avoid problems with the normalization,
we will impose a fictitious array of boxes filling free space, each of volume V = L3, with periodic boundary
conditions on the vector potential

A(x+ L, y, z, t) = A(x, y + L, z, t) = A(x, y, z + L, t) = A(x, y, z, t), (8.65)

which is satisfied by the mode functions

fk,ζ(r) =
1√
V
ε̂k,ζe

ik·r,
(8.66)

(mode functions, free space)

where the components of the wave vector k is given by

kx,y,z =
2πnx,y,z

L
=

2πnx,y,z
3
√
V

, (8.67)

and the nxj are any integers.
We can write out the potential explicitly here as

Ak,ζ(r, t) = i

√
h̄

2ωε0V
ε̂k,ζe

ik·rak,ζ(t) + H.c.

= i

√
h̄

2ωε0V
ε̂k,ζe

i(k·r−ωt)ak,ζ(0) + H.c.,
(8.68)

and the electric field similarly becomes

Ek,ζ(r, t) =
√

h̄ω

2ε0V
ε̂k,ζe

ik·rak,ζ(t) + H.c.

=

√
h̄ω

2ε0V
ε̂k,ζe

i(k·r−ωt)ak,ζ(0) + H.c..
(8.69)

Strictly speaking, we must let V −→ ∞ in any calculation in free space, unless the problem obeys periodic
boundary conditions. This limit is straightforward, where, for example, δ3k,k′ −→ δ3(k − k′), and the sum
over modes changes to an integral.

8.4.3 Example: Quantization in Half Space

A case intermediate to the above two is the case of a perfectly conducting plane defined by z = 0, where
we quantize the half-space z > 0. The parallel components of the field must vanish on the plane, and so we
choose

fk,ζ(r) =
√

2

V

(
ε̂k,ζ,‖ sin kzz − iε̂k,ζ,z cos kzz

)
eik‖·r,

(half-space mode functions) (8.70)
where the subscript ‖ denotes the part of the vector parallel to the surface, v‖ = [x̂(x̂ · v) + ŷ(ŷ · v)], while
the z subscript denotes the part of the vector perpendicular to the surface, vz = ẑ(ẑ · v). Here we have
quantized inside a cube of length L = V 1/3, imposing periodic boundary conditions in the x- and y-directions
and conducting boundary conditions in the z-direction. The components of the wave vector are then given
by

kx =
2πnx
L

, ky =
2πny
L

, kz =
πnz
L
, (8.71)

where nx and ny are any integers, and nz is nonnegative. The transverse condition ∇ ·E = 0 then implies

nx(x̂ · ε̂k,ζ) + ny(ŷ · ε̂k,ζ) + nz(ẑ · ε̂k,ζ) = 0, (8.72)

again restricting the number of distinct polarizations to two.
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Note that we may also write Eq. (8.70) in the form

fk,ζ(r) = −
i√
2V

(
ε̂k,ζe

ik·r − ε̂k−,ζe
ik−·r

)
, (8.73)

where
k− = kxx̂+ ky ŷ − kz ẑ (8.74)

is the wave vector reflected through the conducting plane, and

ε̂k−,ζ = ε̂k,ζ,xx̂+ ε̂k,ζ,y ŷ − ε̂k,ζ,z ẑ (8.75)

is the unit polarization vector with the same reflection. In this form, it is clear that each mode consists of a
plane wave propagating along k, along with its reflection off the mirror, which travels along k−. For the two
polarizations, it is conventional to choose one polarization to be oriented parallel to the mirror. This is the
transverse electric (TE) polarization—or S-polarization, for senkrecht or perpendicular to the plane
of incidence of the incident wave—and is given by

f(TE)

k (r) =
√

2

V

(
k̂‖ × ẑ sin kzz

)
eik‖·r.

(8.76)
(TE polarization)

Here k̂‖ is the projection of the k into the plane of the conductor, renormalized to unit length. The other
polarization, the transverse magnetic (TM)—or P-polarization, for parallel to the plane of incidence—
is orthogonal to both the TE polarization vector and k, and is given by

f(TM)

k (r) =
√

2

V

(
k̂‖
kz
k

sin kzz + iẑ
k‖

k
cos kzz

)
eik‖·r.

(8.77)
(TM polarization)

It thus always suffices to assume that the unit polarization vectors ε̂k,ζ are real.

8.4.4 Example: Quantization in a Spherical Cavity

An important but much more complicated cavity than the rectangular one is the spherical cavity. In spherical
coordinates, the Laplacian in the Helmholtz equation (8.47) is

∇2 =
1

r2
∂rr

2∂r +
1

r2 sin θ
∂θ sin θ ∂θ +

1

r2 sin2 θ
∂ 2
φ

=
1

r
∂ 2
r r +

1

r2 sin θ
∂θ sin θ ∂θ +

1

r2 sin2 θ
∂ 2
φ ,

(8.78)

where the derivative operators are understood to operate on everything to the right, including an arbitrary
test function.

8.4.4.1 Scalar Field

In the scalar case, we can separate the Helmholtz equation (∇2 + k2)ψ = 0 by taking the solution to be
the product ψ(r) = R(r)Θ(θ)Φ(φ). Substitution of this ansatz into the scalar Helmholtz equation yields the
equations

r2∂ 2
r R+ 2r∂rR+ (k2r2 − c21)R = 0

1

sin θ
∂θ (sin θ ∂θΘ) +

(
c 21 −

c 22
sin2 θ

)
Θ = 0

∂ 2
φΦ+ c 22Φ = 0,

(8.79)
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where c1 and c2 are separation constants [e.g., if R(r) = Θ(θ), then there is a constant c such that R(r) =
c = Θ(θ)]. The last equation is easiest to solve, giving

Φ(φ) = e±ic2φ. (8.80)

Since Φ(φ) must be 2π periodic, clearly, c2 must be an integer, c2 = m, so that

Φm(φ) = eimφ, (8.81)

where m can be positive or negative (or zero). The second separation equation thus becomes, letting x = cos θ
and regarding Θ to be function of x,

(
1− x2

)
∂ 2
xΘ− 2x∂xΘ+

(
c 21 −

m2

1− x2

)
Θ = 0. (8.82)

Taking c 21 = l(l + 1), this equation becomes the general Legendre equation,

(
1− x2

)
∂ 2
xΘ− 2x∂xΘ+

(
l(l + 1)− m2

1− x2

)
Θ = 0. (8.83)

which has nondivergent solutions on the domain [−1, 1] only if l is a nonnegative integer and |m| ≤ l. These
solutions are the associated Legendre functions, denoted by Pml (x). They are given explicitly by

Pml (x) =
(−1)m

2ll!
(1− x2)m/2∂l+mx (x2 − 1)l (m ≥ 0)

Pml (x) = (−1)m (l −m)!

(l +m)!
Pml (x).

(8.84)

Clearly, Pml (x) is a polynomial if m is even, and P 0
l (x) is an ordinary Legendre polynomial. The Pml (x)

obey the orthogonality condition∫ 1

−1
Pml (x)Pml′ (x) dx =

2(l +m)!

(2l + 1)(l −m)!
δll′ (m ≥ 0). (8.85)

The full solution to the Helmholtz equation is also orthogonal for different values of m, due to the form of
Φ(φ) above.

The angular solutions are generally combined, and thus the solution Θ(θ)Φ(φ) is given by the spherical
harmonics

Y ml (θ, φ) :=

√
(2l + 1)(l −m)!

4π(l +m)!
Pml (cos θ) eimφ, (8.86)

(spherical harmonic)

which are more conveniently normalized such that

Y m∗l (θ, φ) = (−1)mY −ml (θ, φ)∫
dΩY ml (θ, φ)Y m

′

l′ (θ, φ) = δll′δmm′ .

(8.87)
(orthonormality relations)

(See also Section 7.3.2 for a more quantum-mechanical introduction.) They also obey the sum rule

l∑
m=−l

|Y ml (θ, φ)|2 =
2l + 1

4π
,

(8.88)
(sum rule)
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showing that the m ‘‘quantum number’’ determines the orientation of the modes; summing over it results
in an isotropic angular distribution. Some examples of the lowest few (monopole and dipole) spherical
harmonics are

Y 0
0 (θ, φ) =

1√
4π
, Y 0

1 (θ, φ) =

√
3

4π
cos θ, Y ±11 (θ, φ) = ∓

√
3

8π
sin θ e±iφ, (8.89)

The spherical harmonics form a complete set for the angular dependence of the scalar-field solutions.
As for the radial dependence, the equation for the radial function R(r) becomes

r2∂ 2
r R+ 2r∂rR+ [k2r2 − l(l + 1)]R = 0. (8.90)

Changing variables by setting χ(r) :=
√
kr R(r) leads to

r2∂ 2
r χ+ r∂rχ+

[
k2r2 −

(
l +

1

2

)2
]
χ = 0. (8.91)

This is Bessel’s equation (with independent variable kr), and the solutions are ordinary Bessel functions
of the first kind, Jl+1/2(kr), of order l + 1/2, as well as the ordinary Bessel functions of the second kind,
Yl+1/2(kr), of the same order. The solutions R(r) are thus generally written as spherical Bessel functions
of the first and second kind, defined by

jl(r) :=

√
π

2r
Jl+1/2(r)

yl(r) :=

√
π

2r
Yl+1/2(r),

(8.92)
(spherical Bessel functions)

respectively. Near the origin, these functions have the asymptotic forms7

jl(r) ≈
rl

(2l + 1)!!

yl(r) ≈ −
(2l − 1)!!

rl+1
,

(8.93)

where n!! = 1 · 3 · 5 · · ·n. The yl(r) thus correspond to singular modes, and we can henceforth dump them.
Technically, the yl(r) are not even square-normalizable over the cavity for l > 0, but y0(r) can be normalized,
so we can’t necessarily discard it based on normalizability or finite-energy arguments. However, when we
go over to the vector-field case, the derivatives involved will also make it non-normalizable. In any case,
our desired radial solutions are R(r) = jl(kr). They form a complete set, as follows for example from the
representation8

eik·r =

∞∑
l=0

(2l + 1)iljl(kr)Pl(k̂ · r̂), (8.94)

where Pl(x) = P 0
l (x) is a Legendre polynomial. Since an arbitrary plane wave may be decomposed into

spherical Bessel functions of the first kind, and plane waves are complete, so are the j1(r).
Of course, the radial solutions must satisfy the boundary condition jl(kR) = 0, where R is now the

radius of the spherical cavity. But jl(r) is an oscillatory function, and so there is a countable infinity of k
values where the boundary condition is satisfied. Thus, we will define these k values by

jl(knlR) = 0,
(8.95)

(transcendental equation for knl)
7For this and other properties see Milton Abramowitz and Irene A. Stegun, Handbook of Mathematical Functions (Dover,

1965), pp. 437-41.
8Eugen Merzbacher, Quantum Mechanics, 3rd ed. (Wiley, 1998), p. 261.
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where the solution is commonly written

knl =
anl
R
,

(8.96)
(allowed wave numbers)

where anl is the nth positive zero of jl(r). We may thus write the scalar-field, spherical cavity modes as

ψnlm(r) = Nnl jl(knlr)Y ml (θ, φ),
(8.97)

(scalar modes of spherical cavity)

where the radial normalization factor is given by

Nnl :=
1√∫ R

0

dr r2 j 2
l (knlr)

(8.98)
(radial normalization factor)

The integral in the normalization factor can be performed analytically, with the result (Problem 8.15)

N −2nl =

∫ R

0

dr r2 j 2
l (knlr) =

R3

2
[j′l(knlR)]

2
=
R3

2
j 2
l+1(knlR),

(radial normalization factor) (8.99)
We see that the modes are parameterized by three indices (quantum numbers, in the case of a quantum
particle in a spherical cavity), as we expect for three dimensions: a radial number n, and two angular
numbers l and m.

8.4.4.2 Vector Field

Now given the solutions ψ(r) to the scalar Helmholtz equation (∇2 + k2)ψ = 0, we can construct the solutions
to the vector Helmholtz equation (∇2 + k2)f = 0 by simply differentiating ψ.9 In fact, three independent
vector solutions are (Problem 8.14)

L = ∇ψ, M = ∇× (rψ), N =
1

k
∇×M. (8.100)

Clearly L is longitudinal (as defined below), since ∇ × L = ∇ × ∇ψ = 0, whereas M and N are both
transverse (as defined below), since ∇·M = ∇·N = 0. Thus, M and N are the ones that we’re interested in
for the cavity modes; as we will see later, only transverse fields transport energy. Alternately, starting from
N = (1/k)∇×M, we can compute the curl to find∇×N = (1/k)∇×∇×M = (1/k)[∇(∇·M)−∇2M] = kM,
where we used (∇2 + k2)M = 0, and thus

M =
1

k
∇×N. (8.101)

We can therefore see that M and N are proportional to each others’ curl, and thus are obvious candidates to
represent E and H. In general, we will only use the field modes to represent transverse waves, as is consistent
with the above use of plane and standing waves in the free space and the rectangular cavity, so we need not
consider the L field. Furthermore, L is orthogonal to M, since

M = ∇ψ × r = L× r, (8.102)

and evidently M is also orthogonal to r.
Writing out the first field, using the form (8.97) for the scalar solution (though relaxing for the moment

the boundary conditions, which we will apply directly to the vector solution),

Mnlm(r) = Nnl∇× [r jl(knlr)Y ml (θ, φ)]. (8.103)
9Julius Adams Stratton, Electromagnetic Theory (McGraw–Hill, 1941).
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Noting that
∇× [rψ(r)] = ∇ψ × r + ψ∇× r

= −r×∇ψ

= −r×
(
r̂∂rψ + θ̂

1

r
∂θψ + φ̂

1

r sin θ
∂φψ

)
= −φ̂∂θψ + θ̂

1

sin θ
∂φψ.

(8.104)

Also noting that the following derivative of an angular function has the same form,

r×∇g(θ, φ) = r×
(
θ̂
1

r
∂θg + φ̂

1

r sin θ
∂φg

)
= −φ̂∂θg + θ̂

1

sin θ
∂φg,

(8.105)

we can thus write
Mnlm(r) = Nnl jl(knlr) r×∇Y ml (θ, φ). (8.106)

The angular part here is often written in normalized form as a vector spherical harmonic

Xm
l (θ, φ) := − i√

l(l + 1)
r×∇Y ml (θ, φ),

(8.107)
(vector spherical harmonic)

which may also be written

Xm
l (θ, φ) = − i√

l(l + 1)

(
θ̂
m

sin θ
+ iφ̂ ∂θ

)
Y ml (θ, φ)

(8.108)
(vector spherical harmonic)

after writing out the gradient and cross product. These angular vector fields obey the orthonormality
relations10 ∫

dΩXm′∗
l′ (θ, φ) ·Xm

l (θ, φ) = δll′δmm′∫
dΩXm′∗

l′ (θ, φ) · [r×Xm
l (θ, φ)] = 0,

(8.109)
(orthonormality relations)

as well as the sum rule
l∑

m=−l

|Xm
l (θ, φ)|2 =

2l + 1

4π
,

(8.110)
(sum rule)

which follows from the scalar sum rule (8.88). Thus, we finally write this solution as the transverse electric
(TE) mode

f(TE)

nlm(r) ≡Mnlm(r) = Nnl jl(knlr)Xm
l (θ, φ),

(8.111)
(TE mode)

so called because the polarization vector of f(r) (the same as for E) is parallel to the cavity surface and
orthogonal to r̂, as we can see from Eq. (8.104) or from Eq. (8.102). This is consistent with our previous
notation in the half-space case of Section 8.4.3. Since the transverse component of the electric field vanishes
at the cavity surface, the allowed wave numbers are identical to the scalar case,

jl(knlR) = 0.
(8.112)

(allowed wave numbers, TE mode)
10See John David Jackson, Classical Electrodynamics, 3rd ed. (Wiley, 1999), p. 431.



416 Chapter 8. Quantization of the Electromagnetic Field

and the normalization is likewise the same as for the scalar case:

Nnl :=
1√∫ R

0

dr r2 j 2
l (knlr)

.
(8.113)

(radial normalization factor)

Since the radial boundary condition is the same as for the scalar case, the integral in the normalization factor
can again be performed analytically, with the result (Problem 8.15)

N −2nl =

∫ R

0

dr r2 j 2
l (knlr) =

R3

2
[j′l(knlR)]

2
=
R3

2
j 2
l+1(knlR),

(radial normalization factor, TE mode) (8.114)
However, the angular dependence is somewhat more complicated than for the scalar case, due to the vector
nature of the field.

Of course, we must deal with the other solutions N(r) to the vector Helmholtz equation. To do this,
we essentially just compute the curls of the TE modes

Nnlm(r) = 1

knl
∇×Mnlm(r). (8.115)

Using once again the vector identity ∇× (ψA) = ∇ψ ×A + ψ∇×A, this solution becomes

Nnlm(r) = Nnl
knl
∇× [jl(knlr)Xm

l (θ, φ)]

=
Nnl
knl

[∇jl(knlr)×Xm
l (θ, φ) + jl(knlr)∇×Xm

l (θ, φ)]

= Nnl
[
j′l(knlr) r̂ ×Xm

l (θ, φ) +
1

knl
jl(knlr)∇×Xm

l (θ, φ)

]
.

(8.116)

The first term is clearly transverse to the cavity surface, but the second isn’t necessarily. However, if this
mode represents the electric field, then the orientation of the corresponding magnetic field is of the form

∇×∇×Xm
l (θ, φ) = ∇[∇ ·Xm

l (θ, φ)]−∇2Xm
l (θ, φ), (8.117)

which has no component along r̂. Thus, the Nnlm(r) modes are called the transverse magnetic (TM)
modes,

f(TM)

nlm (r) ≡ Nnlm(r) = Nnl
knl
∇× [jl(knlr)Xm

l (θ, φ)] .
(8.118)

(TM mode)

The TM mode function must satisfy the boundary condition that the θ̂ and the φ̂ components must vanish
at the surface of the cavity. Noting that in spherical coordinates,

∇×A = r̂
1

r sin θ

[
∂θ(sin θ Aφ)− ∂φAθ

]
+ θ̂

[
1

r sin θ
∂φAr −

1

r
∂r(rAφ)

]
+ φ̂

1

r

[
∂r(rAθ)− ∂θAr

]
, (8.119)

we see that the ∂r(rAθ) and ∂r(rAφ) terms vanish at the boundary provided

∂r
[
r jl(knlr)

]∣∣
r=R

= 0.
(8.120)

(allowed wave numbers, TM mode)

The other terms of the form ∂φAr and ∂θAr vanish automatically, since r̂ ·Xm
l (θ, φ) = 0. The normalization
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factor in the integral form (8.113) is the same as for the TE mode, as we can verify by integrating by parts:∫
d3r

∣∣f(TM)

nlm (r)
∣∣2 =

1

k 2
nl

∫
d3r |∇ ×Mnlm(r)|2

=
1

k 2
nl

∫
d3rM∗

nlm(r) · ∇ ×∇×Mnlm(r) +
∮
da ·M∗

nlm(r)×∇×Mnlm(r)

= − 1

k 2
nl

∫
d3rM∗

nlm(r) · ∇2Mnlm(r)

=

∫
d3rM∗

nlm(r) ·Mnlm(r)

= 1.

(8.121)

Here, we have used ∇ ·M = 0. We have also discarded the surface term, since it amounts to the surface
integral of M∗ ×N, or in other words the Poynting vector, and for cavity modes no energy is transported
across the cavity boundary. However, the analytic solution for the integral has a somewhat different form,

N −2nl =

∫ R

0

dr r2 j 2
l (knlr) =

R3

2

(
1− l(l + 1)

k 2
nlR

2

)
j 2
l (knlR),

(radial normalization factor, TM mode) (8.122)
because the boundary condition here is different from the TE case (Problem 8.15).

In either the TE or the TM case, note that since the lowest scalar spherical harmonic Y 0
0 (θ, φ) = 1/

√
4π

is constant, the corresponding vector spherical harmonic vanishes, X0
0(θ, φ) = 0, being the curl of the scalar

version. Thus, the lowest-order vector fields have l = 0, essentially because there are no monopolar vector
waves. Note that near the center of the sphere, j1(r) ≈ rl/(2l + 1)!! as we noted before, so that j′1(r) =
lrl−1/(2l+1)!!. If an atom is at the center of the spherical cavity, evidently it only has nonvanishing coupling
to the l = 1 TM modes, since their mode functions involve j′l(r).

It is also useful to represent the vector solutions in terms of the scalar solution ψnlm(r), Eq. (8.97).
Using the expression (8.100) for the TE mode M, as well as the expression (8.119) for the curl, we may
write

f(TE)

nlm(r) = 1√
l(l + 1)

(
θ̂

1

sin θ
∂φ − φ̂∂θ

)
ψnlm(r), (8.123)

(TE mode)

where recall that we need the extra factor of
√
l(l + 1) to normalize the vector angular distribution. Writing

out the scalar solution,

f(TE)

nlm(r) =
N (TE)

nl√
l(l + 1)

jl(knlr)

(
θ̂

1

sin θ
∂φ − φ̂∂θ

)
Y ml (θ, φ),

(8.124)
(TE mode)

which is essentially what we have already written out in terms of the vector spherical harmonic. However,
for the TM case, we can obtain a relatively simple explicit expression, compared to what we could otherwise
get by expanding the above expressions. To write it, we use the expression (8.100) for N, again with the
curl (8.119), to write

√
l(l + 1)f(TM)

nlm (r) = − r̂

kr sin θ

[
∂θ(sin θ ∂θψnlm) +

1

sin2 θ
∂ 2
φψnlm

]
+

θ̂

kr
∂θ∂r(rψnlm) +

φ̂

kr sin θ
∂φ∂r(rψnlm).

(8.125)
Now we use the fact that ψnlm satisfies Eqs. (8.79), and thus we may simplify the r component to the form

f(TM)

nlm (r) = r̂

√
l(l + 1)

kr
ψnlm +

θ̂√
l(l + 1) kr

∂θ∂r(rψnlm) +
φ̂√

l(l + 1) kr sin θ
∂φ∂r(rψnlm),

(8.126)
(TM mode)
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so that we obtain the explicit form

f(TM)

nlm (r) = N (TM)

nl

[
r̂
√
l(l + 1)

jl(knlr)

kr
Y ml (θ, φ) +

∂r[rjl(knlr)]√
l(l + 1) kr

(
θ̂∂θY

m
l (θ, φ) + φ̂

∂φY
m
l (θ, φ)

sin θ

)]
.

(TM mode) (8.127)
after writing out the scalar solution. It is once again clear here that the TM solutions have a stronger
presence near the origin than do the TE modes.

8.4.4.3 Asymptotics

In general, the spherical Bessel functions make things somewhat difficult to work with. For example, we
can’t write down analytic expressions for the allowed wave numbers knl. However, for very large spherical
cavities, such that for a given wavelength many modes can be excited, it is useful to use the asymptotic
forms of the spherical Bessel functions with large arguments. From Rayleigh’s formula

jl(z) = zl
(
−1

z
∂z

)l sin z
z

, (8.128)

we evidently have the asymptotic form

jl(z) ∼ (−1)l ∂
l
z sin z
z

+O(z−2) =
1

z
sin
(
z − lπ

2

)
+O(z−2). (8.129)

This asymptotic form also follows from the asymptotic form for the ordinary (cylindrical) Bessel function,

Jα(z) ∼
√

2

πz
cos
(
z − απ

2
− π

4

)
, (8.130)

along with the definition of jl(z) in Eq. (8.92). This form has zeroes whenever the argument of the sin is
equal to nπ for integer n, and thus for the TE modes leads from Eq. (8.112) to the asymptotic condition

knlR = πn+
π

2
l.

(8.131)
(allowed radial TE modes, knlR� 1)

Since the first positive zeros always happen away from z = 0 in jl(z), the radial quantum number here
obviously has n > 0. On the other hand, for the TM mode, the allowed modes from the condition (8.120)
has a function of the form

∂z[zjl(z)] ∼ ∂z sin
(
z − lπ

2

)
+O(z−1) = − sin

(
z − (l + 1)π

2

)
+O(z−1), (8.132)

and thus gives the condition.

knlR = πn+
π

2
(l + 1)

(8.133)
(allowed radial TM modes, knlR� 1)

The first positive zeros here occur for any n ≥ 0, unlike the TE case.
In this asymptotic regime, we can also analytically evaluate the normalization constant, since from

Eq. (8.113), the radial normalization integral becomes

N −2nl =

∫ R

0

dr r2 j 2
l (knlr) ≈

1

k 2
nl

∫ R

0

dr sin2

(
knlr −

lπ

2

)
=

R

2k 2
nl

, (8.134)

and thus the normalization factor is

Nnl ≈ knl

√
2

R
,

(8.135)
(radial normalization factor)

with the appropriate value of knl for the TE or TM modes.
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8.4.4.4 Vector Multipole Modes

Now that we have the mathematical apparatus, we may as well generalize the above spherical-cavity modes
a bit. In the above treatment of the spherical cavity modes, we excluded the solutions yl(r) because they
were divergent at the origin. However, if we consider the exterior modes of a spherical cavity, or we simply
exclude from consideration a neighborhood around the origin, then these divergent modes are perfectly
acceptable, because the divergence is removed. When they apply, it is common to define the spherical
Hankel functions

h
(1)
l (z) = jl(z) + iyl(z)

h
(2)
l (z) = jl(z)− iyl(z).

(8.136)

Again from Rayleigh’s formulae

jl(z) = zl
(
−1

z
∂z

)l sin z
z

yl(z) = −zl
(
−1

z
∂z

)l cos z
z

,

(8.137)

we can write the corresponding formulae for the spherical Hankel functions

h
(1)
l (z) = −izl

(
−1

z
∂z

)l
eiz

z

h
(2)
l (z) = izl

(
−1

z
∂z

)l
e−iz

z
.

(8.138)

The phase dependence clearly indicates that h(1)l (kr) represents an outgoing wave, while h(2)l (kr) represents
an ingoing wave. The jl(kr) and yl(kr) are thus spherical-coordinate analogues to the standing waves sin(kx)
and cos(kx) in Cartesian coordinates, while the h(1)l (kr) and h

(2)
l (kr) are analogues to the traveling waves

exp(ikx) and exp(−ikx).
Then proceeding as above, but in free space, we may write the TE modes, but now separating them

into ingoing and outgoing parts, as

f(TE)→
klm (r) = h

(1)
l (kr)Xm

l (θ, φ)

f(TE)←
klm (r) = h

(2)
l (kr)Xm

l (θ, φ),

(8.139)
(TE modes)

where k is a positive, real number, while l and m are still integer indices, with l positive and m nonnegative.
Of course, there may be further restrictions on k if there are boundary conditions, such as when treating the
exterior modes of a spherical, conducting shell. Correspondingly, the outgoing and ingoing TM modes are

f(TM)→
klm (r) = 1

k
∇×

[
h
(1)
l (kr)Xm

l (θ, φ)
]

f(TM)←
klm (r) = 1

k
∇×

[
h
(2)
l (kr)Xm

l (θ, φ)
]
.

(8.140)
(TM modes)

If we work out the outgoing l = 1,m = 0 TE mode, we find for the radial part

h
(1)
1 (r) = i∂r

eir

r
= −ie

ir

r2
− eir

r
= −e

ir

r

(
1 +

i

r

)
, (8.141)

and the angular part,

X0
1(θ, φ) = −

i√
2

r×∇
√

3

4π
cos θ

= −i
√

3

8π
r×∇ cos θ

= φ̂ i

√
3

8π
sin θ,

(8.142)
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so that the complete mode function is

f(TE)→
k10 (r) = φ̂

√
3

8π

eikr

k2

(
1

r2
− ik

r

)
sin θ. (8.143)

Similarly, computing the outgoing l = 1,m = 0 TM mode, using Eq. (8.119) for the curl, we need the
derivatives

1

r sin θ
∂θ sin θi

√
3

8π
sin θ = i

√
3

2π

cos θ
r

−1

r
∂rr

[
−e

ikr

kr

(
1 +

i

kr

)]
= −ie

ikr

k2

(
1

r3
− i k

r2
− k2

r

)
,

(8.144)

so that we find the mode function

f(TM)→
k10 (r) =

√
3

8π

eikr

k2

[
r̂ 2

(
1

r3
− i k

r2

)
cos θ + θ̂

(
1

r3
− i k

r2
− k2

r

)
sin θ

]
. (8.145)

Recalling the electric-dipole fields from Eq. (1.42),

E(+)(r, t) = 1

4πε0
[3(ε̂ · r̂)r̂ − ε̂]

[
d(+)(tr)

r3
+
ḋ(+)(tr)

cr2

]
+

1

4πε0
[(ε̂ · r̂)r̂ − ε̂] d̈

(+)(tr)

c2r

H(+)(r, t) = c

4π
(ε̂× r̂)

[
ḋ(+)(tr)

cr2
+
d̈(+)(tr)

c2r

]
,

(8.146)

which for monochromatic fields become,

E(+)(r, t) = d(+)(ω)

4πε0
eikr

{
[3(ε̂ · r̂)r̂ − ε̂]

(
1

r3
− i k

r2

)
− [(ε̂ · r̂)r̂ − ε̂] k

2

r

}
H(+)(r, t) = −i cd

(+)(ω)

4π
eikr(ε̂× r̂)

(
k

r2
− ik

2

r

)
.

(8.147)

Comparing to the above mode functions for ε̂ = ẑ, we see the dipole fields may be written as

E(+)(r, t) = 1√
6π

ω2d(+)(ω)

ε0c2
f(TM)→
k10 (r)

H(+)(r, t) = −iω
2d(+)(ω)

c
√
6π

f(TE)→
k10 (r).

(8.148)

Similarly, f(TE)→
k10 (r) represents the dimensionless electric-field mode profile due to a magnetic dipole, and

f(TM)→
k10 (r) represents the dimensionless magnetic-field mode profile due to a magnetic dipole.

In general, the f(TM)→
klm (r) represent the dimensionless electric-field mode profiles due to electric multi-

poles of order l, and the f(TE)→
klm (r) represent the dimensionless magnetic-field mode profiles due to electric

multipoles of order l. For magnetic multipoles, the profiles exchange identity. From the form of h(1)l (kr) in
Eq. (8.138), we can see that in the far field, all the multipole fields decay as r−1, corresponding to radiation.
Similarly, in the near field, for example, the electric field due to an electric multipole of order l goes as rl+2,
while the magnetic field goes as rl+1.
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8.5 Transverse and Longitudinal Fields

8.5.1 Helmholtz Theorem

Before continuing, it is convenient to distinguish between transverse and longitudinal part of a vector field11.
For an arbitrary field C(r), the Helmholtz theorem states that there is a unique decomposition

C(r) = C⊥(r) + C‖(r) (8.149)
(Helmholtz theorem)

such that the transverse field is divergenceless,

∇ ·C⊥(r) = 0,
(8.150)

(transverse field condition)

and the longitudinal field is irrotational,

∇×C‖(r) = 0.
(8.151)

(longitudinal field condition)

We can see this by starting with the delta-function identity

C(r) =
∫
d3r′C(r′)δ3(r− r′). (8.152)

Thus using the delta-function identity

∇2 1

|r− r′| = −4πδ
3(r− r′) (8.153)

(which is essentially Poisson’s equation ∇2φ = −ρ/ε0 for a point charge) with the vector identity

∇2C = ∇(∇ ·C)−∇× (∇×C), (8.154)

we can write

C(r) = − 1

4π

∫
d3r′C(r′)∇2 1

|r− r′|

=
1

4π
∇×∇×

∫
d3r′

C(r′)
|r− r′| −

1

4π
∇
∫
d3r′∇ · C(r′)

|r− r′|

=
1

4π
∇×∇×

∫
d3r′

C(r′)
|r− r′| +

1

4π
∇
∫
d3r′C(r′) · ∇′ 1

|r− r′|

=
1

4π
∇×∇×

∫
d3r′

C(r′)
|r− r′| −

1

4π
∇
∫
d3r′
∇′ ·C(r′)
|r− r′|

= C⊥(r) + C‖(r),

(8.155)

where we have assumed that the boundary terms vanish, and we have defined

C⊥(r) := 1

4π
∇×∇×

∫
d3r′

C(r′)
|r− r′|

C‖(r) := − 1

4π
∇
∫
d3r′
∇′ ·C(r′)
|r− r′|

(transverse and longitudinal fields) (8.156)
11For further reading, see Peter W. Milonni, The Quantum Vacuum (Academic Press, 1993), Appendix F, p. 501.
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From their forms, the two components clearly have the desired properties.
Now for uniqueness of the decomposition. Once the divergence and curl of a vector field are specified,

along with its boundary conditions, the vector field itself is uniquely specified. That is, suppose that

∇ ·C1(r) = ∇ ·C2(r) (8.157)

∇×C1(r) = ∇×C2(r). (8.158)

Then the difference field satisfies

∇ · (C2 −C1) = 0, ∇× (C2 −C1) = 0. (8.159)

Because the curl of the difference vanishes, we can write it as the gradient of a scalar function,

C2 −C1 = ∇h(r), (8.160)

which, with the fact that the divergence vanishes, implies Laplace’s equation for h:

∇2h(r) = 0. (8.161)

Further, if C1 = C2 on the boundary (in our argument above, this was at arbitrarily large distances), then
h(r) vanishes on the boundary. But solutions to Laplace’s equation have no maxima or minima, so h(r) = 0.
To establish this formally, consider the divergence theorem∫

S

K · da =

∫
V

d3r∇ ·K. (8.162)

Then letting K = h∇h, the surface integral becomes∫
S

K · da =

∫
S

h(∇h) · da =

∫
S

h(C2 −C1) · da = 0, (8.163)

if we assume that the normal component of C1 and C2 are equal on the boundary. (We need not specify
the equality of the transverse components.) This implies that the volume integral vanishes,∫

V

d3r∇ ·K = 0, (8.164)

so that we can use
∇ · (h∇h) = h∇ · ∇h+ (∇h)2 (8.165)

to write ∫
V

d3r (∇h)2 = −
∫
V

d3r h∇ · ∇h

= −
∫
V

d3r h∇ · (C2 −C1)

= 0,

(8.166)

since the divergences of the fields are equal. Finally, we have∫
V

d3r (C2 −C1)
2 = 0, (8.167)

and since (C2 − C1)
2 ≥ 0, the only way to satisfy this constraint is for C1 = C2. Thus, the Helmholtz

decomposition (8.156) is unique.
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8.5.1.1 Coulomb Gauge

In the Coulomb gauge, the transverse and longitudinal components of the fields are easy to identify. The
vector field is completely transverse, since ∇ ·A = 0. The magnetic field is similarly transverse, as funda-
mentally ∇ ·B = 0. The electric field has both components; the source-free part due to A is E⊥ = −∂tA,
which is clearly transverse. The part due to a source charge is E‖ = −∇φ, which is clearly longitudinal.

8.5.2 Transverse and Longitudinal Delta Functions

Just as we can use the Kronecker delta and the delta function as a projection operator for a component of
the field,

Cα(r) =
∫
d3r′δαβδ

3(r− r′)Cβ(r′) (8.168)

(summation is implied here by repeated indices), we can also define projection operators for the transverse
and longitudinal parts of the field. The transverse delta function, defined by

C⊥α (r) =
∫
d3r′δ⊥αβ(r− r′)Cβ(r′),

(defining relation, transverse delta function) (8.169)
projects out the transverse part of the field, while the longitudinal delta function, defined by

C‖α(r) =
∫
d3r′δ

‖
αβ(r− r′)Cβ(r′),

(defining relation, longitudinal delta function) (8.170)
projects out the longitudinal part of the field.

8.5.2.1 Momentum Representation

We will use the following normalization convention for the Fourier transform and inverse transform of the
field:

C̃(k) = 1

(2π)3/2

∫
d3rC(r)e−ik·r

C(r) = 1

(2π)3/2

∫
d3k C̃(k)eik·r.

(8.171)

The vector identity

C̃(k) = − 1

k2
k× [k× C̃(k)] + 1

k2
k[k · C̃(k)]

= C̃⊥(k) + C̃‖(k)
(8.172)

is the k-space version of Eq. (8.155). The transverse and longitudinal components are easy to identify here
from the conditions

k · C̃⊥(k) = 0, k× C̃‖(k) = 0, (8.173)
which are the Fourier-space versions of Eqs. (8.150) and (8.151). Then we can compute the inverse transform
of the longitudinal part:

C‖(r) = 1

(2π)3/2

∫
d3k

1

k2
k[k · C̃(k)]eik·r

=
1

(2π)3

∫
d3r′
∫
d3k

1

k2
k[k ·C(r′)]eik·(r−r′).

(8.174)

We can write this relation in components to find

C‖α(r) =
∫
d3r′

1

(2π)3

∫
d3k

1

k2
kαkβCβ(r′)eik·(r−r′). (8.175)
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Comparing this to Eq. (8.170), we can write the longitudinal delta function as

δ
‖
αβ(r) =

1

(2π)3

∫
d3k

kαkβ
k2

eik·r.

(longitudinal delta function, momentum representation) (8.176)
Eq. (8.149) implies that

δαβδ
3(r) = δ⊥αβ(r) + δ

‖
αβ(r), (8.177)

so the transverse delta function simply becomes

δ⊥αβ(r) =
1

(2π)3

∫
d3k

(
δαβ −

kαkβ
k2

)
eik·r,

(transverse delta function, momentum representation) (8.178)
where we used the representation

δ3(r) = 1

(2π)3

∫
d3k eik·r (8.179)

of the delta function in three dimensions.

8.5.2.2 Position Representation

We can also evaluate the integrals above to obtain direct expressions for the transverse and longitudinal delta
functions. Starting with Eq. (8.178), we note that the integral is not strictly convergent, so we will insert
a convergence factor e−kλ, letting λ −→ 0 after the integration. This procedure is effectively equivalent to
assuming that the fields on which the projectors operate are reasonably smooth (i.e., bandwidth-limited).
Then

δ⊥αβ(r) =
1

(2π)3

∫
d3k

(
δαβ −

kαkβ
k2

)
eik·re−kλ

=
1

(2π)3
(
−δαβ∇2 + ∂α∂β

) ∫
d3k

eik·r−kλ

k2

=
1

(2π)2
(
∂α∂β − δαβ∇2

) ∫ ∞
0

dk

∫ π

0

dθ sin θ eikr cos θ−kλ

=
1

(2π)2
(
∂α∂β − δαβ∇2

) ∫ ∞
0

dk
2 sin kr
kr

e−kλ

=
1

2π2

(
∂α∂β − δαβ∇2

) tan−1(r/λ)
r

.

(8.180)

Letting λ −→ 0, we find
δ⊥αβ(r) =

1

4π

(
∂α∂β − δαβ∇2

) 1
r
. (8.181)

We can then use ∇2(1/r) = −4πδ3(r) and the relation

∂α∂β

(
1

r

)
= −∂α

rβ
r3

= −4π

3
δαβδ

3(r)− 1

r3
δαβ +

3rαrβ
r5

, (8.182)

where the delta function arises since for α = β we effectively have 1/3 of ∇2(1/r) (the other terms arise from
straightforward differentiation). The result is

δ⊥αβ(r) =
2

3
δαβδ

3(r)− 1

4πr3

(
δαβ −

3rαrβ
r2

)
.

(transverse delta function) (8.183)
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Using Eq. (8.177), we can also write the corresponding expression

δ
‖
αβ(r) =

1

3
δαβδ

3(r) + 1

4πr3

(
δαβ −

3rαrβ
r2

)
(longitudinal delta function) (8.184)

for the longitudinal delta function.

8.6 Field Commutators

In view of the bosonic commutator (8.60), the field operators will not in general commute.12 As these
commutation relations are useful, we will spend some time exploring these. We start with the relations
(8.56) for the quantum fields. We can then write, for example,

[Aα(r, t), Aβ(r′, t′)] =
∑
k,ζ

h̄

2ωkε0
fk,ζ,α(r)f∗k,ζ,β(r′)e−iωk(t−t′) − c.c.

=
ih̄

ε0

∑
k,ζ

1

ωk
Im
[
fk,ζ,α(r)f∗k,ζ,β(r′)e−iωk(t−t′)

]
.

(vector-potential commutator) (8.185)
In this form, the commutator is not easy to interpret, but it is clear that the commutator depends on the
boundary conditions that determine the mode functions fk,ζ(r).

Other useful relations include

[Eα(r, t), Eβ(r′, t′)] =
ih̄

ε0

∑
k,ζ

ωk Im
[
fk,ζ,α(r)f∗k,ζ,β(r′)e−iωk(t−t′)

]
[Bα(r, t), Bβ(r′, t′)] = −

ih̄

ε0

∑
k,ζ

1

ωk
εαµνεβστ Im

[
(∂µfk,ζ,ν(r))

(
∂′σf

∗
k,ζ,τ (r′)

)
e−iωk(t−t′)

]
[Aα(r, t), Eβ(r′, t′)] = −

ih̄

ε0

∑
k,ζ

Re
[
fk,ζ,α(r)f∗k,ζ,β(r′)e−iωk(t−t′)

]
[Eα(r, t), Bβ(r′, t′)] = −

ih̄

ε0

∑
k,ζ

Re
[
fk,ζ,α(r)εβµν∂′µf∗k,ζ,ν(r′)e−iωk(t−t′)

]
.

(various field commutators) (8.186)
Again, the interpretation here is not transparent, so we will consider their specific form in free space.

8.6.1 Free-Space Commutators

We will now use the free-space mode functions fk,ζ(r) = V −1/2ε̂k,ζe
ik·r of Section 8.4.2, to write out the

commutators in the free-space case. Recall that they satisfy k · ε̂k,ζ = 0 (because ∇ ·E = 0).

8.6.1.1 Direction Cosines

To evaluate the summations over the polarization index ζ in the above commutators, we will need to compute
the sum ∑

ζ

(ε̂k,ζ · r̂α) (ε̂k,ζ · r̂β) . (8.187)

12For further reading, see Peter W. Milonni, The Quantum Vacuum (Academic Press, 1993), Section 2.8, p. 59; Leonard
Mandel and Emil Wolf, Optical Coherence and Quantum Optics (Cambridge, 1995), Section 10.8, p. 500; and P. W. Milonni,
‘‘Casimir forces without the vacuum radiation field,’’ Physical Review A, 25, 1315 (1982) (doi: 10.1103/PhysRevA.25.1315).

http://dx.doi.org/10.1103/PhysRevA.25.1315
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To evaluate this sum, recall the direction cosines for the vector r. This vector makes angles θα with the
respective rα-axes. The direction cosines are defined as γα = cos θα = r · r̂α/r, and thus they satisfy∑

α

γ 2
α =

∑
α

r 2
α

r2
= 1. (8.188)

More generally, if we have two orthonormal cartesian bases r̂α and r̂′α, then we can define direction cosines
between the coordinate systems of γαβ := r̂α · r̂′β . Then it follows from the orthogonality of the basis vectors
that ∑

µ

γαµγβµ =
∑
µ

(
r̂α · r̂′µ

) (
r̂β · r̂′µ

)
= r̂α · r̂β = δαβ , (8.189)

which for the case α = β is equivalent to Eq. (8.188). Noting that ε̂k,ζ and k̂ form one orthonormal basis,
with r̂α forming another, we can apply the result (8.189) to obtain∑

ζ

(ε̂k,ζ · r̂α) (ε̂k,ζ · r̂β) = δαβ −
kαkβ
k2

, (8.190)

which will prove to be a very useful relation in mode-summation problems.

8.6.1.2 Evaluation

From Eq. (8.185), we can write

[Aα(r, t), Aβ(r′, t′)] =
ih̄

cε0V

∑
k,ζ

1

k
Im
[
eik·(r−r′)e−iωk(t−t′)

]
(ε̂k,ζ · r̂α) (ε̂k,ζ · r̂β)

= − ih̄

cε0V

∑
k

1

k
eik·(r−r′) sin[ωk(t− t′)]

(
δαβ −

kαkβ
k2

)
,

(8.191)

where we used the fact that
∫
d3k exp(ik · r) is real. In free space, we take the limit of large quantization

volume (V −→ ∞), and the spacing between the modes becomes correspondingly small. In this limit, an
integral of a function is equivalent to a sum weighted by the mode spacings. Thus we can write∑

k

f(k)∆kx∆ky∆kz −→
∫ ∞
−∞

dkx

∫ ∞
−∞

dky

∫ ∞
−∞

dkz f(k) (8.192)

for an arbitrary function f(k). Since
∆kx,y,z =

2π

V 1/3
, (8.193)

we can thus make the formal replacement∑
k

−→ V

(2π)3

∫ ∞
−∞

dkx

∫ ∞
−∞

dky

∫ ∞
−∞

dkz. (8.194)

Thus, we write

[Aα(r, t), Aβ(r′, t′)] = −
ih̄

cε0

1

(2π)3

∫
d3k

1

k
eik·(r−r′) sin[ωk(t− t′)]

(
δαβ −

kαkβ
k2

)
(vector-potential commutator, free space) (8.195)

for the vector-potential commutator.
Similarly, for the electric field we can write

[Eα(r, t), Eβ(r′, t′)] = −
ih̄c

ε0

1

(2π)3

∫
d3k keik·(r−r′) sin[ωk(t− t′)]

(
δαβ −

kαkβ
k2

)
. (8.196)



8.6 Field Commutators 427

We can simplify this commutator somewhat by introducing the singular D function:

D(r, t) := − 1

(2π)3

∫
d3k

1

k
eik·r sinωkt

= − 1

(2π)2

∫ ∞
0

dk

∫ π

0

dθ sin θ keikr cos θ sinωkt

= − 1

(2π)2

∫ ∞
0

dk
2 sin kr

r
sinωkt

=
1

8π2r

∫ ∞
0

dk
(
eikr − e−ikr

) (
eickt − e−ickt

)
=

1

8π2r

∫ ∞
−∞

dk
(
eik(r+ct) − eik(r−ct)

)
=

1

4πr
[δ(r + ct)− δ(r − ct)] .

(8.197)

Notice that D(r, t) vanishes away from the light cone r = ±ct. Then the commutator (8.196) becomes

[Eα(r, t), Eβ(r′, t′)] =
ih̄c

ε0

[
δαβ
c2

∂t∂t′ − ∂α∂′β
]
D(r− r′, t− t′),

(electric-field commutator, free space) (8.198)
where ∂′α := ∂/∂r′α. This and the two field commutators that follow are the Jordan–Pauli commutators.13

The interpretation of this commutator is the electric field can be measured at two spacetime points, so long
as they are not on the same light cone.14 More intuitively, making an electric-field measurement at (r, t)
disturbs the field, and in vacuum the disturbance propagates occupies any spacetime point (r′, t′) on the
‘‘future’’ light cone |r′ − r| = c(t′ − t), causing measurement problems at any of those points. Similarly, any
measurement event on the ‘‘past’’ light cone locus of points (r′, t′) satisfying |r′ − r| = c(t − t′) causes a
disturbance that propagates to (r, t), disturbing a measurement there.

A similar calculation shows that the magnetic field has a commutator of almost the same form,

[Bα(r, t), Bβ(r′, t′)] =
ih̄

ε0c

[
δαβ
c2

∂t∂t′ − ∂α∂β
]
D(r− r′, t− t′),

(magnetic-field commutator, free space) (8.199)
and so the same interpretation applies to the magnetic field. The mixed commutator for the electric and
magnetic fields is slightly different. Using the same procedure as above, we can write

[Eα(r, t), Bβ(r′, t′)] = −
ih̄

ε0

1

(2π)3

∑
ζ

∫
d3kRe

[
εβµν (ε̂k,ζ · r̂α) (ε̂k,ζ · r̂ν) (ikµ)eik·(r−r′)e−iωk(t−t′)

]
=

h̄

ε0

1

(2π)3

∫
d3kRe

[
εβµν

(
δαν −

kαkν
k2

)
kµe

ik·(r−r′)e−iωk(t−t′)
]

=
h̄

ε0

1

(2π)3

∫
d3kRe

[
εαβµkµe

ik·(r−r′)e−iωk(t−t′)
]

=
h̄

ε0
εαβµ

1

(2π)3

∫
d3k kµe

ik·(r−r′) cos [ωk(t− t′)] ,

(8.200)

13P. Jordan and W. Pauli, Jr., ‘‘Zur Quantenelektrodynamik ladungsfreier Felder,’’ Zeitschrift für Physik 47, 151 (1928) (doi:
10.1007/BF02055793) (doi: 10.1007/BF02055793).

14The seminal discussion of simultaneous measurability of the quantum electric and magnetic fields can be found in Niels
Bohr and Léon Rosenfeld, ‘‘Zur Frage der Messbarkeit der elektromagnetischen Feldgrössen,’’ Mathematisk-Fysiske Meddelelser
12 (1933); translation reprinted in Quantum Theory and Measurement, John Archibld Wheeler and Wojciech Hubert Zurek,
Eds. (Princeton, 1983) p. 479.

http://dx.doi.org/10.1007/BF02055793
http://dx.doi.org/10.1007/BF02055793
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and thus

[Eα(r, t), Bβ(r′, t′)] = −
ih̄

ε0
εαβµ∂t∂µD(r− r′, t− t′).

(electric-magnetic-field commutator, free space) (8.201)
(Note that this commutator vanishes when α = β.) Again, the same measurability comment applies here.
Finally, we have the commutator between the conjugate fields A and E,

[Aα(r, t), Eβ(r′, t′)] = −
ih̄

ε0

1

(2π)3

∑
ζ

∫
d3kRe

[
(ε̂k,ζ · r̂α) (ε̂k,ζ · r̂β) eik·(r−r′)e−iωk(t−t′)

]
, (8.202)

so that

[Aα(r, t), Eβ(r′, t′)] = −
ih̄

ε0

1

(2π)3

∫
d3kRe

[
eik·(r−r′)e−iωk(t−t′)

](
δαβ −

kαkβ
k2

)
.

(potential–field commutator) (8.203)
This relation does not simplify as the ones for the E and B fields, a point that we will return to below.

8.6.1.3 Equal-Time Commutators in Free Space

From Eq. (8.196), we can see that at equal times,

[Eα(r, t), Eβ(r′, t)] = 0.
(8.204)

(equal times)

Similarly, we can see that

[Bα(r, t), Bβ(r′, t)] = 0

[Aα(r, t), Aβ(r′, t)] = 0.

(8.205)
(equal times)

Thus, the fields can be measured at two different locations at the same time. However, for the mixed
commutator for the electric and magnetic fields,

[Eα(r, t), Bβ(r′, t)] =
h̄

ε0
εαβµ

1

(2π)3

∫
d3k kµe

ik·(r−r′)

= − ih̄

ε0
εαβµ∂µδ

3(r− r′).

(8.206)
(equal times)

The electric and magnetic fields thus cannot be measured at the same location at equal times. For the
electric field and vector potential, we arrive at the important commutation relation

[Aα(r, t), Eβ(r′, t)] = −
ih̄

ε0

1

(2π)3

∫
d3k eik·(r−r′)

(
δαβ −

kαkβ
k2

)
= − ih̄

ε0
δ⊥αβ(r− r′),

(8.207)
(equal times)

which is nonzero even off of the light cone. The vector potential is evidently not a local field in the same
sense as the electric and magnetic fields (we will see this again in the Aharonov–Bohm effect in Section 9.4).
Finally, it turns out that

[Aα(r, t), Bβ(r′, t)] = 0,
(8.208)

(equal times)

so that the potential is more ‘‘compatible’’ with the magnetic field.
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8.6.2 Half-Space Commutators

As we noted above, the field commutators depend on the boundary conditions through the form of the mode
profile functions fk,ζ(r). We can see this by considering the half-space mode functions of Section 8.4.3. Using
the mode functions in the form of Eq. (8.73), and putting them into Eqs. (8.186), the mixed commutator for
the vector potential and electric field becomes

[Aα(r, t), Eβ(r′, t′)] = −
ih̄

2ε0V

∑
k,ζ

Re
[
(ε̂k,ζ · r̂α) (ε̂k,ζ · r̂β) eik·(r−r′) +

(
ε̂k−,ζ · r̂α

) (
ε̂k−,ζ · r̂β

)
eik

−·(r−r′)

− (ε̂k,ζ · r̂α)
(
ε̂k−,ζ · r̂β

)
eik·(r−r′−) −

(
ε̂k−,ζ · r̂α

)
(ε̂k,ζ · r̂β) eik·(r

−−r′)

]
×e−iωk(t−t′).

(8.209)
In the expression here r− := xx̂+yŷ−zẑ, and r−−r′ = r−r′−2zẑ. Carrying out the sum over polarizations
as usual, using the result (8.190), while noting the appropriate sign changes when the reflected polarization
vectors are involved, ∑

ζ

(ε̂k,ζ · r̂α)
(
ε̂k−,ζ · r̂β

)
= δ−αβ −

kαk
−
β

k2
, (8.210)

we can write

[Aα(r, t), Eβ(r′, t′)] = −
ih̄

2ε0V

∑
k

Re

[(
δαβ −

kαkβ
k2

)
eik·(r−r′) +

(
δαβ −

k−α k
−
β

k2

)
eik

−·(r−r′)

−

(
δ−αβ −

kαk
−
β

k2

)
eik·(r−r′−) −

(
δ−αβ −

k−α kβ
k2

)
eik·(r

−−r′)

]
e−iωk(t−t′).

(8.211)
Here δ−αβ is the same as the usual Kronecker delta, except that δ−zz = −1. We can simplify this expression
by considering the commutator only at equal times. Owing to the form of the wave vector in half-space, we
can make the formal replacement ∑

k

−→ V

4π3

∫
d3k, (8.212)

where the integration is over half of reciprocal space. We can then extend the integration over all space and
add a factor of 1/2 to eliminate the real-part operator, with the result

[Aα(r, t), Eβ(r′, t)] = −
ih̄

2(2π)3ε0

∫
d3k

[(
δαβ −

kαkβ
k2

)
eik·(r−r′) +

(
δαβ −

k−α k
−
β

k2

)
eik

−·(r−r′)

−

(
δ−αβ −

kαk
−
β

k2

)
eik

−·(r−−r′) −
(
δ−αβ −

k−α kβ
k2

)
eik·(r

−−r′)

]
.

(8.213)
If we define the ‘‘reflected’’ transverse delta function by

δ>αβ(r) :=
1

2(2π)3

∫
d3k

(
δ−αβ −

kαk
−
β

k2

)
eik

−·r +
1

2(2π)3

∫
d3k

(
δ−αβ −

k−α kβ
k2

)
eik·r

=
1

(2π)3

∫
d3k

(
δ−αβ −

k−α kβ
k2

)
eik·r,

(8.214)

this commutator simplifies to

[Aα(r, t), Eβ(r′, t)] = −
ih̄

ε0

[
δ⊥αβ(r− r′)− δ>αβ(r− − r′)

]
.

(8.215)
(equal times, half-space)
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Noting again that r−− r′ = r− r′− 2zẑ = x̂(x−x′)+ ŷ(y− y′)− ẑ(z+ z′), we see that now the commutator
contains contributions from two intervals: the first is the direct separation r − r′, which is the same as in
the free-space case, while the second is the separation including one bounce from the conducting surface
(mirror). The second contribution also contains a flipped orientation of the delta function, which accounts
for the reversal of an image-charge distribution with respect to the source-charge distribution. This seems a
physically reasonable modification to the free-space commutator.

Similarly, we can write the electric-field commutator as

[Eα(r, t), Eβ(r′, t′)] =
ih̄c

2ε0V

∑
k,ζ

k Im
[
(ε̂k,ζ · r̂α) (ε̂k,ζ · r̂β) eik·(r−r′) +

(
ε̂k−,ζ · r̂α

) (
ε̂k−,ζ · r̂β

)
eik

−·(r−r′)

− (ε̂k,ζ · r̂α)
(
ε̂k−,ζ · r̂β

)
eik·(r−r′−) −

(
ε̂k−,ζ · r̂α

)
(ε̂k,ζ · r̂β) e−ik·(r−r′−)

]
×e−iωk(t−t′)

=
ih̄c

ε0

1

(2π)3

∫
d3k k

[(
δαβ −

kαkβ
k2

)
eik·(r−r′) +

(
δαβ −

k−α k
−
β

k2

)
eik

−·(r−r′)

−

(
δ−αβ −

kαk
−
β

k2

)
eik·(r−r′−) −

(
δ−αβ −

k−α kβ
k2

)
eik·(r

−−r′)

]
× sin[ωk(t− t′)].

(8.216)
Carrying out the same procedure as before, we can write this commutator in terms of the singular D function
as

[Eα(r, t), Eβ(r′, t′)] =
ih̄c

ε0

[
δαβ
c2

∂t∂t′ − ∂α∂′β
]
D(r− r′, t− t′)− ih̄c

ε0

[
δ−αβ
c2

∂t∂t′ − ∂α∂′β

]
D(r− − r′, t− t′),

(half-space) (8.217)
where again ∂′α := ∂/∂r′α. Again, we see that we have the same form as before, but now the simultaneous
measureability is excluded also by an additional term corresponding to the light cone that includes a bounce
off of the mirror.15 The second term has precisely the same form as before, except for sign differences in the
z-related components. Recall that the orientation of a dipole image has similar sign modifications compared
to the original.

8.7 Unconfined Mode Functions

Recall from Section 8.4 that we quantized electromagnetic field modes inside a quantization volume. In sit-
uations without a cavity, such as in the Weisskopf–Wigner calculation for the rate of spontaneous emission
in free space (Chapter 11), the quantization volume corresponds to a fictitious cavity. Generally, the quanti-
zation volume cancels in the relevant physical quantities for these calculations. For example, the free-space
mode functions from Section 8.4.2 are

fk,ζ(r) =
1√
V
ε̂k,ζe

ik·r, (8.218)

where again k takes on discrete values due to the periodic boundary conditions, and the mode functions are
normalized according to ∫

V

d3r fk,ζ(r) · f∗k′,ζ′(r) = δ3k,k′δζ,ζ′ . (8.219)

15P. W. Milonni, ‘‘Casimir forces without the vacuum radiation field,’’ Physical Review A 25, 1315 (1982) (doi: 10.1103/Phys-
RevA.25.1315).

http://dx.doi.org/10.1103/PhysRevA.25.1315
http://dx.doi.org/10.1103/PhysRevA.25.1315
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The sum over modes amounts to something of the form [c.f. Eq. (11.23)]∑
k

−→ V

(2π)3

∫
d3k, (8.220)

where the integration extends over all possible orientations of k. Generally, physical quantities involve an
integrand quadratic in the mode function, and thus the factors of V cancel. The subsequent limit V −→∞
for true free space is then trivial.

Thus, for problems where no physical cavity is involved, it is convenient to define mode functions where
the limit V −→∞ is already taken. We can take the large-volume limit of Eq (8.219) by noting that in this
limit the spacings between adjacent values of kx, ky, and kz become small (scaling as 2π/ 3

√
V ), and so we

can make the replacement

δ3k,k′ −→ (∆k)3δ3(k− k′) = (2π)3

V
δ3(k− k′). (8.221)

This is again so that the sum of the left-hand behaves as the integral over the right-hand side. Then we can
write ∫

V

d3r fk,ζ(r) · f∗k′,ζ′(r) =
(2π)3

V
δ3(k− k′)δζ,ζ′ (8.222)

in the large-volume limit. Then absorbing a factor of
√
V into the definition of the mode function by the

rescaling
fk,ζ(r) −→

1√
V

fk,ζ(r), (8.223)

the normalization for unbounded mode functions becomes∫
d3r fk,ζ(r) · f∗k′,ζ′(r) = (2π)3δ3(k− k′) δζ,ζ′ . (8.224)

The sum over modes, assuming a summand quadratic in the mode functions (as is usually the case), then is
given by the correspondence ∑

k

−→ 1

(2π)3

∫
d3k. (8.225)

The free-space mode functions are then
fk,ζ(r) = ε̂k,ζe

ik·r, (8.226)
but now a continuous vector index k. In general, the mode functions for any situation (e.g., half-space) will
be independent of V , and can be obtained by setting V −→ 1 in the expressions for the functions quantized
in a finite volume.

8.8 Hamiltonian Viewpoint of Electromagnetic Gauge Freedom

Finally, we will return to the Hamiltonian structure of the electromagnetic field, and examine more closely the
gauge freedom that we swept under the rug by choosing a particular gauge.16 We start with the Lagrangian
for the mass-free electromagnetic field, with sources, including both the vector potential A and the scalar
potential φ:

L = Lfree + Lsource

Lfree =
ε0
2

∫
d3r
[
(∇φ+ ∂tA)2 − c2(∇×A)2

]
Lsource = −

∫
d3r [ρφ− j ·A] .

(electromagnetic Lagrangian) (8.227)
16This is essentially Dirac’s treatment of Hamiltonian dynamics with constraints, P. A. M. Dirac, ‘‘Generalized Hamiltonian

dynamics,’’ Canadian Journal of Mathematics 2, 129 (1950) (doi: 10.4153/CJM-1950-012-1); but applied to the electromagnetic
field, as in P. A. M. Dirac, ‘‘The Hamiltonian form of field dynamics,’’ Canadian Journal of Mathematics 3, 1 (1951) (doi:
10.4153/CJM-1951-001-2). I learned the following treatment from Tanmoy Bhattacharya (unpublished).

http://dx.doi.org/10.4153/CJM-1950-012-1
http://dx.doi.org/10.4153/CJM-1951-001-2
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Here, we have broken the Lagrangian into the free part and a source part that represents the coupling to the
source fields ρ (charge) and j (current density). We will take this Lagrangian to be the fundamental starting
point. However, we can also note that the form of the Lagrangian motivates the definitions

E := −∇φ− ∂tA

B := ∇×A

(8.228)
(electromagnetic fields)

for the electric and magnetic fields. Then in terms of these fields, the simple quadratic nature of the
Lagrangian is more apparent:

Lfree =
ε0
2

∫
d3r
[
E2 − c2B2

]
.

(free electromagnetic Lagrangian) (8.229)
We will also soon see that the electric field is again essentially the momentum field conjugate to the coordinate
field A. The minus sign in the definition of the electric field simply makes the gradient of the potential agree
with the usual mechanical potential, ṗ = −∇V (q).

8.8.1 Hamiltonian

To obtain the Hamiltonian for the electromagnetic field, we functionally differentiate the Lagrangian:

Π0 :=
δL

δφ̇
= 0

Π :=
δL

δȦ
= ε0(∇φ+ Ȧ) = −ε0E.

(8.230)
(conjugate momenta)

The fact that the momentum Π0 conjugate to φ vanishes indicates some funniness, and will ultimately lead
to constraints and the gauge freedom on the field. Now the Hamiltonian is given by

H =

∫
d3r
[
Π0φ̇+Π · Ȧ

]
− L. (8.231)

We can drop the vanishing Π0 piece, and simplifying, we can write the Hamiltonian as

H = Hfree +Hsource

Hfree =

∫
d3r

[
Π2

2ε0
−Π · ∇φ+

1

2
ε0c

2(∇×A)2
]

Hsource =

∫
d3r [ρφ− j ·A] .

(electromagnetic Hamiltonian) (8.232)
Note again that while φ appears here, the conjugate momentum does not. In fact, since we are constrained
to Π0 = 0, the Hamiltonian is arbitrary up to a term proportional to Π0 anyway. Thus we should generalize
the Hamiltonian so that

H = Hfree +Hsource +Hgauge

Hgauge =

∫
d3rΠ0g,

(8.233)
(electromagnetic Hamiltonian)

where g(Π0,Π, φ,A; r, t) is an arbitrary function, and will represent part of the gauge freedom of the field.
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8.8.2 Hamilton Equations and Gauge Freedom

Now we can work out the dynamics of the field in terms of Hamilton’s equations. First we start with the
equation of motion for the scalar momentum:

Π̇0 = −δH
δφ

= −∇ ·Π− ρ. (8.234)

However, Π0 = 0, so the last expression here must vanish, leading to one of the Maxwell equations:

∇ ·E =
ρ

ε0
.

(8.235)
(Gauss’ law)

Note that there is no time derivative here: this is a constraint equation, not an evolution equation. We
ostensibly started with an evolution equation, but constraining Π0 = 0 turned this into a constraint.

Next, the evolution equation for the scalar potential is

φ̇ =
δH

δΠ0
= g +Π0

δg

δΠ0
= g. (8.236)

The last equality follows by assuming the derivative of g to be finite—then the last term vanishes, since it
includes a factor of Π0 = 0. The time derivative of φ is thus given by a completely arbitrary function, and so
φ itself may be arbitrarily chosen. This is our first gauge freedom. A common choice is to use this freedom
to set φ = 0, which implies the choice g = 0. Note that we can already introduce a second gauge freedom,
as we have the conserved quantity (∇ ·Π+ ρ) = 0 from the constraint (Maxwell equation) above. Thus, we
modify the gauge Hamiltonian according to

Hgauge =

∫
d3r
[
Π0g + (∇ ·Π+ ρ)h

]
,

(8.237)
(gauge Hamiltonian)

where h(Π0,Π, φ,A; r, t) is another arbitrary function. Note that introducing the h term changes nothing
that we have done so far, since we have not yet differentiated with respect to Π.

Working out the equation of motion for Π,

Π̇ = −δH
δA = −ε0c2∇×∇×A + j. (8.238)

Converting to the usual fields, we find the next Maxwell equation

∇×B =
1

c2
Ė + µ0j, (8.239)

(Ampère’s law)

noting that c2 = 1/µ0ε0. The other two Maxwell equations follow from the definition of the fields: ∇ ·B =
∇ × ∇ · A = 0 is the magnetic-monopole law, and ∇ × E = ∇ × (−∇φ − ∂tA) = −∂t∇ × A = −∂tB is
Faraday’s law.

The equation of motion for the vector potential A is

Ȧ = −δH
δΠ

=
Π

ε0
−∇φ−∇h. (8.240)

The interpretation here is that Ȧ is arbitrary up to a a gradient of a function, which has the same form as
the arbitrariness in φ. If f is the antiderivative of h (i.e., ḟ = h), then in addition to the first gauge freedom
above,

φ can be modified arbitrarily, (8.241)
(first gauge freedom)

this second gauge freedom amounts to freedom to modify the vector potential under transformations of the
form

A −→ A +∇f. (8.242)
(second gauge freedom)
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In starting with four coordinate fields (φ,A) and four momentum fields (Π0,Π), we eliminate two momenta
via Π0 = 0 and ∇·Π = −ρ, and by finding that we can introduce two arbitrary fields, φ and f , we essentially
eliminate two of the coordinate fields. Thus, the remaining independent canonical coordinates—two momenta
and two configuration coordinates—correspond to two independent degrees of freedom, corresponding to the
two independent polarizations in the transverse fields. The longitudinal fields are counted separately, since
we have implicitly introduced them via the source charge ρ.

To connect this gauge freedom with the more usual treatment, we can solve (8.240) for the momentum
to obtain

Π = ε0(Ȧ +∇φ+∇h). (8.243)

This expression is the same as in Eq. (8.230), except for the presence of the gradient of h. In the Hamil-
tonian formulation, this is not an inconsistency: after deriving Eq. (8.230) for the momentum field and the
Hamiltonian, we have modified the Hamiltonian by introducing Hgauge, and so in this case the momentum
changes to reflect this. However, to compare more directly to the Lagrangian picture, we can require that the
momentum field not change. In this case, we should use the arbitrariness in the scalar potential to modify it
to cancel the extra h term, which would mean setting φ −→ φ− h, to correspond to Ȧ −→ Ȧ +∇h. Thus,
we have a combined gauge invariance under the combined transformation

A −→ A +∇f
φ −→ φ− ∂tf.

(8.244)
(Lagrangian gauge freedom)

However, in the Hamiltonian picture, this link between the transformations is not explicitly enforced; if φ is
set to zero, then for example to model the effects of a static charge, we must still pick an appropriate form
of A.

8.8.3 Continuity Constraint

One last detail comes from again considering Eq. (8.234), where the right-hand-side expression ∇ ·Π + ρ
vanishes, and is thus a constant of the motion. We can then differentiate it,

∂t(∇ ·Π+ ρ) = ∇ · Π̇+ ρ̇ = ∇ · j + ρ̇, (8.245)

where we have used Eq. (8.238) for Π̇. This quantity vanishes, and we are left with

∂tρ+∇ · j = 0,
(8.246)

(continuity constraint)

which is the usual continuity condition for the source fields.

8.9 Quantization with Dielectric Media

We have so far restricted quantization to free space, possibly with boundary conditions that modify the spatial
mode functions. Here we will generalize field quantization to handle dielectrics modeled by permittivities
ε(r). We will not handle dispersion here, though, which causes considerably more complication for general
quantization. We will handle dispersion only in the linear-response regime in Chapter 14, where we will not
need to explicitly quantize the field.

8.9.1 Fresnel Coefficients: Modes of a Planar, Dielectric Interface

As another example of unconfined mode functions in the sense of the last section, and as a starting point
for field quantization with dielectric media, we will consider the field modes in the presence of an interface
between two dielectric media. We will take Maxwell’s equations for the electromagnetic fields in a medium,
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but without sources, to be our starting point:

∇ ·D = 0

∇ ·B = 0

∇×E = −∂tB
∇×H = ∂tD.

(8.247)
(Maxwell’s equations)

These equations are covered in more detail later (see Section 14.1, so we will use them without much
discussion. Here, D is the electric flux density or electric displacement, B is the magnetic flux
density, and E and H are the usual electric and magnetic fields, respectively. We will ignore magnetic
effects, so that

B = µ0H, (8.248)

and the electric fields are related by
D = εE, (8.249)

with ε = ε0(1 + χ), in terms of the susceptibility χ of the dielectric medium. Both ε(r) and χ(r) are
functions of space for an inhomogeneous optical medium.

Now we will decouple the equations to derive a wave equation for the electric field. The curl of the
third Maxwell equation is

∇× (∇×E) = −∂t∇×B, (8.250)

and with B = µ0H and the fourth Maxwell equation, we arrive at the wave equation

∇× (∇×E) = −µ0ε∂
2
t E, (8.251)

(electric-field wave equation)

after decoupling the electric displacement with D = εE. For a homogeneous medium of constant ε, this
simplifies by using the identity ∇× (∇×A) = ∇(∇ ·A)−∇2A to replace the iterated curl, where then the
result simplifies by using ∇(∇ ·E) = ∇(∇ ·D)/ε = 0 to obtain

∇2E = µ0ε∂
2
t E.

(electric-field wave equation, homogeneous medium) (8.252)
The homogeneous wave equation has plane-wave solutions of the form

E(+)(r, t) = E0e
i(k·r−ωt),

(8.253)
(plane-wave solution)

provided
ω

k
=

1
√
µ0ε

.
(8.254)

(dispersion relation/phase velocity)

This is also the phase velocity of the wave, denoted c, which is commonly written in terms of the refractive
index n :=

√
ε/ε0. The last Maxwell equation implies an accompanying magnetic field of the same form,

with the same phase, but orthogonal to E. More generally, the transverse nature of the plane wave solutions
is apparent from the last two Maxwell equations, from which it follows that E, B, and k form a mutually
orthogonal vector basis, provided the medium is homogeneous and isotropic. Further, E ×B points in the
direction of k.

8.9.1.1 Boundary Conditions

To analyze the electric field at the interface, we will need to consider the boundary conditions on the field at
the material discontinuity at the interface. Because the interface produces only a finite discontinuity in the
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wave equation, we will use this to enforce continuity conditions across the interface. Since we are considering
the inhomogeneous part of space, we can write out Eq. (8.251) which for the monochromatic mode becomes

∇(∇ ·E)−∇2E = −µ0εω
2E, (8.255)

It is convenient to separate this equation into normal and transverse components. The normal component is

∂z(∇ ·E)−∇2Ez = −µ0εω
2Ez, (8.256)

or since Ez = 0
∂z(∇ ·E)−∇2Ez = −µ0εω

2Ez, (8.257)

and canceling the z derivatives,
∂z(∇T ·E)−∇ 2

TEz = −µ0εω
2Ez, (8.258)

where ∇ 2
T := ∂ 2

x + ∂ 2
y is the transverse Laplacian. Examining the behavior of this equation in the z direction,

since ε only makes a finite step, we can integrate this equation from z = −δ to δ, letting δ −→ 0. Only the
first term survives the limit, in which case ∇T ·E(δ) = ∇T ·E(−δ). Thus, the first boundary condition is that
∇T ·E is continuous across the boundary. To obtain a second boundary condition, we return to Eq. (8.255),
considering now the components parallel to the interface:

∇T(∇ ·E)−∇2E‖ = −µ0εω
2E‖. (8.259)

Separating out the z derivatives, we then have

∇T(∂zEz) +∇T(∇T ·E‖)−∇2
TE‖ − ∂ 2

z E‖ = −µ0εω
2E‖. (8.260)

Again, we consider this to be a differential equation in z, where the only z derivatives appear in the first and
fourth terms. Since the coefficients of the equation are bounded, we can assume all the terms of this equation
are also bounded in the neighborhood of the interface, which holds so long as the field itself is bounded in
the region near the boundary, which is a reasonable physical assumption in the absence of localized sources
there. Then either ∂zEz is finitely discontinuous or it is continuous. In either case, we can integrate over a
vanishingly small interval in z across the boundary, in which case we obtain

∇T(δEz)− δ∂zE‖ = 0, (8.261)

where the δ symbols here indicate reference the change in the following quantity over the interface. This
means that the change in the derivative of E‖ is bounded, which means that E‖ itself is continuous across
the boundary, which is our second condition. Actually, this turns out to be equivalent to the first condition,
since ∇⊥ will be equivalent to k‖ at the interface, and we will show below that all parallel components of
the wave vectors are the same at the boundary. Thus, we will allow the second condition to supersede the
first one, keeping the simpler requirement of continuity of E‖.

To obtain the other boundary condition we will need, we can return to the wave equation (8.251),
and integrate around a rectangular contour in a plane normal to the (local) interface that encompasses the
boundary as shown below.

d

l

c
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The width δ of the loop will contract to zero, while we assume the length ` of the loop is short compared
to any length scale of the interface (in the case of a nonplanar interface) or field. Then integrating ∇ × E
around this contour, we can then use Stokes’ theorem and then Eq. (8.251) to find∮

(∇×E) · dr =

∫
[∇× (∇×E)] · da = −µ0

∫
(ε∂ 2

t E) · da, (8.262)

where a is the area-normal vector, and the integrals run over the area enclosed by the contour. As δ −→ 0,
the last integral vanishes, and only the segments of length ` contribute to the contour integral on the left-
hand side, such that the contributions of the two segments cancel. Since this argument can be repeated
in any plane normal to the interface it implies that the component of ∇ × E parallel to the interface is
continuous across the boundary. Thus, our second boundary condition is that (∇×E)‖ is continuous across
the interface.

It is possible to derive another boundary condition, though it is one we will not use here. Computing
the divergence of Eq. (8.251) for a monochromatic field, we have

∇ · εE = 0. (8.263)

This is a statement that according to the wave equation, εE must be a transverse field, or that E must be
‘‘ε-transverse’’ in this sense. We note that the only term involving a z derivative is ∂zεEz, so integrating
this equation over a short interval across the interface in the z direction shows that εEz must be continuous
across the boundary.

In summary, we have

E‖ is continuous, (∇×E)‖ is continuous (8.264)
(boundary conditions)

for the boundary conditions at the interface for the solution E of the vector wave equation. Note that in
this form, the boundary conditions only refer to the electric field itself, and is thus more ‘‘self-contained’’
than boundary conditions that are typically written for both E and H. (Though note that B satisfies the
same boundary conditions, since it satisfies the same wave equation as does E.)

8.9.1.2 TE Modes

Now we will consider the field modes in the presence of a dielectric interface, where the dielectric covers
z < 0 and z > 0 is vacuum. Since the permeability is constant in each region, the solutions are plane waves
(or superpositions of plane waves) in each region. First, we will make the ansatz of a solution that consists of
three parts: an incident plane wave and a reflected plane wave on the vacuum side, and a transmitted wave
on the dielectric side. We will take all of the propagation vectors to lie in the same plane. The transverse
electric field also has two independent components, which we will treat separately. The two polarizations that
respect the symmetry of the surface are TE (transverse electric, meaning that the electric field is parallel to
the interface) and TM (transverse magnetic, with the magnetic field parallel to the interface) polarizations.
First, we will consider TE polarization, and sketch our ansatz below.
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Although we will refer only to the electric field in the following, we have sketched in the proper relative orien-
tations of the magnetic fields relative to the (electric-field) polarization vectors. Writing out our assumptions
mathematically, we have the monochromatic TE field mode

E(+)
k,TE = E

(+)
0i ε̂k,TE

[
eik·rΘ(z) + rTEe

ikr·rΘ(z) + tTEe
ikt·rΘ(−z)

]
, (8.265)

where k, kr, and kt are the incident, reflected, and transmitted wave vectors, E0i, E0r, and E0t are the
respective field amplitudes, and we have defined rTE := E0r/E0i and tTE := E0t/E0i as the field reflection
and transmission coefficients, respectively. A common time dependence of exp(−iωt) is implied for all the
terms. But while ω is the same on both sides of the boundary, in view of the dispersion relation (8.254), k
should be viewed as a function of ε (k ∝

√
ε ∝ n).

The first boundary condition (8.264), continuity of the surface-parallel component E‖, gives simply for
the mode (8.265)

eik‖·r‖ + rTEe
ikr‖·r‖ = tTEe

ikt‖·r‖ , (8.266)

since the polarizations are all already transverse. Here, the notation r⊥ refers to only the transverse part of
the vector (i.e., only the x and y components, since z = 0 here). The only way for the phases to match at
every point on the interfaces is for the transverse parts of all the wave vectors themselves to be separately
equal,

k‖ = kr‖ = kt‖. (8.267)

The first condition here leads to
kr = k−, (8.268)

where k− = kxx̂ + ky ŷ − kz ẑ, since we assumed the incident and reflected waves to propagate toward and
away from the interface, respectively. This in turn leads to the usual reflection law θi = θr. The other
equality in the phase condition,

k‖ = kt‖, (8.269)

can be rewritten as
ki sin θi = kt sin θt, (8.270)

or more familiarly as Snell’s law,
ni sin θi = nt sin θt, (8.271)

if we write the relation in terms of the refractive index. The first boundary condition (8.266) then becomes

1 + rTE = tTE. (8.272)

The second of the boundary conditions (8.264), i.e., enforcing the continuity of (∇×E)‖, becomes

(k× ε̂k,TE)‖ + (kr × ε̂k,TE)‖rTE = (kt × ε̂k,TE)‖tTE, (8.273)
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or working out the cross products,
kz(1− rTE) = kt,ztTE. (8.274)

Eqs. (8.272) and (8.274) have the solutions

rTE =
kz − kt,z

kz + kt,z
, tTE =

2kz
kz + kt,z

.
(8.275)

(TE Fresnel coefficients)

Another useful representation of these coefficients comes from noting that kz = k cos θi and

kt,z = kt cos θt

= k
√
1 + χ

√
1− sin2 θt

= k
√
1 + χ

√
1− 1

(1 + χ)
sin2 θi

= k

√
1 + χ− sin2 θi

= k
√
χ+ cos2 θi,

(8.276)

so that

rTE =
ξ −

√
χ+ ξ2

ξ +
√
χ+ ξ2

, tTE =
2ξ

ξ +
√
χ+ ξ2

,
(8.277)

(TE Fresnel coefficients)

where ξ = cos θi. Still another form comes from writing out the angles more explicitly, and using ki = n1k0
and kt = n2k0, where k0 is the vacuum wave number, and n1 and n2 are the refractive indices on the left-
and right-and sides of the interface, respectively, so that

rTE =
n1 cos θi − n2 cos θt

n1 cos θi + n2 cos θt
, tTE =

2n1 cos θi

n1 cos θi + n2 cos θt
.

(TE Fresnel coefficients) (8.278)
(While we are nominally assuming a vacuum on one side of the interface, the k-vector treatment is actually
more general than this.) Fixing these coefficients also fixes the form of the mode ansatz (8.265). We can
then define a normalized mode function

fk,TE = ε̂k,TE

[
eik·rΘ(z) + rTEe

ikr·rΘ(z) + tTEe
ikt·rΘ(−z)

]
.

(normalized mode function) (8.279)
To work out the normalization of this mode function, first we write out∫

d3r
ε(r)
ε0

f∗k,TE(r) · fk′,TE(r)

=

∫
d3r

{
ei(k

′−k)·rΘ(z) + |rTE|2ei(k
′
r−kr)·rΘ(z) +

[
rTEe

i(k′−kr)·r + r∗TEe
i(k−k′

r)·r
]
Θ(z)

+
ε

ε0
|tTE|2ei(k

′
t−kt)·rΘ(−z)

}
,

(8.280)
assuming the two waves are incident from the vacuum side. If we consider the real part of this equation, the
conjugate terms are equivalent to the same terms already present, but with Θ(z) −→ Θ(−z). Thus, we can
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carry out the integrals to obtain δ functions, with the result

2Re
∫
d3r

ε(r)
ε0

f∗k,TE(r) · fk′,TE(r)

= (2π)3δ3(k′ − k) + |rTE|2(2π)3δ3(k′r − kr) + (2π)3
[
rTEδ

3(k′ − kr) + r∗TEδ
3(k− k′r)

]
+

ε

ε0
|tTE|2(2π)3δ3(k′t − kt)

= (2π)3δ3(k′ − k) + |rTE|2(2π)3δ3(k′r − kr) +
ε

ε0
|tTE|2(2π)3δ3(k′t − kt),

(8.281)

where we have removed the δ functions that are always zero due to the relative orientations of incident and
reflected waves, under the assumption that both modes are incident from the same direction. To simplify
this expression further, we should write the wave vectors in the last term in terms of the incident wave
vector. This procedure is slightly involved, and goes as follows.17 First, recalling that

k 2
t =

ε

ε0
k2 (8.282)

and from Snell’s law,
kt‖ = k‖, (8.283)

then we will now relate the z components of the incident and transmitted wave vectors. The incident version
satisfies

k 2
z = k2 − k2‖, (8.284)

while the transmitted version satisfies

k 2
t,z = k 2

t − kt
2
‖ =

ε

ε0
k2 − k2‖. (8.285)

Rearranging and dividing these last two equations gives

k 2
t,z + k2‖

k 2
z + k2‖

=
ε

ε0
. (8.286)

If we instead introduce a subtraction with these same two relations in terms of k′ before division, we obtain

(k′
2
t,z − k 2

t,z) + (k′
2
‖ − k2‖)

(k′ 2z − k 2
z ) + (k′2‖ − k2‖)

=
ε

ε0
. (8.287)

Then using this relation, we have the relation

δ3(k′t − kt) = δ2(k′t‖ − kt‖) δ(k
′
t,z − kt,z)

= 2|kt,z|δ2(k′t‖ − kt‖) δ[(k
′
t,z − kt,z)(k

′
t,z + kt,z)]

= 2|kt,z|δ2(k′t‖ − kt‖) δ(k
′ 2
t,z − k 2

t,z)

= 2
ε0
ε
|kt,z|δ2(k′t‖ − kt‖) δ(k

′ 2
z − k 2

z )

=
ε0
ε

∣∣∣∣kt,z

kz

∣∣∣∣ δ2(k′t‖ − kt‖) δ(k
′
z − kz)

=
ε0
ε

∣∣∣∣kt,z

kz

∣∣∣∣ δ2(k′‖ − k‖) δ(k′z − kz)

=
ε0
ε

kt,z

kz
δ3(k′ − k),

(8.288)

17C. K. Carniglia and L. Mandel, ‘‘Quantization of Evanescent Electromagnetic Waves,’’ Physical Review D 3, 280 (1971)
(doi: 10.1103/PhysRevD.3.280).

http://dx.doi.org/10.1103/PhysRevD.3.280
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where in the last step we noted that kt,z and kz have the same sign by construction. Eq. (8.281) then
becomes

2Re
∫
d3r

ε(r)
ε0

f∗k,TE(r) · fk′,TE(r) = (2π)3δ3(k′ − k) + |rTE|2(2π)3δ3(k′r − kr) +
kt,z

kz
|tTE|2(2π)3δ3(k′ − k).

(8.289)
To simplify this even further, we can multiply Eq. (8.272) with Eq. (8.274) to give

1 = r 2
TE +

kt,z

kz
t 2TE =: RTE + TTE.

(8.290)
(reflectance and transmittance)

The interpretation here regarding complex-valued Fresnel coefficients is a bit subtle. Briefly, rTE is real unless
its modulus is unity. In the former case, tTE is real. In the latter case, the transmitted wave is evanescent
(decaying with z), TTE is defined to vanish, and the tTE wave is normalizable, so it does not contribute to the
orthonormality relation. which we can interpret as conservation of energy: R and T here are the reflection
and transmission coefficients of the intensity, respectively called the reflectance and transmittance. In
this case, Eq. (8.289) reduces to

Re
∫
d3r

ε(r)
ε0

f∗k,TE(r) · fk′,TE(r) = (2π)3δ3(k′ − k). (8.291)

Repeating the above argument for the imaginary part is simple: while the real part gave integrals over
cosines leading to δ functions, the imaginary part gives corresponding integrals over sines, which simply
vanish. Therefore, our orthonormality relation is∫

d3r
ε(r)
ε0

f∗k,TE(r) · fk′,TE(r) = (2π)3δ3(k− k′). (8.292)
(orthonormality relation)

Note that for ε = ε0, this reduces to the relation we expect for free-space mode functions. Technically, we
need to verify this relation in a couple more situations. First, we should consider the case where both waves
are incident from the dielectric side. This goes through in the same way as we have shown. (Though note
that evanescent waves are possible in this case, in which case kt becomes complex.) Also, we should verify
the case where one wave is incident from each side. In this case, Eq. (8.280) becomes∫

d3r
ε(r)
ε0

f∗k,TE(r) · fk′,TE(r)

=

∫
d3r

{
tTEe

i(k′
t−k)·rΘ(z) + r∗TEtTEe

i(k′
t−kr)·rΘ(z)

+
ε

ε0
t∗TEe

i(k′−kt)·rΘ(−z) + ε

ε0
rTEt

∗
TEe

i(k′
r−kt)·rΘ(−z)

}
=

(2π)3

2

{
tTEδ

3(k′t − k) + r∗TEtTEδ
3(k′t − kr) +

ε

ε0
t∗TEδ

3(k′ − kt) +
ε

ε0
rTEt

∗
TEδ

3(k′r − kt)

}
=

(2π)3

2

{
r∗TEtTEδ

3(k′t − kr) +
ε

ε0
rTEt

∗
TEδ

3(k′r − kt)

}
,

(8.293)

where we have assumed k to be incident from the vacuum side, and k′ to be incident from the dielectric side.
We have also dropped the interaction terms between incident and transmitted waves that always vanish. Now
we must also be careful with the interpretation of the reflection and transmitted coefficients. The conjugated
coefficients are incident from the vacuum side, whereas the normal ones are incident from the dielectric side.
From Eq. (8.275), this means in particular that r∗TE = −rTE and t∗TE = (kt,z/kz)tTE. Then the remaining two
terms here cancel by applying Eq. (8.288) to the second δ function. Thus, oppositely-propagating modes are
always orthogonal.
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8.9.1.3 TM Modes

The other (TM) polarization follows in essentially the same wave as for the TE polarization. We will again
sketch our ansatz and sign convention for the fields below, again recalling that the dielectric covers the region
z < 0.

c

z = 0
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qr qt
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Again, we will refer only to the electric field in the following, but we have sketched in the proper relative
orientations of the magnetic fields relative to the (electric-field) polarization vectors. Mathematically, we
have the monochromatic TM field mode

E(+)
k,TM = E

(+)
0i

[
(ε̂k,TE × k̂) eik·rΘ(z) + (ε̂k,TE × k̂r) rTMe

ikr·rΘ(z) + (ε̂k,TE × k̂t) tTMe
ikt·rΘ(−z)

]
. (8.294)

Clearly, this mode is orthogonal to any TM mode. Applying the first of the boundary conditions (8.264)
again implies the phase conditions (8.267)-(8.271). For the vector part of the mode, continuity of E‖ implies

(k̂ × ε̂k,TE)‖ + (k̂r × ε̂k,TE)‖rTM = (k̂t × ε̂k,TE)‖tTM, (8.295)

[Note the similarity to Eq. (8.273) here.] Working out the cross products, we have

kz
k
(1 + rTM) =

kt,z

kt
tTM. (8.296)

The second boundary condition, continuity of (∇×E)‖ gives

[k× (k̂ × ε̂k,TE)]‖ + [kr × (k̂r × ε̂k,TE)]‖rTM = [kt × (k̂t × ε̂k,TE)]‖tTM, (8.297)

so that working out the cross products and dividing through by k gives

1− rTM =
kt

k
tTM. (8.298)

Eqs. (8.296) and (8.298) have the solutions

rTM =
k2kt,z − k 2

t kz
k2kt,z + k 2

t kz
, tTM =

2kktkz
k2kt,z + k 2

t kz
.

(8.299)
(TM Fresnel coefficients)

which is the general form for a dielectric–dielectric interface, or using kt/k =
√
ε for a vacuum-dielectric

interface,

rTM =
kt,z − εkz
kt,z − εkz

, tTM =
2
√
εkz

kt,z + εkz
.

(8.300)
(TM Fresnel coefficients)
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We can also write this in terms of ξ = cos θi using Eq. (8.276) as

rTM =

√
χ+ ξ2 − (1 + χ)ξ√
χ+ ξ2 + (1 + χ)ξ

, tTM =
2
√
1 + χξ√

χ+ ξ2 + (1 + χ)ξ
.

(TM Fresnel coefficients) (8.301)
Additionally, we can write

rTM =
n1 cos θt − n2 cos θi

n1 cos θt + n2 cos θi
, tTM =

2n1 cos θi

n1 cos θt + n2 cos θi
(TM Fresnel coefficients) (8.302)

for a dielectric–dielectric interface with refractive indices n1 and n2 on the incident and transmitted side,
respectively.

Now if we multiply together Eqs. (8.296) and (8.298), we obtain

1 = r 2
TM +

kt,z

kz
t 2TM =: RTM + TTM,

(8.303)
(reflectance and transmittance)

where we used that kt is real so long as tTM 6= 0. This is equivalent to the TE result (8.290), and thus the
reflectance and transmittance for intensities has the same definition in terms of the respective reflection and
transmission coefficients as for TE polarization. Then defining the mode function

fk,TM = (ε̂k,TE × k̂) eik·rΘ(z) + (ε̂k,TE × k̂−) rTMe
ikr·rΘ(z) + (ε̂k,TE × k̂t) tTMe

ikt·rΘ(−z),
(normalized mode function) (8.304)

and noting that the phase behavior is the same as for the TE modes, we see that the orthonormality argument
for the TE case goes through here as well. Furthermore, by construction the TE modes are orthogonal to
the TM modes, so we have the general orthonormality relation∫

d3r
ε(r)
ε0

f∗k,ζ(r) · fk′,ζ′(r) = (2π)3δζζ′δ
3(k− k′), (8.305)

(orthonormality relation)

where ζ is either TE or TM.

8.9.2 Quantum Fields at a Planar Dielectric Interface

With the mode functions in hand, we can establish the form for the quantized fields, just as we did in free
space. The derivation proceeds mostly in the same way as before, but with a few modifications.18

8.9.2.1 Hamiltonian Structure

The free-space Lagrangian (8.28) had the form

L =
1

2

∫
d3r

(
ε0E

2 − 1

µ0
B2

)
(8.306)

in terms of the electromagnetic fields, and has the obvious generalization

L =
1

2

∫
d3r

(
ε(r)E2 − 1

µ0
B2

)
(dielectric electromagnetic Lagrangian) (8.307)

18Here we are following the lucid treatment of Roy J. Glauber and M. Lewenstein, ‘‘Quantum optics of dielectric media,’’
Physical Review A 43, 467 (1991), Eq. (2.16a) (doi: 10.1103/PhysRevA.43.467).

http://dx.doi.org/10.1103/PhysRevA.43.467
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in the presence of a dielectric. Again taking A to be the generalized coordinate, the conjugate momentum
is

:=
δL

δ(∂tA)
= ε(r)∂tA = −ε(r)E = −D. (8.308)

(conjugate momentum to A)

This leads to the Hamiltonian

H =

∫
d3r

(
Π2

2ε(r) +
1

2µ0
(∇×A)2

)
=

1

2

∫
d3r

(
ε(r)E2 +

1

µ0
B2

)
,

(dielectric electromagnetic Hamiltonian) (8.309)
Here, the Hamilton equation ∂tΠ = −δH/δA leads to the last Maxwell equation (8.247). In terms of the
vector potential, this gives the wave equation

∇× (∇×A) +
ε(r)
ε0c2

∂ 2
t A = 0.

(8.310)
(dielectric wave equation)

The first Maxwell equation (∇·D = 0) follows most naturally from the generalized Coulomb-gauge condition

∇ · [ε(r)A] = 0,
(8.311)

(generalized Coulomb gauge)

although the Maxwell equation is gauge-invariant. More fundamentally, this transverse-field condition arises
in the form

∇ ·Π = −∇ ·D = 0
(8.312)

(dielectric wave equation)

by introducing the scalar potential φ, and considering its Hamilton equation, as in Eq. (8.234). The second
Maxwell equation follows as before from the definition B = ∇×A from Eqs. (8.2), and the third equation
follows as before from differentiating this definition and the definition E = −∂tA.

8.9.2.2 Mode Functions

As before, we can separate variables in the wave equation by assuming a harmonic time dependence

A(r, t) = α(t)f(r) + c.c.
= α(0)e−iωtf(r) + c.c.,

(8.313)

such that the mode functions satisfy the wave equation (8.310) in the form

∇×∇× f(r) = ε(r)
ε0c2

ω2f(r), (8.314)
(generalized Helmholtz equation)

and the mode functions are constrained by Eq. (8.312) such that

∇ · [ε(r)f(r)] = 0.
(8.315)

(mode-function transverse constraint)

We will assume the mode functions to be normalized such that∫
d3r

ε(r)
ε0
|f(r)|2 = 1. (8.316)

This is consistent with the orthonormality relation (8.305) for a planar dielectric interface. In the multimode
case, note that if we choose

f(r) = 1√
ε(r)

g(r), (8.317)
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the wave equation (8.314) becomes

1√
ε(r)
∇×∇× 1√

ε(r)
g(r) = ω2

ε0c2
g(r), (8.318)

in which case g(r) is an eigenfunction of a Hermitian operator. Then we can assume the full set of solutions
gk,ζ(r) to be orthonormal, ∫

d3r gk,ζ(r)g∗k′,ζ′(r) = δζζ′δ
3
kk′ , (8.319)

in which case we have the orthonormality relation∫
d3r

ε(r)
ε0

fk,ζ(r) f∗k′,ζ′(r) = δζζ′δ
3
kk′ ,

(orthonormality of mode functions) (8.320)
which again is consistent with the special case (8.305) when the k sum is compared to an integral.

8.9.2.3 Quantized Fields

In the more general separation of variables, we can write the (classical) multimode field as

A(r, t) = 1
√
ε0

∑
k,ζ

qk,ζ(t) fk,ζ(r), (8.321)

where the qk,ζ(t) = qk,ζ(0) e
−iωkt express the time dependence and weight of each mode in the sum. The

second term in the Hamiltonian (8.309) then reduces to

1

2µ0

∫
d3r (∇×A)2 =

1

2µ0

∫
d3rA · ∇ ×∇×A

=
1

2µ0ε0

∑
k,ζ

∑
k′,ζ′

qk,ζq
∗
k′,ζ′

∫
d3r fk,ζ · ∇ ×∇× f∗k′,ζ′

=
1

2µ0ε0

∑
k,ζ

∑
k′,ζ′

qk,ζq
∗
k′,ζ′

∫
d3r

ε

ε0c2
ω2

k′fk,ζf∗k′,ζ′

=
1

2

∑
k,ζ

∑
k′,ζ′

ω2
k′qk,ζq

∗
k′,ζ′

∫
d3r

ε

ε0
fk,ζf∗k′,ζ′

=
1

2
ω2

kq
2
k,ζ ,

(8.322)

where we used Eqs. (8.314) and (8.320). Similarly, we can write the conjugate field as a superposition of
mode functions,

Π(r, t) = ε(r)
√
ε0

∑
k,ζ

pk,ζ(t) fk,ζ(r), (8.323)

where the pk,ζ(t) = pk,ζ(0) e
−iωkt similarly express the time dependence of the mode components, and the

ε(r) here is necessary to satisfy the constraint (8.312). The first term in the Hamiltonian (8.309) then reduces
to ∫

d3r
Π2

2ε(r) =
1

2

∑
k,ζ

∑
k′,ζ′

pk,ζp
∗
k′,ζ′

∫
d3r

ε

ε0
fk,ζf∗k′,ζ′

=
1

2
p 2

k,ζ .

(8.324)

Thus, the total electromagnetic Hamiltonian becomes

H =
∑
k,ζ

(
p 2

k,ζ

2
+

1

2
ω2

kq
2
k,ζ

)
, (8.325)
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which has the form of a set of uncoupled (complex) harmonic oscillators of unit mass and frequencies ωk.
Then quantization of the field amounts to promoting the canonical normal coordinates to operators, with
the usual relations (for unit mass):

qk,ζ =

√
h̄

2ωk

(
ak,ζ + a†k,ζ

)
pk,ζ =

√
h̄ωk

2

(
ak,ζ − a†k,ζ

i

)
.

(8.326)

With these operator forms, the conjugate fields (8.321) and (8.323) become

A(r, t) =
∑
k,ζ

√
h̄

2ωkε0
fk,ζ(r)

(
ak,ζ + a†k,ζ

)
Π(r, t) = −iε(r)

∑
k,ζ

√
h̄ωk

2ε0
fk,ζ(r)

(
ak,ζ − a†k,ζ

)
,

(8.327)

Since the fields are real, but the mode functions in general are not, any complex mode must be accompanied
by its complex conjugate as another mode. Thus, by rearranging terms among the modes, we can alternately
write our fields as

A(r, t) =
∑
k,ζ

i

√
h̄

2ωkε0
fk,ζ(r) ak,ζ + H.c.

Π(r, t) = ε(r)
∑
k,ζ

√
h̄ωk

2ε0
fk,ζ(r) ak,ζ + H.c.

(8.328)

We have also shifted our phase convention by letting ak,ζ −→ iak,ζ . With these changes, the A field has
the same form as in free space, Eq. (8.61), and the momentum field is consistent with the electric field from
before via Eq. (8.308). Thus, the quantized fields in the presence of an inhomogeneous dielectric, have the
same form as before,

A(r, t) =
∑
k,ζ

i

√
h̄

2ωkε0
fk,ζ(r) ak,ζ(t) + H.c.

E(r, t) =
∑
k,ζ

−
√
h̄ωk

2ε0
fk,ζ(r) ak,ζ(t) + H.c.

B(r, t) =
∑
k,ζ

i

√
h̄

2ωkε0
[∇× fk,ζ(r)] ak,ζ(t) + H.c.,

(quantized fields, with dielectric) (8.329)
except that the mode functions are modified by the presence of dielectric, as we saw in the dielectric-interface
example of Section 8.9.1.

8.9.3 Transverse and Longitudinal Fields: Dielectric

In the free-space case, it was useful to introduce the concept of transverse and longitudinal fields, for example,
to represent commutators of the quantum fields. It is still useful to do this with an inhomogeneous dielectric,
but the definitions must be modified somewhat.

8.9.3.1 Scalar Green Function

First, a small digression to recall a tool we will need to generalize the notation for the transverse and
longitudinal projection operators. From the Maxwell equation ∇ · E = ρ/ε0 and the potential relation
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E = −∂tA−∇φ = −∇φ for a static field, we have the Poisson equation

∇2φ(r) = −ρ(r)
ε0

. (8.330)

For a point charge q at r0,
ρ(r) = qδ3(r− r0), (8.331)

the well-known potential in free space is

φ(r) = q

4πε0

∫
d3r′

1

|r− r0|
. (8.332)

The scalar Green function G0(r, r′) is the solution to the Poisson equation (8.330) when the charge density
ρ(r)/ε0 is replaced by a unit point charge at r′:

∇2G0(r, r′) = −δ(r− r′).
(scalar Green function, defining equation) (8.333)

By comparing this expression to the solution (8.332), we can identify the free-space scalar Green function

G0(r, r′) =
1

4π|r− r′| .
(8.334)

(scalar Green function, free space)

Multiplying through by ρ(r′) and integrating in Eq. (8.333), and then comparing to Eq. (8.330) shows that
the solution for a general charge density is

φ(r) = 1

ε0

∫
d3r′G0(r, r′) ρ(r′).

(solution in terms of Green function) (8.335)
Note in particular that we recover the solution (8.332) in the case of a point charge (8.331).

8.9.3.2 Transverse and Longitudinal Fields: Free Space

Recall [Section 8.5] that according to the Helmholtz theorem, any vector field can be decomposed into
transverse and longitudinal parts,

C(r) = C⊥(r) + C‖(r), (8.336)

where ∇ ·C⊥(r) = 0 and ∇×C‖(r) = 0. As an alternate way to construct these components, consider that
according to these properties,

∇ ·C(r) = ∇ ·C‖(r), (8.337)

since the transverse part vanishes under the divergence operator. We can formally invert this equation as

C‖(r) = ∇−1∇ ·C(r), (8.338)
(longitudinal projection operator)

where the vector integral operator ∇−1 is defined such that this reproduces Eq. (8.337) under the divergence
operator. Hence, we see that ∇−1∇ is a representation of the longitudinal projection operator. To give
meaning to the ∇−1 operator, note that we can similarly rewrite Eq. (8.333) as

∇−1δ(r− r′) = −∇G0(r, r′). (8.339)

If we multiply through by a scalar field f(r′) and integrate with respect to r′,

∇−1f(r) = −∇
∫
d3r′G0(r, r′) f(r′),

(8.340)
(integral representation of ∇−1)
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which serves to explicitly define the action of∇−1. Now suppose instead that we multiply through Eq. (8.339)
by ∇ ·C(r′), and then integrate over r′:

∇−1[∇ ·C(r)] = −
∫
d3r′ [∇G0(r, r′)][∇′ ·C(r′)] = −∇

∫
d3r′G0(r, r′)∇′ ·C(r′). (8.341)

Using Eq. (8.338) on the left-hand side and Eq. (8.334) on the right-hand side, we obtain

C‖(r) = −∇
∫
d3r′

∇′ ·C(r′)
4π|r− r′| . (8.342)

This is the integral representation of the longitudinal field that we derived before in Eq. (8.156).
Because we have the decomposition (8.336), we can then write the transverse field as

C⊥(r) = C(r)−∇−1∇ ·C(r), (8.343)

or
C⊥(r) =

(
1−∇−1∇

)
·C(r), (8.344)

(transverse projection operator)
where here the ‘‘1‘‘ is a dyadic identity operator. Now since we have the defining relations [Eqs. (8.169) and
(8.170)]

C⊥α (r) =
∫
d3r′δ⊥αβ(r− r′)Cβ(r′)

C
‖
α(r) =

∫
d3r′δ

‖
αβ(r− r′)Cβ(r′),

(8.345)

for the transverse and longitudinal δ functions, we can put Eq. (8.341) into index notation to obtain

C
‖
α(r) = −∂α

∫
d3r′G0(r, r′)∂′βCβ(r′)

=

∫
d3r′ [∂α∂

′
βG0(r, r′)]Cβ(r′)

(8.346)

and compare the result to the defining relation to yield

δ
‖
αβ(r− r′) = ∂α∂

′
βG0(r, r′).

(8.347)
(longitudinal δ function)

The derivatives can then be expanded to give the longitudinal δ function in the position representation [cf.
Eqs. (8.182) and (8.184). Similarly, for the transverse projector, we have

δ⊥αβ(r− r′) = δαβδ(r− r′)− ∂α∂′βG0(r, r′)
(8.348)

(transverse δ function)

in terms of the free-space scalar Green function.

8.9.3.3 Scalar Green Function: Dielectric Case

In the case of an inhomogeneous dielectric ε(r), we have the Maxwell equation ∇ ·D = ∇ · εE = ρ, which
leads to the generalization

(∇ · ε∇)φ(r) = −ρ(r) (8.349)
of the Poisson equation. In analogy with the free-space case, we can then define the inhomogeneous scalar
Green function by replacing the charge with a δ function:

(∇ · ε∇)G(r, r′) = −ε0δ(r− r′),
(scalar Green function, defining equation) (8.350)

where we have maintained the same dimensions as in the free-space case in this replacement. For simple
dielectric geometries, the solution can be evaluated for example by the method of images. However, this
equation cannot be solved analytically for arbitrary ε(r). In any case, the solution for a general charge
distribution is still given by Eq. (8.335).
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8.9.3.4 Dielectric Transverse and Longitudinal Fields: Green-Function Form

Even in the presence of an inhomogeneous dielectric ε(r), we can decompose a field into transverse and
longitudinal parts as in Section 8.9.3.2, since in general the field has nothing to do with the dielectric.
However, there is also another sense in which we can decompose fields when an inhomogeneous measure ε(r)
is available. For example, in the absence of charge, Maxwell’s equations state that ∇·D = 0, so that D = D⊥
is purely transverse. But in this case, E = D/ε is not purely transverse. Then what is the decomposition
of E that gives rise to the transverse and longitudinal parts of D? Another example is in the choice of a
generalized Coulomb gauge ∇ · εA = 0. In this case, ∇ ·A 6= 0 in general. Then what is the decomposition
of A into components, such that one of them vanishes in the sense of ∇ · εA = 0?

Sticking to the gauge example, suppose that we make the (unique) decomposition

A(r) = Aε⊥(r) + Aε‖(r), (8.351)
(ε-Helmholtz decomposition)

such that ∇ · εAε⊥ = 0 and ∇× εAε‖ = 0. Our goal here is to find the projection operators corresponding
to these ‘‘ε-transverse’’ and ‘‘ε-longitudinal’’ components. We can begin by noting that to make this de-
composition, we can simply decompose εA in the usual way, so that our constraints are clearly satisfied by
choosing

Aε⊥ = ε−1[εA]⊥, Aε‖ = ε−1[εA]‖. (8.352)

Taking the longitudinal case first, we can use Eq. (8.338) to obtain

Aε‖(r) = ε−1∇−1∇ · [εA(r)]

= −ε−1∇
∫
d3r′G0(r, r′)∇′ · [εA(r′)],

(8.353)

where we used Eq. (8.340) for ∇−1. Now multiply through by ε(r) and compute the divergence. Note that
we lose no information in doing so, since the vector fields are longitudinal on both sides of the equality:

∇ · [εAε‖(r)] = −∇2

∫
d3r′G0(r, r′)∇′ · [εA(r′)]. (8.354)

Then we can combine Eqs. (8.333) and (8.350) to obtain

ε0∇2G0(r, r′) = ∇ · ε∇G(r, r′), (8.355)

so that
∇ · [εAε‖(r)] = −ε−10 ∇ · ε∇

∫
d3r′G(r, r′)∇′ · [εA(r′)]. (8.356)

Undoing the overall divergence operator (as we justified above), and dividing through by ε(r) gives

Aε‖(r) = −ε−10 ∇
∫
d3r′G(r, r′)∇′ · [εA(r′)]. (8.357)

Writing this out in components,

A
ε‖
α (r) = −ε−10 ∂α

∫
d3r′G(r, r′) ∂′β [εAβ(r′)]

= ε−10

∫
d3r′ ε(r′) [∂α∂′βG(r, r′)]Aβ(r′)

(8.358)

Therefore, we can define the ε-longitudinal projection

A
ε‖
α (r) =

∫
d3r′

ε(r′)
ε0

δε‖(r, r′)Aβ(r′),
(8.359)

(ε-longitudinal projection)
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where

δ
ε‖
αβ(r, r′) := ∂α∂

′
βG(r, r′).

(8.360)
(ε-longitudinal δ function)

Note that this projector is not symmetric, δε‖(r, r′) 6= δε‖(r′, r), nor is it ‘‘relocatable’’ in the sense δε‖(r, r′) 6=
δε‖(r − r′). Note also that the projection and the δ function reduce to their free-space counterparts when
ε −→ ε0.

Similarly, the ε-transverse projector is given by subtracting the ε-longitudinal projector from the iden-
tity,

δε⊥αβ(r, r′) :=
ε0
ε(r)δαβδ

3(r− r′)− ∂α∂′βG(r, r′).
(8.361)

(ε-transverse δ function)

including the correct measure on the identity such that in the projection integral, we have19

Aε⊥α (r) =
∫
d3r′

ε(r′)
ε0

δε⊥αβ(r, r′)Aβ(r′).
(8.362)

(ε-transverse projection)

We may verify the proper action of the ε-transverse projector simply as∫
d3r

ε(r′)
ε0

δε⊥αβ(r, r′)Aβ(r′) =
∫
d3r′

ε(r′)
ε0

[
ε0
ε(r)δαβδ

3(r− r′)− ∂α∂′βG(r, r′)
]
Aβ(r′)

= Aα(r)−Aε‖α (r)

= Aε⊥α (r),

(8.363)

using the ε-decomposition (8.351).

8.9.3.5 Completeness

The other route to representing the projection operators20 is to recall that the functions g(r) are eigenfunc-
tions of a Hermitian operator in Eq. (8.318). We can then choose a set of orthonormal functions via (8.319),
and in doing so, we can sum over elements of the form gk,ζ,α(r) g∗k,ζ,β to represent the identity operator.
Normally, for a set of complete, vector-valued functions on R3, the identity operator would be δαβδ3(r− r′).
However, the functions gk,ζ(r) satisfy the constraint ∇ · [

√
εg(r)] = 0, and so these elements only form an

identity on this restricted subspace. Transforming back to the f(r) functions, we can therefore write the
identity as

δε⊥αβ(r− r′) =
∑
k,ζ

fk,ζ,α(r) f∗k,ζ,β(r′),
(8.364)

(completeness relation)

which is now an identity on the space of functions satisfying ∇ · [εf(r)] = 0, which is exactly how we defined
this projection operator, via the decomposition (8.351).

19For an in-depth discussion of the projector in for a half-space dielectric, see Robert Zietal, Quantum Electrodynamics Near
Material Boundaries, Ph.D. thesis, University of Sussex (2010), Chapter 4.

20Roy J. Glauber and M. Lewenstein, op. cit.
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8.10 Exercises

Problem 8.1
Geometric optics, or ray optics, can be formulated in terms of the action principle (Fermat’s principle):

δ

∫
n(x, y, z) ds = 0, (8.365)

where ds2 = dx2 + dy2 + dz2 and n(x, y, z) is the index-of-refraction profile that models the optical
system. Take the coordinate z to be the ‘‘time’’ variable and the coordinate y to be the position
coordinate. Let’s simplify things and consider only the two-dimensional case, so x is an ignorable
coordinate, and note that z is also ignorable in the sense of being completely determined by x, y, and
s.
(a) Draw an analogy to classical mechanics, and write down the ray-optics Lagrangian. Then show
that the conjugate momentum p for the generalized coordinate y is ndy/ds. Finally, write down the
ray-optics Hamiltonian, which you should write in terms of the canonical coordinates p and y, but not
y′.
(b) Make the paraxial approximation (small p, small y), and assume that the refractive index may be
written as a small variation on a large baseline, n = n0 + δn, where δn/n0 � 1. Keep only lowest-
order terms in p, y, and δn (dropping higher-order cross-terms in these variables), and show that the
Hamiltonian takes the form of a classical particle Hamiltonian, with effective mass n0 and potential
−δy.

Problem 8.2
The usual Euler–Lagrange equation,

∂L

∂q
− d

dt

∂L

∂q̇
= 0, (8.366)

applies to Lagrangians of the form L(q, q̇; t).
(a) Generalize the Euler–Lagrange equation to handle Lagrangians of the form L(q, q̇, q̈,

___
q ; t). Indi-

cate any conditions you impose on the endpoints of the variation.
(b) One might hope to write down a Lagrangian for the Abraham–Lorentz force (F ∝ ___x ) by
considering Lagrangians of the form

L =
1

2
mq̇2 − V (q) + βq

___
q . (8.367)

Use your result from part (a) to write down the equation of motion for this Lagrangian.

Problem 8.3
Consider a thin string of linear mass density µ, stretched under tension T0 nearly along the x-axis
between positions x1 and x2. Consider only small (i.e., linear) vibrations of this string, so that the
wave function y(x, t) is always much smaller than the string’s length.
(a) Derive the following Lagrangian for the string:

L(y, yt, yx) =
1

2

∫ x2

x1

[
µy 2

t − T0y 2
x

]
dx. (8.368)

To do this, take a small segment of string of length d`, and compute its kinetic energy, integrating the
result to get the total kinetic energy. Then compute the potential energy by computing the length of
the string, and then considering what this means in terms of the energy. Assume that both y and yx
are small, and ignore any longitudinal motion of the segment.
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(b) Noting that the Lagrangian has the form

L(y, yt, yx) =

∫ x2

x1

f(y, yt, yx) dx, (8.369)

derive a suitably generalized Euler–Lagrange equation for the action principle δS = 0 in terms of the
integrand f . Then use your result to derive the wave equation for the string.

Problem 8.4
Compute the functional derivative of

S =

∫
d3r

∫
dt

[
ih̄φ∗φt −

h̄2

2m
∇φ∗∇φ− φ∗V (x, t)φ

]
, (8.370)

with respect to the fields φ∗(r, t) and φ(r, t), ignoring surface terms. What are the equations of motion
obtained from the action principles δS/δφ = 0 and δS/δφ∗ = 0? What is the canonically conjugate
momentum field to φ? To φ∗?

Problem 8.5
In each of the following, you may ignore surface terms.
(a) Compute the functional derivative of

S =

∫
dt f(t) f (201)(t), (8.371)

where f (n)(t) is the nth derivative of f(t).
(b) Compute the functional derivative of

S =

∫
dt f (199)(t) f (201)(t). (8.372)

Problem 8.6
Consider the functional

F [a, b] =

∫ 1

−1
dx f(a, b), (8.373)

where

f(a, b) =

 0 if a = b = 0
ab2

a2 + b2
otherwise

(8.374)

for functions a(x) and b(x). Calculate the variation δF [a = 0, b = 0; δa, δb]. What is the pathology of
this functional?21

Problem 8.7

(a) Show that δ⊥αβ(r) = δ⊥βα(r).

(b) Show that δ⊥αβ(−r) = δ⊥αβ(r).

(c) Show that ∂αδ⊥αβ(r) = ∂βδ
⊥
αβ(r) = 0.

21This problem stolen from P. J. Morrison, ‘‘Hamiltonian description of the ideal fluid,’’ Reviews of Modern Physics 70, 467
(1998) (doi: 10.1103/RevModPhys.70.467).

http://dx.doi.org/10.1103/RevModPhys.70.467
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Problem 8.8
The electric field due to an oscillating dipole at frequency ω = ck has the somewhat messy form

E(+)(r, ω) = 1

4πε0

{
[3(ε̂ · r̂)r̂ − ε̂]

[
1

r3
− i k

r2

]
− [(ε̂ · r̂)r̂ − ε̂] k

2

r

}
d(+)(ω)eikr, (8.375)

where r̂ is a unit vector in the r direction, and ε̂ is a unit vector marking the dipole orientation. (The
plus superscripts here indicate an implied time dependence of e−iωt.)
A naïve guess for the radiation field is to adapt the scalar spherical wave eikr/r, tacking on the
orientation and magnitude of the dipole moment to make a vector field (we can also tack on a factor
of 4πε0 for good measure):

E(+)
guess(r, ω) =

1

4πε0
d(+)(ω)

eikr

r
. (8.376)

Obviously this is wrong. However, show that the correct dipole field arises by using the transverse
projector (k2δαβ + ∂α∂β). That is, show that

E(+)
α = (k2δαβ + ∂α∂β)E

(+)
guess,β . (8.377)

Note that we associate this operator with transverse projection by examining the transverse delta
function:

δ⊥αβ(r) =
1

(2π)3

∫
d3k

(
δαβ −

kαkβ
k2

)
eik·r =

1

(2π)3

∫
d3k

1

k2
(
k2δαβ + ∂α∂β

)
eik·r. (8.378)

Thus, up to a factor of 1/k2 the transverse delta function is a Fourier transform of the projection
operator (k2δαβ + ∂α∂β).

Problem 8.9
Following the steps in the notes, show that the transverse and longitudinal delta functions,

δ⊥αβ(r) =
1

(2π)3

∫
d3k

(
δαβ −

kαkβ
k2

)
eik·r

δ
‖
αβ(r) =

1

(2π)3

∫
d3k

kαkβ
k2

eik·r,

(8.379)

can be expressed as

δ⊥αβ(r) =
2

3
δαβδ

3(r)− 1

4πr3

(
δαβ −

3rαrβ
r2

)
δ
‖
αβ(r) =

1

3
δαβδ

3(r) + 1

4πr3

(
δαβ −

3rαrβ
r2

) (8.380)

in the position representation.

Problem 8.10
Starting with the general relation

[Aα(r, t), Eβ(r′, t′)] = −
ih̄

ε0

∑
k,ζ

Re
[
fk,ζ,α(r)f∗k,ζ,β(r′)e−iωk(t−t′)

]
, (8.381)

follow the notes and derive the following commutator in half space:

[Aα(r, t), Eβ(r′, t)] = −
ih̄

ε0

[
δ⊥αβ(r− r′)− δ>αβ(r− − r′)

]
. (8.382)

Again, the interpretation is that the vector potential and electric field are ‘‘connected’’ at two spacetime
points if they lie on the same light cone with respect to paths that are either direct or have one bounce
off the mirror.
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Problem 8.11
Show by using the momentum-space representation of the transverse delta function that∫

d3r δ⊥αβ(r− r′)δ⊥βγ(r) = δ⊥αγ(r′). (8.383)

Problem 8.12

The quantum coherence functions g(n)(τ) are defined in terms of the quantum fields in the same way
we defined them for the classical counterparts, except that the classical time average is replaced by an
expectation value with respect to the state of the field.
(a) Derive expressions for g(1)(τ) and g(2)(τ) for a single mode of the electromagnetic field.
(b) Evaluate your expressions from part (a) for a field in a number state (Fock state) |n〉. Show that
the first-order coherence can be interpreted classically, but that this state is nonclassical at the second
order of coherence.

Problem 8.13
Consider the squeezed vacuum state

|ζ〉 = S(ζ)|0〉, (8.384)

of the harmonic oscillator (or a single field mode), where |0〉 is the vacuum state, and S(ζ) is the
squeezing operator22

S(ζ) := exp
[
1

2

(
ζ∗a2 − ζa†2

)]
. (8.385)

Note that the squeezing operator reduces to the identity for ζ = 0. Like the vacuum state, the squeezed
vacuum is a minimum-uncertainty Gaussian state, but with a different set of variances (the vacuum
state is literally stretched or ‘‘squeezed’’ into a different Gaussian, keeping the uncertainty product
constant in some basis).
Compute the initial value of the second-order correlation function

g(2)(0) =

〈
a†a†aa

〉
〈a†a〉2

, (8.386)

analogous to the one we studied to find antibunching in the resonance fluorescence in the two-level
atom. From this result, what can you conclude about the classicality of the squeezed vacuum? Is there
anything physically funny about your solution in the limit ζ −→ 0?
You may use without proof the transformation rules

S†(ζ)aS(ζ) = a cosh r − a†eiθ sinh r

S†(ζ)a†S(ζ) = a† cosh r − ae−iθ sinh r
(8.387)

for the ladder operators, where ζ = reiθ.

Problem 8.14
Given the solution ψ(r) to the scalar Helmholtz equation

(∇2 + k2)ψ = 0, (8.388)
22See David Stoler, ‘‘Equivalence Classes of Minimum Uncertainty Packets,’’ Physical Review D 1, 3217 (1970) (doi:

10.1103/PhysRevD.1.3217); Carlton M. Caves, ‘‘Quantum-mechanical noise in an interferometer,’’ Physical Review D 23,
1693 (1981) (doi: 10.1103/PhysRevD.23.1693).

http://dx.doi.org/10.1103/PhysRevD.1.3217
http://dx.doi.org/10.1103/PhysRevD.23.1693
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show that the vector fields

L = ∇ψ, M = ∇× (rψ), N =
1

k
∇×M (8.389)

satisfy the vector Helmholtz equation
(∇2 + k2)f = 0. (8.390)

Problem 8.15
In this problem you will work out the normalization factors for the spherical-cavity modes.
(a) Noting that the ordinary Bessel function Jn(x) satisfies Bessel’s equation

1

x
∂x [xJ

′
n(x)] +

(
1− n2

x2

)
Jn(x) = 0, (8.391)

show that ∫ R

0

dr rJ2
n(kr) =

R2

2

{
[J ′n(kR)]

2 − Jn(kR)J ′′n(kR)−
1

kR
Jn(kR)J

′
n(kR)

}
. (8.392)

Do this by multiplying Bessel’s equation by rJn(k
′r), then switching k′ ←→ k and subtracting the

resulting equations. Then integrate by parts and let k′ −→ k, being careful to keep the lowest-order
nonvanishing terms in k′ − k.
(b) Use the result of part (a) to show that the normalization integral from Eq. (8.98) or (8.113) is

N −2nl =

∫ R

0

dr r2 j 2
l (knlr) =

R3

2
[j′l(knlR)]

2
=
R3

2
j 2
l+1(knlR), (8.393)

for modes subject to the radial boundary condition (8.112)

jl(knlR) = 0, (8.394)

as is appropriate for a perfectly conducting spherical cavity for scalar or TE vector waves.
(c) Show that the same normalization integral, subject to the radial boundary condition (8.120)

∂r
[
r jl(knlr)

]∣∣
r=R

= 0, (8.395)

as is appropriate for a perfectly conducting spherical cavity for TM vector waves, becomes

N −2nl =

∫ R

0

dr r2 j 2
l (knlr) =

R3

2

(
1− l(l + 1)

k 2
nlR

2

)
j 2
l (kR). (8.396)

To start, it will help to use Bessel’s equation again to eliminate the J ′′n(x) in the result from part (a).

Problem 8.16
Work out the Hamiltonian structure of the massive electromagnetic field (Proca field), paralleling the
massless treatment of Section 8.8. Use as your Lagrangian

L = Lfree + Lsource + Lmass

Lfree =
ε0
2

∫
d3r
[
(∇φ+ ∂tA)2 − c2(∇×A)2

]
Lsource = −

∫
d3r [ρφ− j ·A]

Lmass = −
ε0
2

m2c4

h̄2

∫
d3r

[
A2 − φ2

c2

]
,

(8.397)
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where Lfree and Lsource are defined as before, and notice that the particle mass m enters with the
proper dimensions as the Compton length h̄/mc. In your treatment you should cover the following:
(a) Derive the canonical momenta and the Hamiltonian.
(b) Write down Hamilton’s equations and the generalized Maxwell equations, treating the explicitly
any gauge freedom for this field theory that arises from the structure of the Hamiltonian.
(c) Show that charge is only conserved in the Lorenz gauge, and thus that this field theory is not truly
gauge-invariant.
(d) Write down the wave equations for the potentials in the Lorenz gauge.
(e) Analyze a longitudinal solution A = ẑα exp[i(kz − ωt)], φ = β exp[i(kz − ωt)], where α and β
are real amplitudes. Derive the dispersion relation between ω and k. By considering (A, φ) to be the
components of a four-dimensional vector, show that in the limit m −→ 0 limit, the longitudinal field
becomes orthogonal to the source four-vector (you should work out the form of the source field). Thus,
in this limit, the longitudinal field decouples from any sources, leaving only the two transverse fields
in massless electromagnetism.
(f) Work out the scalar potential for a static point charge q localized at r = 0. Hint: start by showing
that away from r = 0 that a solution of the form rφ = C exp(−µr) satisfies the wave equation.



Chapter 9

Atomic Interaction with the Quantized
Field

Up till now, we have been using the dipole interaction Hamiltonian HAF = −d ·E to describe the coupling of
the atom and field. However, this interaction is approximate, being valid only in the dipole approximation
for nearly stationary atoms. Here, we will address the fundamental question, what is the fundamental
Hamiltonian for the atom–field interaction? The answer turns out to have some subtleties, and this subject
has historically been the source of substantial confusion.

9.1 Lorentz Force

The classical force on an electron of charge q = −e in an electromagnetic field is given by1

F = −e(E + v×B).
(9.1)

(Lorentz force law)

Instead of the fields, we can write this in terms of the vector and scalar potentials A and φ, respectively:

F = e[∇φ+ ∂tA− v× (∇×A)]. (9.2)

But the vector identity
∇(v ·A) = v× (∇×A) + (v · ∇)A (9.3)

gives
F = e[∇φ+ ∂tA + (v · ∇)A−∇(v ·A)]. (9.4)

The particular combination

dA(r, t)
dt

= ∂tA +
∂A
∂xα

dxα
dt

= ∂tA + (v · ∇)A (9.5)

is known as the convective derivative, and allows us to write

F = e

[
∇φ+

dA
dt
−∇(v ·A)

]
.

(9.6)
(Lorentz force law)

Of course, we also make the identification F = mr̈.
1See David J. Griffiths, Introduction to Electrodynamics, 4th ed. (Prentice-Hall, 2013), Section 5.1.2, p. 212.
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9.1.1 Lagrangian

We note that we can derive this force law from the Lagrangian

L =
1

2
mṙ2 − eṙ ·A(r) + eφ(r). (9.7)

(Lorentz-force Lagrangian)

To see this, we simply evaluate the Euler–Lagrange equation

∂L

∂r −
d

dt

∂L

∂ṙ = 0, (9.8)

which gives
−e∇(ṙ ·A) + e∇φ− d

dt
(mṙ− eA) = 0. (9.9)

It is easy to see (Problem 9.2) that this reproduces Eq. (9.6), but we can also write this in the form

d

dt
(mṙ− eA) = e∇[φ− (v ·A)], (9.10)

which suggests that mṙ − eA plays the role of the momentum, while −e[φ − (v ·A)] plays the role of the
(velocity-dependent) potential.

9.1.2 Hamiltonian

We can see that this is indeed the case by deriving the Hamiltonian. Since the potential is velocity-dependent,
the canonical momentum involves the vector potential:

p =
∂L

∂ṙ = mṙ− eA = pkinetic − eA.

(Lorentz-force canonical momentum) (9.11)
Here, pkinetic := mṙ is the usual kinetic momentum. Then, with ṙ = (p+eA)/m, in general the Hamiltonian
is the Legendre transform of the Lagrangian,

H = p · ṙ− L, (9.12)

so that the Hamiltonian for the Lorentz force is

H =
(p + eA)2

2m
− eφ. (9.13)

(Lorentz-force Hamiltonian)

Now the magnetic-field (∇×A) and transverse-electric-field (∂tA) parts of the interaction is included in the
kinetic part, while the longitudinal-electric part of the interaction (due to φ) is in the potential term.

9.2 Quantization and Minimal Coupling

The total Hamiltonian for a system of particles of charge qα and massmα interacting with the electromagnetic
field is then2

H =
∑
α

[pα − qαA(rα)]2

2mα
+
ε0
2

∫
d3r
(
E2 + c2B2

)
, (9.14)

where we now explicitly include the field Hamiltonian, and for the moment we do not explicitly consider any
contribution due to a scalar potential φ, since we have in a sense already included it. This is because of the

2For further reading, see Peter W. Milonni, The Quantum Vacuum (Academic Press, 1993), Section 4.2, p. 115.
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Helmholtz theorem, which says that the electric field can be decomposed into transverse and longitudinal
components as

E = E⊥ + E‖, (9.15)

where ∇ ·E⊥ = 0 and ∇×E‖ = 0. This decomposition is obvious in the Coulomb gauge, since E⊥ = −∂tA
and E‖ = −∇φ. Then using ∫

d3rE⊥ ·E‖ = 0, (9.16)

we can write the electric-field contribution to the Hamiltonian as∫
d3rE2 =

∫
d3r
(
E⊥2 + E‖2

)
=

∫
d3r E⊥2 +

∫
d3r (∇φ)2

=

∫
d3r E⊥2 −

∫
d3r φ∇2φ

=

∫
d3r E⊥2 +

1

ε0

∫
d3r ρφ,

(9.17)

where ρ is the source charge density, and we have dropped surface terms.
Suppose now that the source charges come in the form of localized point particles,

ρ =

N∑
α=1

qαδ
3(r− rα). (9.18)

Then the scalar potential is

φ(r, t) =
∫
d3r′

ρ(r′, t)
4πε0|r− r′| . (9.19)

So, we can now evaluate the integral in the last term of Eq. (9.17),∫
d3r ρφ =

∫
d3r

∫
d3r′

ρ(r, t)ρ(r′, t)
4πε0|r− r′| = 2

∑
α>β

qαqβ
4πε0|rα − rβ |

, (9.20)

so that we can write the total Hamiltonian (9.14) as

H =
∑
α

[pα − qαA(rα)]2

2mα
+

1

4πε0

∑
α>β

qαqβ
|rα − rβ |

+
ε0
2

∫
d3r
(
E⊥2 + c2B2

)
. (9.21)

Thus, we see that we can associate the longitudinal field E‖ with the fields due to the charged particles.
Now suppose that we take all but one of the particles to be fixed, with the moveable atom an electron

of charge q = −e, as appropriate for a one-electron atom (or an atom where one electron has the predominant
interaction with the field). Then the Hamiltonian becomes

H =
[pe + eA(re)]

2

2me
− eφ(re) +

ε0
2

∫
d3r
(
E⊥2 + c2B2

)
, (9.22)

where pe and re are the canonical coordinates of the electron. In an atom, we interpret the potential φ due
to the other charged particles to give the binding potential V (re). We can also see then that when quantizing
the field, it is only necessary to quantize the transverse field. To describe the atom–field interaction, we can
associate the longitudinal field with the atom itself. This is true of the magnetic field, since the magnetic
field is already transverse (since there are no magnetic monopoles).
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Thus, the quantization of the total Hamiltonian, including the atomic coupling to the electromagnetic
field, proceeds as follows. Take the quantized Hamiltonian for the atom and the field, in the uncoupled limit,
which we already know:

H =
p 2

e
2me

+ V (re) +
ε0
2

∫
d3r
(
E⊥2 + c2B2

)
. (9.23)

Now, to include the atom–field interaction, we make the minimal-coupling replacement pe −→ pe + eA
in the above Hamiltonian, to obtain the minimal-coupling Hamiltonian

H =
[pe + eA(re)]

2

2me
+ V (re) +

ε0
2

∫
d3r
(
E⊥2 + c2B2

)
(minimal-coupling Hamiltonian) (9.24)

describing the coupled atom-field system within quantum electrodynamics.

9.3 Dipole Interaction

Now we will move towards recovering the usual dipole-interaction Hamiltonian.3 Consider the first (kinetic)
term in the minimal-coupling Hamiltonian (9.24):

[pe + eA(re)]
2

2me
=

p 2
e

2me
+

e

me
A · pe +

e2

2me
A2. (9.25)

Note that in general pe and A do not commute, since pe = −ih̄∇e, and A = A(re). However, they do
commute here, since we are in the Coulomb gauge where ∇ · A = 0. Within the electric-dipole approxi-
mation, we take the vector potential A to be independent of position, evaluating A at the nuclear position
(and taking rnuc = 0). That is, we take the variation of A to be negligible over the scale of the atomic
size. This approximation is also called the long-wavelength approximation. Then the minimal-coupling
Hamiltonian becomes

H =
p 2

e
2me

+ V (re) +
e

me
pe ·A(0) +

e2

2me
A2(0) +

ε0
2

∫
d3r
(
E⊥2 + c2B2

)
(minimal-coupling Hamiltonian, long-wavelength approximation) (9.26)

in the long-wavelength approximation. Comparison to the uncoupled Hamiltonian (9.23) gives

HAF =
e

me
pe ·A(0) +

e2

2me
A2(0)

(minimal-coupling interaction, long-wavelength approximation) (9.27)
as the interaction Hamiltonian in terms of the vector potential. Here, the pe ·A term plays a role similar to
the familiar d · E Hamiltonian, as we will discuss in more detail below, while the A2 term is atomic-level-
independent and for many purposes may be ignored.

9.3.1 Power–Zienau Transformation

The atom–field interaction here is still in terms of the vector potential, and so we would like to see the
connection to the usual interaction with the electric field. We thus use the unitary Power–Zienau trans-
formation4 (again, in the long-wavelength approximation)

U = eiere·A(0)/h̄

(Power–Zienau transformation, long-wavelength approximation) (9.28)
3For further reading, see Peter W. Milonni, The Quantum Vacuum (Academic Press, 1993), Sections 4.3-4.4, pp. 119-125;

and J. R. Ackerhalt and P. W. Milonni, ‘‘Interaction Hamiltonian of quantum optics,’’ Journal of the Optical Society of America
B 1, 116 (1984).

4E. A. Power and S. Zienau, ‘‘Coulomb Gauge in Non-Relativistic Quantum Electro-Dynamics and the Shape of Spectral
Lines,’’ Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 251, 427
(1959); R. G. Woolley, ‘‘Molecular Quantum Electrodynamics,’’ Philosophical Transactions of the Royal Society of London.
Series A, Mathematical and Physical Sciences, 321, 557 (1971).
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to transform the Hamiltonian. The unitary transformation here amounts to a gauge transformation, and we
will refer to the situations before and after the unitary transformation as being different gauges. The new
Hamiltonian is

H̃ = UHU†. (9.29)

Using the identity
eABe−A = B + [A,B] +

1

2!
[A, [A,B]] + · · · , (9.30)

we can see that the new momentum is

p̃e = UpeU
† = pe + [iere ·A(0)/h̄,pe] = pe − eA(0), (9.31)

so that we can take care of the transformation of the kinetic energy by writing it in terms of the untrans-
formed momentum (which becomes both the canonical and the kinematic momentum in the Power–Zienau
transformation):

U(pe + eA)2U† = p 2
e . (9.32)

Also, the electric-field components transform as

Ẽ⊥β (r) = U(re)E
⊥
β (r)U†(re)

= E⊥β (r) +
[
iere ·A(0)/h̄, E⊥β (r)

]
= E⊥β (r) +

e

ε0
re,αδ

⊥
αβ(r),

(9.33)

where we used the commutation relation between the vector potential and electric field in free space from
Eq. (8.207). Thus, the transformation of the electric-field energy gives

U(re)

[∫
d3r
[
E⊥(r)

]2]
U†(re) =

∫
d3r
[
U(re)E⊥(r)U†(re)

]2
=

∫
d3r
[
E⊥(r)

]2
+

2e

ε0
re ·E⊥(0) +

1

ε 20

∫
d3r

[
P⊥(r)

]2
,

(9.34)

where
P(r) := −ereδ

3(r) (9.35)
(atomic polarization density)

is the polarization density for the atom, and the transverse polarization is the same but with the delta
function replaced by the transverse delta function:

P⊥β (r) := −ere,αδ
⊥
αβ(r). (9.36)

Thus, the transformed Hamiltonian is

H̃ =
p 2

e
2me

+ V (re) + ere ·E⊥ +
ε0
2

∫
d3r
(
E⊥2 + c2B2

)
+

1

2ε0

∫
d3r
[
P⊥(r)

]2
,

(transformed Hamiltonian) (9.37)
which again is written only in terms of the untransformed coordinates pe and E(r). Comparison to the
uncoupled Hamiltonian (9.23) gives an interaction Hamiltonian of

H̃AF = ere ·E⊥(0) +
1

2ε0

∫
d3r
[
P⊥(r)

]2
= −d ·E⊥(0) + 1

2ε0

∫
d3r
[
P⊥(r)

]2
,

(dipole interaction Hamiltonian) (9.38)
where the atomic dipole moment is d = −ere, and the atomic center is located at r = 0. The second
term, representing a (divergent) dipole self-energy, is commonly dropped, although sometimes it makes an
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important explicit contribution (e.g., in the calculation of the Lamb shift). We thus recover the familiar
form for the electric-dipole Hamiltonian

H̃AF ≈ −d ·E⊥ (9.39)
(dipole interaction Hamiltonian)

in the long-wavelength approximation.

9.3.1.1 Electric Displacement

Let’s once again examine the transformed electric field.5 From Eq. (9.33), we have

Ẽ⊥α (r) = E⊥α (r) +
e

ε0
re,αδ

⊥
αβ(r)

= E⊥α (r)−
1

ε0
P⊥α (r),

(9.40)

so that
ε0E⊥(r) = ε0Ẽ⊥(r) + P⊥(r) = D̃⊥(r). (9.41)

Thus, we see that the electric field in the original gauge (‘‘A gauge’’), or more precisely ε0E⊥, which is what
couples to the atom, corresponds to the dielectric displacement in the new gauge (‘‘E gauge’’). Since the
polarization density is localized, this is in fact the same as ε0Ẽ⊥ away from the origin.

9.3.1.2 Active and Passive Viewpoints

The viewpoint of the Power–Zienau transformation that we presented above—that the electric-dipole Hamil-
tonian arises from a unitary transformation of the Hamiltonian—is the ‘‘active’’ view of the transformation.
We can alternately use a ‘‘passive’’ view, where we can get the same form of the interaction Hamiltonian
(9.37) without transforming it, if we use the coordinate transformation6

U ′ = e−iere·A/h̄, (9.42)

which gives new coordinates
p′e = U ′peU

′† = pe + eA

A′ = A

r′e = re

B′ = B

E′⊥ = E⊥ +
1

ε0
P⊥.

(9.43)

Then the untransformed Hamiltonian is

H =
[pe + eA(re)]

2

2me
+ V (re) +

ε0
2

∫
d3r
(
E⊥2 + c2B2

)
=

p′e
2

2me
+ V (r′e) + er′e ·E′⊥ +

ε0
2

∫
d3r
(
E′⊥2 + c2B′2

)
+

1

2ε0

∫
d3r
[
P⊥(r)

]2
,

(9.44)

which has the same form as (9.37), but in transformed coordinates. (Before, we wrote the transformed Hamil-
tonian in untransformed coordinates). Note here that ε0E′ is the dielectric displacement in the old variables.
In both the active and passive viewpoints, the field that couples to the atom is in fact a displacement, not
an electric field, although it is conventional to write it as an electric field (since they are the same outside
the atom).

5For further discussion, see J. R. Ackerhalt and P. W. Milonni, ‘‘Interaction Hamiltonian of quantum optics,’’ Journal of the
Optical Society of America B 1, 116 (1984).

6For further discussion, see J. R. Ackerhalt and P. W. Milonni, op. cit.
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9.3.1.3 Göppert-Mayer Transformation

The Power–Zienau transformation was actually preceded by an equivalent canonical transformation derived
by Göppert-Mayer.7 Recall that the classical equations of motion are unchanged if we add a total time
derivative, say

d

dt
S(q, t), (9.45)

to the Lagrangian L(q, q̇; t) in terms of the generalized coordinate q. Doing so induces a canonical trans-
formation, and we can choose the generating function of the canonical transformation S(q, t) to be
S(re, t) = ere ·A. The Lagrangian (9.7) is

L =
1

2
meṙ 2

e − eṙe ·A(re) + eφ(re), (9.46)

which thus transforms to
L̃ = L+

d

dt
ere ·A

= L+ eṙe ·A + ere · Ȧ

=
1

2
meṙ 2

e + eφ(re) + ere · Ė⊥.

(9.47)

We can see that the generating function exactly cancels the pe ·A term and adds in the re ·E term. Thus,
this canonical transformation classically effects the transformation from H to H̃.

9.3.2 p · A vs. r · E
Now it appears that, depending on the choice of gauge, we have two possible interaction Hamiltonians in
the long-wavelength approximation. In the E gauge, we have from Eq. (9.38)

H
(E)
AF = ere ·E +

1

2ε0

∫
d3r
[
P⊥(r)

]2 ≈ ere ·E, (9.48)

where again the polarization term is typically negligible. The A gauge, on the other hand, gives from
Eq. (9.27)

H
(A)
AF =

e

me
pe ·A +

e2

2me
A2 ≈ e

me
pe ·A, (9.49)

where we have assumed that the A2 term is negligible, which is typically the case. Comparing these two
Hamiltonians amounts to comparing pe · A to mere · E. This seems reasonable, as pe = me∂tre, and
E⊥ = −∂tA, so the two Hamiltonians seem to differ by moving a time derivative from one factor to the
other, as in some sort of integration by parts. However, the matrix elements of these two Hamiltonians differ,
as we will now show.

First, we must derive a relation between matrix elements of r and p. Consider the commutator

[re,HA] = ih̄
pe

me
, (9.50)

where the atomic Hamiltonian is as usual HA = p 2
e /2me + V (re). Then the momentum operator becomes

pe = −ime

h̄
[re,HA], (9.51)

or in matrix elements in the basis of eigenstates |j〉 of HA,

〈j|pe|j′〉 = −i
me

h̄
〈j|[re,HA]|j′〉

= imeωjj′〈j|re|j′〉,
(9.52)

7M. Göppert-Mayer, ‘‘Über Elementarakte mit zwei Quantensprüngen,’’ Annalen der Physik 9, 273 (1931).
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where
ωjj′ :=

Ej − Ej′
h̄

(9.53)

is the transition frequency (and could be positive or negative depending on the ordering of the states).
Thus, for the matrix elements of the two Hamiltonians, we may write∣∣∣∣∣ 〈j|H(E)

AF |j′〉
〈j|H(A)

AF |j′〉

∣∣∣∣∣ =
∣∣∣∣me〈j|re ·E|j′〉
〈j|pe ·A|j′〉

∣∣∣∣ = ω

|ωjj′ |
. (9.54)

The matrix elements for the interaction Hamiltonians are different! This would seem to give different physical
predictions, depending on which Hamiltonian we use. What gives?

This problem has generated much discussion, and its resolution is somewhat tricky. One ‘‘resolution’’
states that a unitary transformation generated the second Hamiltonian from the first. Thus, to get the
same answers in both gauges, one must also apply the same transformation to the states, and then trivially
the matrix elements must be the same (matrix elements and expectation values are always invariant under
unitary transformations). But that still doesn’t help much: given a particular pair of states, say atomic
energy eigenstates, which is the appropriate interaction Hamiltonian to use? Using the passive viewpoint,
which avoids the unitary transformation of the Hamiltonian—the Hamiltonian is the same in either gauge,
just expressed in different coordinates—doesn’t actually help, because we would still need to find the action
of the new variables on the old state, which is equivalent to making the unitary transformation.

The point is, that physically measureable quantities are gauge-invariant, and thus should be calculable
with either Hamiltonian.8 One ‘‘resolution’’ of this ‘‘paradox’’ asserts that because the E-gauge atomic
energy operator is equivalent to the unperturbed Hamiltonian (and in particular, the kinematic and canonical
momenta are equivalent), the usual energy eigenstates are associated with the E gauge, and the computation
of matrix elements is most straightforward here.9 This interpretation is a bit tricky, since even in the A
gauge, the kinematic and canonical momenta are equivalent in the absence of a perturbing field, and we
have already counted the longitudinal binding field as part of the background, not the perturbation. The
interpretation that we will prefer here is that the energy eigenstates can appropriately be used for either
gauge, but only when we ask physical questions.10 But then what about the different matrix elements?
Broadly speaking, there are two situations that have slightly different resolutions.

1. A matrix element between two stable states is physical only for an energy-conserving process (at least
in the case of a time-independent Hamiltonian). In this case, the laser and transition frequencies are
equivalent (ω = ω0) to enforce energy conservation. This is, for example, the case when dealing with
the Hamiltonian treatment of spontaneous decay.

2. In cases where ω 6= ω0, as can happen for a homogeneously broadened line or an inelastic process, the
matrix element represents an intermediate transition in a larger, multiphoton process that conserves
energy. We then regard the overall process as the physical one, and the combination of the matrix
elements, summed over all intermediate states, is gauge-invariant. We will see examples of this in the
Casimir–Polder effect and Lamb shift.

The main idea here is that when the matrix elements differ between the gauges, then a physically relevant
sum over the states is gauge-invariant. It may be the case that the sum has faster convergence in one gauge
compared to another, so that for a specific calculation there may be a more convenient gauge. However, the
final answer should always be the same.

It’s possible that summing over all intermediate states and restricting yourself to physical results still
doesn’t produce the same answer in both gauges, in which case the next step is to keep the extra self-energy

8For a good discussion of this point, see Marlan O. Scully and M. Suhail Zubairy, Quantum Optics (Cambridge, 1997),
Appendix 5.A, p. 178.

9Marlan O. Scully and M. Suhail Zubairy, op. cit.
10Edwin A. Power, ‘‘A Review of Canonical Transformations as they Affect Multiphoton Processes,’’ in Multiphoton Processes:

Proceedings of an International Conference at the University of Rochester, Rochester, N.Y., June 6-9, 1977, Joseph H. Eberly
and Peter Lambropoulos, Eds. (Wiley, 1978); Claude Cohen–Tannoudji, Jacques Dupont-Roc, and Gilbert Grynberg, Photons
& Atoms (Wiley, 1989), Complement BIV, p. 316; Zoltan Fried, ‘‘Vector Potential Versus Field Intensity,’’ Physical Review A
8, 2835 (1973) (doi: 10.1103/PhysRevA.8.2835).

http://dx.doi.org/10.1103/PhysRevA.8.2835
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terms we ignored in the two interaction Hamiltonians (9.48) and (9.49). These extra terms are important in
getting gauge-independent results, for example, in the Lamb shift, as we will see later in Section 13.12.

9.4 Why the Vector Potential?

We have seen in the canonical quantization of the field, that the vector potential plays a central role. We
have now also just seen that it plays a central role in the coupling of an atom to the electromagnetic field.
But why the potential, and not the fields themselves? After all, the electromagnetic fields are far more
intuitive, and the vector potential is somewhat ambiguous due to gauge freedom.

In physics, it helps our intuition to have local interactions. For example, in classical electrodynamics,
we can do away with electric and magnetic fields and regard electrodynamics as a theory of interacting
charged particles. However, some strange things happen: the force between two moving, charged particles
is not a central force. That is, it appears to violate Newton’s third law, that the electromagnetic force
on one particle is not necessarily equal and oppose to the force on the other. Momentum conservation is
saved by attributing some of the momentum to the electromagnetic fields.11 Another example comes again
from considering the force between two initially stationary particles. You observe that when you start to
wiggle one of them, the other doesn’t respond to the wiggle until a time r/c later, and thus the retarded
time is important in electrodynamics. However, consider the direction of the force on a stationary particle
due to one moving at constant velocity: you might be tempted to conclude that it points to the retarded
location of the moving particle, when in fact it points to the instantaneous location.12 (If the motion is not
of constant velocity, then the direction of the force is different still.) In classical physics, then, one function
of introducing the electromagnetic fields is to avoid such counterintuitive, nonlocal interactions: one particle
generates a field, which propagates to the other particle and thus influences it.

In quantum mechanics, to preserve the same sort of locality of interactions, we are forced to include
the vector potential at a fundamental level.13 The most striking example where this is the case is the
Aharonov–Bohm effect,14 which deals with a charged particle moving in the exterior of a solenoid. In
particular, suppose we set up an interference experiment, where the charged particle, after being split, travels
on either side of the solenoid before being recombined.

charged particle

solenoid

If the ideal solenoid is of radius R, is oriented along the z-axis, and has a linear density of turns N with
current I, the magnetic field is15

B =

{
µ0NIẑ, r < R

0, r > R,
(9.55)

11See David J. Griffiths, Introduction to Electrodynamics, 4th ed. (Prentice-Hall, 2013), Section 8.2, p. 360.
12Richard Feynman, Robert B. Leighton, and Matthew L. Sands, The Feynman Lectures on Physics, Vol. II, Chapter 21

(Addison-Wesley, 1989).
13I learned this analogy to locality in classical physics from Tanmoy Bhattacharya. For more notes and a good discussion of

the Aharonov–Bohm effect, see J. J. Sakurai, Modern Quantum Mechanics (Addison-Wesley, 1994), pp. 136-9.
14Y. Aharonov and D. Bohm, ‘‘Significance of Electromagnetic Potentials in the Quantum Theory,’’ Physical Review 115, 485

(1959) (doi: 10.1103/PhysRev.115.485). This effect was discussed earlier by W. Ehrenberg and R. E. Siday, ‘‘The Refractive
Index in Electron Optics and the Principles of Dynamics,’’ Proceedings of the Physical Society. Section B 62, 8 (1949) (doi:
10.1088/0370-1301/62/1/303).

15David J. Griffiths, op. cit., p. 237.

http://dx.doi.org/10.1103/PhysRev.115.485
http://dx.doi.org/10.1088/0370-1301/62/1/303
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and thus vanishes outside the solenoid. The vector potential, on the other hand, is16

A =


µ0NI

2
rφ̂, r < R

µ0NI

2

R2

r
φ̂, r > R,

(9.56)

so that the vector potential does not vanish outside the solenoid.
Now consider the Schrödinger equation, including the minimal-coupling replacement, describing the

particle motion in the presence of the magnetic field:

ih̄∂tψ =
1

2m

[
h̄

i
∇− qA

]2
ψ. (9.57)

We will now effect the gauge transformation that we noted above as follows. Under the replacement

ψ −→ ψe−iqχ(r)/h̄, (9.58)

where χ(r) is some function (that defines the gauge transformation), we see that

∇ψ −→
[
∇ψ − iq∇χ(r)

h̄
ψ

]
e−iqχ(r)/h̄, (9.59)

and thus the Schrödinger equation is invariant if we also let

A −→ A−∇χ(r). (9.60)

In the region outside the solenoid, B = ∇×A = 0, so that we may choose χ(r) such that A = ∇χ, and in
particular,

χ(r) =
∫ r

r0

A · ds. (9.61)

With this choice of χ, the vector potential goes away, and the Schrödinger equation becomes that of the free
particle. That is, assuming a wave function

ψ = ψ0 exp
[
iq

h̄

∫ r

r0

A · ds
]
, (9.62)

then ψ0 is a solution to the free-particle wave equation. Thus, the phase shift accumulated by a moving
particle due to the presence of the field is

φ =
q

h̄

∫ r

r0

A · ds, (9.63)

where the integral is along the particle’s path, and in the interferometer above, we can write the phase
difference of the two arms as a closed-path integral

∆φ =
q

h̄

∮
A · ds, (9.64)

where the contour is around the total path of the interferometer. Note that we can now write

∆φ =
q

h̄

∫
(∇×A) · da =

q

h̄

∫
B · da =

q

h̄
ΦB , (9.65)

where ΦB is the enclosed magnetic flux. For an electron with q = −e, the phase shift becomes

∆φ = − e
h̄
ΦB = −2πΦB

Φ0
,

(9.66)
(Aharonov–Bohm phase)

16David J. Griffiths, op. cit., p. 247.
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where
Φ0 =

h

e
≈ 4.14× 10−7 Wb (9.67)

is a fundamental unit of magnetic flux, and 1 Wb = 1 T m2 = 1 V s.
The whole point is this: we can observe interference fringes due to the magnetic field, even though

the particle stays in regions of zero magnetic field. Even though this remarkable result can be explained in
terms of flux of the magnetic field, it motivates the fundamental nature of the vector potential if we are to
maintain a local interaction between particles and fields: evidently the quantum interaction of a particle and
the magnetic field is nonlocal.

9.5 Multipole Interactions

To generalize the above results for the dipole Hamiltonian (9.37) in the long-wavelength approximation,
we will now consider the more general Power–Zienau transformation without making the long-wavelength
approximation. In this way, we will derive general expressions for the atomic interaction with the electric
and magnetic fields, and then we will expand these to generate the higher-order multipole couplings.17

9.5.1 Atomic Polarization Field

We will start by making the approximation of a heavy nucleus, mnuc � me, so we identify the reduced
electron mass with the normal electron mass and we will assume that the nuclear position rnuc = 0 defines
the center of mass for the system. Then we can write the polarization field for the atom—here, a singly
charged nucleus at rnuc = 0 and an electron at re—as the line integral

P(r) = −ere

∫ 1

0

ds δ3(r− sre).
(9.68)

(atomic polarization density)

To see that this is correct, recall that the polarization field corresponding to a charge density ρ satisfies18

∇ ·P = −ρ, (9.69)

or since the transverse polarization does not contribute, this is really only a constraint on the longitudinal
polarization.

∇ ·P‖ = −ρ. (9.70)

Computing the divergence of the atomic polarization (9.68),

∇ ·P = −ere · ∇
∫ 1

0

ds δ3(r− sre)

= e

∫ 1

0

ds
∂

∂s
δ3(r− sre)

= eδ3(r− re)− eδ3(r)

= −ρ,

(9.71)

where the last equality holds if we identify the charge distribution

ρ = eδ3(r)− eδ3(r− re). (9.72)
17E. A. Power and S. Zienau, op. cit.; R. G. Woolley, op. cit. See also Claude Cohen–Tannoudji, Jacques Dupont-Roc, and

Gilbert Grynberg, Photons & Atoms (Wiley, 1989), Section IV.C, p. 280; and Werner Vogel and Dirk-Gunnar Welsch, Quantum
Optics, 3rd ed. (Wiley, 2006).

18See, for example, David J. Griffiths, Introduction to Electrodynamics, 4th ed. (Prentice-Hall, 2013), p. 174.
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The first term is obviously the nuclear charge density, while the second term represents the electron charge
density. Note that despite the expression here, we are not necessarily assuming a localized charge density
for the electron, as re is an operator and thus is still subject to uncertainty and quantum fluctuations.

You can visualize the above result (9.68) for the polarization as follows. The atom, in our simplified
model, consists of two opposite and separated charges. The polarization is the dipole moment per unit
volume, and here we represent it by a continuum of delta-function-localized dipoles, forming a line between
the two charges. Each dipole moment is an idealized charge pair, and the charges for the successive dipole
moments exactly cancel each other, except at the endpoints of the line. Of course we don’t want the endpoints
of the line to cancel, since those are the atomic charges. The line of dipoles isn’t unique, since any path
connecting the nucleus to the electron will do. That freedom is implicit since we did not constrain the
curl of P, merely the divergence. However, we have chosen the simplest path, and it is consistent with the
requirement (9.69).

9.5.2 Atomic Magnetization Field

We can also define a magnetization field for the electron: while the polarization related to the atomic
charge distribution, the magnetization (magnetic dipole moment per unit volume) summarizes the magnetic
properties of the atom due to motion of the charge distribution. To motivate this field, we can differentiate
Eq. (9.69) to obtain

∇ · ∂tP = −∂tρ. (9.73)

Comparing this to the continuity equation,

∇ · j = −∂tρ, (9.74)

we can see that we can identify j− ∂tP as an irrotational vector field:

∇ · (j− ∂tP) = 0. (9.75)

We can thus write this field as the curl of some other vector field. Recalling also that the curl of the
magnetization M behaves as an effective current density,19

jm = ∇×M, (9.76)

we can conveniently interpret j− ∂tP as being the curl of the atomic magnetization:

j− ∂tP = ∇×M. (9.77)

The longitudinal magnetization does not contribute here, so this is really only a constraint on the transverse
magnetization:

j− ∂tP = ∇×M⊥. (9.78)

If we identify the atomic current density

j = −eṙeδ
3(r− re), (9.79)

and differentiate the atomic polarization (9.68),

∂tP(r) = −eṙe

∫ 1

0

ds δ3(r− sre)− ereṙe ·
∫ 1

0

ds∇eδ
3(r− sre), (9.80)

we can verify directly that the constraint (9.78) is satisfied by the expression

M(r) = −ere × ṙe

∫ 1

0

ds s δ3(r− sre),
(9.81)

(atomic magnetization density)

19David J. Griffiths, op. cit., p. 275.
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which we do as follows, by employing the ‘‘bac-cab rule’’ A× (B×C) = B(A ·C)−C(A ·B):

∇×M(r) = e (re × ṙe)×
∫ 1

0

ds s∇δ3(r− sre)

= −eṙere ·
∫ 1

0

ds s∇δ3(r− sre)− ereṙe ·
∫ 1

0

ds s∇δ3(r− sre)

= −eṙe

∫ 1

0

ds s
∂

∂s
δ3(r− sre) + ereṙe ·

∫ 1

0

ds∇eδ
3(r− sre)

= −eṙeδ
3(r− sre)− eṙe

∫ 1

0

ds
∂

∂s
δ3(r− sre) + ereṙe ·

∫ 1

0

ds∇eδ
3(r− sre)

= j(r)− ∂tP(r).

(9.82)

Here, we used expressions (9.79) and (9.80) for the atomic current density and derivative of the polarization,
respectively. Again, the choice of magnetization here is not unique, but is a simple choice that satisfies the
constraint (9.78).

9.5.3 Power–Zienau Transformation

The more general Power–Zienau transformation is then given by the unitary operator

U = exp
[
− i
h̄

∫
d3r P(r) ·A(r)

]
.

(9.83)
(Power–Zienau transformation)

We will see later [in Eq. (9.111)] that the dipole polarization is the first term in a multipole expansion of
P(r), and so in the dipole approximation the Power–Zienau operator reduces to

U = exp
[
− i
h̄

∫
d3r P(r) ·A(r)

]
≈ exp

[
ie

h̄
re ·A(0)

]
, (9.84)

which is precisely the operator (9.28) we used in the long-wavelength approximation. Clearly, the electron
position and vector potential (hence, magnetic field) are still invariant under this transformation, so it
remains to transform the electric field and canonical electron momentum, and of course, the minimal-coupling
Hamiltonian (9.24)

H =
[pe + eA(re)]

2

2me
+ V (re) +

ε0
2

∫
d3r
(
E⊥2 + c2B2

)
, (9.85)

in order to obtain the multipole interactions in terms of the electric and magnetic fields.

9.5.3.1 Electric Field

Using the transformation (9.30) and the Jordan–Pauli commutation relation between the vector potential
and electric field in free space from Eq. (8.207),

[Aα(r, t), Eβ(r′, t)] = −
ih̄

ε0
δ⊥αβ(r− r′), (9.86)

the electric field transforms as

Ẽ⊥β (r) = U(re)E
⊥
β (r)U†(re)

= E⊥β (r) +
[
− i
h̄

∫
d3r′P(r′) ·A(r′), E⊥β (r)

]
= E⊥β (r)−

i

h̄

∫
d3r′ Pα(r′)

[
Aα(r′), E⊥β (r)

]
= E⊥β (r)−

1

ε0

∫
d3r′ Pα(r′) δ⊥αβ(r′ − r),

(9.87)
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so that

Ẽ⊥β (r) = E⊥β (r)−
1

ε0
P⊥β (r). (9.88)

(transformed field operator)

We see here again that the transformed electric field still corresponds to the untransformed dielectric dis-
placement. Thus, the electric-field part of the Hamiltonian becomes

U(re)

[
ε0
2

∫
d3r
[
E⊥(r)

]2]
U†(re) =

ε0
2

∫
d3r
[
U(re)E⊥(r)U†(re)

]2
=
ε0
2

∫
d3r

[
E⊥(r)− 1

ε0
P⊥(r)

]2
=
ε0
2

∫
d3r
[
E⊥(r)

]2 − ∫ d3rP⊥(r) ·E⊥(r) + 1

2ε0

∫
d3r

[
P⊥(r)

]2
.

(9.89)
The first term is simply the energy of the transformed field, the second is the atomic interaction (via its
polarization density) with the electric field, and the last term is again a dipole self-energy due to the dipole
field.

9.5.3.2 Canonical Electron Momentum

Now to carry out the transformation of the momentum. Using

[pe, f(re)] = −ih̄∇ef(re), (9.90)

for an arbitrary function f , the momentum transforms as

p̃e = U(re)peU
†(re)

= pe +

[
− i
h̄

∫
d3rP(r) ·A(r),pe

]
= pe +

∫
d3r∇e [P(r) ·A(r)]

= pe − e
∫
d3r∇e

[
re ·A(r)

∫ 1

0

ds δ3(r− sre)

]
= pe − e

∫
d3rA(r)

∫ 1

0

ds δ3(r− sre)− e
∫
d3r re ·A(r)

∫ 1

0

ds∇eδ
3(r− sre).

(9.91)

In the last step, we used the fact that ∇(r ·A) = A if A is independent of r. The second term is

−e
∫
d3rA(r)

∫ 1

0

ds δ3(r− sre) = −e
∫ 1

0

dsA(sre), (9.92)
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and the third term is

−e
∫
d3r re ·A(r)

∫ 1

0

ds∇eδ
3(r− sre) = e

∫
d3r re ·A(r)

∫ 1

0

ds s∇δ3(r− sre)

= −e
∫
d3r∇ [re ·A(r)]

∫ 1

0

ds s δ3(r− sre)

= −e
∫
d3r [re × [∇×A(r)] + (re · ∇)A(r)]

∫ 1

0

ds s δ3(r− sre)

= −e
∫
d3r re × [∇×A(r)]

∫ 1

0

ds s δ3(r− sre)

−e
∫ 1

0

ds s (re · ∇)A(sre)

= −e
∫
d3r re × [∇×A(r)]

∫ 1

0

ds s δ3(r− sre)

−e
∫ 1

0

ds s
∂

∂s
A(sre)

= −e
∫
d3r re × [∇×A(r)]

∫ 1

0

ds s δ3(r− sre)

−eA(re) + e

∫ 1

0

dsA(sre).

(9.93)
Collecting terms, we find

p̃e = pe − eA(re)− e
∫
d3r re × [∇×A(r)]

∫ 1

0

ds s δ3(r− sre)

= pe − eA(re)− ere ×
∫ 1

0

ds s [∇×A(sre)] ,

(9.94)

and finally the new momentum is

p̃e = pe − eA(re)− ere ×
∫ 1

0

ds sB(sre).
(9.95)

(transformed momentum)

Thus, the atomic part of the minimal-coupling Hamiltonian transforms as

U(re)
[pe + eA(re)]

2

2me
U†(re) =

1

2me

[
pe − ere ×

∫ 1

0

ds sB(sre)

]2
. (9.96)

We can see that this part of the transformed Hamiltonian describes the coupling of the atom to the magnetic
field.

9.5.3.3 Hamiltonian

Collecting pieces from the last two sections, the minimal-coupling Hamiltonian (9.85) becomes

H̃ = U(re)HU
†(re)

=
1

2me

[
pe − ere ×

∫ 1

0

ds sB(sre)

]2
+ V (re)

+
ε0
2

∫
d3r
(
E⊥2 + c2B2

)
−
∫
d3rP⊥(r) ·E⊥(r) + 1

2ε0

∫
d3r

[
P⊥(r)

]2
.

(multipole Hamiltonian) (9.97)
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Note again that the canonical variables are old canonical variables; it is equally possible to obtain this result
by writing the old Hamiltonian in terms of new variables. From its form, we can deduce (see Problem 9.3)
that the classical canonical momentum for this Hamiltonian is

pe = meṙe + ere ×
∫ 1

0

ds sB(sre).
(9.98)

(multipole canonical momentum)

That is, it differs from the kinematic momentum only by a term proportional to the local magnetic field.
Although this argument is classical, we can also interpret this expression for the canonical momentum as
the Heisenberg equation

ṙe = − i
h̄
[H̃, re]

= pe −
e

me
re ×

∫ 1

0

ds sB(sre),
(9.99)

giving the velocity operator in terms of the canonical momentum.
It is convenient to multiply out the kinetic term in the above Hamiltonian and separate the terms in

the Hamiltonian according to their ‘‘function:’’

H̃ = HA +HF +HAE +HAM.
(9.100)

(multipole Hamiltonian)

The isolated atomic Hamiltonian is as usual

HA =
p 2

e
2me

+ V (re),
(9.101)

(free-atom Hamiltonian)

and the field Hamiltonian also has its usual form:

HF =
ε0
2

∫
d3r
(
E⊥2 + c2B2

)
.

(9.102)
(free field Hamiltonian)

Recall here that the longitudinal electric field is already included in the Coulomb binding potential V (re).
The coupling of the atom to the electric field is given by the interaction Hamiltonian

HAE = −
∫
d3rP⊥(r) ·E⊥(r) + 1

2ε0

∫
d3r

[
P⊥(r)

]2
.

(9.103)
(atom–E-field coupling)

The first term gives the atom–field coupling via the atomic polarization density, while the second term
represents an atomic self-energy from the coupling of the polarization to its own field. Note that the
Coulomb binding potential may also be written a similar form in terms of P‖(r) and thus combined with
the transverse self energy (just as it can be regarded as the energy of the longitudinal electric field), but we
will separate the contributions here.

Finally, the coupling to the magnetic field has the most complicated form:

HAM = − e

2me

[
pe ·

(
re ×

∫ 1

0

ds sB(sre)

)
+

(
re ×

∫ 1

0

ds sB(sre)

)
· pe

]
+

e2

2me

[
re ×

∫ 1

0

ds sB(sre)

]2
.

(9.104)
Using the identity A · (B ×C) = B · (C ×A), while being careful with the order of operators (and noting
re × pe = −pe × re), we can rewrite the first term of the interaction to obtain the symmetrized form

HAM =
e

2me

∫ 1

0

ds s
[
(re × pe) ·B(sre) + B(sre) · (re × pe)

]
+

e2

2me

[
re ×

∫ 1

0

ds sB(sre)

]2
. (9.105)
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To further understand the first term, note that we can rewrite it as

HAM = −1

2

∫
d3r
[
M←(r) ·B(r) + B(r) ·M→(r)

]
+

e2

2me

[
re ×

∫ 1

0

ds sB(sre)

]2
,

(atom–B-field coupling) (9.106)
where the two quantum magnetizations are

M←(r) = −e
(

re ×
pe

me

)∫ 1

0

ds s δ3(r− sre)

M→(r) = −e
∫ 1

0

ds s δ3(r− sre)

(
re ×

pe

me

)
.

(quantum atomic magnetizations) (9.107)
This brings the first part of the magnetic interaction into the same form as the electric interaction (9.103).
Note that if we identify pe −→ meṙe, both of these reduce to the classical magnetization,

M(r) = −ere × ṙe

∫ 1

0

ds s δ3(r− sre), (9.108)

from Eq. (9.81) above. Of course, as we mentioned above, pe is not the kinematic momentum, but rather is
given by Eq. (9.98). Thus, the magnetic field couples to an atomic quantity that is close to, but not exactly,
the classical momentum. Further, because the magnetic field couples to the atomic momentum (or rather,
the angular momentum), the symmetric ordering is important in the above interaction.

The second term in the magnetic interaction Hamiltonian (9.105) is quadratic in the magnetic field,
and we can interpret it as a diamagnetic energy of the atom in the magnetic field.

9.5.4 Electric Multipole Expansion

Now we will effect the expansion of the electric-field interaction Hamiltonian (9.103) into multipole moments.
The self-interaction term can also be expanded, but often it is dropped and we will do this here, expanding
only the remaining atom–field interaction:

HAE = −
∫
d3rP⊥(r) ·E⊥(r). (9.109)

We begin by expanding the delta function in s, since we assume that the variation of the fields are slow over
the length scale re:

δ3(r− sre) = δ3(r)− s
[
re · ∇δ3(r− sre)

]
s=0

+
s2

2

[
(re · ∇)2 δ3(r− sre)

]
s=0

+ · · ·

= δ3(r)− s (re · ∇) δ3(r) +
s2

2
(re · ∇)2 δ3(r) + · · · .

(9.110)

This odd expression is sensible since we are in a sense not expanding the delta function, but rather the test
function on which the delta function acts. Multiplying by an arbitrary test function f(r) and integrating
leads to the usual series expansion for f(r− sre) about s = 0. The polarization field then expands as

P(r) = −ereδ
3(r) + 1

2
ere (re · ∇) δ3(r)−

1

6
ere (re · ∇)2 δ3(r) + · · · . (9.111)

Thus, the interaction Hamiltonian becomes

HAE = ere ·E⊥(0)−
e

2
(re · ∇) re ·E⊥(0) +

e

6
(re · ∇)2 re ·E⊥(0) + · · · , (9.112)

where note that the gradients operate on the electric fields. Then we can write the Hamiltonian in terms of
the multipole moments as

HAE = −dαE⊥α (0) +Qαβ∂αE
⊥
β (0)−Oαβγ∂α∂βE⊥γ (0) + · · · ,

(electric multipole expansion) (9.113)
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where note that there are implied summations over repeated indices. Here, the electric dipole moment is as
expected

dα := −ere,α,
(9.114)

(electric dipole moment)

while the electric quadrupole moment is

Qαβ := −1

2
e

(
re,αre,β −

r 2
e
3
δαβ

)
.

(9.115)
(electric quadrupole moment)

The first term in the quadrupole operator follows directly from (9.112), while the Kronecker-delta term is
added to remove the traces of the moments, Qαα = 0. The trace vanishes since ∇ · E⊥ = 0, which in index
notation is ∂αE⊥α = 0, and thus implies δαβ∂αE⊥β = 0. Note that the quadrupole moment as written here is
the irreducible, rank-2 part of the symmetric, Cartesian tensor (−ere,αre,β/2) [see Eq. (7.206)]. Finally, the
electric octupole moment is

Oαβγ := −1

6
e

[
re,αre,βre,γ −

r 2
e
5

(re,αδβγ + re,βδγα + re,γδαβ)

]
.

(electric octupole moment) (9.116)
Again, the first term is the physically important part, while the Kronecker deltas ensure that the tensor is
traceless, giving the irreducible, rank-3 part20 of the symmetric, Cartesian tensor (−ere,αre,βre,γ/6). The
first two traces vanish, Oαβα = Oβαα = 0, in the same way as for the quadrupole moment. Note that for
an octupole interaction with a longitudinal field of the form Oαβγ∂α∂β∂γφ in terms of the scalar potential,
the remaining trace Oααβ also vanishes by permutation symmetry of the indices. However, this is not the
case for the interaction with the transverse field, where in general ∂α∂αE⊥γ (0) is nonvanishing. However, for
a monochromatic interaction (as appropriate near resonance, when driving a narrow octupole transition),
the electric field obeys the Helmholtz equation, and thus ∂α∂αE⊥γ (0) = −k2E⊥γ (0). Thus, this trace of the
octupole moment leads to an interaction of the form −Oααβ∂α∂αE⊥β (0) = −e(k2r 2

e /6)re,βE
⊥
β (0). This is of

the same form as the dipole interaction, so we should also remove this trace from the octupole moment, and
regard it as a correction to the dipole operator, which should thus have the form dα = −e(1 + k2r 2

e /6)re,α,
which now has a small correction at the level of only a part in 106.

Due to the presence of additional factors of re with derivative operators, the quadrupole interaction is
weaker than the dipole interaction by a factor kre, where k = ω/c is the optical wave number. Generally this
factor is small for optical transitions (kre � 1): for the D2 transtion of 87Rb, for example, with λ = 780 nm
and re ∼ 2a0 (a0 is the Bohr radius), kre ∼ 0.0051. The octupole interaction is a factor of kre weaker yet
than the quadrupole term. However, octupole transitions have been driven in experiments.21

9.5.5 Magnetic Multipole Expansion

Now expanding the magnetic field to lowest order in re, we find that the magnetic-field interaction Hamil-
tonian (9.106) becomes

HAM =
e

2me
(re × pe) ·B(0) +

e2

8me
[re ×B(0)]

2
. (9.117)

Defining the magnetic dipole moment

m := − e

2me
(re × pe),

(9.118)
(magnetic dipole moment)

20J. Jerphagnon, ‘‘Invariants of the Third-Rank Cartesian Tensor: Optical Nonlinear Susceptibilities,’’ Physical Review B 2,
1091 (1970) (doi: 10.1103/PhysRevB.2.1091).

21M. Roberts, P. Taylor, G. P. Barwood, P. Gill, H. A. Klein, and W. R. C. Rowley, ‘‘Observation of an Electric Octupole
Transition in a Single Ion,’’ Physical Review Letters 78, 1876 (1997) (doi: 10.1103/PhysRevLett.78.1876).

http://dx.doi.org/10.1103/PhysRevB.2.1091
http://dx.doi.org/10.1103/PhysRevLett.78.1876
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we can then write the magnetic-interaction Hamiltonian in the dipole approximation as

HAM = −m ·B(0) +
1

8me
[d×B(0)]

2
.

(atom–B-field interaction, magnetic dipole approximation) (9.119)
The first term is then the usual interaction of the magnetic dipole with the magnetic field, while the dia-
magnetic term appears as a coupling of the electric dipole moment with the magnetic field.

To compare the magnitude of the interaction with the electric multipoles, note that we can identify
the magnitudes B ∼ E/c and pe ∼ meckre, so that the magnetic-dipole interaction is of the order ere(kre)E,
which is the same as the order of the electric quadrupole interaction.

The diamagnetic term, however, depends on r 2
e , but not on the wave number k, and thus its comparison

to other terms depends on the strength of the field. Making the same order-of-magnitude replacements, the
diamagnetic term is of order e2r 2

e E
2/mec

2. This is of the same order as the magnetic-dipole term for a field
strength satisfying eλE ∼ mec

2, which would result in a magnetic-dipole interaction energy ∼(kre)
2mec

2,
which is a very high (relativistic) energy. Hence for moderate (perturbative) field strengths, the diamagnetic
term is negligible compared to the magnetic dipole term.

9.6 Center-of-Mass Röntgen Interaction

Thus far, we have ignored the center-of-mass motion of the atom, assuming the nucleus to be fixed at
r = 0. Motion of the center of mass generates additional multipole terms,22 and we will now consider them
here. Consistently accounting for the center-of-mass velocity is important, for example, in obtaining physical
results for the angular distribution of photons radiated by a moving atom.23

9.6.1 Polarization

To include the center-of-mass motion in the Power–Zienau transformation, we generalize the atomic polar-
ization field to the polarization due to an arbitrary system of point charges with respect to an arbitrary
‘‘atomic location’’ rA (which we will take below to be the center of mass):

P(r) =
∑
α

qα(rα − rA)

∫ 1

0

ds δ3[r− rA − s(rα − rA)].
(9.120)

(atomic polarization)

Here, qα is the charge of the αth particle located at rα. We will then use the unitary operator

U = exp
[
− i
h̄

∫
d3rP(r) ·A(r)

]
(9.121)

with this polarization to transform the suitably generalized minimal-coupling Hamiltonian

H =
∑
α

[pα − qαA(rα)] 2

2mα
+ V (rα) +

ε0
2

∫
d3r
(
E⊥2 + c2B2

)
,

(minimal-coupling Hamiltonian, many particles) (9.122)
where mα is the mass of particle α.

22E. A. Power and T. Thirunamachandran, ‘‘The Multipolar Hamiltonian in Radiation Theory,’’ Proceedings of the Royal
Society of London. Series A, Mathematical and Physical Sciences 372, 265 (1980).

23Martin Wilkens, ‘‘Spurious velocity dependence of free-space spontaneous emission,’’ Physical Review A 47, 671 (1993)
(doi: 10.1103/PhysRevA.47.671); Martin Wilkens, ‘‘Significance of Röntgen current in quantum optics: Spontaneous emission
of moving atoms,’’ Physical Review A 49, 570 (1994) (doi: 10.1103/PhysRevA.49.570).

http://dx.doi.org/10.1103/PhysRevA.47.671
http://dx.doi.org/10.1103/PhysRevA.49.570
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9.6.2 Center-of-Mass Coordinates

We now introduce the usual center-of-mass coordinates as follows. The total atomic mass is

mA :=
∑
α

mα, (9.123)

and the center-of-mass coordinates are
rA :=

1

mA

∑
α

mαrα

pA :=
∑
α

pα.
(9.124)

Then the relative coordinates are
r̄α := rα − rA

p̄α := pα −
mα

mA
pA,

(9.125)

so that ∑
α

r̄α = 0,
∑
α

p̄α = 0. (9.126)

Note that since the Coulomb binding potential is entirely composed of internal forces,

V (rα) ≡ V (r̄α). (9.127)

From the commutation relation for the standard coordinates,

[rαj , pβk] = ih̄δαβδjk, (9.128)

we can see that the relative positions commute with the center-of-mass momentum,

[r̄αj , pAk] =

rαj − 1

mA

∑
γ

mγrγj ,
∑
β

pβk

 = ih̄δjk −
∑
α

mα

mA
ih̄δjk = 0, (9.129)

and similarly the center-of-mass position commutes with the relative momenta,

[rAj , p̄αk] = 0. (9.130)

Thus, the center-of-mass coordinates act as an independent degree of freedom from the relative coordinates
(which are themselves obey the above constraint equations which reduce the dimension of the relative-
coordinate space). Furthermore, the commutation relation for the center-of-mass coordinates is

[rAj , pAk] =

 1

mA

∑
α

mαrαj ,
∑
β

pβk

 =
1

mA

∑
α,β

[mαrαj , pβk] =
1

mA

∑
α,β

mαih̄δαβδjk = ih̄δjk, (9.131)

as we would expect. Furthermore, it is interesting to note that the commutator of the relative coordinates
reads

[r̄αj , p̄βk] = [rαj , pβk]−
mα

mA
[rAj , pAk] = ih̄δjk

(
δαβ −

mα

mA

)
, (9.132)

and thus the relative coordinates themselves are not canonical.
In these center-of-mass coordinates, the polarization (9.133) becomes

P(r) =
∑
α

qαr̄α
∫ 1

0

ds δ3(r− rA − sr̄α). (9.133)
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We can see that both the relative and center-of-mass positions are present here, so that moth the relative
and center-of-mass momenta will become modified under the Power–Zienau transformation. Further, the
minimal-coupling Hamiltonian in center-of-mass coordinates becomes simply

H =
∑
α

1

2mα

[
mα

mA
pA + p̄α − qαA(rα)

] 2

+ V (r̄α) +
ε0
2

∫
d3r
(
E⊥2 + c2B2

)
. (9.134)

Partially multiplying out the momentum term gives

H =
pA

2

2mA
+
∑
α

1

2mα
[p̄α − qαA(rα)] 2−

∑
α

qα
2mA

[pA ·A(rα) + A(rα) · pA]+V (r̄α)+
ε0
2

∫
d3r
(
E⊥2 + c2B2

)
,

(9.135)
so that the center-of-mass and relative components are separated, with an interaction term between the
center-of-mass momentum and the vector potential evaluated at the particle locations.

9.6.3 Transformation: Electric Dipole Approximation

We must now transform the canonical momenta for the atom and field to obtain the center-of-mass multipole
Hamiltonian. The electric field still transforms under the unitary Power–Zienau transformation (9.121) as
in Eqs. (9.88), so that

UE⊥β (r)U† = E⊥β (r)−
1

ε0
P⊥β (r). (9.136)

Thus, the electric-field part of the multipole interaction Hamiltonian is exactly the same as before. The
relative momentum also transforms essentially as we worked out before in Eqs (9.95):

U p̄αU† = p̄α + qαA(rα) + qαr̄α ×
∫ 1

0

ds sB(rA + sr̄α). (9.137)

We must also transform the center-of-mass momentum, with the result (see Problem 9.5)

UpAU
† = pA − qAA(rA) +

∑
α

qαA(rα) +
∑
α

qαr̄α ×
∫ 1

0

dsB(rA + sr̄α). (9.138)

Here,
qA :=

∑
α

qα (9.139)

is the total atomic charge (which vanished for a neutral atom).
The transformation of the atomic part of the minimal-coupling Hamiltonian is thus rather involved.

To simplify our discussion here, we will make the dipole approximation and neglect the variation of the fields
over the scale of the atom. In particular, the momenta now transform as

U p̄αU† = p̄α + qαA(rA) +
qα
2

r̄α ×B(rA) (9.140)

and
UpAU

† = pA +
∑
α

qαr̄α ×B(rA) = pA + d×B(rA), (9.141)

where the dipole operator is defined by

d :=
∑
α

qαr̄α,
(9.142)

(electric dipole moment)

as is consistent with our previous definitions.
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In the dipole approximation, we also make the replacement A(rα) −→ A(rA) in the Hamiltonian, so
that the minimal coupling Hamiltonian (9.135) becomes

H =
pA

2

2mA
+
∑
α

1

2mα
[p̄α − qαA(rA)]

2 − qA

2mA
[pA ·A(rA) + A(rA) · pA] + V (r̄α) +

ε0
2

∫
d3r
(
E⊥2 + c2B2

)
.

(9.143)
For a neutral atom, qA = 0, and thus we can ignore the pA ·A(rA) terms to obtain

H =
pA

2

2mA
+
∑
α

1

2mα
[p̄α − qαA(rA)]

2
+ V (r̄α) +

ε0
2

∫
d3r
(
E⊥2 + c2B2

)
. (9.144)

Thus, we may consider the transformations of the center-of-mass and relative momenta separately. Using
Eq. (9.141), the transformation of the center-of-mass kinetic-energy part of the Hamiltonian is thus

U
pA

2

2mA
U† =

1

2mA
[pA + d×B(rA)]

2

=
pA

2

2mA
+

1

2mA

[
pA · [d×B(rA)] + [d×B(rA)] · pA

]
+

1

2mA
[d×B(rA)]

2
.

(9.145)

Using Eq. (9.140), the relative-momentum part of the Hamiltonian transforms as

U

[∑
α

1

2mα
[p̄α − qαA(rα)] 2

]
U† =

∑
α

1

2mα

[
p̄α +

qα
2

r̄α ×B(rA)
] 2

=
∑
α

p̄ 2
α

2mα
−m ·B(rA) +

∑
α

q 2
α

8mα
[r̄α ×B(rA)]

2
,

(9.146)

where we have defined the magnetic dipole moment as

m :=
∑
α

qα
2mα

(r̄α × p̄α).
(9.147)

(magnetic dipole moment)

We can thus recognize the last two terms of Eq. (9.145) as the magnetic dipole and diamagnetic terms that
we already discussed. We concluded that these were small compared to the electric-dipole interaction, so
we will make the electric dipole approximation and drop these. We will similarly drop the last term of
Eq. (9.145), which we can identify as a center-of-mass diamagnetic term, since it is quadratic in the atomic
dipole moment and thus of higher order than the electric-dipole interaction.

From what remains, we can write the full, transformed Hamltonian as

H̃ = HA +HF +HAE +HR,
(9.148)

(multipole Hamiltonian)

where the isolated atomic Hamiltonian is

HA =
pA

2

2ma
+
∑ p 2

α

2mα
+ V (r̄α),

(9.149)
(free-atom Hamiltonian)

the field Hamiltonian has its usual form,

HF =
ε0
2

∫
d3r
(
E⊥2 + c2B2

)
,

(9.150)
(free-field Hamiltonian)

and we have the usual form for the electric-dipole interaction,

HAE = −d ·E⊥(rA) +
1

2ε0

∫
d3r

[
P⊥(r)

]2
,

(9.151)
(electric-dipole interaction)
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where the polarization (9.133) becomes

P(r) =
∑
α

qαr̄αδ3(r− rA) = d δ3(r− rA) (9.152)

in the dipole approximation.
The new interaction, corresponding to the remaining term in (9.145) that we did not drop, is the

Röntgen interaction,24

HR =
1

2mA

[
pA · [d×B(rA)] + [d×B(rA)] · pA

]
,

(Röntgen interaction, electric dipole approximation) (9.153)
which gives the coupling energy of the electric dipole and the magnetic field: recall that under a Lorentz
boost, electric and magnetic fields interchange to some extent, so this energy can be interpreted as the electric
dipole interaction with the transformed magnetic field. Naturally, the internal motion of the charges should
likewise induce a Röntgen-type coupling to the magnetic field; this is what we have already identified as the
magnetic-dipole interaction, and in fact we can obtain the magnetic-dipole Hamiltonian from the Röntgen
Hamiltonian by making the replacements mA −→ mα, pA −→ pα, both inside the summation implicit in the
definition of d.

Thus, even in the electric dipole approximation, an extra interaction Hamiltonian must be considered
if the atom is in motion for consistency with the minimal-coupling Hamiltonian. This comes up, for example,
in atom optics. Consider the usual problem of radiation pressure, where a plane, traveling wave impinges
on an atom, and causes a net force in the propagation direction of the field to to absorption. If the atom
is moving, the Röntgen interaction can add another component to the radiation-pressure force that is along
the polarization vector for the field, instead of along its propagation direction.25 Note, however, that this
component is rather weak compared to the usual radiation pressure, and only occurs if the atomic dipole is
not parallel to the field polarization (which is not possible for an S ground state of the resonant transition).
The Röntgen interaction is generally weak, even though necessary for the consistency in the radiation of a
moving atom as we mentioned above.

9.6.4 Full Transformation

So then what does the completely general multipole Hamiltonian look like, if we account for center-of-mass
motion but don’t make the electric-dipole approximation? You might regret that you asked that, but it is
certainly possible to write down the answer.26

9.6.4.1 Effecting the General Transformation

Our goal is to perform the Power–Zienau transformation on the minimal-coupling Hamiltonian in the form
(9.135). The part we should concentrate on here is the atomic-momentum part,

H =
pA

2

2mA
+
∑
α

1

2mα
[p̄α − qαA(rα)] 2 −

∑
α

qα
2mA

[pA ·A(rα) + A(rα) · pA] , (9.154)

since our transformation for the field as above is still valid. The transformation (9.137) for the relative
momentum leads to the following transformation for the relative-momentum term, which we can derive

24Named for Wilhelm Conrad Röntgen, who figured out that charges moving in a magnetic field see an effective electric field
EM = ṙ×B. See W. C. Röntgen, ‘‘Ueber die durch Bewegung eines im homogenen electrischen Felde befindlichen Dielectricums
hervorgerufene electrodynamische Kraft,’’ Annalen der Physik und Chemie 35, 264 (1888).

25V. E. Lembessis, M. Babiker, C. Baxter, and R. Loudon, ‘‘Theory of radiation forces and momenta for mobile atoms in
light fields,’’ Physical Review A 48 1594 (1993) (doi: 10.1103/PhysRevA.48.1594).

26C. Baxter, M. Babiker and R. Loudon, ‘‘Canonical Approach to Photon Pressure,’’ Physical Review A 47, 1278 (1993) (doi:
10.1103/PhysRevA.47.1278).

http://dx.doi.org/10.1103/PhysRevA.48.1594
http://dx.doi.org/10.1103/PhysRevA.47.1278
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simply by adapting our treatment from Section 9.5.3.3:

U

[∑
α

[p̄α − qαA(rα)]2
]
U† =

∑
α

p̄ 2
α

2mα
− 1

2

∫
d3r
[
M←(r) ·B(r) + M→(r) ·B(r)

]
+
∑
α

q 2
α

2mα

[
r̄α ×

∫ 1

0

ds sB(rA + sr̄α)
]2
.

(9.155)

The two quantum magnetizations are now suitably modified to include the center-of-mass coordinate to read

M←(r) =
∑
α

qα

(
r̄α ×

p̄α
mα

)∫ 1

0

ds s δ3(r− rA − sr̄α)

M→(r) =
∑
α

qα

∫ 1

0

ds s δ3(r− rA − sr̄α)
(

r̄α ×
p̄α
mα

)
.

(9.156)

We can recognize the terms in Eq. (9.155) as ones we have seen before: atomic kinetic energy, magnetic-field
interaction with the atomic magnetization, and the diamagnetic energy.

On the other hand, the transformation (9.138) for the center-of-mass momentum leads to a slightly
more complicated transformation for the Hamiltonian. First, we can consider the transformation of the
center-of-mass kinetic energy:

U
pA

2

2mA
U† =

1

2mA

[
pA − qAA(rA) +

∑
α

qαA(rα) +
∑
α

qαr̄α ×
∫ 1

0

dsB(rA + sr̄α)
]2
. (9.157)

Before multiplying this out, it simplifies things to consider the transformation of the remaining term in the
Hamiltonian (9.154):

U

[
−
∑
α

qα
2mA

[pA ·A(rα) + A(rα) · pA]

]
U† = − 1

2mA

∑
α

[pA ·A(rα) + A(rα) · pA]

+
∑
α

qAqα
mA

A(rA) ·A(rα)−
1

mA

[∑
α

qαA(rα)
]2

− 1

mA

∑
α

qαA(rα) ·
∑
β

qβ r̄β ×
∫ 1

0

dsB(rA + sr̄β).

(9.158)
These four terms exactly cancel the four terms in the expansion of (9.157) that involve the factor

∑
α qαA(rα).
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Combining the center-of-mass parts of the transformed Hamiltonian thus gives

U

[
pA

2

2mA
−
∑
α

qα
2mA

[pA ·A(rα) + A(rα) · pA]

]
U†

=
pA

2

2mA
− qA

mA
pA ·A(rA) +

qA
2

2mA
A2(rA)

+
1

2mA

[
pA ·

(∑
α

qαr̄α ×
∫ 1

0

dsB(rA + sr̄α)
)

+

(∑
α

qαr̄α ×
∫ 1

0

dsB(rA + sr̄α)
)
· pA

]

− qA

mA

∑
α

qαA(rA) ·
[
r̄α ×

∫ 1

0

dsB(rA + sr̄α)
]
+

1

2mA

[∑
α

qαr̄α ×
∫ 1

0

dsB(rA + sr̄α)
]2

=
pA

2

2mA
− qA

mA
pA ·A(rA) +

qA
2

2mA
A2(rA)

+
1

2mA

∫
d3r
[
pA ·

(
P(r)×B(r)

)
+
(

P(r)×B(r)
)
· pA

]
− qA

mA
A(rA) ·

∫
d3rP(r)×B(r) + 1

2mA

[∫
d3rP(r)×B(r)

]2
,

(9.159)
where we have used the polarization field in the form (9.133). We can identify the first three terms here as
residual interaction of the center of mass with the vector potential, and the rest of the terms represent the
generalized Röntgen interaction.

9.6.4.2 Final Result

Collecting all terms after the transformation, we have the new Hamiltonian

H̃ = HA +HF +HAE +HAM +HR.

(general multipole Hamiltonian, with center-of-mass motion) (9.160)
The isolated atomic Hamiltonian

HA =
pA

2

2mA
+
∑
α

p̄ 2
α

2mα
+ V (r̄α),

(9.161)
(free-atom Hamiltonian)

is the sum of the external and internal kinetic energies as well as the internal binding potential. The field
Hamiltonian has its usual form,

HF =
ε0
2

∫
d3r
(
E⊥2 + c2B2

)
,

(9.162)
(free-field Hamiltonian)

while we have the same interaction Hamiltonian for the coupling of the atom to the electric field via the
atomic polarization,

HAE = −
∫
d3rP⊥(r) ·E⊥(r) + 1

2ε0

∫
d3r

[
P⊥(r)

]2
,

(atom–E-field interaction Hamiltonian) (9.163)
where the polarization P(r) is again given by Eq. (9.133). This Hamiltonian is again the generalization of
the usual dipole interaction Hamiltonian, along with the electric self energy of the atom. The interaction
Hamiltonian for the coupling of the internal degrees of freedom of the atom to the magnetic field is

HAM = −1

2

∫
d3r
[
M←(r) ·B(r) + M→(r) ·B(r)

]
+
∑
α

q 2
α

2mα

[
r̄α ×

∫ 1

0

ds sB(rA + sr̄α)
]2
,

(atom–B-field interaction Hamiltonian) (9.164)
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where the quantum magnetizations are given by Eqs. (9.156). The Hamiltonian here is the generalization of
the magnetic-dipole interaction plus the diamagnetic energy of the atom in the magnetic field. Finally, the
generalized Röntgen interaction coupling the center-of-mass motion of the atomic system to the field is

HR = − qA

mA
pA ·A(rA) +

qA
2

2mA
A2(rA)

+
1

2mA

∫
d3r
[
pA ·

(
P(r)×B(r)

)
+
(

P(r)×B(r)
)
· pA

]
− qA

mA
A(rA) ·

∫
d3rP(r)×B(r) + 1

2mA

[∫
d3rP(r)×B(r)

]2
,

(center-of-mass (Röntgen) interaction Hamiltonian) (9.165)
which is quite a complicated interaction involving the atomic center-of-mass momentum, the vector potential,
and the magnetic field. In our treatment above of the Röntgen interaction in the electric dipole approxi-
mation, we dropped all but the third term in the above expression for HR. Recalling that the total charge
vanishes (qA = 0) for a neutral atom, we can see that the terms proportional to qA vanish in the neutral-atom
case, and the first two terms of HR clearly represent a minimal-coupling-type interaction of the net atomic
charge with the vector potential.
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9.7 Exercises

Problem 9.1
Prove the relation ∫

d3rE⊥ ·E‖ = 0, (9.166)

which we used in analyzing the minimal-coupling Hamiltonian.

Problem 9.2
Consider the Lagrangian

L =
1

2
mṙ2 + qṙ ·A(r)− qφ(r) (9.167)

for a particle of charge q in electric and magnetic fields

E = −∇φ− ∂A
∂t

, B = ∇×A, (9.168)

written here in terms of the scalar potential φ and the vector potential A.
Show that the Euler–Lagrange equation, together with this Lagrangian, is equivalent to Newton’s
Second Law with the Lorentz force.

Problem 9.3
Show that a (classical) Hamiltonian of the form

H =
[p + a(q)]2

2m
+ V (q) (9.169)

has canonical momentum given by
p = mq̇− a(q) (9.170)

through correspondence with the Lagrangian

L =
1

2
mq̇2 − q̇ · a(q)− V (q). (9.171)

Problem 9.4
Consider a single-electron atom in the heavy-nucleus approximation. Go through the derivation of the
coupling of the atom to the electric field,

HAE = −
∫
d3rP⊥(r) ·E⊥(r) + 1

2ε0

∫
d3r

[
P⊥(r)

]2
, (9.172)

and the coupling of the atom to the magnetic field,

HAM = −1

2

∫
d3r
[
M←(r) ·B(r) + B(r) ·M→(r)

]
+

e2

2me

[
re ×

∫ 1

0

ds sB(sre)

]2
, (9.173)

without making the long-wavelength approximation. You should also go through the derivation of the
atomic polarization field P(r) and (classical) magnetization density M(r), paying special attention to
their physical interpretation. These results generalize the results we derived in class for the dipole
interaction Hamiltonian to include all multipole orders (but they still neglect center-of-mass motion of
the atom and the presence of more than one electron.)
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Problem 9.5
Carry out the Power–Zienau transformation of the center-of-mass momentum pA, with transformation
operator

U = exp
[
− i
h̄

∫
d3rP(r) ·A(r)

]
, (9.174)

and polarization given by

P(r) =
∑
α

qαr̄α
∫ 1

0

ds δ3(r− rA − sr̄α), (9.175)

to obtain the result

UpAU
† = pA − qAA(rA) +

∑
α

qαA(rα) +
∑
α

qαr̄α ×
∫ 1

0

dsB(rA + sr̄α) (9.176)

where qA is the total atomic charge.

Problem 9.6
Consider a dipole-forbidden transition |a〉 −→ |b〉 in an atom (i.e., 〈a|d|b〉 = 0).
(a) Assuming the transition may be driven by a monochromatic plane wave via the quadrupole in-
teraction, show that the quadrupole interaction has the same form as the dipole interaction, with an
effective dipole moment deff,α = −ikβQαβ . (Here, k is the wave vector of the plane wave.) Thus, the
transition will be excited with an effective, quadrupole Rabi frequency

ΩQ =
kα〈a|Qαβ |b〉(E0)β

h̄
, (9.177)

(up to an arbitrary, overall phase that can be absorbed into the field), in analogy with the dipole Rabi
frequency Ω = −〈a|dα|b〉(E0)α/h̄.
(b) Assuming that the plane wave propagates along the x-direction and is polarized along the z-
direction, give an explicit expression for the relevant component of the effective dipole moment, in
terms of a sum over products of dipole matrix elements (i.e., matrix elements like 〈a|dx|c〉, involving
some auxiliary state |c〉).

Problem 9.7
Go through the steps in the derivation [Eq. (9.71)] to show that for an atom of charge density

ρ = eδ3(r)− eδ3(r− re), (9.178)

the polarization density

P(r) = −ere

∫ 1

0

ds δ3(r− sre) (9.179)

is consistent with the constraint ∇ ·P‖ = −ρ.



Chapter 10

Cavity QED and the Jaynes–Cummings
Model

Now we consider the simplest fully quantum model for the atom–field interaction: a two-level atom and a
single mode of the electromagnetic field. As we will discuss, this model applies to an atom interacting with
the field of an optical cavity in the ‘‘good-cavity’’ limit.

10.1 Single Cavity Mode

The uncoupled Hamiltonian for a two-level atom and a single mode of the optical field is

HA +HF = h̄ω0|e〉〈e|+ h̄ω

(
a†a+

1

2

)
, (10.1)

where the ground state has zero energy, ω0 is the atomic transition frequency, and ω is the cavity resonance
frequency corresponding to the field mode. The dipole form of the atom–field interaction Hamiltonian is

HAF = −d ·E, (10.2)

where the atomic dipole operator is

d = 〈g|d|e〉
(
|g〉〈e|+ |e〉〈g|

)
=: dge

(
σ + σ†

)
. (10.3)

Here, σ := |g〉〈e| is the atomic lowering operator, and dge := 〈g|d|e〉 is the dipole matrix element for the
atomic transition. The (Heisenberg-picture) electric field mode of the cavity from Eq. (8.56) is

E(r, t) = −
√
h̄ω

2ε0

[
f(r) a(t) + f∗(r) a†(t)

]
, (10.4)

where f(r) is the normalized spatial mode profile, and a is the mode annihilation operator. Thus, the
interaction Hamiltonian becomes

HAF = −
√
h̄ω

2ε0

(
σ + σ†

)
dge ·

[
f(r) a+ f∗(r) a†

]
. (10.5)

Then defining the atom–field coupling energy

h̄g(r) := −
√
h̄ω

2ε0
dge · f(r)

(10.6)
(cavity QED coupling constant)
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(g is called the cavity QED coupling constant, and 2g is called the one-photon Rabi frequency, as
we will see below), the interaction Hamiltonian becomes

HAF = h̄
(
σ + σ†

) [
g(r) a+ g∗(r) a†

]
. (10.7)

At any given location r, we may choose the phase of the atomic dipole such that g is a real and positive. In
this case, the atom–field Hamiltonian becomes

HAF = h̄g
(
σ + σ†

) (
a+ a†

)
. (10.8)

In the rotating-wave approximation, we drop the energy nonconserving terms (corresponding to fast-rotating
terms in the Heisenberg picture), as we discussed before in Section 5.1.5.2, so that

HAF = h̄g
(
σa† + σ†a

)
, (10.9)

thus keeping only terms corresponding to photon annihilation with atomic excitation, and atomic lowering
with photon creation. Note that in view of the normalization∫

d3r |f(r)|2 = 1, (10.10)

if the mode is uniform over an optical cavity volume V (also called the quantization volume), then
|f(r)| = 1/

√
V . In this case we can write the coupling constant (10.6) in terms of the mode volume as

g = −ε̂ · dge

√
ω

2ε0h̄V
, (10.11)

where ε̂ is the polarization vector of the field mode at the location of the atom. Thus, in general, it is
common to define the coupling constant

g0 = −ε̂ · dge

√
ω

2ε0h̄V
, (10.12)

and then write the spatial dependence as
g(r) = g0f

′(r), (10.13)

where f ′(r) is a dimensionless mode profile, with maximum modulus of order unity. The coupling constant
increases with decreasing cavity volume: this reflects the fact that locally, the electric field for a single photon
increases as the confinement of the photon increases.

The total Hamiltonian is, dropping the vacuum-field energy, and regarding the atom to be fixed at
position r,

H = HA +HF +HAF = h̄ω0σ
†σ + h̄ωa†a+ h̄g

(
σa† + σ†a

)
.

(Jaynes–Cummings model) (10.14)
This Hamiltonian defines the Jaynes–Cummings model:1 it is the model for an atom interacting with a
single, nearly resonant cavity mode within the RWA, ignoring any dissipation process such as spontaneous
emission or any input or output from the cavity.

10.2 Dynamics

To investigate the dynamics of the Jaynes–Cummings model, we will decompose the state in terms of the
joint eigenstates of HA and HAF:

|ψ〉 =
∞∑
n=0

[
cg,n|g, n〉+ ce,n|e, n〉

]
. (10.15)

1E. T. Jaynes and F. W. Cummings, ‘‘Comparison of quantum and semiclassical radiation theories with application to the
beam maser,’’ Proceedings of the IEEE 51, 89 (1963).
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Putting this form of the state vector into the Schrödinger equation

∂t|ψ〉 = −
i

h̄
(HA +HF +HAF) |ψ〉 (10.16)

and projecting with 〈e, n| and 〈g, n+ 1| gives the coupled pairs of equations

∂tce,n = −i(ω0 + nω)ce,n − i
√
n+ 1 g cg,n+1

∂tcg,n+1 = −i(n+ 1)ω cg,n+1 − i
√
n+ 1 g ce,n,

(10.17)

where we have used the following form of the field annihilation operator:

a =

∞∑
n=0

√
n+ 1 |n〉〈n+ 1|. (10.18)

The above structure of the Jaynes–Cummings model is important: only pairs of eigenstates are coupled,
and thus the Hamiltonian is block diagonal, in 2 × 2 blocks, making it simple to diagonalize analytically.2
Physically, the meaning here is that an excited atom can emit a photon into the cavity and reabsorb it, but
that is the extent of the energy transfer. (Of course, then the vacuum amplitude cg,0 is not coupled to any
other amplitude, since no absorption can occur in the absence of light quanta.)

The above pair of equations (10.17) is formally equivalent to the semiclassical equations of motion for
the atom–field interaction (the Rabi-flopping problem in the rotating frame), with Rabi frequency 2g

√
n+ 1

and detuning
(n+ 1)ω − (ω0 + nω) = ω − ω0 = ∆, (10.19)

which is just the usual field detuning from the atomic resonance. Thus, we have already solved this problem.
For example, an atom initially in the state |g, n+ 1〉, coupled to a resonant field, has the populations

Pe,n = sin2
(√
n+ 1 gt

)
=

1

2

[
1− cos

(
2
√
n+ 1 gt

)]
Pg,n+1 = cos2

(√
n+ 1 gt

)
=

1

2

[
1 + cos

(
2
√
n+ 1 gt

)]
.

(10.20)
(Rabi flopping)

Thus, the Rabi oscillations for n + 1 energy quanta occur at angular frequency 2
√
n+ 1 g.3 In particular,

for a single photon, the Rabi oscillations occur at frequency 2g: hence g is referred to as the single-photon
Rabi frequency (though note the difference in convention of a factor of 2). For an off-resonant field, the Rabi
oscillation proceed at the generalized Rabi frequency

Ω̃n =
√
4(n+ 1)g2 +∆2,

(10.21)
(quantized generalized Rabi frequency)

as in the semiclassical Rabi problem.
We can also consider this to be a crude model for spontaneous emission. The atom, initially in the state

|e, 0〉, oscillates to the state |g, 1〉. This model has the rather odd result that a spontaneously emitted photon
will be reabsorbed, because only a single frequency is present. For a general superposition of states, the Rabi
oscillations occur for each pair of states at their respective Rabi frequencies. This can lead to complicated
beating behavior between the many frequencies involved. For example, if we consider an initially excited

2It turns out to be possible to diagonalize the Hamiltonian also without the rotating-wave approximation, though the solution
is considerably more complicated; see D. Braak, ‘‘Integrability of the Rabi Model,’’ Physical Review Letters 107, 100401 (2011)
(doi: 10.1103/PhysRevLett.107.100401).

3The quantization and
√
n+ 1 dependence of the Rabi frequency has been observed with Rydberg atoms by M. Brune, F.

Schmidt-Kaler, A. Maali, J. Dreyer, E. Hagley, J. M. Raimond, and S. Haroche, ‘‘Quantum Rabi Oscillation: A Direct Test of
Field Quantization in a Cavity,’’ Physical Review Letters 76, 1800 (1996) (doi: 10.1103/PhysRevLett.76.1800).

http://dx.doi.org/10.1103/PhysRevLett.107.100401
http://dx.doi.org/10.1103/PhysRevLett.76.1800
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atom, where the field is in a superposition of states, then we no longer expect perfectly harmonic dynamics.
For example, if the initial field state is the coherent state

|α〉 =
∞∑
n=0

αn√
n!
e−|α|

2/2|n〉, (10.22)

then we find collapses and revivals of the atomic population.4 This phenomenon is illustrated in the plot
below, which shows the excited-state population for an initially excited atom, and a cavity initially in a
coherent state with mean photon number n̄ = 10 (α =

√
10).
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We see the Rabi oscillations quickly collapse, but then recur later. If the mean photon number is larger,
n̄ = 20 (α =

√
20), the recurrences occur at later times, and more coherent recurrences are visible.
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The decay of the Rabi oscillations still is not exponential, as we expect from the optical Bloch equations.
The collapses and revivals are characteristic of a discrete spectrum, and in fact anytime we have a discrete
spectrum, we have almost quasiperiodic behavior (when a finite number of states are significantly populated),

4The collapses and revivals were observed in a single-atom maser. See Gerhard Rempe, Herbert Walther, and Norbert
Klein, ‘‘Observation of quantum collapse and revival in a one-atom maser,’’ Physical Review Letters 58, 353 (1987) (doi:
10.1103/PhysRevLett.58.353).

http://dx.doi.org/10.1103/PhysRevLett.58.353
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and we thus expect the state to eventually recur arbitrarily close to the initial condition. In this sense,
spontaneous emission into a single field mode is reversible. The irreversible, exponential decay of the Rabi
oscillations only occurs when the atom is coupled to a continuum of states, and we will show that this is the
case later in Chapter 11.

10.3 Dressed States and the Vacuum Rabi Doublet

We can also take advantage of the block-diagonal structure that occurs due to the RWA in the Jaynes–
Cummings Hamiltonian to define dressed states for the coupled atom–quantized field system. Each of the
2 × 2 blocks is again formally equivalent to the semiclassical Rabi problem, and thus the previous dressed-
state results of Section 5.3 apply here. For an exactly resonant field mode (ω = ω0), the bare states |e, n〉
and |g, n+1〉 are degenerate and coupled by a Rabi frequency 2g

√
n+ 1. Thus, after diagonalizing the 2× 2

blocks, the eigenstates are the dressed states |+, (n)〉 and |−, (n)〉, which have energies (n+ 1)ω ± g
√
n+ 1

(i.e., the splittings are 2g
√
n+ 1).

w = wº

|e, 0Ò fi |+, (0)Ò
|-, (0)Ò

|+, (1)Ò
|-, (1)Ò

|e, 1Ò

|g, 1Ò

|g, 0Ò |g, 0Ò

|g, 2Ò

w = wº

2ooÆ o2ooog

2og

For general detunings, the bare states are split in energy by the detuning h̄∆ = h̄ω− h̄ω0 (with |e, n〉 having
higher energy than |g, n + 1〉 for ∆ < 0, and |g, n + 1〉 having the higher energy for ∆ > 0). The pairs of
bare states are repeated every h̄ω in energy, corresponding to having an additional photon around. Also, as
before, in the general case the dressed states are defined by the rotation-type superposition

|+, (n)〉 = sin θn|g, n+ 1〉+ cos θn|e, n〉

|−, (n)〉 = cos θn|g, n+ 1〉 − sin θn|e, n〉,

(10.23)
(dressed states)

where the Stückelberg angles θn are defined as before by

tan 2θn = −2g
√
n+ 1

∆

(
0 ≤ θn <

π

2

)
.

(10.24)
(Stückelberg angles)

Notice that within the rotating-wave approximation, the ground state |g, 0〉 is completely uncoupled and
does not experience a shift in the dressed-state basis. Recalling that in the classical limit (n � 1), the
splittings for adjacent pairs of dressed states are nearly equal, giving rise to the Mollow triplet in resonance
fluorescence, as we discussed in Section 5.7.4.2. However, this picture breaks down for small photon numbers
where the splittings depend strongly on n. In particular, if a single photon interacts with an unexcited atom,
there are only two possible transitions in the dressed-state basis, giving rise to the vacuum Rabi doublet.
This becomes manifest, for example, for spectroscopy of a cavity tuned to the atomic resonance, as a doublet
in the cavity transmission spectrum as a function of the frequency of a weak input field.5

5The vacuum Rabi splitting or ‘‘normal-mode structure’’ was observed for a single atom (the same atom throughout the
entire spectral measurement) in a high-finesse cavity by A. Boca, R. Miller, K. M. Birnbaum, A. D. Boozer, J. McKeever,
and H. J. Kimble, ‘‘Observation of the Vacuum Rabi Spectrum for One Trapped Atom,’’ Physical Review Letters 93, 233603
(2004) (doi: 10.1103/PhysRevLett.93.233603); and P. Maunz, T. Puppe, I. Schuster, N. Syassen, P. W. H. Pinkse, and G.
Rempe, ‘‘Normal-Mode Spectroscopy of a Single-Bound-Atom–Cavity System,’’ Physical Review Letters 94, 033002 (2005)
(doi: 10.1103/PhysRevLett.94.033002).

http://dx.doi.org/10.1103/PhysRevLett.93.233603
http://dx.doi.org/10.1103/PhysRevLett.94.033002
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10.3.1 Photon Blockade

Due to the
√
n+ 1-dependence of the energy-level splittings, the atom-cavity system can act effectively as a

highly nonlinear optical medium. One of the most striking demonstrations of this is the photon blockade
effect.6 The idea here is that under the right conditions, only a single photon can occupy the cavity at
once. Suppose that the incident field is tuned to one of the sidebands of the vacuum Rabi doublet (say the
red sideband), for the case when the cavity and atomic resonances coincide. This corresponds to a probe
frequency ωp = ω − g.

|+, (0)Ò
|-, (0)Ò

|+, (1)Ò
|-, (1)Ò

|g, 0Ò

2ooÆ o2ooog

2og

In this case, it is possible for a photon to enter the cavity, when the cavity state makes the transition
|g, 0〉 −→ |−, (0)〉. However, if another photon is to enter the cavity, the atom must make the transition
to the state |−, (1)〉. But the splitting for the two-photon manifold is

√
2 larger than for the one-photon

manifold, and thus this second transition has a resonant frequency (2ω −
√
2 g)− (ω − g) = ω − (

√
2− 1)g.

Thus, the probe field is detuned by (
√
2− 2) g from the second transition. If g is large, much larger than the

widths of these transitions (when we include dissipative effect), then the second transition is suppressed, and
at most one photon occupies the cavity at once. The cavity output is thus antibunched, even for a coherent
input light.

10.3.2 Atom-Photon “Molecule”

Of course, the splittings of the dressed states are space-dependent, and this can lead to dipole forces when
the cavity photon number is nonzero in steady state. In fact, for large g, the dipole forces can be appreciable
even for a cavity photon number of around unity. The dipole forces are sufficiently strong that they can
trap an atom inside the cavity. This is something really remarkable: a single atom is bound by the dipole
force to the field due to a single photon. This is called the ‘‘atom-photon molecule,’’ since it represents a
mechanically bound state of an atom and a photon.7 The key to getting such high coupling strengths is to
make the cavity mode volume V very small, which from Eq. (10.12) we see makes g large: the cavities in
these experiments were spherical-mirror Fabry–Perot cavities with mirror separations of only 10 µm. (They
also had very high reflectance coatings, and achieved near-record finesses in the 105 range.)

How does the atom get in there in the first place? Cesium atoms were cooled and trapped in a usual
MOT, placed above the cavity, and then dropped. The density is low enough that only one atom at a time
crosses through the cavity. You can actually see the atoms crossing through the cavity in real time, by
tuning a weak probe laser to one of the vacuum-Rabi sidebands (normal modes or dressed-state transitions).

6L. Tian and H. J. Carmichael, ‘‘Quantum trajectory simulations of two-state behavior in an optical cavity containing one
atom,’’ Physical Review A 46, R6801 (1992) (doi: 10.1103/PhysRevA.46.R6801); the term ‘‘photon blockade’’ was introduced
and the effect clarified by A. Imamoğlu, H. Schmidt, G. Woods, and M. Deutsch, ‘‘Strongly interacting photons in a nonlinear
cavity,’’ Physical Review Letters 79, 1467 (1997) (doi: 10.1103/PhysRevLett.79.1467). This effect was observed using a single
atom trapped in a high-finesse microcavity by K. M. Birnbaum, A. Boca, R. Miller, A. D. Boozer, T. E. Northup, and H. J.
Kimble, ‘‘Photon blockade in an optical cavity with one trapped atom,’’ Nature 436, 87 (2005) (doi: 10.1038/nature03804).
The name ‘‘photon blockade’’ is in analogy to the Coulomb blockade, where charge transport through small devices happens
one electron at a time, since only one electron can occupy an intermediate structure.

7C. J. Hood, T. W. Lynn, A. C. Doherty, A. S. Parkins, and H. J. Kimble, ‘‘The Atom-Cavity Microscope: Single Atoms
Bound in Orbit by Single Photons,’’ Science 287, 1447 (2000) (doi: 10.1126/science.287.5457.1447). In these experiments
and others by the same group, the coupling rate is in the range of g/2π ∼ 120 MHz, compared to a cavity decay rate of
κ/2π ∼ 40 MHz and a spontaneous emission rate of Γ/2π ∼ 5 MHz.

http://dx.doi.org/10.1103/PhysRevA.46.R6801
http://dx.doi.org/10.1103/PhysRevLett.79.1467
http://dx.doi.org/10.1038/nature03804
http://dx.doi.org/10.1126/science.287.5457.1447
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The splitting is zero when there is no atom in the cavity, and the probe is thus not transmitted. An atom
crossing event is marked by a spike in the cavity transmission, at which time the probe intensity can simply
be increased to trap the atom.

10.4 Refinements of the Model

For completeness, we will give some modifications to the Jaynes–Cummings model that make it more realistic.
For the moment, we will just state them without proof, since they are quite reasonable, and we will defer
the derivations of these results until Chapter 12.

The first modification that we can put in is atomic spontaneous emission, or the interaction of the
atom with all the other modes, particularly outside the cavity. From the semiclassical treatment, we can
simply tack on a Lindblad term to the master equation to obtain

∂tρ = − i
h̄
[H, ρ] + ΓD[σ]ρ, (10.25)

where the Hamiltonian H is given in Eq. (10.14). This is pretty straightforward, although since the cavity
modifies the local vacuum modes, the decay rate Γ may not be the same as the free-space value. The
enhancement of the spontaneous-emission rate by a resonant cavity is called the Purcell effect,8 but the
spontaneous-emission rate can also be suppressed by an off-resonant cavity.

Along the same lines, the cavity intensity also decays. The cavity is just a harmonic oscillator, and we
can use a decay term of the same form as for spontaneous emission. The total master equation then becomes

∂tρ = − i
h̄
[H, ρ] + ΓD[σ]ρ+ κD[a]ρ, (10.26)

where κ is the decay rate of the cavity energy (it is also common to use the convention where κ is the field
decay rate, which would be smaller by a factor of 2). Recall that we already analyzed the harmonic oscillator
with this type of damping in Section 5.6.1.2, where we saw that it is consistent with the classical damped
oscillator (here, the classical damped oscillator being the classical damped cavity).

These damping rates can obviously have a strong effect on the cavity dynamics, particularly the Hamil-
tonian dynamics that we analyzed above. For the Jaynes–Cummings model to give a good approximation
to the true dynamics, the atom–cavity system must be in the regime of strong coupling, where g � κ,Γ.
In this case the dissipation is relatively slow, and the dynamics are Hamiltonian for short times. Note that
‘‘strong coupling’’ is sometimes also used for g � Γ, where the atomic emission is primarily into the cavity
mode and not into other vacuum modes.

Finally, a source of energy is typically necessary for interesting atom–field interactions. Of course, the
cavity can in principle be prepared in an arbitrary initial state, but damping will drive the system towards
the vacuum steady state. It is also common to pump the cavity with an external classical field, to provide
photons in steady state to drive the atom–field interaction. We can model this by adding a drive term to
the Hamiltonian

H = HA +HF +HAF +Hdrive = h̄ω0σ
†σ + h̄ωa†a+ h̄g

(
σa† + σ†a

)
+ h̄E

(
aeiωLt + a†e−iωLt

)
, (10.27)

where ωL is the frequency of the classical field, E =
√
κP/h̄ωL, and P is the power of the driving laser. Note

that this term has the same form as the semiclassical atom–field interaction in the optical Bloch equations.
As we discussed before in Section 5.6.1.2, in the absence of the atom–cavity coupling, the field would settle
down to a coherent state whose amplitude depends on E and the light–cavity detuning.

8E. M. Purcell, ‘‘Spontaneous Emission Probabilities at Radio Frequencies,’’ Physical Review 69, 681 (1946) (doi:
10.1103/PhysRev.69.674.2). This was first observed with Rydberg atoms in a superconducting cavity by P. Goy, J. M. Raimond,
M. Gross, and S. Haroche, ‘‘Observation of Cavity-Enhanced Single-Atom Spontaneous Emission,’’ Physical Review Letters 50,
1903 (1983) (doi: 10.1103/PhysRevLett.50.1903).

http://dx.doi.org/10.1103/PhysRev.69.674.2
http://dx.doi.org/10.1103/PhysRevLett.50.1903
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10.5 Exercises

Problem 10.1
A simple model of damping of an optical cavity is via the interaction of the cavity mode with a beam
of ground-state two-level atoms,9 assuming that only one atom interacts with the cavity mode at a
time, that the atoms interact briefly with the cavity mode, and that the rate at which atoms arrive is
much faster than the cavity evolution. In this case, you will show that the reduced density operator
for the cavity obeys the master equation

∂tρc(t) = −iω[a†a, ρc] + κD[a]ρc, (10.28)

where ρc(t) is the reduced density operator for the cavity.
(a) Assume that the atom–cavity interaction occurs via the Jaynes–Cummings Hamiltonian. Assuming
that the density operator at time t is of the form ρ(t) = ρc(t)|g〉〈g|, where ρc(t) is the reduced density
operator for the cavity, compute an expression for ρ(t+τ) to first order in τ , and to second order in gτ ,
since we will eventually take the limit as g becomes large. Assume that the cavity QED coupling rate
g is constant during the interaction time τ . Note: there are fewer terms to work out in the interaction
picture, but the Schrödinger picture will work as well.
(b) Then trace over the atomic state to obtain ρc(t+ τ).
(c) Finally, assume that τ is small, and that immediately after one atom leaves the cavity (after the
interaction of strength g and time τ), the next one immediately follows and does the same thing. Then
take the limit τ −→ 0 (with g −→∞ in some sensible way) and write down a differential equation for
ρc(t). What is κ?

Problem 10.2
A two-level atom initially in the superposition

|ψ〉 = 1√
2
[|g〉+ |e〉] (10.29)

passes slowly across the mode volume of an optical cavity. Assume the cavity to contain photons in
only one field mode, which is tuned far off the atomic resonance, and ignore things like spontaneous
emission and cavity decay. Explain qualitatively why a measurement of the phase of the atom after the
interaction acts as a measurement of the cavity photon number. Indicate how the phase shift should
scale with the photon number, assuming a small atom–field coupling rate.

Problem 10.3
In Problem 10.1, you worked out a simple model for the damping of a cavity due to a beam of two-level
atoms. There, the resonant atom-cavity systems lead to energy dissipation in the absorptive regime.
In this problem you will work out an example of cavity damping in the dispersive regime. Consider the
same cavity, with a beam of two-level atoms crossing the cavity one at a time, treating the atom–cavity
coupling via the Jaynes–Cummings model, but now where the atom-cavity detuning is large (|∆| � g).
(a) Recall that for very large detunings, we can identify the bare atom-cavity states |e, n〉 |g, n+ 1〉
with their dressed counterparts. Use what you know about the semiclassical and Jaynes–Cummings
dressed states to write down the ac Stark shifts for these states due to an atom–cavity coupling rate
g. Show that your answer agrees with the ac Stark shifts we derived for the two-level atom interacting
with a classical field.
(b) As the atoms cross the cavity, the coupling rate g(t) varies with time (going from zero to a maximum
and back to zero). Assume that g(t) changes slowly with time so that the dressed states are adiabatic

9For a literal realization of this setup for monitoring the state of a cavity field using a beam of Rydberg atoms, see Christine
Guerlin, Julien Bernu, Samuel Deléglise, Clément Sayrin, Sébastien Gleyzes, Stefan Kuhr, Michel Brune, Jean-Michel Raimond,
and Serge Haroche, ‘‘Progressive field-state collapse and quantum non-demolition photon counting,’’ Nature 448, 889 (2007)
(doi: 10.1038/nature06057).

http://dx.doi.org/10.1038/nature06057
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eigenstates, and then use the results of part (a) to argue that the atom–field interaction Hamiltonian
can be replaced by the effective interaction

Hint =
h̄g2(t)

∆

(
a†aσσ† − aa†σ†σ

)
. (10.30)

(c) Suppose that each atom starts in the initial state

|ψ〉 = 1√
2

(
|g〉+ eiθ|e〉

)
. (10.31)

Show that under the effective interaction of part (b), the relative phase θ changes according to the
cavity state, and thus realizes a (nondemolition) measurement of the cavity photon number. Write
down an expression for δθ, assuming the cavity to be in state |n〉.
(d) Finally, suppose one atom crosses the cavity in each time interval of duration τ , with the above
initial state, but with θ random (what is the atomic density operator?). Assume τ to be long enough
that g(t) varies slowly, but fast compared to the cavity dynamics. Thus, you may trace over the atomic
states and then formally take the limit τ −→ 0 (keeping the lowest-order terms in the atom–field
coupling necessary to obtain the simplest nontrivial result) to derive a master equation for the cavity
state of the form

∂tρc = − i
h̄
[H0, ρc] + γD[a†a]ρc. (10.32)

Give a physical interpretation to the damping equations you find (especially regarding energy dissipa-
tion).





Chapter 11

Spontaneous Emission

11.1 Atom–Field Coupling

Here we will consider the spontaneous decay of an atomic excited level due to coupling to the vacuum field,
according to the treatment of Weisskopf and Wigner1. We will also consider corrections and extensions to
this result as well as the implications of this treatment for the spontaneous-emission master equation. The
uncoupled Hamiltonian for a two-level atom and the field (including a sum over all field modes) is

H0 = h̄ω0|e〉〈e|+
∑
k,ζ

h̄ωk

(
a†k,ζak,ζ +

1

2

)
, (11.1)

where the ground state has zero energy, ω0 is the atomic transition frequency, the wave vector k labels the
field modes of different frequency and orientation, the index ζ labels the two independent polarizations, and
ak,ζ is the annihilation operator for the (k, ζ) mode. We will write the eigenstates that we need of the free
Hamiltonian in the form |α, nk,ζ〉, which means that the atom is in state |α〉, while the field mode (k, ζ)
has n photons (other modes not explicitly labeled are in the vacuum state). We use the dipole form of the
atom–field interaction Hamiltonian

HAF = −d ·E, (11.2)

where as before the dipole operator is

d = 〈g|d|e〉
(
|g〉〈e|+ |e〉〈g|

)
=: dge

(
σ + σ†

)
. (11.3)

Here, σ := |g〉〈e| is the atomic lowering operator, and dge := 〈g|d|e〉 is the dipole matrix element for the
atomic transition. We can write the electric field modes as

Ek,ζ(r) =
√
h̄ωk

2ε0
fk,ζ(r) ak,ζ + H.c., (11.4)

where the fk,ζ(r) are normalized (classical) mode functions. Thus, the interaction Hamiltonian becomes

HAF = −
∑
k,ζ

√
h̄ωk

2ε0

(
σ + σ†

)
dge ·

(
fk,ζ(r)ak,ζ + f∗k,ζ(r)a

†
k,ζ

)
. (11.5)

1V. Weisskopf and E. Wigner, ‘‘Berechnung der natürlichen Linienbreite auf Grund der Diracschen Lichttheorie,’’ Zeitschrift
für Physik 63, 54 (1930) (doi: 10.1007/BF01336768). See also Marlan O. Scully and M. Suhail Zubairy, Quantum Optics
(Cambridge, 1997) (ISBN: 9780511813993) (doi: 10.1017/CBO9780511813993), p. 206; or Peter W. Milonni, The Quantum
Vacuum (Academic Press, 1993) (ISBN: 0124980805) (doi: 10.1016/C2009-0-21295-5), p. 204.

http://dx.doi.org/10.1007/BF01336768
http://www.amazon.com/gp/search/?field-isbn=9780511813993
http://dx.doi.org/10.1017/CBO9780511813993
http://www.amazon.com/gp/search/?field-isbn=0124980805
http://dx.doi.org/10.1016/C2009-0-21295-5
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In the rotating-wave approximation, we drop the energy nonconserving terms, so that

HAF = −
∑
k,ζ

√
h̄ωk

2ε0
dge ·

(
σ†ak,ζfk,ζ(r) + σa†k,ζf

∗
k,ζ(r)

)
=
∑
k,ζ

h̄
(
gk,ζσ

†ak,ζ + g∗k,ζσa
†
k,ζ

)
,

(11.6)

where the coupling factor (one-photon Rabi frequency) is defined as

gk,ζ(r) := −
√

ωk

2ε0h̄
dge · fk,ζ(r) (11.7)

for each mode.

11.2 Evolution

Again, we will write the eigenstates that we need of the free Hamiltonian in the form |α, nk,ζ〉, which means
that the atom is in state |α〉, while the field mode (k, ζ) has n photons (other modes not explicitly labeled
are in the vacuum state). We will assume that the atom is initially excited, and the field is in the vacuum
state. According to the interaction (11.6), the only states coupled to the initial state are where the atom is
in the ground state and one photon is present. Thus, we may write the state of the atom and field as

|ψ〉 = ce|e〉+
∑
k,ζ

ck,ζ |g, 1k,ζ〉. (11.8)

The evolution is given by the Schrödinger equation,

∂t|ψ〉 = −
i

h̄
(H0 +HAF)|ψ〉, (11.9)

which gives the following coupled equations for the amplitudes:

∂tce = −iω0ce − i
∑
k,ζ

gk,ζck,ζ

∂tck,ζ = −iωkck,ζ − ig∗k,ζce.

(11.10)

Now we will define slowly varying amplitudes

c̃e := cee
iω0t, c̃k,ζ := ck,ζe

iωkt, (11.11)

in terms of which the equations of motion (11.10) become

∂tc̃e = −i
∑
k,ζ

gk,ζ c̃k,ζe
−i(ωk−ω0)t

∂tc̃k,ζ = −ig∗k,ζ c̃ee
i(ωk−ω0)t.

(11.12)

Integrating the second equation, we find

c̃k,ζ(t) = −ig∗k,ζ
∫ t

0

dt′ c̃e(t
′) ei(ωk−ω0)t

′
. (11.13)

We can use this in the first of Eqs. (11.12) to decouple the equations,

∂tc̃e = −
∑
k,ζ

|gk,ζ |2
∫ t

0

dt′ c̃e(t
′) e−i(ωk−ω0)(t−t′), (11.14)

so that now we must simply evaluate this expression to uncover the decay process.
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11.3 Large-Box Limit

Now we can put in the explicit form of the coupling factor from Eq. (11.7):

∂tc̃e = − 1

2ε0h̄

∑
k,ζ

|ε̂k,ζ · dge|2ωk|fk,ζ(r)|2
∫ t

0

dt′ c̃e(t
′) e−i(ωk−ω0)(t−t′), (11.15)

where we used
|dge · fk,ζ(r)|2 = |ε̂k,ζ · dge|2|fk,ζ(r)|2 (11.16)

and where ε̂k,ζ is the local polarization unit vector for the field mode. Also, note that for the spherically
symmetric atom,

|ε̂k,ζ · dge|2 = |ẑ · dge|2 =
1

3
d2ge, (11.17)

since d2 = e2r2 = e2(x2 + y2 + z2). Note that this replacement holds even if the assumption of a spherically
symmetric atom is not valid. Because we are summing the quantities |ε̂k,ζ · dge|2 over all field modes, and
the electromagnetic vacuum is isotropic, the final result can’t be changed by a termwise average over the
relative orientation of atom and field polarization.

Now we can put in the explicit (k, ζ) modes. In free space, from Section 8.4.2, the mode functions are

fk,ζ(r) =
1√
V
ε̂k,ζe

ik·r, (11.18)

and so
|fk,ζ(r)|2 =

1

V
, (11.19)

where V is the quantization volume, and summing over both polarizations simply gives an extra factor of 2:

∂tc̃e = −
d2ge

3ε0h̄V

∑
k

ωk

∫ t

0

dt′ c̃e(t
′) e−i(ωk−ω0)(t−t′). (11.20)

The next step is to evaluate the wave-vector sum in the continuum limit.
When the box becomes large (V −→∞), the spacing between the modes becomes small. (We covered

this procedure when working out the free-space commutators in Section 8.6.1.2, but we’ll review it to keep
this self-contained.) In this limit, an integral of a function is equivalent to a sum weighted by the mode
spacings. Since the modes exist only for positive and negative kα, we can write∑

k

f(k)∆kx∆ky∆kz −→
∫ ∞
−∞

dkx

∫ ∞
−∞

dky

∫ ∞
−∞

dkz f(k) (11.21)

for an arbitrary function f(k). Since
∆kα =

2π

L
, (11.22)

we can thus make the formal replacement∑
k

−→ V

(2π)3

∫ ∞
−∞

dkx

∫ ∞
−∞

dky

∫ ∞
−∞

dkz, (11.23)

where V = L3. Thus, we can write the equation of motion as

∂tc̃e = −
d2ge

3ε0h̄(2π)3

∫
d3k ωk

∫ t

0

dt′ c̃e(t
′) e−i(ωk−ω0)(t−t′)

= −
d2gec

6π2ε0h̄

∫ ∞
0

dk k3
∫ t

0

dt′ c̃e(t
′) e−i(ωk−ω0)(t−t′)

= −
d2ge

6π2ε0h̄c3

∫ ∞
0

dω ω3

∫ t

0

dt′ c̃e(t
′) e−i(ω−ω0)(t−t′),

(11.24)
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where we have now carried out the angular integrals in spherical coordinates, and we are using ω = ωk = ck.
Note here the characteristic ω3 dependence, due partially to the frequency dependence of the vacuum density
of states and also due to the explicit frequency dependence of HAF, which will become manifest as an ω 3

0

dependence of the spontaneous decay rate (see Section 11.6.1 for an explicit calculation of the spontaneous
decay rate in terms of the density of states).

11.4 Decay Rate

To proceed, we can now note that c̃e(t
′) varies slowly on optical time scales. Also, ω3 is slowly varying

compared to the exponential factor in Eq. (11.24), which oscillates rapidly (at least for large times t) about
zero except when t ≈ t′ and ω ≈ ω0. Thus, we will get a negligible contribution from the ω integral away
from ω = ω0. Thus, we will make the replacement ω3 −→ ω 3

0 :

∂tc̃e = −
ω 3
0 d

2
ge

6π2ε0h̄c3

∫ ∞
0

dω

∫ t

0

dt′ c̃e(t
′) e−i(ω−ω0)(t−t′). (11.25)

The same argument gives∫ ∞
0

dω e−i(ω−ω0)(t−t′) ≈
∫ ∞
−∞

dω e−i(ω−ω0)(t−t′) = 2πδ(t− t′). (11.26)

We can see from this that our argument here about the exponential factor is equivalent to the Markovian
approximation. Thus,

∂tc̃e = −
ω 3
0 d

2
ge

3πε0h̄c3

∫ t

0

dt′ c̃e(t
′) δ(t− t′)

= −
ω 3
0 d

2
ge

3πε0h̄c3
c̃e(t)

2
.

(11.27)

Here, we have split the δ-function since the upper limit of the t′ integral was t, in view of the original form
(11.25) for the t′ integral, where the integration limit is centered at the peak of the exponential factor. We
can rewrite the final result as

∂tc̃e = − Γ

2
c̃e, (11.28)

where the spontaneous decay rate is given by

Γ :=
ω 3
0 d

2
ge

3πε0h̄c3
.

(11.29)
(spontaneous decay rate)

This decay rate is of course defined so that the probability decays exponentially at the rate Γ:

c̃e(t) = c̃e(0) e
−Γt/2, |c̃e(t)|2 = |c̃e(0)|2e−Γt. (11.30)

Also, note that

∂tce =

(
−iω0 −

Γ

2

)
ce (11.31)

after transforming out of the slow variables. Thus, we now have the an expression for the spontaneous decay
rate in terms of the atomic parameters, which comes from a fully quantum treatment of the atom–field
interaction. Recall that we derived this same expression earlier in Eq. (5.242) by comparing the optical
Bloch equations to the rate equations; that result was correct because the rate equations are valid for the
thermal quantum state of the field.

The above argument, using Eq. (11.26) is actually a bit sloppy because it misses another effect. A more
careful argument makes the Markovian approximation directly on Eq. (11.25), before making the ω ≈ ω0

replacement:

∂tc̃e ≈ −
d2ge

6π2ε0h̄c3
c̃e(t)

∫ ∞
0

dω ω3

∫ t

0

dt′ e−i(ω−ω0)(t−t′), (11.32)
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and then considers the integral∫ t

0

dt′ e−i(ω−ω0)(t−t′) = −i1− cos[(ω − ω0)t]

ω − ω0
+

sin[(ω − ω0)t]

ω − ω0
. (11.33)

The integral of the sin term over all frequencies is π for t > 0, and for long times this term is arbitrarily
narrowly peaked in frequency as t increases, as in our previous argument. The imaginary term is zero for
ω = ω0, and for large t is well approximated by −i/(ω − ω0) for ω away from ω0. Thus, within a frequency
integral, we can make the replacement∫ t

0

dt′ e−i(ω−ω0)(t−t′) −→ −iP 1

ω − ω0
+ πδ(ω − ω0), (11.34)

where P denotes that the ω integral should handle the singularity at ω = ω0 in the sense of a Cauchy
principle value (Section 14.1.4.2). Making this replacement in Eq. (11.32), we have

∂tc̃e ≈ −
d2ge

6π2ε0h̄c3
c̃e(t)

[
πω 3

0 − i –
∫ ∞
0

dω
ω3

ω − ω0

]
. (11.35)

This can be written
∂tc̃e ≈ (−Γ/2− iδω0) c̃e(t) (11.36)

where we have the constants

Γ =
ω 3
0 d

2
ge

3πε0h̄c3
, δω0 = −

d2ge

6π2ε0h̄c3
–
∫ ∞
0

dω
ω3

ω − ω0
= − Γ

2πω 3
0

–
∫ ∞
0

dω
ω3

ω − ω0
.

(decay rate and Lamb shift) (11.37)
The decay rate is the same rate (11.29) that we obtained before, but the frequency shift δω0 of the transition
frequency is the effect we missed (this also pops up in the course of solving Problem 11.4). This is the Lamb
shift, which is an ac Stark shift due to the coupling of the excited state to the vacuum electromagnetic
field modes. This quantity involves a divergent integral that must be handled carefully, and we will defer
this procedure to Section 13.12. The Lamb shift can justifiably be ignored (despite being divergent here!),
because ω0 is typically assumed to be the observed frequency, which already includes effects like the Lamb
shift. Also, note that the ground state also experiences a Lamb shift, but here we have ignored it by declining
to work out the equation of motion for the ground-state amplitude (we have also ignored couplings of the
ground state to other important states besides |e〉).

So what is the decay rate, typically? If we assume an optical transition, ω0/2π = 400 THz, and a
dipole matrix element of order dge ∼ ea0, where the Bohr radius a0 ≈ 0.5 Å, then we get a decay rate of
Γ ∼ 5×106 s−1. This is a reasonably good estimate, although for the larger alkalis, the decay rate is slightly
larger (around 30× 106 s−1), since the dipole matrix elements have larger magnitudes for these large atoms.
However, this justifies our assertion that c̃e is a slowly varying amplitude (slow compared to the optical
frequency).

Finally, note that we are only treating the decay of two-level atoms here, whereas real atoms are more
complicated. We already treated the case of degeneracy due to angular momentum in Section (7.3.7.4).
There we considered the decay of the Jg −→ Je fine-structure transition (with Je being the excited state
as usual). Then the decay rate from sublevel |Je me〉 −→ |Jg mg〉 is just given by Eq. (11.29) with the
appropriate matrix element:

ΓJg,mg;Je,me =
ω 3
0

3πε0h̄c3
|〈Jg mg|d|Je me〉|2. (11.38)

With the normalization conventions assumed for the reduced matrix element, we found

ΓJgJe =
ω 3
0

3πε0h̄c3
2Jg + 1

2Je + 1
|〈Jg‖d‖Je〉|2

(spontaneous decay rate, fine-structure transition) (11.39)
for the decay rate in terms of the reduced dipole matrix element. This same formula also applies to hyperfine
transitions.
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11.5 Master Equation for Spontaneous Emission

In order to arrive at the usual damping part of the master equation for the atom due to spontaneous emission
(i.e., the damping part of the optical Bloch equations), we want to consider the reduced density operator for
the evolution of the atomic state, tracing over the state of the field. Here we will compute the individual
matrix elements

ραβ :=〈α|ρ|β〉 (11.40)

for the atomic state.
The easiest matrix element to treat is the excited-level population,

ρee = cec
∗
e . (11.41)

Differentiating this equation and using (11.31) gives

∂tρee = −Γρee. (11.42)

The matrix element for the ground-state population follows from summing over all the other states:

ρgg :=
∑
ζ

∫
dk c̃k,ζ c̃

∗
k,ζ . (11.43)

Notice that the states |e〉 and |g〉 are effectively degenerate, but when we eliminate the field, we want |e〉
to have h̄ω0 more energy than the ground state. The shortcut for doing this is to realize that the latter
situation corresponds to the ‘‘interaction picture’’ with respect to the field, where we use the slowly varying
ground-state amplitudes c̃k,ζ (which have been boosted down in energy by h̄ωk to where we expect the
atomic ground state should be) but the standard excited-state amplitude ce. This explains why we use
regular coefficients in Eq. (11.41) but the slow variables in Eq. (11.43). Since by construction ρee + ρgg = 1,

∂tρgg = Γρee. (11.44)

Finally, the coherences are
ρge = cgc

∗
e , ρeg = ρ∗ge, (11.45)

where we have extended the pure state to include a component in the ground state without spontaneously
emitted light:

|ψ〉 = ce|e〉+ cg|g〉+
∑
k,ζ

ck,ζ |g, 1k,ζ〉. (11.46)

We introduce this change because otherwise we would have ρge = 0 for all time. (Note that the above
conclusions go through with this change.) The corresponding equation of motion is

∂tρge = cg

(
iω0 −

Γ

2

)
c∗e =

(
iω0 −

Γ

2

)
ρge. (11.47)

The time derivatives of the cg is zero here, because nothing in the Hamiltonian causes it to evolve.
Notice that what we have derived are exactly the same matrix elements generated by the master

equation
∂tρ = − i

h̄
[HA, ρ] + ΓD[σ]ρ, (11.48)

where once again the form of the Lindblad superoperator D[σ]ρ is given by

D[c]ρ := cρc† − 1

2

(
c†cρ+ ρc†c

)
, (11.49)

and the atomic Hamiltonian is
HA := h̄ω0|e〉〈e|. (11.50)

That is, the damping term here represents the same damping as in the optical Bloch equations.



11.6 Fermi’s golden rule 501

11.6 Fermi’s golden rule

Now we will rederive the spontaneous-emission rate from a more general approach that applies to any
quantum decay problem or transition to a continuum of states. We will then recover the result (11.29) for
the rate of spontaneous emission in free space. Later, in Section (14.3.10), we will also use this approach to
see how the rate of spontaneous emission is modified in the presence of a macroscopic body, such as a mirror
or a cavity.

Let’s consider a transition from an initial state |i〉 to a final state |f〉, where |i〉 and |f〉 are eigenstates
of some background Hamiltonian H0. The transition is due to the constant perturbation Hamiltonian Hint.
We assume the state of the system at t = 0 to be |i〉, and then consider the effect of Hint for t > 0. We will
solve this problem by noting that we have already solved it in Section 5.2.2. In the setup of that problem,
we showed that a two-level atom interacting with a monochromatic field is equivalent to a two-state system
interacting with a dc perturbation, after making the rotating-wave approximation and transforming to the
rotating frame of the field. Thus, we will make some formal identifications with the two-level atom problem.
First, we can identify the free atomic Hamiltonian H̃A for the two-level atom in the rotating frame with the
background Hamiltonian in the present problem,

H̃A = −h̄∆|e〉〈e| ←→ H0 = h̄ωfi|f〉〈f|, (11.51)

where h̄ωfi := Ef − Ei is the energy difference of the initial and final states, and we take Ei = 0. We can
further identify the atom–field interaction Hamiltonian H̃AF for the two-level atom with the perturbation
Hamiltonian Hint,

H̃AF =
h̄

2

[
Ω∗σ +Ωσ†

]
←→ Hint = 〈i|Hint|f〉 |i〉〈f|+ H.c., (11.52)

where we are taking the form of H̃AF generalized to a complex Rabi frequency Ω, as in Eq. (5.406), and σ is
the usual atomic lowering operator. Note that we ignore diagonal matrix elements of Hint, as is appropriate
for the dipole-interaction Hamiltonian (i.e., we can absorb any diagonal matrix elements of Hint into H0).
We showed that the solution to the two-level atom problem is [Eq. (5.60)]

Pe(t) =
|Ω|2

|Ω|2 +∆2
sin2

(
1

2

√
|Ω|2 +∆2 t

)
, (11.53)

which gives the excitation probability given that the atom is initially in the ground state. We can map
this solution to the current problem by making the identifications |g〉 −→ |i〉, |e〉 −→ |f〉, ∆ −→ ωif, and
h̄Ω −→ 2〈f|Hint|i〉. We will further note that we are treating the interaction as a weak perturbation, so that
|Ω| � |∆|. Thus, the solution to the present perturbation problem is the transition probability to |f〉:

Pf(t) =
4|〈i|Hint|f〉|2

h̄2ω 2
if

sin2

(
ωift

2

)
, (t ≥ 0). (11.54)

Now consider the part of the above expression that depends on ωif. It is normalized such that∫ ∞
−∞

dωif
1

ω 2
if

sin2

(
ωift

2

)
=
πt

2
, (11.55)

and the integrand is a localized function in ωif with a width that scales as 1/t. Thus, for large t, when the
integrand becomes a very narrow function of frequency, we may replace the integrand by a delta function:

1

ω 2
if

sin2

(
ωift

2

)
−→ πt

2
δ(ωif). (11.56)

Thus, Eq. (11.54) becomes

Pf(t) =
2πt

h̄2
|〈i|Hint|f〉|2δ(ωif) =

2πt

h̄
|〈i|Hint|f〉|2δ(h̄ωif). (11.57)
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Thus, in the long-time limit, the excitation probability increases linearly with time. This is clearly valid only
for ‘‘weak’’ perturbations and short times such that the excitation probability is small; on the other hand,
we had to make the long-time assumption such that the time was long enough to justify the approximation
by a delta function. We will return to these constraints below. In any case, the transition rate from |i〉 to
|f〉 is simply the time derivative of the transition probability, and we can thus write the transition rate as

Γi→f =
2π

h̄
|〈i|Hint|f〉|2δ(Ei − Ef).

(11.58)
(Fermi’s golden rule)

The transition rate in this regime of intermediate times is time-independent, and this expression for the
transition rate is Fermi’s golden rule. This statement can also be regarded as a statement of energy
conservation: transitions only occur when the energies of the initial and final states match.

The delta function in this expression really only makes sense under an integral over energies, since
it represents the transition probability summed over a range of energies. This is a crucial point: it is the
existence of a continuum of energy levels that causes the time-independent transition rate; otherwise, the
transition rate to a discrete state oscillates in time, due to coherent Rabi flopping. Thus, suppose we consider
the transition from |i〉 to a continuous set F of states. Then we must sum over the transition rate to all
final states |f〉 ∈ F . We will carry out this sum only over a narrow range (Ei − ε/2, Ei + ε/2) of final states,
where ε defines a range of energies over which Hint is constant. Letting n(E) denote the number of states
with energy less than E, the sum over transition rates is

Γi→F =
2π

h̄

∫ n(Ei+ε/2)

n(Ei−ε/2)
dn(E′) |〈i|Hint|f〉|2δ(Ei − E′)

=
2π

h̄

∫ Ei+ε/2

Ei−ε/2
dE′ ρ(E′) |〈i|Hint|f〉|2δ(Ei − E′).

(11.59)

Here, ρ(E) := dn/dE is the density of states, or number of states per unit energy interval. Completing
the integral and taking Ef = Ei, we arrive at an alternate form of Fermi’s golden rule:

Γi→F =
2π

h̄
|〈i|Hint|f〉|2ρ(Ef).

(11.60)
(Fermi’s golden rule)

In deriving this, we also had to assume that the density of states was approximately constant over the range
of integration, which sets another upper bound on ε. For the delta-function approximation to hold, we
needed that the frequency width of the function in the expression (11.56) must be small compared to ε/h̄,
and thus that t� h̄/ε, quantifying the long-time constraint we mentioned above. The short-time constraint
is that Γi→F t � 1, but typically this expression is valid to much longer times by accounting explicitly for
depletion of |i〉: the decay rate holds so long as the decayed population in the states F do not influence the
decay rate.

11.6.1 Free-Space Decay Rate

Now we show that Fermi’s golden rule leads to the correct spontaneous-emission rate in free space. From
the Weisskopf–Wigner treatment of spontaneous emission, the dipole interaction Hamiltonian takes the form
[see Eq. (11.5)]

HAF = −
∑
k,ζ

√
h̄ωk

2ε0

(
σ + σ†

)
dge ·

(
fk,ζ(r)ak,ζ + f∗k,ζ(r)a

†
k,ζ

)
. (11.61)

The field modes here are labeled as usual by the wave vector k and the polarization index ζ ∈ {1, 2}, and in
free space, from Section 8.4.2, the mode functions are given by

fk,ζ(r) =
1√
V
ε̂k,ζe

ik·r, (11.62)
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when quantized in the fictitious quantization volume V . Then considering the transition from the initial
state |e〉 to the set of final states of the form |g, 1k,ζ〉, we can write down the matrix element

〈e|HAF|g, 1k,ζ〉 =
√

h̄ωk

2ε0V
(ε̂k,ζ · dge) e

ik·r. (11.63)

We can then compute the density of states as follows, considering only the final states with the atom in the
ground state and one photon in some mode. If we assume a cubic quantization volume with V = L3, then
the wave vectors are constrained to be

kx,y,z =
2πnx,y,z

L
=

2πnx,y,z
3
√
V

, (11.64)

where the nxj are any integers, as a result of the periodic boundary conditions on the quantization box.
Thus, in k-space, the states form a cubic lattice with spacing 2π/ 3

√
V . We can thus associate a cubic volume

of (2π)3/V with each state in k-space, where this mini-volume ‘‘surrounds’’ its particular state. Now the
set of all states with energy less than E is given by the set of all states in k-space that fall within a radius
of kE = E/h̄c of k = 0. The volume of the sphere of this radius is 4πk 3

E/3, and thus the number of states is
given by dividing this volume by (2π)3/V , and then multiplying by 2 to count independent polarizations:

n(E) = 2
4πk 3

E

3

V

(2π)3
=

E3V

3π2h̄3c3
. (11.65)

Then the density of states is

ρ(E) =
dn

dE
=

E2V

π2h̄3c3
. (11.66)

The relevant initial and final energy in this problem is E = h̄ω0, being the energy of the initially excited
atom, so that

ρ(Ef) =
ω 2
0 V

π2h̄c3
. (11.67)

Putting these pieces together in the golden rule (11.60) we find the rate of spontaneous emission in free
space

Γ =
ω 3
0 |〈g|d|e〉|2

3πε0h̄c3
,

(11.68)
(spontaneous decay rate in free space)

upon taking ωk ≈ ω0, and taking |ε̂k,ζ · dge|2 = |〈g|d|e〉|2/3 for a spherically symmetric atom. This result
agrees with Eq. (11.29) from our previous Weisskopf–Wigner calculation.

11.7 Corrections to Exponential Decay

The above results of exponential decay of the atomic excited state is a universal result of unstable quantum
systems. However, it is also an approximation, and under physically reasonable assumptions the exponential
decay law fails for very short and very long times. This was first discussed by Khalfin on very general
grounds.2 Fonda, Ghirardi, and Rimini have given a comprehensive review, and we follow their treatment
for short-time deviations from exponential decay.3

11.7.1 Short Times

For short times, we will show that the decay rate in fact vanishes. This result applies broadly, even beyond
atomic-level decay. Let us denote the survival probability by

P (t) = |c(t)|2, (11.69)
2L. A. Khalfin, ‘‘Contribution to the Decay Theory of a Quasi-Stationary State,’’ Soviet Physics JETP 6, 1053 (1958).
3L. Fonda, G. C. Ghirardi, and A. Rimini, ‘‘Decay theory of unstable quantum systems,’’ Reports on Progress in Physics

41, 587 (1978) (doi: 10.1088/0034-4885/41/4/003).

http://dx.doi.org/10.1088/0034-4885/41/4/003
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where c(t) is the amplitude of the initial state (|e〉 in the spontaneous-emission problem). Then

P (0) = c(0) = 1. (11.70)

Now let’s consider the eigenstates of the Hamiltonian H. For a system with several degrees of freedom,
there will in general be multiple eigenstates for a given energy, and we label them by an extra index a.
The index a can, for example, represent the set of simultaneous eigenvalues of a complete set of observables
commuting with each other and H, if the system has enough symmetry to permit this, but the existence of
such observables is not required here. Then we can write the eigenstates as

H|E, a〉 = E|E, a〉, (11.71)

and the completeness relation becomes ∫
dE

∫
da |E, a〉〈E, a| = 1. (11.72)

Now we can write the coefficient c(t) in terms of the unitary time-evolution operator (assuming a time-
independent system, as we have already done by assuming energy eigenstates) as

c(t) = 〈ψ(0)|e−iHt/h̄|ψ(0)〉

=

∫ ∞
−∞

dE

∫
da 〈ψ(0)|e−iHt/h̄|E, a〉〈E, a|ψ(0)〉

=

∫ ∞
−∞

dE ω(E)e−iEt/h̄,

(11.73)

where
ω(E) :=

∫
da |〈E, a|ψ(0)〉|2 (11.74)

is the Fourier transform of c(t). Now we make the reasonable assumption that the energies E are bounded
from below (which happens, for example, if there is a ground state):

c(t) =

∫ ∞
Emin

dE ω(E)e−iEt/h̄, (11.75)

Note that the integral here is uniformly convergent for all t, since ω(E) > 0, and the integral converges by
assumption at t = 0, so that ∫ ∞

Emin

dE |ω(E)| (11.76)

is convergent. (The integral for c(t) is hence absolutely convergent.) Thus, we may extend the integral to
negative times, and the integral is uniformly convergent for any t ∈ R. Differentiating (11.75), we find

dc(t)

dt
= − i

h̄

∫ ∞
Emin

dE ω(E)Ee−iEt/h̄. (11.77)

If we assume finite average energy of the initial state,∫ ∞
Emin

dE ω(E)E <∞, (11.78)

then dc(t)/dt exists and is continuous. In particular, dc(t)/dt is continuous at t = 0. Now since ω(E) is real,
we have the Fourier-transform property

c(−t) = c∗(t), (11.79)
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and then differentiating
P (t) = c(t)c(−t), (11.80)

we find
dP (t)

dt
=
dc(t)

dt
c(−t) + c(t)

dc(−t)
dt

. (11.81)

Thus, using limt→0 c(t) = 1, we find

lim
t→0+

dP (t)

dt
= lim
t→0+

[
dc(t)

dt
c(−t) + c(t)

dc(−t)
dt

]
= lim
t→0+

[
dc(t)

dt
− dc(t)

dt

]
= 0.

(short-time nonexponential decay) (11.82)
Thus, we have shown that the slope of P (t) vanishes at t = 0. P (t) is also symmetric about t = 0, and we
can see that near t = 0, 1− P (t) = O(t2). By contrast, the exponential decay law requires a negative slope
at t = 0, and so the true decay is always slower than exponential for very short times.

11.7.1.1 Quantum Zeno Effect

This slower-than exponential decay can lead to an interesting effect: if the decay is ‘‘interrupted’’ by a
quantum measurement that distinguishes the initial state from the final states, the evolution is ‘‘reset’’ to
t = 0. With continual, rapid measurements, the system never settles into the usual exponential decay,
and the decay rate for the observed system is slower than without observation. This is the essence of the
quantum Zeno effect.4 To see this more explicitly, assume that for short times, the survival probability
may be written as

P (t) ≈ 1− at2 (11.83)

for some constant a > 0. Then suppose we make a measurement at time ∆t. A single quantum system is
projected back into the initial state with probability P (∆t), and an ensemble of identically prepared systems
will have fraction P (∆t) in the initial state after the measurement. In either case, the system is in the same
initial state, and then we can repeat the process with more measurements spaced at intervals of duration
∆t. After n such measurements, the survival probability is

P (n∆t) ≈
[
1− a(∆t)2

]n
≈ 1− na(∆t)2. (11.84)

Noting that the time is t = n∆t, we can write

P (t) ≈ 1− (a∆t)t. (11.85)

The decay rate in the presence of the measurements has been modified from a to a∆t. As the frequency of
the measurements increases, then ∆t −→ 0 and thus the decay rate is also reduced to zero. Thus, decay is
almost completely inhibited for sufficiently frequent measurements.

Over what time scale do we expect the exponential-decay law to be invalid? The relavent time scale
is set by the emitted energy during the decay:

τnonexp ∼
h

∆E
. (11.86)

This sets the time scale over which the excited and ground states cannot be ‘‘resolved.’’ For an optical
transition, this time scale is 2π/ω0, or just the optical period. For visible-wavelength transitions, this time
scale is only a couple of fs. This type of nonexponential decay is thus very difficult to observe (and has not
been observed thus far), since optical detectors are typically far too slow.

4B. Misra and E. C. G. Sudarshan, ‘‘The Zeno’s paradox in quantum theory,’’ Journal of Mathematical Physics 18, 756
(1977) (doi: 10.1063/1.523304); C. B. Chiu, E. C. G. Sudarshan, and B. Misra, ‘‘Time evolution of unstable quantum states
and a resolution of Zeno’s paradox,’’ Physical Review D 16, 520 (1977) (doi: 10.1103/PhysRevD.16.520).

http://dx.doi.org/10.1063/1.523304
http://dx.doi.org/10.1103/PhysRevD.16.520
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11.7.2 Long Times

For long times, the decay is also nonexponential. A very general argument5 appeals to the Paley–Wiener
theorem, which states that if the frequency spectrum of c(t) cuts off below some minimum frequency ωmin
(corresponding to a lower energy bound), then c(t) must satisfy

∫ ∞
−∞

dt

∣∣∣ log |c(t)|
∣∣∣

1 + t2
<∞. (11.87)

In particular, for the integral to converge, we must have∣∣∣ log |c(t)|
∣∣∣ ∼ tq (11.88)

for q < 1 at large times, in which case

P (t) = |c(t)|2 ∼ e−αt
q

, (11.89)

where α > 0. Thus, the probability must decay more slowly than exponential at late times. In particular, for
the two-level atom, an extension of the Weisskopf–Wigner calculation6 shows that at late times, the decay
goes as

P (t) ∼
(

Γ

2πω 3
0

)2
1

t4
,

(11.90)
(long-time nonexponential decay)

once the exponential part of the decay has damped away. (We will defer this calculation until Section 15.5.4.)
Since Γ/ω0 � 1 for optical transitions, the correction is very small. We can estimate the crossover time by
setting (

Γ

2πω 3
0

)2
1

t4
∼ e−Γt, (11.91)

which gives Γt ∼ 130 for a typical ratio Γ/ω0 ≈ 1.2× 10−8. The correction here is very small.

5L. A. Khalfin, op. cit.; L. Fonda, et al., op. cit.
6P. L. Knight and P. W. Milonni, ‘‘Long-Time Deviations from Exponential Decay in Atomic Spontaneous Emission Theory,’’

Physics Letters 56A 275 (1976) (doi: 10.1016/0375-9601(76)90306-6).

http://dx.doi.org/10.1016/0375-9601(76)90306-6
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11.8 Exercises

Problem 11.1

The Lamb–Dicke effect7 occurs as a narrowing of the radiation spectrum of an atom if it is confined
to very small volumes (as can happen for a trapped ion or a neutral atom in an optical lattice). This
effect is closely related to the Mössbauer effect8 for scattering from atoms bound in solids. In this
problem you will work out a fairly simple model for this effect.
(a) Assume that the center-of-mass component of the particle is described by the Hamiltonian

HCM =
p2

2m
+ V (r), (11.92)

where V (r) is the trapping potential. To model the emission process, assume the two-level atom is
initially excited, and the field is initially in the vacuum state. Then the emission process for a photon
into the (k, ζ) mode is the transition

|e, ψn〉 −→ |g, ψl, 1k,ζ〉, (11.93)

where the |ψn〉 are the energy eigenstates of HCM with eigenvalues En, and we are assuming that the
vibrational state of the atom changes from n −→ l during the transition. (We will always assume
the vibrational energies are small compared to the optical-transition energy.) Assume that the field is
quantized in free space, and show that the corresponding transition amplitude is

〈i|HAF |f〉 = −
√

h̄ωk

2ε0V
ε̂k,ζ · dge〈ψn|eik·r|ψl〉, (11.94)

where |i〉 and |f〉 are the initial and final states, respectively.
(b) What are the different possible frequencies in the radiation spectrum?
(c) From the above arguments, the strength of the n −→ l transition is proportional to the squared
transition amplitude

Snl :=
∣∣〈ψn|eik·r|ψl〉∣∣2 . (11.95)

Show that the sum of the line strengths for all possible transitions from the initial state is independent
of position. In doing so, you have shown that the total decay rate is independent of V (r), and thus
equal to the free-space value.
(d) Show that if the atomic wave packet is confined to a region much smaller than λ0 in each direction,
where λ0 is the resonance wavelength, that the dominant emission line is for the n −→ n vibrational
transition.

Problem 11.2
By modifying the Weisskopf–Wigner derivation of the spontaneous emission rate, derive an expression
for the spontaneous decay rate for a spherically symmetric atom a distance z from a perfect, planar
mirror. To do this, you will need the half-space mode functions from Section 8.4.3. Also, be careful
when taking the continuum limit to obtain the correct prefactor for the integral over k-space.

Problem 11.3
An optical analogue to the quantum Zeno effect occurs in propagation through ideal polarizers. A
photon can be regarded as a two-state quantum system, with state |ψ〉 = cV|V〉 + cH|H〉, where |V〉

7R. H. Dicke, ‘‘The Effect of Collisions upon the Doppler width of Spectral Lines,’’ Physical Review 89, 472 (1953) (doi:
10.1103/PhysRev.89.472).

8Rudolf L. Mössbauer, ‘‘Kernresonanzfluoreszenz von Gammastrahlung in Ir191, Zeitschrift für Physik 151, 124 (1958) (doi:
10.1007/BF01344210).

http://dx.doi.org/10.1103/PhysRev.89.472
http://dx.doi.org/10.1007/BF01344210
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indicates vertical (linear) polarization, and |H〉 indicates horizontal polarization. With idealized po-
larizers, we can model the action of a vertical polarizer via the projector |V〉〈V|, and the action of a
horizontal polarizer by |H〉〈H|.
Note that the probability for a photon to transmit through two crossed polarizers is zero. However,
there is a nonzero transmission probability if, for example, another polarizer is inserted between the
crossed polarizers, but oriented at 45◦ with respect to them.
Derive an expression for the transmission probability if N such polarizers are inserted between the
crossed polarizers, with the nth polarizer making an angle of nπ/2(N + 1) radians with respect to
the frontmost polarizer. (That is, the intermediate polarizers uniformly and gradually sweep the
polarization through 90◦.) Your expression should assume that the photon transmitted through the
frontmost polarizer (i.e., the first of the crossed polarizers). Show that your expression converges to
unity as N −→∞.
This can be interpreted as ‘‘dragging’’ the polarization through 90◦ by making many, slightly different
measurements.

Problem 11.4
In this problem, you will work out the theory of spontaneous emission in the presence of a thermal
electromagnetic field at temperature T .
(a) Use the formalism for the general Born–Markov master equation in Section 4.5, and apply it to the
atom–field interaction in the rotating-wave approximation (as in the Weisskopf–Wigner derivation) to
derive the master equation

∂tρ = − i
h̄
[HA +Heff, ρ] + Γ[n̄(ω0) + 1]D[σ]ρ+ Γn̄(ω0)D[σ†]ρ (11.96)

for an atom interacting with the electromagnetic field at temperature T , where

Heff = h̄[∆0 +∆(T )]σ†σ (11.97)

represents the energy shift of the atomic transition (after moving the shifted ground state to zero
energy), with the divergent, temperature-independent Lamb shift

∆0 =
Γ

2πω 3
0

–
∫ ∞
0

dω
ω3

ω0 − ω
, (11.98)

and the temperature-dependent shift

∆(T ) =
Γ

πω 3
0

–
∫ ∞
0

dω
ω3n̄(ω)

ω0 − ω
. (11.99)

Here, n̄(ω) is the mean photon number for a mode with frequency ω.
(b) Give an interpretation for all the terms in the master equation (write out equations for the density-
matrix elements if you need to).
(c) Write down an expression for n̄(ω) (nothing fancy, just basic statistical mechanics and Boltzmann
statistics).
(d) Argue that ∆(T ) scales as T 4 at low temperatures.
(e) How do the decay terms, ∆0, and ∆(T ) change if you do not make the rotating-wave approximation?
Give a qualitative explanation for your results, and indicate whether the low-temperature scaling of
∆(T ) has changed.
(f) Estimate the temperature-dependent shift for the 780 nm transition in 87Rb (making the crude
approximation of treating it as a two-level atom), at room temperature.
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Problem 11.5
In the Weisskopf–Wigner derivation of the spontaneous emission rate that we covered in this chapter,
we considered the interaction of an atom with the vacuum field, but there was no mention of the Lamb
shift, which should also arise from this interaction (as in Problem 11.4). Pinpoint the exact step in the
derivation where the Lamb shift disappeared. Explain. Also explain how to modify the derivation to
obtain an expression for the Lamb shift.

Problem 11.6
(a) A spherically symmetric atom is located halfway between two perfectly reflecting, infinite planar
mirrors a distance L apart as shown.

L

Derive an expression for the decay rate in the limit of small L, such that the cavity acts as a two-
dimensional optical waveguide. (Write your answer in terms of the free-space decay rate Γ.) Obviously,
any physically correct treatment of this problem must involve three dimensions, so part of the problem
is to figure out what ‘‘two-dimensional’’ means in this context.
(b) Derive an expression for the decay rate if the atom is at the center of a long, perfectly reflecting,
rectangular cavity as shown, in the regime where the cavity acts as a one-dimensional optical waveguide.

Lx

Ly

Again, part of the problem is to figure out what ‘‘one-dimensional’’ means in this context.

Problem 11.7
Derive an expression for the spontaneous-emission rate (Einstein A coefficient) for an atom located a
distance a from one of a pair of parallel, infinite, perfectly conducting plates separated by a distance L.
Use whatever (quantum-mechanical) formalism you like. Write your result in terms of the free-space
rate Γ0, and plot the resulting rate as a function of L for the case a = L/2.

Problem 11.8
(a) Compute the decay rate due to the magnetic-dipole transition for the 6.8 GHz ground-state hyper-
fine ‘‘clock’’ transition in 87Rb: 52S1/2, F

′ = 2 −→ F = 1 (L = L′ = 0, S = S′ = 1/2, I = I ′ = 3/2).
You should proceed by mapping the magnetic-dipole Hamiltonian HAF = −µ·B onto the electric-dipole
Hamiltonian, then adapt the spontaneous-emission results from this chapter as appropriate to obtain
the magnetic-dipole decay rate

Γ =
ω 3
0 µ

2
ge

3πε0h̄c5
. (11.100)

For the relevant matrix element of the magnetic-dipole moment, use µB as an estimate, or better yet,
use the results of Problem 7.6 for a better estimate (noting that gS � gI).
(b) How is the spontaneous-emission rate modified given that the surrounding environment is at room
temperature (298 K)? Use the results of Problem 11.4 to help in this calculation.

Problem 11.9
Consider an atom coupled to a single mode of an optical cavity with coupling coefficient g. Assume the
intensity-decay of the (empty) cavity is exponential with rate κ. Ignore coupling to other (non-cavity)
modes, and do not assume that the atomic and cavity resonances necessarily coincide. Use Fermi’s
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Golden Rule to derive an expression for the decay rate of the atom in the ‘‘bad-cavity’’ limit κ � g.
Hint: in this limit you can treat the atomic decay directly to continuum, where the cavity has modified
the density of vacuum states.



Chapter 12

Coupled-Mode Theory

12.1 Cavity QED

12.1.1 Classical Field in a Single Cavity

To start, let’s just consider the simplest case of a classical field in a linear resonator. The resonator consists
of two mirrors of field reflection coefficients 1 and r, respectively, surrounding a region of vacuum of length
L.

ro=o1 r

Eo(+)

We will assume an approximately monochromatic field of frequency ω. Following the field one round trip
around the resonator, we can write

E(+)(t+ τrt)e
−iω(t+τrt) = rE(+)(t)e−iωt, (12.1)

where E(+)(t) is a slowly varying amplitude for the field, since the fast optical time dependence is written
out explicitly, and

τrt :=
2L

c

(12.2)
(cavity round-trip time)

is the round-trip time of the cavity. Note that we have dropped the polarization of the field, since in our
idealized setup it is an invariant. We will assume that the cavity is ‘‘good,’’ or not very lossy, so that |r| ≈ 1.
In this case, E(+)(t+ τrt) is almost the same as E(+)(t), and we can expand E(+)(t+ τrt) as

E(+)(t+ τrt) ≈ E(+)(t) + τrtĖ
(+)(t), (12.3)

to first order in τrt. Putting this into Eq. (12.1), we obtain the rate equation

Ė(+)(t) =
reiωτrt − 1

τrt
E(+)(t) (12.4)

for the slowly varying field amplitude. For a steady-state solution (i.e., for a stable mode to exist), we must
have Ė(+) = 0, or

reiωτrt = 1, (12.5)

which only happens if |r| = 1, and also for

ωτrt + φ = 2πq,
(12.6)

(resonance condition)
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where φ is the phase of the reflection, r = |r|eiφ, and q is some integer. It is only for a completely closed
cavity, |r| = 1, where a stable mode exists, and this is precisely the condition that we assumed when
quantizing the field. Otherwise, the rate equation (12.4) leads to an exponentially decaying mode (at least
within the approximation of a slowly varying amplitude).

12.1.2 Classical Coupled Modes of Two Cavities

Now we can extend this treatment to the case of two cavities, which are weakly coupled by a beam splitter
where the modulus |r| of the reflection coefficient is close to unity.1

ro=o1 ro=o1

E1
(+) E2

(+)
r12,ot12

r21,ot21

We will assume, as for the two-level atom, that only two modes of the individual cavities are approximately
‘‘resonant,’’ and so we can treat only these two modes. This, of course, implies that the lengths L1 and
L2 of the two cavities are appropriately mismatched. The outer mirrors of the double cavity are perfectly
reflecting, so that the total system is closed. This will allow us to quantize the coupled fields.

The coupling through the beam splitter is described by field reflection and transmission coefficients
r12 and t12, as seen by the field E

(+)
1 in cavity 1, and coefficients r21 and t21, as seen by the field E

(+)
2 in

cavity 2. The (lossless) beam splitter induces a unitary transformation on two input fields to generate the
output fields. Thus, if the operator for the beam splitter is written

U =

[
t21 r12
r21 t12

]
, (12.7)

so that the output fields are written in terms of the input fields as[
E

(+)
1←

E
(+)
2→

]
= U

[
E

(+)
2←

E
(+)
1→

]
(12.8)

(with arrows indicating directions of the input and output traveling waves), then it must also have the
general unitary form

U =

[
t r
−r∗ t∗

]
, (12.9)

with |r|2 + |t|2 = 1, so that r = r12 = −r∗21 and t = t12 = t∗21. (These relations are derivable classically by
examining a beam incident on the beam splitter, and the time-reversed process; the resulting relations are
then called the Stokes relations.) We will assume that |r| ≈ 1, so that we can treat the coupling as a
perturbation on the isolated cavity modes.

We can thus write coupled equations for the fields in basically the same way as for the single cavity:

E
(+)
1 (t+ τrt1)e

−iω1(t+τrt1) = r12E
(+)
1 (t)e−iω1t + t21E

(+)
2 (t)e−iω2t

E
(+)
2 (t+ τrt2)e

−iω2(t+τrt2) = r21E
(+)
2 (t)e−iω2t + t12E

(+)
1 (t)e−iω1t.

(12.10)

Here τrt1 and τrt2 are the round-trip times 2L1/c and 2L2/c for the two respective cavities, and we have
counted the accumulated phase from the fields starting at the beam splitter at t = 0. Performing the

1For more details on the classical theory of mode coupling in composite resonators, see Robert J. Lang and Amnon
Yariv, ‘‘Local-field rate equations for coupled optical resonators,’’ Physical Review A 34, 2038 (1986) (doi: 10.1103/Phys-
RevA.34.2038).

http://dx.doi.org/10.1103/PhysRevA.34.2038
http://dx.doi.org/10.1103/PhysRevA.34.2038
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same expansion (assuming weak coupling between the cavities), these coupled equations reduce to the rate
equations

d

dt

[
E

(+)
1

E
(+)
2

]
=


r12e

iω1τrt1 − 1

τrt1

t21e
−i∆t

τrt1

t12e
i∆t

τrt2

r21e
iω2τrt2 − 1

τrt2


[
E

(+)
1

E
(+)
2

]
, (12.11)

where ∆ := ω2 − ω1 is the detuning between the two cavity modes. We can simplify our notation a bit by
writing

d

dt

[
E

(+)
1

E
(+)
2

]
= −i

[
δω1 χ12e

−i∆t

χ21e
i∆t δω2

][
E

(+)
1

E
(+)
2

]
, (12.12)

where we have defined the frequency offsets

δω1 := i

(
r12e

iω1τrt1 − 1

τrt1

)
, δω2 := i

(
r21e

iω2τrt2 − 1

τrt2

)
, (12.13)

and the field coupling coefficients

χ12 := i
t21
τrt1

, χ21 := i
t12
τrt2

.
(12.14)

(classical field-coupling coefficients)

To self-consistently treat the double cavity, we would find the modes by letting ω1, ω2 −→ ω, where ω is the
eigenfrequency to be found. Then the time derivative vanishes in Eq. (12.12) for eigenmodes of the system,
which implies that the determinant of the matrix must also vanish, leading to the condition(

r12e
iω1τrt1 − 1

) (
r21e

iω2τrt2 − 1
)
= t21t12 (12.15)

(again, with ω1,2 −→ ω) that determines the allowed frequencies ω. However, in the perturbative limit that
we want to use here, we keep the original frequencies ω1 and ω2. We also note that in the perturbative
regime, the transmission coefficients t12 and t21 are O(ε), where ε is some small perturbation parameter,
and with this definition, the frequencies δω1 and δω2 are O(ε2) if the resonance conditions for the individual
cavities are satisfied, since |r| =

√
1− |t|2 ≈ 1− |t|2/2. Thus, we will simply ignore the diagonal elements of

the evolution matrix so that

d

dt

[
E

(+)
1

E
(+)
2

]
=

[
0 −iχ12e

−i∆t

−iχ21e
i∆t 0

] [
E

(+)
1

E
(+)
2

]
. (12.16)

In effect, since δω1,2 have small imaginary parts for any small coupling of the cavities, in neglecting these
we are explicitly making the approximation that the isolated-cavity modes are still well defined but coupled
together. As a last simplification, we can transform into a rotating frame by defining

Ẽ
(+)
1 := E

(+)
1 ei∆t, Ẽ

(+)
2 := E

(+)
2 , (12.17)

so that
d

dt

[
Ẽ

(+)
1

Ẽ
(+)
2

]
=

[
i∆ −iχ12

−iχ21 0

][
Ẽ

(+)
1

Ẽ
(+)
2

]
,

(classical coupled-mode equations) (12.18)
and thus we have eliminated the explicit time dependence in the problem. Formally, we see that the dy-
namics of the two modes are formally equivalent to those of the amplitudes of a two-level atom driven by
a classical field (without spontaneous emission), where we identify 2|χ12| with the Rabi frequency Ω, as we
see by comparison to Eqs. (5.25). We thus expect Rabi oscillations of the field between the two cavities,
characteristic of a pair of coupled harmonic oscillators.
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12.1.3 Quantization of the Coupled Modes

We can now write down our quantum description of the coupled cavities by simply identifying the field
variables as operators, as we discussed in Chapter 8:

E(+)
α (r, t) −→ −

√
h̄ωα
2ε0

fα(r)aα(t). (12.19)

It is more convenient to write the modes in this case as

E(+)
α (r, t) −→ −

√
h̄ωα
2ε0Vα

f ′α(r)aα(t), (12.20)

where the f ′α(r) are dimensionless mode functions, whose amplitude is of order unity (and of equivalent
form for the two cavities), as we discussed in Chapter 10. Then we can interpret the rate equations (12.18)
as Heisenberg equations for the field operators a1(t), a2(t), where the operators are also understood to be
slowly varying (with the optical time dependence factored out). After solving for the operators, we obtain

d

dt

[
ã1
ã2

]
=

[
i∆ −ig12
−ig21 0

] [
ã1
ã2

]
,

(quantum coupled-mode equations) (12.21)
where the twiddles on the operators remind us that they are in the rotating frame, where the e−i∆t time
dependence is suppressed, and we have defined the quantum mode-coupling coefficients

g12 := χ12

√
ω2V1
ω1V2

, g21 := χ21

√
ω1V2
ω2V1

. (12.22)

Note that we have dropped the spatial dependence of the modes, as consistent with the classical treatment.
We will also assume the two cavities to be mode-matched (as is consistent with a two-mode treatment),
which amounts to taking V1 = AL1 and V2 = AL2, where the area A is the same for both cavities, and thus
V1/V2 = L1/L2. Further, the ratio of frequencies here is an artifact of perturbation theory—had we taken
the self-consistent approach described above, we would have had a pair of eigenvalues, giving the frequencies
throughout both cavities of two different (dressed) modes. Thus, we should set ω1 = ω2 in the coupling
coefficients, to obtain

g12 = χ12

√
L1

L2
, g21 = χ21

√
L2

L1
,

(quantum mode-coupling coefficients) (12.23)
where, in view of the definitions (12.14), we can write

g12 =
ict21

2
√
L1L2

, g21 =
ict12

2
√
L1L2

.

(quantum mode-coupling coefficients) (12.24)
The Heisenberg equations here are precisely those that arise from the general Heisenberg equation

˙̃a = − i
h̄
[ã, H̃], (12.25)

if we take the Hamiltonian H to be the sum of the free Hamiltonian in the rotating frame,

H̃0 = −h̄∆ã†1ã1,
(free-field Hamiltonian, rotating frame) (12.26)

and the interaction Hamiltonian,
H̃12 = h̄

(
g21ã1ã

†
2 + g12ã2ã

†
1

)
, (12.27)

also in the rotating frame. Note from Eqs. (12.24) that with our definition of the coefficients, this Hamiltonian
is in fact not Hermitian. This comes from the usual conventions for the reflection and transmission coefficients
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(12.7) and (12.9); we really should instead take the convention t21 = −t∗12 to obtain a Hermitian interaction
Hamiltonian. This interaction Hamiltonian is our main result. In particular, note that by redefining the
relative phase of the two modes (with the above phase convention in mind), we may always assume a real
coupling coefficient, g21 = g12 ≡ g ∈ R,

H̃12 = h̄g
(
ã1ã
†
2 + ã2ã

†
1

)
.

(mode-coupling Hamiltonian, rotating frame) (12.28)
Note that had we not taken ω1 = ω2 to obtain Eqs. (12.23), we would not have arrived at a Hermitian
interaction Hamiltonian. Notice that the interaction here has exactly the same form as for the atom–field
interaction in the Jaynes–Cummings model, as in Eq. (10.9), where we can identify a1 with the atomic
dipole operator σ and a2 with the quantized field mode a. Note that we have implicitly made a rotating-
wave approximation in the classical setup, since we ignored an coupling from E(−) in one cavity to E(+) in the
other, since these couplings are far off resonance (as is consistent with the single-mode approximation). Of
course, the coupling coefficient g is not related to the one-photon Rabi frequency from the Jaynes–Cummings
model, except in the way it appears in the interaction Hamiltonian.

Notice that if we transform out of the rotating frame, the free Hamiltonian is trivial,

H0 = 0,
(12.29)

(free-field Hamiltonian, nonrotating frame)

while explicit time dependence returns to the interaction Hamiltonian:

H12 = h̄g
(
a1a
†
2e
i∆t + a2a

†
1e
−i∆t

)
.

(mode-coupling Hamiltonian, nonrotating frame) (12.30)
This means that we are now in the interaction picture with respect to the free evolution of the fields (which
was equivalent to factoring out the free time dependence of the optical fields). Transforming into the
Schrödinger picture yields the alternate free Hamiltonian

H0 = h̄ω1

(
a†1a1 +

1

2

)
+ h̄ω2

(
a†2a2 +

1

2

)
, (12.31)

as well as an interaction Hamiltonian that is equivalent to the rotating-frame Hamiltonian:

H12 = h̄g
(
a1a
†
2 + a2a

†
1

)
. (12.32)

In fact the rotating frame and the Schrödinger picture are equivalent here except for offsets of the bare
energy levels.

We now have essentially the same situation as in the classical case, but now the fields are represented
by operators.

a1 a2

g

g

We also have a symmetric coupling between the two fields, representing a Hermitian interaction Hamiltonian.

12.1.4 Cavity Driven by a Classical Field

As an application of the above formalism, we will derive a model for driving a (slightly) lossy cavity with
an external, classical field. In this case, cavity 1 will be our cavity, so we will change notations by a1 −→ a,
and we will regard it as being driven by cavity 2. Cavity 2 has a classical field, and with many photons
around we may neglect the fluctuations in photon number compared to the mean photon number, making
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the replacement a2 −→ α, assuming cavity 2 is in the coherent state α. While technically the classical field
is circulating in the right-hand cavity, this is not necessary—since we will eliminate all the parameters of the
classical cavity except the circulating power, we can equally well think of the classical field as an incident
traveling wave.

a a

We should then go into the interaction representation with respect to the free dynamics of cavity 2 to obtain
the free Hamiltonian for cavity 1,

H0 = h̄ω

(
a†a+

1

2

)
, (12.33)

where we have changed notations ω1 −→ ω, and the interaction Hamiltonian becomes

H12 = h̄E
(
aeiωLt + a†e−iωLt

)
.

(classical driving Hamiltonian for cavity field) (12.34)
Here, we have defined the driving amplitude

E := αg,
(12.35)

(classical-field driving amplitude)

and we have changed notations ω2 −→ ωL, where ωL is the ‘‘external drive frequency’’ for cavity 1, and again
by appropriate definition of relative phase we may assume α to be a real number (hence E is also real).

Notice that our setup here is formally equivalent to the two-level atom interacting with a classical field,
as we might guess from our remarks above. This correspondence carries through if we identify a with the
atomic operator σ, ω with the atomic resonance frequency, ωL with the frequency of the classical field, and
2E with the Rabi frequency. Also, the interaction Hamiltonian is of the form x cosωLt, as we expect for a
forced harmonic oscillator (here, forced by in the incident field).

12.1.4.1 Cavity Decay Rate

Now we can write the driving rate E in a more useful form. Using g = |g12| and Eqs. (12.24), we find

E = αg = α
c|t21|

2
√
L1L2

. (12.36)

Now we can define the power P of the ‘‘external’’ field in cavity 2, which is the energy per unit time, or the
product of the photon number and photon energy divided by the round-trip time:

P =
|α|2h̄ω2

τrt2
. (12.37)

Then we can eliminate α (dropping its phase to focus on the magnitude) to obtain

E =

√
Pτrt2

h̄ω2

c|t21|
2
√
L1L2

=

√
P

h̄ω2

√
c|t21|√
2L1

=

√
P

h̄ω2

|t21|√
τrt1

,

(12.38)
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where we used τrt1 = 2L1/c and τrt2 = 2L2/c. We can then define the cavity decay rate2

κ :=
|t21|2

τrt1
,

(12.39)
(cavity decay rate)

which defines the rate at which energy escapes cavity 1 (in the absence of cavity 2), being the intensity
transmission coefficient divided by the round-trip time (to give the rate of energy transport through the
output mirror). We also take ω1 = ω2 = ω for consistency. Then the driving rate simply becomes

E =

√
κP

h̄ω
,

(12.40)
(classical-field driving amplitude)

where now the frequency ω refers to the driven cavity (cavity 1). Of course, this coupling rate can be
complex, with the phase of the input field α. In this form, the coupling rate is independent of the details
of the auxiliary cavity (cavity 2), and is thus a general result, assuming the input power is mode-matched
with the output port of the cavity. Often, in a real Fabry–Perot cavity, there are multiple loss channels that
contribute to κ, in which case an alternate value κ′ should be used in the above formula, which is the decay
rate that the cavity would have, assuming that the input port of the driving field gives the only contribution
to κ.

It is common to define the finesse of a cavity by

F =
πP

1/4
s

1−
√
Ps
,

(12.41)
(cavity finesse)

where Ps is the survival probability for a photon after one round trip through the cavity (Ps = |r12|2 for
the cavity we have set up here). The finesse measures how ‘‘good’’ a cavity is, with a large finesse indicating
low loss (and well-resolved resonance lines). In the good-cavity limit, we can then write

F ≈ 2π

|t21|2
, (12.42)

so that the decay rate becomes

κ =
2π

τrtF
= 2π

FSR

F
.

(12.43)
(decay rate in terms of finesse)

In the last expression, we defined the free spectral range FSR := 1/τrt, which is the frequency spacing
between adjacent modes in the Fabry–Perot resonator. Note that the result here is valid for the asymmetric
cavity that we started with, where the output coupler is the only source of loss (for example, the factor of 2
disappears for a symmetric cavity).

12.1.5 Cavity Decay

The other application of the coupled-mode formalism that we will discuss is the quantum theory of the
cavity decay. Since the interaction Hamiltonian (12.32) has the same form as the atom–field interaction
in the rotating-wave approximation, we will make heavy use of the Weisskopf–Wigner treatment of atomic
spontaneous decay in Chapter 11, and our calculation here will essentially just be mapping the cavity problem
onto the atomic problem. First, we will again consider cavity 1 to be the cavity we are modeling, and cavity
2 will contain the ‘‘output field.’’ However, we will take the limit as cavity 2 becomes large, to get the
free-space limit of the output field. The single-mode approximation for cavity 2 will break down, and we
must consider coupling to many modes of cavity 2. Cavity 2 will be initially in the ground state, and always

2Here we are defining κ to be the energy decay rate of the cavity, in analogy with the population decay of the two-level
atom. It is also common to define the decay rate of the field using the same symbol, which would differ by a factor of 2 from
the definition here.
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‘‘approximately’’ in the ground state so that the radiated energy never re-enters the cavity. The interaction
is given by

Hint = h̄
∑
q

gq
(
aa†q + a†aq

)
, (12.44)

where a is the annihilation operator for cavity 1, and the aq are the annihilation operators for the output
field modes. Thus, as in atomic spontaneous emission, the cavity will by damped by coupling to a ‘‘bath’’
of harmonic oscillators. We can write the coupling coefficient, combining Eqs. (12.39) and (12.24), as

gq =
c|t21|

2
√
L1L2

=
|t21|√
τrt1τrt2

=

√
κ

τrt2
, (12.45)

where ω is the frequency of the decaying mode of cavity 1, ωq is the frequency of the qth output mode, and
κ is defined as above (note that κ may depend on q via the frequency dependence of the mirror reflectance).
It suffices to consider the initial condition of a Fock state |ψ(0)〉 = |n〉 for cavity 1, which for short times
couples only to states with one less photon in the cavity. Thus it also suffices to consider the state restricted
to the manifold given by the superposition

|ψ〉 = cn|n〉+
∑
q

cq|n− 1, 1q〉, (12.46)

where again the 1q denotes a single photon present in the qth output mode. This analysis is valid for any
other initial state, since any Fock state in the superposition is coupled to a separate set of states from the
other Fock states. Writing down the equations of motion for the coefficients, transforming into the rotating
frame, and decoupling the equations as in the atomic case leads to

˙̃cn(t) = −
∑
q

n|gq|2
∫ t

0

dt′ c̃n(t
′)e−i(ωq−ω)(t−t′)

= − nκ

τrt2

∑
q

∫ t

0

dt′ c̃n(t
′)e−i(ωq−ω)(t−t′).

(12.47)

The spacing of the output modes is the free spectral range ∆ωq = 2π/τrt2 of the output cavity, and thus in
the limit where cavity 2 becomes large, we change the sum to an integral according to∑

q

f(ωq)∆ωq −→
∫ ∞
0

dωoutf(ωout), (12.48)

where ωout refers to the output frequency, so that

˙̃cn(t) = −
nκ

2π

∫ ∞
0

dωout

∫ t

0

dt′ c̃n(t
′)e−i(ωout−ω)(t−t′). (12.49)

Carrying out the integrals as in the atomic case amounts to setting cn(t′) −→ cn(t), and then introducing
an extra factor of π:

˙̃cn = −nκ
2
c̃n.

(12.50)
(cavity-decay dynamics)

This is consistent with |cn|2 decaying at the rate nκ, as we might expect from the classical definition (12.39)
of κ.

a k

Thus, we have arrived at the situation where we have eliminated the right-hand cavity by pushing the end
mirror away to infinity, and obtained irreversible decay from the remaining cavity into the continuum at rate
κ.
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12.1.5.1 Master Equation

Still proceeding along the lines of the atomic case, from the above decay equation, the equation of motion
for the nth state population is

ρ̇nn = −nκρnn. (12.51)

When tracing over the output field states, the only state coupled to |n〉 is |n− 1〉, and thus, the n− 1 level
must take up the decayed population

ρ̇(n−1)(n−1) = nκρnn. (12.52)

Finally, transforming out of the rotating frame, using the appropriate combination of coefficients, and tracing
out the field gives the equation of motion for the coherence

ρ̇(n)(n−1) =
(
iω − nκ

2

)
ρ(n)(n−1). (12.53)

Our setup was for short times, but in the Markovian approximation (where the emitted field does not act
back on the cavity), we simply evolve for a short time and repeat the argument, so that these equations
of motion are always valid. Of course, then we must consider all couplings of the above forms between the
density matrix elements. Then the equations of motion are precisely those generated by the Lindblad-form
master equation

ρ̇ = − i
h̄
[H0, ρ] + κD[a]ρ, (12.54)

(cavity-decay master equation)

where again, ignoring the zero-point energy offset,

H0 = h̄ωa†a, (12.55)

and the Lindblad superoperator is

D[a]ρ := aρa† − 1

2

(
a†aρ+ ρa†a

)
. (12.56)

Recall that the operator form of the cavity-decay master equation has the same form as for atomic sponta-
neous emission (i.e., the optical Bloch equations), under the identifications σ −→ a, ω0 −→ ω, and Γ −→ κ.

12.2 Input–Output Formalism

The input–output formalism3 is an extension of the above formalism for treating the evolution of systems
in the Heisenberg picture, particularly when coupled to a continuum. The difference is that we will now
keep explicit track of the inputs and outputs (in the case of a cavity, the input and output fields) via
Heisenberg-picture operators.

To set this up for a cavity of resonance frequency ω, we begin with the interaction (12.44)

Hint = h̄
∑
q

gq
(
aa†q + a†aq

)
, (12.57)

where the coupling to the qth mode outside the cavity is

gq =

√
κ

τrt2
, (12.58)

3M. J. Collett and C. W. Gardiner, ‘‘Squeezing of intracavity and traveling-wave light fields produced in parametric am-
plification,’’ Physical Review A 30, 1386 (1984) (doi: 10.1103/PhysRevA.30.1386); C. W. Gardiner and M. J. Collett, ‘‘Input
and output in damped quantum systems: Quantum stochastic differential equations and the master equation,’’ Physical Review
A 31, 3761 (1985) (doi: 10.1103/PhysRevA.31.3761); C. W. Gardiner and P. Zoller, Quantum Noise, second enlarged edition
(Springer, 2000); M. Ley and R. Loudon, ‘‘Quantum theory of high-resolution length measurement with a Fabry–Perot inter-
ferometer,’’ Journal of Modern Optics 34, 227 (1987); R. Graham, ‘‘Quantum Langevin equation and input-output fields for
arbitrary linear response,’’ Zeitschrift für Physik B 76, 265 (1989) (doi: 10.1007/BF01312694); D. F. Walls and G. J. Milburn,
Quantum Optics (Springer, 1994), Chapter 7.
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where again κ is the cavity decay rate (which could depend on q via the frequency dependence of the output
coupler), and τrt2 is the round-trip time of the ‘‘external cavity,’’ in which the exterior field is quantized.
Before, we passed over to the continuum limit after setting up a calculation, but now it will be convenient
to do so right away. The idea was that we made the replacement∑

q

|gq|2 −→
τrt2

2π

∫ ∞
0

dω′
κ

τrt2
=

∫ ∞
0

dω′
κ

2π
. (12.59)

This is equivalent to making the replacement gq −→
√
κ/2π when passing the sum over to an integral over the

external-mode frequencies ω′,
∑
q −→

∫∞
0
dω′. Making these replacements in the interaction Hamiltonian,

Hint =
h̄√
2π

∫ ∞
0

dω′
√
κ(ω′)

[
ab†(ω′) + a†b(ω′)

]
,

(cavity coupling to external modes) (12.60)
where in the continuous limit, we have changed notation aq −→ b(ω′) (b for the external ‘‘bath’’ modes),
and we are explicitly indicating any frequency dependence of the decay rate, due to frequency dependence of
the transmission coefficient (which must ultimately converge to unity as ω′ −→∞). Again, this interaction
assumes the rotating-wave approximation in omitting terms like ab(ω′) and a†b†(ω′). In what follows, it is
convenient to extend the lower limit of integration to −∞:

Hint ≈
h̄√
2π

∫ ∞
−∞

dω′
√
κ(ω′)

[
ab†(ω′) + a†b(ω′)

]
.

(cavity coupling to external modes) (12.61)
This is justified since only bath frequencies ω′ near the cavity resonance ω should be important, and ω is
much larger than the rates associated with the decay interaction. The bath modes themselves satisfy the
commutation relations [

b(ω′), b†(ω′′)
]
= δ(ω′ − ω′′), (12.62)

(bath-mode commutation relation)

which is the continuum version of [aq, a†q′ ] = δqq′ . Also, we have the free-evolution Hamiltonian for the cavity,
or the ‘‘system,’’

Hsys = h̄ω

(
a†a+

1

2

)
(12.63)

(free cavity Hamiltonian)

and the Hamiltonian for the external bath modes

Hext = h̄

∫ ∞
0

dω′ ω′b†(ω′)b(ω′) ≈ h̄
∫ ∞
−∞

dω′ ω′b†(ω′)b(ω′),

(free external bath Hamiltonian) (12.64)
if we drop the zero-point contributions and extend the integral again over negative frequencies.

12.2.1 Quantum Langevin Equation

Now for an arbitrary system operator c, the Heisenberg equation of motion is

∂tc = −
i

h̄
[c,H]. (12.65)

In particular, for the cavity annihilation operator a, we have

∂ta = − i
h̄
[a,Hsys]−

i

h̄
[a,Hint]

= −iωa(t)− i√
2π

∫ ∞
−∞

dω′
√
κ(ω′) b(ω′),

(12.66)
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where we have used [a, a†] = 1 and [a, a†a] = a. Similarly for b(ω′),

∂tb(ω
′) = − i

h̄
[b,Hext]−

i

h̄
[b,Hint]

= −iω′b(ω′)− i
√
κ(ω′)

2π
a(t).

(12.67)

To solve this latter equation, we can transform to a rotating frame,

∂t

[
b(ω′)eiω

′t
]
= [∂tb(ω

′)] eiω
′t + iω′b(ω′) eiω

′t

= −i
√
κ(ω′)

2π
a(t) eiω

′t.

(12.68)

Integrating from some past time t0 to t, we obtain

b(ω′)eiω
′t − b0(ω′)eiω

′t0 = −i
√
κ(ω′)

2π

∫ t

t0

dt′ a(t′) eiω
′t′ , (12.69)

where b0(ω′) := b(ω′)|t=t0 . We can then rewrite this equation as

b(ω′) = b0(ω
′) e−iω

′(t−t0) − i
√
κ(ω′)

2π

∫ t

t0

dt′ a(t′) e−iω
′(t−t′). (12.70)

Putting this into Eq. (12.66), we find

∂ta = −iωa(t)− i√
2π

∫ ∞
−∞

dω′
√
κ(ω′)b0(ω

′) e−iω
′(t−t0) − 1

2π

∫ ∞
−∞

dω′ κ(ω′)

∫ t

t0

dt′ a(t′) e−iω
′(t−t′). (12.71)

To proceed, we now make the Markov approximation by ignoring the frequency dependence of the decay
rate,

κ(ω′) ≈ κ = (constant). (12.72)
Strictly speaking, this cannot be true, but can be a good approximation over the frequency range of interest—
the resonance linewidth in the case of the optical cavity. Then we can name the integral in the second term
of Eq. (12.71) such that it becomes

√
κ ain(t), where

ain(t) :=
i√
2π

∫ ∞
−∞

dω′ b0(ω
′) e−iω

′(t−t0) (12.73)
(input field operator)

is the input field operator, which we will interpret in just a bit. The last term of Eq. (12.71) then becomes

− κ

2π

∫ t

t0

dt′ a(t′)

∫ ∞
−∞

dω′ e−iω
′(t−t′) = −κ

2
a(t), (12.74)

where we have used ∫ ∞
−∞

dω′ e−iω
′(t−t′) = 2πδ(t− t′) (12.75)

and ∫ t

t0

dt′ a(t′)δ(t− t′) = a(t)

2
, (12.76)

since the delta function is ‘‘split,’’ with half the contribution of the exponential factor in Eq. (12.75) being
picked up here. Putting these pieces together, we have the Heisenberg equation

∂ta = −iωa(t)− κ

2
a(t)−

√
κ ain(t),

(12.77)
(quantum Langevin equation)

called the quantum Langevin equation, since as we will see, the second term represents damping, and the
last term represents quantum noise. This last term also represents an input to the system, since it represents
the influence of the external modes b(ω′) at time t0 in the past on the present system operator a(t).
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12.2.1.1 Evolution of the Mean

To get a bit more insight into the Langevin equation (12.77), recall the Schrödinger-picture description of
cavity damping represented by the master equation (12.54). The master equation implies the equation of
motion

∂t〈A〉 = Tr[A∂tρ] = −
i

h̄
〈[A,Hsys]〉+ κ

〈
a†Aa− 1

2

(
a†aA+Aa†a

)〉
(12.78)

for an arbitrary system operator A. Setting A = a,

∂t〈a〉 = −iω〈a〉+
κ

2

〈
a†aa− aa†a

〉
= −iω〈a〉 − κ

2
〈a〉 . (12.79)

This is equivalent to the expectation value of the Langevin equation (12.77), but evidently 〈ain(t)〉 = 0 for
this case. This is consistent with our expectation, since the reservoir that leads to this master equation is in
the vacuum state, and the reservoir expectation value for each mode vanishes: 〈0|b0(ω′)|0〉 = 0. This means
that the expectation value damps exponentially away:

〈a(t)〉 =〈a(0)〉 e−iωte−κt/2. (12.80)

Obviously, though, the operator a must have more to it than just the expectation value—in particular, it has
fluctuations about the mean. Otherwise, for example, the commutator [a(t), a†(t)] would decay to zero, but
it must be unity for all times. The input ain thus acts as a quantum noise that represents the fluctuations
of a—fluctuations that are required in the presence of damping to ensure that commutators are preserved.
This is one manifestation of the fluctuation–dissipation relation (Section 14.3.8.1).

This interpretation of the input operators as noise terms is reinforced by computing the commutator
of ain(t), [

ain(t), a
†
in(t
′)
]
=

1

2π

∫ ∞
−∞

dω′
∫ ∞
−∞

dω′′
[
b0(ω

′), b†0(ω
′′)
]
e−iω

′(t−t0)eiω
′′(t′−t0)

=
1

2π

∫ ∞
−∞

dω′
∫ ∞
−∞

dω′′ δ(ω′ − ω′′) e−iω
′(t−t0)eiω

′′(t′−t0)

=
1

2π

∫ ∞
−∞

dω′ e−iω
′(t−t′),

(12.81)

so that [
ain(t), a

†
in(t
′)
]
= δ(t− t′). (12.82)

(input-operator commutator)
The input operator thus appears to have the character of white noise, since its correlation function is a
delta function (i.e., the power spectrum is flat). We will formalize this notion better after defining some
fundamental concepts in stochastic calculus.

12.2.2 Output Field

We can proceed again as before, but instead of integrating Eq. (12.68) from a past time t0 to t, we can
integrate from t to a future time t1, to obtain

b(ω′) = b1(ω
′) e−iω

′(t−t1) + i

√
κ(ω′)

2π

∫ t1

t

dt′ a(t′) e−iω
′(t−t′), (12.83)

where b1(ω′) := b(ω′)|t=t1 . Again putting this into Eq. (12.66), we find

∂ta = −iωa(t)− i√
2π

∫ ∞
−∞

dω′
√
κ(ω′)b1(ω

′) e−iω
′(t−t1) +

1

2π

∫ ∞
−∞

dω′ κ(ω′)

∫ t1

t

dt′ a(t′) e−iω
′(t−t′). (12.84)

Making the Markov approximation, defining the output field

aout(t) :=
i√
2π

∫ ∞
−∞

dω′ b1(ω
′) e−iω

′(t−t1),
(12.85)

(output field operator)
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and carrying out the integrals as before, we find the alternate, time-reversed Langevin equation

∂ta = −iωa(t) + κ

2
a(t)−

√
κ aout(t).

(12.86)
(time-reversed Langevin equation)

Here, the output operator aout(t) represents the coupling of the system to future bath modes, and thus we
interpret this to be the system output. However, since the influence of aout(t) is in the future, this equation
represents the backwards evolution of the system—hence the negative damping term.

Using essentially the same calculation leading up to Eq. (12.82), we find that the output-field commu-
tator [

aout(t), a
†
out(t

′)
]
= δ(t− t′). (12.87)

(output-operator commutator)
is also a temporal delta function. Not surprisingly, the output operator aout(t) has the same spectral
properties as the input ain(t).

12.2.3 Input–Output Relation

To relate the input and output fields, we start by integrating Eq. (12.70) over all frequencies (in the Markov
approximation),∫ ∞

−∞
dω′ b(ω′) =

∫ ∞
−∞

dω′ b0(ω
′) e−iω

′(t−t0) − i
√

κ

2π

∫ t

t0

dt′ a(t′)

∫ ∞
−∞

dω′ e−iω
′(t−t′)

= −
√
2πiain(t)− i

√
πκ

2
a(t),

(12.88)

which we can rewrite as
i√
2π

∫ ∞
−∞

dω′ b(ω′) = ain(t) +

√
κ

2
a(t). (12.89)

In particular, this means that the combination of operators on the right-hand side commutes with any system
operator c(t), since it is independent of the state of the bath at the same time. Similarly, we can integrate
Eq. (12.83) over all frequencies,∫ ∞

−∞
dω′ b(ω′) =

∫ ∞
−∞

dω′ b1(ω
′) e−iω

′(t−t1) + i

√
κ

2π

∫ t1

t

dt′ a(t′)

∫ ∞
−∞

dω′ e−iω
′(t−t′)

= −
√
2πiaout(t) + i

√
πκ

2
a(t),

(12.90)

which we can rewrite as
i√
2π

∫ ∞
−∞

dω′ b(ω′) = aout(t)−
√
κ

2
a(t). (12.91)

Again, the combination of operators on the right-hand side commutes with any system operator c(t). Com-
parting Eq. (12.91) with Eq. (12.89), we find the important relation

aout(t)− ain(t) =
√
κ a(t)

(12.92)
(input–output relation)

for the input, output, and system fields.

12.2.4 General Heisenberg Equations

Above, we derived the Heisenberg–Langevin equations for the cavity annihilation operator a(t). However, it
is also useful to derive Langevin equations for an arbitrary system operator c(t). We leave the derivation as
an exercise; the results are

∂tc = −
i

h̄
[c,Hsys]−

{[
c, a†

] (κ
2
a+
√
κ ain(t)

)
−
(κ
2
a† +

√
κ a†in(t)

)
[c, a]

}
(quantum Langevin equation) (12.93)
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and

∂tc = −
i

h̄
[c,Hsys]−

{[
c, a†

] (
−κ
2
a+
√
κ aout(t)

)
−
(
−κ
2
a† +

√
κ a†out(t)

)
[c, a]

}
.

(time-reversed Langevin equation) (12.94)
These obviously reduce to the previous Langevin equations if c −→ a.

12.2.5 Causality

Suppose again that c(t) is some Heisenberg-picture system operator. Since we integrate Eq. (12.93) forward
in time to find the evolution of c(t) in response to ain(t), we can see that c(t) only depends on ain(t

′) in the
past (t′ < t). Expressed as a commutator, this statement is

[c(t), ain(t
′)] = 0 (t′ > t). (12.95)

Similarly, integrating Eq. (12.94) gives the influence of aout(t) on c(t) in the past, so

[c(t), aout(t
′)] = 0 (t′ < t). (12.96)

But returning to Eq. (12.92), we see that both ain(t) and aout(t) give rise to the same commutator (up to
a minus sign), but on different sections of the time axis. We can thus combine Eqs. (12.92), (12.95), and
(12.96) to obtain the general commutators

[c(t), ain(t
′)] = −θ(t− t′)

√
κ [c(t), a(t′)]

[c(t), aout(t
′)] = θ(t′ − t)

√
κ [c(t), a(t′)] .

(12.97)
(input–output commutators)

These commutators are a general statement of causality with respect to the system and input/output oper-
ators. The general strategy for the input–output formalism, then, is to specify the input field ain(t) for a
system, use the Langevin equation (12.93) to determine the influence of the input on a system operator c(t)
[in particular, a(t)], and then use the input–output relation (12.92) to determine the system output aout(t).

12.2.6 Example: Reflections from a Cavity

Let’s consider the same one-sided cavity as usual, now in the input-output formalism.4

ao(t) aouto(t)

aino(t)

k

Further, let’s resolve the cavity-field operator a(t) into frequency components a(ω′) via the usual Fourier
transform:

a(ω′) =
1√
2π

∫ ∞
−∞

dt a(t) eiω
′(t−t0). (12.98)

We can resolve the input and output fields in the same way; for example, examination of Eqs. (12.73) and
(12.85) shows that ain(ω

′) = ib0(ω
′) and aout(ω

′) = ib1(ω
′). Then the Langevin equation (12.77)

∂ta = −iωa(t)− κ

2
a(t)−

√
κ ain(t) (12.99)

becomes
−iω′a(ω′) = −iωa(ω′)− κ

2
a(ω′)−

√
κ ain(ω

′), (12.100)

4Here, we are following M. J. Collett and C. W. Gardiner, op. cit.
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or √
κ ain(ω

′) =
[
i(ω′ − ω)− κ

2

]
a(ω′). (12.101)

Then we can use the input–output relation (12.92) to eliminate the cavity field a(ω′) = [aout(ω
′)− ain(ω

′)]/
√
κ,

with the result
κain(ω

′) =
[
i(ω′ − ω)− κ

2

]
[aout(ω

′)− ain(ω
′)], (12.102)

or [
i(ω′ − ω) + κ

2

]
ain(ω

′) =
[
i(ω′ − ω)− κ

2

]
aout(ω

′), (12.103)

so that

aout(ω
′) =

(
i(ω′ − ω) + κ/2

i(ω′ − ω)− κ/2

)
ain(ω

′).

(input–output relation for one-sided cavity) (12.104)
This equation demonstrates that in steady state, the intensity reflected at each frequency is the same as the
incident intensity (there can be no net flux). However, there is a phase shift that vanishes at large detunings
away from the cavity resonance (so that the reflection is mostly directly from the output mirror), and that
becomes a π phase shift exactly at resonance, when the output field is entirely radiated by the cavity. Note
that we also see here the explicit phase convention for reflecting from the output mirror, for which the field
acquires a factor of −1 (+1 for a reflection from the same mirror, but from inside the cavity).

12.2.7 Example: Cavity Transmission

Now if we consider a two-sided cavity,5 the generalization is straightforward: we have input and output
operators for each dissipation channel. We will use the notation a←in (t) and a←out(t) for the input and output
to the left-hand-side mirror, a→in (t) and a→out(t) for the input and output to the right-hand-side mirror.

ao(t) aá

outo(t)

aá

ino(t)

aÜ

ino(t)

aÜ

outo(t)

k/2k/2

We can generalize the Langevin equation (12.77) by simply adding both inputs,

∂ta = −iωa(t)− κ

2
a(t)−

√
κ

2
[a←in (t) + a→in (t)] , (12.105)

begin careful to add damping terms for each input. Here we assume a symmetric cavity, with decay rate κ/2
for each mirror, and thus a total decay rate of κ. Switching to frequency space as before,[

−i(ω′ − ω) + κ

2

]
a(ω′) = −

√
κ

2
[a←in (ω

′) + a→in (ω
′)] , (12.106)

and stipulating that there is no input from the right-hand side (a→in = 0),[
i(ω′ − ω)− κ

2

]
a(ω′) =

√
κ

2
a←in (ω

′). (12.107)

Now noting that the input–output relation (12.92) holds for each pair of input and output operators sepa-
rately (since they represent separate baths),

a←out(ω
′)− a←in (ω′) =

√
κ

2
a(ω′) = a→out(ω

′)− a→in (ω′), (12.108)

5Again, we are following M. J. Collett and C. W. Gardiner, op. cit.
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again with a→in = 0, we can eliminate a(ω′) in favor of a→out(ω
′) to obtain[

i(ω′ − ω)− κ

2

]
a→out(ω

′) =
κ

2
a←in (ω

′), (12.109)

so that the transmitted field becomes

a→out(ω
′) =

[
κ/2

i(ω′ − ω)− κ/2

]
a←in (ω

′).
(12.110)

(transmitted field)

This is a Lorentzian response with a full-width at half-maximum of κ, and perfect transmission on resonance,
a→out(ω) = a←in (ω). Then from Eq. (12.108),

a←out(ω
′) = a←in (ω

′) + a→out(ω
′) = a←in (ω

′) +

[
κ/2

i(ω′ − ω)− κ/2

]
a←in (ω

′), (12.111)

and thus the output field becomes

a←out(ω
′) =

[
i(ω′ − ω)

i(ω′ − ω)− κ/2

]
a←in (ω

′),
(12.112)

(reflected field)

which is, of course, whatever didn’t make it through the cavity. Returning to Eq. (12.107), we find that the
internal field is given by

a(ω′) =

[ √
κ/2

i(ω′ − ω)− κ/2

]
a←in (ω

′).
(12.113)

(transmitted field)

This is again a Lorentzian response, with a maximum amplitude at resonance of −
√
κ/2 a←in (ω

′ = ω). In
terms of intensities, this is

|a(ω′ = ω)|2 =
2

κ
|a←in (ω′ = ω)|2. (12.114)

From Eq. (12.43) the decay rate is κ = 2π/τrtF = 2π(FSR)/F in terms of the finesse and round-trip time
(free spectral range), so

|a(ω′ = ω)|2 =
F

2π

(
2|a←in (ω′ = ω)|2

FSR

)
.

(12.115)
(cavity buildup)

The usual classical result is that the cavity intensity builds up to a factor of F/2π over the input intensity
(for large F ); the factor of FSR/2 here emphasizes the different normalization of the input/output operators
compared to the cavity operator, since the cavity operator is defined in a bounded region, while the input-
output operators are defined on unbounded ones.

12.2.8 Example: Driven Cavity

Suppose we have a one-sided cavity driven by a classical field. Then the cavity Hamiltonian is

Hcav = h̄ω

(
a†a+

1

2

)
, (12.116)

and the Hamiltonian for the external driving laser at frequency ωL is, from Eq. (12.34),

HL = h̄E
(
aeiωLt + a†e−iωLt

)
. (12.117)

The quantum Langevin equation (12.77) is thus modified to include the free evolution of both Hamiltonians,
with the result

∂ta = −iωa(t)− iE e−iωLt − κ

2
a(t)−

√
κ ain(t). (12.118)



12.2 Input–Output Formalism 527

Defining the rotating-frame operator
ã(t) := a(t)eiωLt (12.119)

(with a similar definition for ãin), the Langevin equation becomes

∂tã = (∂ta)e
iωLt + iωLã = i(ωL − ω)ã(t)− iE −

κ

2
ã(t)−

√
κ ãin(t). (12.120)

With the external bath in the vacuum state, the expectation value of this equation is

∂t〈ã〉 = i(ωL − ω)〈ã(t)〉 − iE −
κ

2
〈ã(t)〉 . (12.121)

In steady state, ∂t〈ã〉 = 0, so

α :=〈ã(t→∞)〉 = iE

i(ωL − ω)− κ/2
.

(12.122)
(cavity steady state)

But due to the presence of the vacuum input field in Eq. (12.120), the field a(t) fluctuates about this value.
In fact, we have already seen in Section 5.6.1.3 that the steady state of the damped harmonic oscillator is a
coherent state. That is consistent with what we see here, since if the steady state is |α〉, then by definition the
coherent state satisfies a|α〉 = α|α〉, so that 〈a〉 = 〈α|a|α〉 = α. The effect of the input is then to superpose
vacuum fluctuations on the classical motion αe−iωLt of the cavity steady state.

On resonance, then, the steady-state amplitude is given by

|α|2 =
4E 2

κ2
=

4P

κh̄ω
=

2FP

π(FSR)h̄ω

(12.123)
(resonant cavity steady state)

in terms of the input power P , where we used E =
√
κP/h̄ω from Eq. (12.40). Recall that for a coherent

state |α|2 is the mean photon number, since 〈α|a†a|α〉 = |α|2.
Finally, note that rather than include a driving Hamiltonian, we could have specified the classical

driving field as part of the input field. That is, if the quantum Langevin equation without the contribution
from HL is

∂ta = −iωa(t)− κ

2
a(t)−

√
κ ain(t), (12.124)

Then making the replacement
ain(t) −→

iE√
κ
e−iωLt + ain(t) (12.125)

leads to the same driven Langevin equation (12.118). That is, the input field is in a coherent state, with
amplitude α/2 [the same factor of 2 that we saw in Eq. (12.115) crops up here as well], and again ain(t)
represents the input-field vacuum fluctuations.

12.2.9 Example: Atomic Motion in an Optical Cavity

Now consider a single atom in a resonantly driven cavity. The cavity Hamiltonian is again

Hcav = h̄ω

(
a†a+

1

2

)
, (12.126)

the Hamiltonian for the external driving laser exactly on resonance, ωL = ω, is again

HL = h̄E
(
aeiωt + a†e−iωt

)
, (12.127)

the free evolution of the atom is
HA =

p2

2m
+ h̄ω0σ

†σ, (12.128)

and the Jaynes–Cummings Hamiltonian (10.9) for the atom–field interaction is

HAF = h̄g(x)
(
σa† + σ†a

)
, (12.129)
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where
g(x) = g cos(kx) (12.130)

gives the spatial dependence of the cavity QED coupling rate due to the standing-wave field in the cavity
along the longitudinal direction.

With this collection of Hamiltonians, the quantum Langevin equation (12.77) becomes

∂ta = −iωa(t)− iE e−iωt − ig cos(kx)σ(t)− κ

2
a(t)−

√
κ ain(t), (12.131)

which becomes
∂tã = −iE − ig cos(kx)σ̃(t)− κ

2
ã(t)−

√
κ ãin(t), (12.132)

upon entering the rotating frame of the laser field, with ã(t) = a(t)eiωt and σ̃(t) = σ(t)eiωt. Similarly, the
general quantum Langevin equation (12.93) gives

∂tσ = −iω0σ(t)− ig cos(kx)[σ(t), σ†(t)]a− Γ

2
σ(t)−

√
Γσin(t), (12.133)

where we used σ2 = 0 and [σ, σ†σ] = σ. Also, we are including dissipation of the atom via spontaneous
emission, where Γ is the decay rate into modes other than the cavity mode (which is approximately the
free-space rate, so long as the cavity does not subtend a large solid angle from the atom). This dissipation
has the same form as for the cavity, but with the replacements κ −→ Γ and a −→ σ. In the rotating frame,
this becomes

∂tσ̃ = i∆σ̃(t)− ig cos(kx)[σ̃(t), σ̃†(t)]ã(t)− Γ

2
σ̃ −
√
Γσ̃in(t), (12.134)

where we now have the usual detuning
∆ := ω − ω0 (12.135)

of the laser field from the atomic resonance. Working in the limit of large detuning |∆| � Γ, κ, g, the atom
is only weakly excited, and thus we can take σσ† ≈ 1 and σ†σ ≈ 0, since the expectation values of these
operators represent the populations of the ground and excited states, respectively. Thus, we have

∂tσ̃ =

(
i∆− Γ

2

)
σ̃(t)− ig cos(kx)ã(t)−

√
Γσ̃in(t) (12.136)

for the atomic evolution.

12.2.9.1 Adiabatic Approximation

Now to make the adiabatic approximation. The idea is that the time scale for atomic motion is much
slower than any of the time scales |∆|,Γ, κ, g representing the cavity or internal atomic dynamics. Since
these other processes are explicitly damped at the (fast) rates κ/2 and Γ/2, respectively, we can assume
that they are always in quasi-equilibrium with respect to the atomic motion, so that ∂tσ̃ = 0 and ∂tã = 0.
This is sensible since to a good approximation, the atom will not respond to the fast fluctuations in σ̃(t)
and ã(t). Further to this end, then, we can set the input noise terms in Eqs. (12.132) and (12.136) to zero.
This is equivalent to replacing σ̃(t) and ã(t) by their expectation values 〈σ̃(t)〉 and 〈ã(t)〉, again since, to a
first approximation, the atomic motion should not respond to the fast fluctuations, so long as we are careful
about the procedure. Thus, Eq. (12.136) becomes

σ̃(t) ≈ ig cos(kx)
i∆− Γ/2

ã(t) ≈ g

∆
cos(kx)ã(t), (12.137)

and Eq. (12.132) becomes

0 ≈ −iE − ig cos(kx)σ̃(t)− κ

2
ã(t) ≈ −iE − ig

2

∆
cos2(kx)ã(t)− κ

2
ã(t) (12.138)
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ã(t) ≈ −iE

i
g2

∆
cos2(kx) + κ

2

(12.139)

As in Section 12.2.8, we can define
α :=

2E

κ
(12.140)

as the free-cavity coherent-state amplitude. Then expanding Eq. (12.139) to lowest order in ∆−1,

ã(t) ≈ −iα

1 + i
2g2

κ∆
cos2(kx)

≈ −iα
[
1− i g

2

κ∆
cos2(kx)

]
, (12.141)

so that we now have adiabatic expressions for both the atom and cavity lowering operators.
The atomic Hamiltonian (12.128) involves the combination σ†σ, so it is also useful to derive an adiabatic

relation for this operator. Note that for weak excitation, as we implicitly saw in coherent vs. incoherent
scattering from the two-level atom in Section 5.7.2,〈

σ†σ
〉
≈
〈
σ†
〉
〈σ〉 . (12.142)

This is because in the (far-detuned) weak-excitation limit, the spontaneous-emission rate from Eq. (5.272)
for classical-field excitation with Rabi frequency Ω is ΓΩ2/4∆2. The correction to factoring the expectation
value in Eq. (12.142) is O(∆−2), and thus ignorable in this regime. From Eq. (12.137)

σ̃†σ̃ ≈ g2

∆2
cos2(kx)a†a, (12.143)

since nothing changes upon transforming out of the rotating frame. The atomic Hamiltonian (12.144), once
transformed into the rotating frame, becomes

Heff =
p2

2m
− h̄∆σ̃†σ̃, (12.144)

since this Hamiltonian correctly generates the first term in the Heisenberg equation (12.134). But with
Eq. (12.143), we have the effective Hamiltonian

Heff =
p2

2m
− h̄ g

2

∆
cos2(kx)a†a

(effective Hamiltonian for atomic motion) (12.145)
for the atomic motion in response to the cavity field a†a in the adiabatic approximation.

Now considering the motion of a†a under Heff, which now replaces HA and HAF, we can use Eq. (12.93)
to obtain

∂ta
†a = iE

(
ã− ã†

)
−
{
a†
(κ
2
a+
√
κ ain(t)

)
+
(κ
2
a† +

√
κ a†in(t)

)
a
}

= iE
(
ã− ã†

)
− κa†a−

√
κ
[
ã†ãin(t)− ã†in(t)ã

] (12.146)

where we used [a†a, a] = [a†, a]a = −a and [a†a, a†] = a†[a, a†] = a†, with the same relations holding in the
rotating frame, where a†a = ã†ã. In the adiabatic approximation, we again set the noise terms to zero on
average (noting that, e.g., a(t) and ain(t) are statistically independent), and set the time derivative to zero,
with the result

a†a ≈ iE

κ

(
ã− ã†

)
= −α

(
ã− ã†

)
2i

. (12.147)

Now using Eq. (12.141),
a†a ≈ α2. (12.148)
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Then the effective Hamiltonian (12.145) becomes

Heff ≈
p2

2m
− h̄α

2g2

∆
cos2(kx),

(effective Hamiltonian for atomic motion) (12.149)
which represents the average effective potential seen by the atoms. Of course, the operator nature of
Eq. (12.145) shows that there will be fluctuations in the effective potential due to fluctuations in the cavity
field, which are in turn due to cavity decay. Physically, think of it this way: each time a photon escapes the
cavity at a random time, α2 jumps discontinuously downward by 1, and this amplitude smoothly recovers
due to the driving field until the next random jump.
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12.3 Exercises

Problem 12.1
Derive the decay rate for an optical cavity in the high-finesse limit using Fermi’s Golden Rule. Assume
that the decay occurs on the continuous family |n〉 −→ |n− 1, 1q〉 of transitions.

Problem 12.2
Derive the input–output Heisenberg equations of motion (12.93) and (12.94)

∂tc = −
i

h̄
[c,Hsys]−

{[
c, a†

] (κ
2
a+
√
κ ain(t)

)
−
(κ
2
a† +

√
κ a†in(t)

)
[c, a]

}
∂tc = −

i

h̄
[c,Hsys]−

{[
c, a†

] (
−κ
2
a+
√
κ aout(t)

)
−
(
−κ
2
a† +

√
κ a†out(t)

)
[c, a]

} (12.150)

for an arbitrary system operator c, for the system and bath interaction as we set up in class.

Problem 12.3
Use the general Born–Markov master-equation formalism (Section 4.5) to derive the master equation
for cavity decay (i.e., for a damped harmonic oscillator, coupled to a reservoir in the vacuum state).
You should end up with the usual Lindblad master equation of the form

∂tρ = − i
h̄
[H, ρ] + κD[a]ρ. (12.151)

To make things simpler, ignore the Lamb shift, and assume an equal coupling of the cavity to all
reservoir modes (i.e., a frequency-independent decay rate).

Problem 12.4

(a) Show for a damped cavity, where the cavity annihilation operator a satisfies the quantum Langevin
equation

∂ta = −iωa(t)− κ

2
a(t)−

√
κ ain(t), (12.152)

that for a bath in the vacuum state, that

∂t〈a〉 = −iω〈a(t)〉 −
κ

2
〈a(t)〉 . (12.153)

(b) The above result might seem alarming, as it appears that operators are damping away to nothing.
However, the noisy character of the input operator in the vacuum state compensates for the damping.
To illustrate this, show explicitly that the commutator [a, a†] is time-invariant in spite of the damping.

Problem 12.5
Consider a single-mode optical cavity with mode annihilation operator a(t), with corresponding input
and output operators ain(t) and aout(t), respectively, and decay rate κ.

(a) Show that [a†out(t), aout(t
′)] = [a†in(t), ain(t

′)]. What is the physical interpretation of this result?

(b) Show that
〈
a†out(t) aout(t

′)
〉

= κ
〈
a†(t) a(t′)

〉
, assuming a vacuum input. What is the physical

interpretation of this result?
(c) Show that 〈aout(t) aout(t

′)〉 = κ〈a[max(t, t′)] a[min(t, t′)]〉, assuming a vacuum input. What is the
physical interpretation of this result?





Chapter 13

Mechanical Effects of the Quantum
Vacuum

Here we will examine mechanical forces on atoms due to the quantum vacuum. Of course, there is no
absorption from the vacuum, but scattering of virtual photons can still produce forces. Complementary to
these forces are shifts of atomic energy levels, which we will also calculate. The main effect we will examine
is the Casimir–Polder effect,1 where a ground-state atom near a conducting surface, with the field in the
vacuum state, is attracted to the surface. We will also investigate the Lamb shift of atomic transitions,
which we can interpret as an ac Stark shift due to the vacuum field. Since the introduction of a conducting
boundary modifies the field modes, we can thus interpret the Casimir–Polder effect as a space-dependent
Lamb shift due to the local modification of the vacuum field modes. (However, unlike the Lamb shift, which
must be observed by probing transitions among atomic levels, the Casimir–Polder shift is observable for an
atom in a single level due to the mechanical action of the shift.)

13.1 Setup

We want to compute the effect of the vacuum field due to a plane conductor on an atom. We can write the
Hamiltonian for the free atom and field as

H0 =
∑
j

h̄ωj0|ej〉〈ej |+
∑
k,ζ

h̄ωk

(
a†k,ζak,ζ +

1

2

)
, (13.1)

where as usual, the ground state has zero energy, ωj0 = (Ej − E0)/h̄ is the transition frequency of the
|g〉 −→ |ej〉 atomic transition, the wave vector k labels the field modes of different frequency and orientation,
the index ζ labels the two independent polarizations, and ak,ζ is the annihilation operator for the (k, ζ) mode.
We will write the eigenstates that we need of the free Hamiltonian in the form |α, nk,ζ〉, which means that
the atom is in state |α〉, while the field mode (k, ζ) has n photons (other modes not explicitly labeled are in
the vacuum state).

1The original, and very readable, reference is of course H. B. G. Casimir and D. Polder, ‘‘The Influence of Retardation on
the London-van der Waals Forces,’’ Physical Review 73, 360 (1948) (doi: 10.1103/PhysRev.73.360). However, they only obtain
asymptotic results. Our results here, which include the intermediate regime, are consistent with the results of the seminal
calculation of G. Barton, ‘‘Frequency shifts near an interface: Inadequacy of two-level atomic models,’’ Journal of Physics B
7, 2134 (1974) (doi: 10.1088/0022-3700/7/16/012); as well as the more recent calculations by A. O. Barut and J. P. Dowling,
‘‘Quantum electrodynamics based on self-energy, without second quantization: The Lamb shift and long-range Casimir-Polder
van der Waals forces near boundaries,’’ Phys. Rev. A, 36, 2550 (1987) (doi: 10.1103/PhysRevA.36.2550); and D. Meschede, W.
Jhe, and E. A. Hinds, ‘‘Radiative properties of atoms near a conducting plane: An old problem in a new light,’’ Phys. Rev. A,
41, 1587 (1990) (doi: 10.1103/PhysRevA.41.1587). See also S. Haroche, ‘‘Cavity Quantum Electrodynamics,’’ in Fundamental
Systems in Quantum Optics: Proceedings of the Les Houches Summer School, Session LIII, 1990, J. Dalibard, J. M. Raimond,
and J. Zinn-Justin, Eds. (Elsevier, 1992), Course 13, p. 767.

http://dx.doi.org/10.1103/PhysRev.73.360
http://dx.doi.org/10.1088/0022-3700/7/16/012
http://dx.doi.org/10.1103/PhysRevA.36.2550
http://dx.doi.org/10.1103/PhysRevA.41.1587
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The quantum electric field from Eq. (8.56) is

E(r, t) = −
∑
k,ζ

√
h̄ωk

2ε0
fk,ζ(r)ak,ζ(t) + H.c., (13.2)

where the ak,ζ are the field annihilation operators, and the unit-normalized mode functions of frequency ωk
in half-space from Section 8.4.3 are

fk,ζ(r) =
√

2

V

(
ε̂k,ζ,‖ sin kzz − iε̂k,ζ,z cos kzz

)
eik‖·r, (13.3)

where V = L3 is the quantization volume. Recall that we are applying perfectly conducting boundary
conditions at z = 0 and z = L, and periodic boundary conditions at x = 0 and x = L, as well as y = 0 and
y = L. In the above mode functions, ε̂k,ζ is the unit polarization vector of the mode, and the x̂α are the
Cartesian unit vectors along the xα-direction. Recall also that the wave vectors are given by

kx =
2πnx
L

, ky =
2πny
L

, kz =
πnz
L
, (13.4)

where nx and ny are any integers, and nz is nonnegative. In the above quantization volume, we regard the
atom as being located at (L/2, L/2, z), although as we will see the transverse location is unimportant.

13.2 Atom–Vacuum Interaction

We now account for the coupling of the atom with the field. We use the usual dipole form of the atom–field
interaction Hamiltonian

HAF = −d ·E, (13.5)

where we neglect the contribution of the polarization term in Eq. (9.38) in this gauge. With the above
expression (13.2) of the electric field, along with the usual form of the dipole operator, we can write the
interaction explicitly without the rotating-wave approximation as

HAF = −
∑
j

∑
k,ζ

√
h̄ωk

2ε0
(σj + σ†j )〈g|d|ej〉 ·

[
fk,ζ(r)ak,ζ + f∗k,ζ(r)a

†
k,ζ

]
(13.6)

where σj := |g〉〈j|, and we have assumed the dipole matrix element 〈g|d|ej〉 to be real.
The idea here is to compute the energy shift of the ground state |g〉 in perturbation theory, which will

give the standard Casimir–Polder potential. Up to second order,

VCP = 〈g|H0|g〉+ 〈g|HAF|g〉+
∑
j

∑
k,ζ

|〈g|HAF|ej , 1k,ζ〉|2

Eg,0 − Eej ,1k,ζ

. (13.7)

The first two terms vanish, and the only nonvanishing contribution in the second-order term from HAF will
be from the σjak,ζ and σ†ja

†
k,ζ terms, which are not energy-conserving and thus are usually dropped in the

rotating-wave approximation. Then we insert the atom and field energies:

VCP = −
∑
j

∑
k,ζ

|〈g|HAF|ej , 1k,ζ〉|2

h̄(ωj0 + ωk)
. (13.8)

Using Eq. (13.6), we can write

VCP(r) = −
∑
j

∑
k,ζ

ωk

2ε0

|〈g|d|ej〉 · fk,ζ(r)|2

(ωj0 + ωk)
(13.9)
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if the atom is at position r and using Eq. (13.3) for the mode functions,

VCP(z) = −
∑
j

∑
k,ζ

ωk

ε0V

∣∣〈g|ε̂k,ζ,‖ · d|ej〉
∣∣2 sin2 kzz + |〈g|ε̂k,ζ,z · d|ej〉|2 cos2 kzz

(ωj0 + ωk)
, (13.10)

where we have dropped cross-terms involving the parallel and perpendicular components of the dipole op-
erator [these vanish in the upcoming angular integrals—convince yourself of this after working up through
Eqs. (13.25)]. For compactness, we will henceforth write

d 2
j,‖ ≡ d

2
j,x + d 2

j,y = |〈g|x̂ · d|ej〉|2 + |〈g|ŷ · d|ej〉|2 , d 2
j,z ≡ |〈g|ẑ · d|ej〉|

2
, (13.11)

so that Eq. (13.10) becomes

VCP = − 1

ε0V

∑
j

∑
k,ζ

ωk

(ωj0 + ωk)

{
[(ε̂k,ζ · x̂)2 + (ε̂k,ζ · ŷ)2]

1

2
d 2
j,‖ sin2 kzz + (ε̂k,ζ · ẑ)2d 2

j,z cos2 kzz
}
, (13.12)

where d 2
j,x = d 2

j,y for a spherically symmetric atom (technically, we are not assuming a spherically symmetric
atom, but because of the symmetry of the setup, the x and y dependence of the solution must be equivalent to
that of a spherically symmetric atom), and we have again discarded vanishing cross-terms. All that remains
is to evaluate the sums over atomic states and field modes.

The polarization sum is easy to evaluate, using the result from Eq. (8.190)∑
ζ

(ε̂k,ζ · r̂α) (ε̂k,ζ · r̂β) = δαβ −
kαkβ
k2

, (13.13)

which becomes ∑
ζ

|ε̂k,ζ · r̂α|2 = 1− k 2
α

k2
, (13.14)

for α = β, and we have introduced the absolute value to handle complex polarization vectors (in half space
we may assume they are real, and the polarization sum is independent of complex basis transformations).
In particular, we may write the two required sums

∑
ζ

|ε̂k,ζ,z|2 =
∑
ζ

|ε̂k,ζ · ẑ|2 = 1− k 2
z

k2∑
ζ

|ε̂k,ζ,‖|2 =
∑
ζ

|ε̂k,ζ · x̂|2 +
∑
ζ

|ε̂k,ζ · ŷ|2 = 2− k 2
x

k2
−
k 2
y

k2
= 1 +

k 2
z

k2
.

(13.15)

Then we can perform the polarization sums in the level shift, with the result

VCP = − 1

ε0V

∑
j

∑
k

ωk

(ωj0 + ωk)

{
1

2

(
1 +

k 2
z

k2

)
d 2
j,‖ sin2 kzz +

(
1− k 2

z

k2

)
d 2
j,z cos2 kzz

}
. (13.16)

Expanding out the sin2 and cos2 functions,

VCP = − 1

2ε0V

∑
j

∑
k

ωk

(ωj0 + ωk)

{[(
d 2
j,‖/2 + d 2

j,z

)
+
k 2
z

k2

(
d 2
j,‖/2− d

2
j,z

)]
−
[(
d 2
j,‖/2− d

2
j,z

)
+
k 2
z

k2

(
d 2
j,‖/2 + d 2

j,z

)]
cos(2kzz)

}
.

(13.17)

Before evaluating the sum, we must be careful to remove divergences, which will simplify this expression.
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13.3 Renormalization

Note that to compute the force on the atom due to the wall, we are really computing the difference in energy
between this situation and the limit of a large box, where the particle is arbitrarily far away from the surface
(we will also take the limit as the box size goes to infinity). That is, the ‘‘renormalized’’ potential is

lim
L,z0−→∞

VCP

(
L

2
,
L

2
, z

)
− VCP

(
L

2
,
L

2
, z0

)
. (13.18)

Hence the z-independent terms in Eq. (13.17), which are divergent under the mode summation, do not
contribute to the answer, so we can explicitly drop it. Thus, we have

VCP =
1

2ε0V

∑
j

∑
k

ωk

(ωj0 + ωk)

[(
d 2
j,‖/2− d

2
j,z

)
+
k 2
z

k2

(
d 2
j,‖/2 + d 2

j,z

)]
cos(2kzz), (13.19)

and what remains is to evaluate the wave-vector summation. The terms that we have dropped, which
are present in free space, are responsible for the Lamb shift that we will return to later. In fact, from
the perturbation result (13.9), which contains contributions from the σ†a† and σa terms of the interaction
Hamiltonian, we see that the effect we are considering corresponds to the following ‘‘one-loop’’ graph.

|gÒ

|gÒ
|eÒ

This corresponds to a ground-state atom emitting a photon and becoming excited, and then reabsorbing
the photon and returning to the ground state. Roughly speaking, if the virtual photon ‘‘bounces off the
mirror,’’ then we count it as contributing to the Casimir–Polder potential. Otherwise we count it as part of
the free-space Lamb shift.

13.4 Large-Box Limit

When the box becomes large (L −→ ∞), the spacing between the modes becomes small. In this limit, an
integral of a function is equivalent to a sum weighted by the mode spacings. As usual, we can write∑

k

f(k)∆kx∆ky∆kz −→
∫ ∞
−∞

dkx

∫ ∞
−∞

dky

∫ ∞
−∞

dkz f(k) (13.20)

for an arbitrary function f(k). Since

∆kx =
2π

Lx
, ∆ky =

2π

Ly
, ∆kz =

π

Lz
, (13.21)

we can thus make the formal replacement∑
k

−→ V

π(2π)2

∫ ∞
−∞

dkx

∫ ∞
−∞

dky

∫ ∞
0

dkz, (13.22)

where V = L3. Thus, we are left with the expression

VCP =
1

8π3ε0

∑
j

∫ ∞
−∞

dkx

∫ ∞
−∞

dky

∫ ∞
0

dkz
k

(kj0 + k)

[(
d 2
j,‖/2− d

2
j,z

)
+
k 2
z

k2

(
d 2
j,‖/2 + d 2

j,z

)]
cos(2kzz)

=
1

16π3ε0

∑
j

∫ ∞
−∞

dkx

∫ ∞
−∞

dky

∫ ∞
−∞

dkz
k

(kj0 + k)

[(
d 2
j,‖/2− d

2
j,z

)
+
k 2
z

k2

(
d 2
j,‖/2 + d 2

j,z

)]
cos(2kzz),

(13.23)
where ωk = ck, and ωj0 = ckj0. We now just need to evaluate the integrals here.
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13.5 Spherical Coordinates

In Eq. (13.23), we basically just need to evaluate the integrals

I1 =

∫ ∞
−∞

dkx

∫ ∞
−∞

dky

∫ ∞
−∞

dkz
k

(k + k0)
cos(2kzz)

I2 =

∫ ∞
−∞

dkx

∫ ∞
−∞

dky

∫ ∞
−∞

dkz
k 2
z

k(k + k0)
cos(2kzz).

(13.24)

Writing I1 in spherical coordinates, and carrying out the φ (azimuthal) integral,

I1 = 2π

∫ ∞
0

dk

∫ π

0

dθ
k3 sin θ cos(2kz cos θ)

k + k0

= 2π

∫ ∞
0

dk
k3

(k + k0)

sin(2kz)
kz

= − π

2z
∂ 2
z

∫ ∞
0

dk
sin(2kz)
k + k0

.

(13.25)

It appears that we are cheating by pulling the ∂ 2
z out of the integral, since the integral is, strictly speaking,

divergent since the integrand asymptotically scales as k for large k. However, in writing down the interaction
Hamltonian (13.6), what we neglected is the fact that the atom is not perfectly localized, and the Hamiltonian
should in fact be averaged over a localized distribution that represents the atom’s extent. If this distribution
is h(r), then each factor of sin kzz and cos kzz in Eq. (13.10) and the subsequent expressions is multiplied by
the Fourier transform h̃(k). Then factors of cos 2kzz in the subsequent expressions are multiplied by h̃2(k),
which cuts off the high-frequency ends of the above integral. For example, if h(r) is a Gaussian function,
then h̃2(k) is also Gaussian, and we have no problems with the convergence of the integrals. We will not
explicitly include these cutoff functions, except to note that they ensure that all the mode integrals are
convergent, and omitting them is equivalent to performing the integrals properly and then taking the limit
as the size of the atom vanishes.

To evaluate the above integral, we need to introduce the auxiliary functions to the sine and cosine
integrals,2 which have the definitions

f(z) = sin zCi(z) + cos z
[π
2
− Si(z)

]
g(z) = − cos zCi(z) + sin z

[π
2
− Si(z)

]
.

(13.26)

Here, the sine integral Si(x) and cosine integral Ci(x) are defined by

Si(z) =
∫ z

0

sin t
t

dt

Ci(z) = −
∫ ∞
z

cos t
t

dt = γ + log z +
∫ z

0

cos t− 1

t
dt,

(13.27)

where γ is Euler’s constant. The auxiliary functions are plotted here.
2See Milton Abramowitz and Irene A. Stegun, Handbook of Mathematical Functions (Dover, 1965), pp. 231-3.
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We note that even though they are composed of oscillatory functions, they are not themselves oscillatory.
Now using the integral representation of the auxiliary function f(z) from Problem 13.1,3∫ ∞

0

sin(ax)
x+ β

dx = f(aβ) (|argβ| < π, a > 0), (13.28)

we can evaluate the above integral to obtain

I1 = − π

2z
∂ 2
z f(2k0z). (13.29)

We can also write I2 in spherical coordinates, and after carrying out the φ (azimuthal) integral,

I2 = 2π

∫ ∞
0

dk

∫ π

0

dθ
k3 sin θ cos2 θ cos(2kz cos θ)

k + k0

= −π
2
∂ 2
z

∫ ∞
0

dk
k

k + k0

∫ π

0

dθ sin θ cos(2kz cos θ)

= −π
2

(
∂ 2
z

1

z

)∫ ∞
0

dk
sin(2kz)
k + k0

= −π
2

(
∂ 2
z

1

z

)
f(2k0z).

(13.30)

In evaluating the derivatives, it is useful to note the equivalence of the operators(
1

2z
∂ 2
z −

1

z2
∂z +

1

z3

)
≡ 1

2

(
∂ 2
z

1

z

)
, (13.31)

where both are assumed to operate on some function of z. Notice that I1 and I2 differ only by the ordering
of ∂ 2

z and (1/z).
We can then write the Casimir–Polder potential as

VCP =
1

16π3ε0

∑
j

[(
d 2
j,‖/2− d

2
j,z

)
I1j +

(
d 2
j,‖/2 + d 2

j,z

)
I2j

]
, (13.32)

where I1j is the same as I1 and I2j is the same as I2 but with k0 −→ kj0. Putting in the above values of I1
and I2, we find

VCP = − 1

(4πε0)8π

∑
j

[(
d 2
j,‖/2− d

2
j,z

)(1

z
∂ 2
z

)
+
(
d 2
j,‖/2 + d 2

j,z

)(
∂ 2
z

1

z

)]
f(2kj0z). (13.33)

3See Abramowitz and Stegun, op. cit., or I. S. Gradstein and I. M. Ryzhik, Table of Integrals, Series, and Products, English
translation 6th ed., A. Jeffrey and D. Zwillinger, Eds. (Academic Press, 2000), Formula 3.722.1.



13.5 Spherical Coordinates 539

This is not quite our final form. To simplify the antisymmetric part (involving the difference of d 2
j,‖ and

d 2
j,z), we must reintroduce the Thomas–Reiche–Kuhn sum rule.

13.5.1 Thomas–Reiche–Kuhn Sum Rule

In the classical analysis of the Lorentz model in Section 1.2.1, we wrote down the Thomas–Reiche–Kuhn
(TRK) sum rule ∑

j

f0j = 1. (13.34)

For a fine-structure transition J −→ J ′, we have the expression

ΓJ′J =
e2ω2

J′J

2πε0mec3
2J + 1

2J ′ + 1
fJJ ′ (13.35)

that relates the oscillator strength to the decay rate. We further have the relation

ΓJ′J =
ω3
J′J

3πε0h̄c3
2J + 1

2J ′ + 1
|〈J‖er‖J ′〉|2 (13.36)

relating the decay rate to the lifetime, in which case the TRK sum rule becomes∑
J′

ωJJ ′ |dJJ ′ |2 =
3h̄e2

2m
. (13.37)

This is closer to the usual quantum-mechanical form for the TRK sum rule, which we now derive directly.
Recall that we derived the relation

〈0|pα|j〉 = −i
m

h̄
〈0|[rα,H]|j〉

= imω0j〈0|rα|j〉,
(13.38)

between the position and momentum matrix elements in Section 9.3.2, Eq. (9.52), where

ω0j :=
E0 − Ej

h̄
(13.39)

is again the signed frequency of the transition between the energy eigenstates. The TRK sum rule follows
from the following:

∑
j

ω0j |〈0|rα|j〉|2 =
1

2

∑
j

(ω0j − ωj0) |〈0|rα|j〉|2

= − i

2m

∑
j

(〈0|pα|j〉〈j|rα|0〉 − 〈0|rα|j〉〈j|pα|0〉)

= − i

2m
〈0|[pα, rα]|0〉

= − h̄

2m
.

(13.40)

Thus, we have established the TRK sum rule (note the subscript ordering on ωj0):

∑
j

ωj0|〈0|rα|j〉|2 =
h̄

2m
. (13.41)

(Thomas–Reiche–Kuhn sum rule)
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Using Eq. (13.38), we can also establish the alternate form of the TRK sum rule:∑
j

|〈0|pα|j〉|2

ωj0
=
mh̄

2
. (13.42)

In the Casimir–Polder potential, two combinations of dipole sums are particularly useful, as a corollary to
the TRK sum rule: ∑

j

ωj0

(
d 2
j,‖ + 2d 2

j,z

)
=

2h̄e2

m∑
j

ωj0

(
d 2
j,‖ − 2d 2

j,z

)
= 0.

(13.43)

In writing these relations down, we have used r̂α · d0j = e〈0|rα|j〉. Of course, the label 0 can refer to any
energy eigenstate, not just the ground state.

As we indicated before in Section 1.2.1, the TRK sum rule can converge rather slowly, involving many
bound and unbound states for a convergence of matrix elements in an atom.4 We can see in Eq. (13.41) a
bit of why this is: In the ‘‘E gauge’’ (Section 9.3.2), calculations typically involve such sums over squared
position matrix elements (where the corresponding sums in the ‘‘A gauge’’ involve sums over the squared
momentum matrix elements as in Eq. (13.42). The E-gauge summations typically converge more quickly,
since the dipole matrix elements to high-energy states typically drop off quickly (high-energy states tend
to be far away from the nucleus, unlike low-energy states). However, the sum (13.41) is also weighted by
the transition frequency, which again gives weight to high-energy states, and slowing the convergence of the
sum.

13.5.2 Simplification

In Eq. (13.33), we have the derivative of f(z). The derivatives of the auxiliary functions are given by

∂zf(z) = −g(z)

∂ 2
z f(z) = −∂zg(z) =

1

z
− f(z),

(13.44)

so that the second derivative generates a term of the form∑
j

(
d 2
j,‖/2− d

2
j,z

) 2kj0
z2

, (13.45)

which vanishes due to the TRK sum rule. Thus, we can write Eq. (13.33) as

VCP =
1

(4πε0)8π

∑
j

[(
d 2
j,‖/2− d

2
j,z

) 4k 2
j0

z
−
(
d 2
j,‖/2 + d 2

j,z

)(
∂ 2
z

1

z

)]
f(2kj0z).

(Casimir–Polder potential for ground-state atom near perfect mirror) (13.46)
Now defining the scaled coordinates

z′j := 2kj0z, (13.47)
we can write

VCP =
1

(4πε0)πc3

∑
j

ω 3
j0

[(
d 2
j,‖/2− d

2
j,z

) 1

z′j
−
(
d 2
j,‖/2 + d 2

j,z

)(
∂ 2
z′j

1

z′j

)]
f(z′j)

(Casimir–Polder potential, scaled coordinates) (13.48)
as the potential shift of the ground state.

4See Peter W. Milonni and Joseph H. Eberly, Lasers (Wiley, 1988), p. 239, where the terms due to ionized states in hydrogen
make up a significant part of the sum.
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13.5.3 Spherical Symmetry

For an atom with a spherically symmetric ground state (S-orbital),

d 2
j,‖/2− d

2
j,z =

1

2

(
|〈g|ex|ej〉|2 + |〈g|ey|ej〉|2

)
− |〈g|ez|ej〉|2 = 0, (13.49)

while
d 2
j,‖/2 + d 2

j,z =
1

2

(
|〈g|ex|ej〉|2 + |〈g|ey|ej〉|2

)
+ |〈g|ez|ej〉|2 = 2d 2

j,z. (13.50)

Thus, the potential simplifies, and becomes

VCP = − 1

(4πε0)4π

∑
j

d 2
j,z∂

2
z

1

z
f(2kj0z).

(Casimir–Polder potential, spherically symmetric atom) (13.51)
Still, the f(z) function is unusual, and we will get some better feeling for it by examining its asymptotics
and by carrying out the derivatives.

13.6 Asymptotic Behavior

At small distances, we can use f(0) = π/2 to obtain from Eq. (13.51) the form

VCP = − 1

(4πε0)

1

4z3

∑
j

d 2
j,z.

(near-field van der Waals potential, spherically symmetric atom) (13.52)
We can see that this expression agrees with the classical result for the interaction of an induced, static dipole
with its image. The interaction energy of two dipoles d1 and d2 is

Vdip =
d1 · d2 − 3(r̂12 · d1)(r̂12 · d2)

(4πε0)r 3
12

, (13.53)

where r12 is the vector for the displacement between the two dipoles. For a dipole a distance z from the
conducting surface interacting with its image, we have r12 = 2z, so that the dipole interaction energy reduces
to

Vdip = − 1

(4πε0)

1

16z3

(
d2‖ + 2d2⊥

)
, (13.54)

where d‖ and d⊥ are the parallel and perpendicular components of the dipole, respectively. We have also
added an extra factor of 1/2, since don’t want the direct interaction energy, but rather the energy required
to bring the dipole from distance +∞ to z from the surface (equivalently, the energy we derived amounts
to a field integral over all space, but we only want the integral over the dipole fields over half space). This
agrees with Eq. (13.52) if we interpret the dipole moments as ground-state expectation values

d 2
‖,⊥ ≡ 〈g|d

2
‖,⊥|g〉, (13.55)

we find the quantum instantaneous dipole energy

Vdip = − 1

(4πε0)

1

16z3
〈g|
(
d2‖ + 2d2⊥

)
|g〉. (13.56)

If we further make the identifications

d2‖ = e2(x2 + y2), d2⊥ = e2z2, (13.57)

so that assuming an isotropic atom,

〈g|x2|g〉 = 〈g|y2|g〉 = 〈g|z2|g〉, (13.58)
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we can write the static-dipole interaction as

Vdip = − 1

(4πε0)

1

4z3
〈g|e2z2|g〉.

(near-field van der Waals potential, spherically symmetric atom) (13.59)
This is equivalent to Eq. (13.52) after inserting the identity summation over atomic states in the matrix
element. This is the usual van der Waals atom–surface interaction. We can see that in the short range,
this effect is largely a classical dipole–image interaction, except for the interpretation of the dipole as an
expectation value. The force here is thus due to zero-point fluctuations of the atomic dipole, which induce
a mean-square dipole that interacts with its image to produce the force.

Asymptotically, f(z) ∼ 1/z and g(z) ∼ 1/z2 for |arg z| < π, so that for the spherically symmetric atom
at large z,

VCP ∼ −
3c

(4πε0)4πz4

∑
j

d 2
j,z

ωj0
= − 3h̄cα0

(4πε0)8πz4
,

(long-range Casimir–Polder potential, spherically symmetric atom) (13.60)
where

α0 = α(0) =
∑
j

2d 2
j,z

h̄ωj0
(13.61)

is the (classical or small-signal) static polarizability from Eq. (1.32), with ω, γj −→ 0, and Eq. (5.213) to
convert the oscillator strength to the dipole matrix element. The contributions due to the cosine terms
from different transitions will have quasirandom phases at large z, and thus will average to zero, so we have
dropped them. Thus, we recover the standard Casimir–Polder result in the large-z limit.5 Again, the effect
is due to fluctuations of the atomic dipole, but now the dipole interacts with its retarded image, due to
the long distance to the mirror and back. The retardation means that the dipole is no longer completely
correlated with its image, and this is why the potential falls off more quickly (like z−4 instead of z−3) in the
far-field regime. Note, however, that in this regime, the Casimir–Polder effect is regarded in this regime as
a true quantum effect of the field, since a semiclassical argument with retardation does not reproduce the
correct potential without an extra choice of field-operator ordering.6

13.7 Excited-Level Shift

Now let us consider the corresponding shift of some excited atomic level |α〉. Then we must modify the
expression (13.9) to read

Vα = −
∑
j 6=α

∑
k,ζ

ωk

2ε0

|〈α|d|j〉 · fk,ζ(r)|2

(ωjα + ωk)
, (13.62)

When summing over a state |j〉 of higher energy than |α〉, then the term has the same form as before, since
|α〉 acts effectively as a ground state. However, if |j〉 is of lower energy than |α〉, then |α〉 takes on the role
of an excited state for the transition, and ωjα < 0. In the interaction Hamiltonian, these modified terms are
due to the usual energy-conserving terms σja†k,ζ and σ†jak,ζ , as opposed to the energy-nonconserving terms
σjak,ζ and σ†ja

†
k,ζ terms that are responsible for the ground-state shift.

To avoid problems with the pole in the k integration, we note that in perturbation theory, the integral is
always taken to be the Cauchy principle value (Section 14.1.4.2), so that the singularity causes no difficulty in
principle. The derivation then carries through as for the ground state, with possibly negative wave numbers
in the solution (13.33):

Vα = − 1

(4πε0)8π

∑
j

[(
d 2
j,‖/2− d

2
j,z

)(1

z
∂ 2
z

)
+
(
d 2
j,‖/2 + d 2

j,z

)(
∂ 2
z

1

z

)]
f(2kjαz), (13.63)

5Peter W. Milonni, The Quantum Vacuum (Academic Press, San Diego, 1994), p. 107.
6Stephen M. Barnett, Alain Aspect, and Peter W. Milonni, ‘‘On the quantum nature of the Casimir–Polder interaction,’’

Journal of Physics B: Atomic, Molecular, and Optical Physics 33, L143 (2000) (doi: 10.1088/0953-4075/33/4/106).

http://dx.doi.org/10.1088/0953-4075/33/4/106
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with
f(2kjαz) = f [sgn(kjα)2|kjα|z]. (13.64)

Note that since we now have in principle a complex-valued function, we are explicitly taking the real part
of the right-hand side. We can simplify this a bit by noting that Si(−z) = −Si(z). However, Ci(z) is a bit
more complicated: Ci(z) has a branch cut along the (−z)-axis, and it picks up an additional term when the
sign of the argument changes:7

Ci(−z) = Ci(z)− iπ (0 < arg z < π)

Ci(−z) = Ci(z) + iπ (−π < arg z < 0).
(13.65)

Note then that strictly speaking, we should not have a negative real argument of f(z). However, we are
implementing the Cauchy principle value, which consists of deforming the k integral by adding ±i0 to k,
and then averaging the results, so that the two possible extra terms cancel. Thus, for our purposes, we may
write Ci(−z) = Ci(z) for real z, and effectively,

f(−z) = −f(z) + π cos z, (13.66)

also for z real. Thus,
f(2kjαz) = sgn(ωjα)f(2|kjα|z) + Θ(ωαj)π cos(2|kjα|z), (13.67)

where Θ(z) is the Heaviside step function. That is, if the frequency is negative (for a term in the sum
corresponding to a lower-energy level), the sign of the f(z) function changes, and an extra term appears.
Thus,

Vα = −
∑
j

sgn(ωjα)
(4πε0)8π

[(
d 2
j,‖/2− d

2
j,z

)(1

z
∂ 2
z

)
+
(
d 2
j,‖/2 + d 2

j,z

)(
∂ 2
z

1

z

)][
f(2|kjα|z)−Θ(ωαj)π cos(2|kjα|z)

]
.

(13.68)
Thus, extra, oscillatory terms are present when the level |α〉 is an excited state—recall that f(z) is not
oscillatory. Redefining the scaled coordinates

z′j := 2|kjα|z, (13.69)

we can write the potential shift as

Vα = −
∑
j

sgn(ωjα)|ωjα|3

(4πε0)πc3

[(
d 2
j,‖/2− d

2
j,z

)( 1

z′j
∂ 2
z′j

)
+
(
d 2
j,‖/2 + d 2

j,z

)(
∂ 2
z′j

1

z′j

)][
f(z′j)−Θ(ωαj)π cos z′j

]
.

(13.70)
The TRK sum rule again applies as in Eq. (13.48), and we can thus evaluate the derivatives in the above
expression to obtain

Vα =
∑
j

sgn(ωjα)|ωjα|3

(4πε0)πc3

[(
d 2
j,‖/2− d

2
j,z

) 1

z′j
−
(
d 2
j,‖/2 + d 2

j,z

)(
∂ 2
z′j

1

z′j

)][
f(z′j)−Θ(ωαj)π cos z′j

]
. (13.71)

This is our final result for the level shift of any level due to the presence of the conducting plane. However,
let’s condense the notation just a bit more and write

Vα =
∑
j

sgnj |ωjα|3

(4πε0)πc3

[(
d 2
j,‖/2− d

2
j,z

) 1

z′j
−
(
d 2
j,‖/2 + d 2

j,z

)
∂ 2
z′j

1

z′j

][
f(z′j)−Θjπ cos z′j

]
,

(Casimir–Polder potential, excited level) (13.72)
where sgnj = sgn(ωjα) is negative only when level α has higher energy than level j, and Θj = Θ(ωαj) is
unity in the same case and vanishing otherwise.

7See Abramowitz and Stegun, op. cit., p. 232, Formula 5.2.20, or Gradstein and Ryzhik, op. cit., Formula 8.233.2.
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13.7.1 Classical Antenna Behavior

Suppose now that we focus only on the oscillatory terms:

V (osc)
α =

∑
j<α

|ωjα|3

4πε0c3

[(
d 2
j,‖/2− d

2
j,z

) 1

z′j
−
(
d 2
j,‖/2 + d 2

j,z

)(
∂ 2
z′j

1

z′j

)]
cos z′j . (13.73)

We can regard the sum here as extending over all states (even degenerate ones), in which case the formula

Γjj′ =
|ωj′j |3|〈j|d|j′〉|2

3πε0h̄c3
(13.74)

applies for the |j′〉 −→ |j〉 decay path. Thus, we find

V
(osc)
α =

∑
j<α

3

4
h̄Γαj

[(
ε̂ 2
j,‖/2− ε̂

2
j,⊥

)
−
(
ε̂ 2
j,‖/2 + ε̂ 2

j,⊥

)
∂ 2
z′j

] cos z′j
z′j

, (13.75)

where now ε̂‖ and ε̂⊥ are the projections of the dipole unit vector onto the components parallel and perpen-
dicular to the surface, respectively. By comparison to the classical expression of a dipole near a mirror, from
Eq. (1.130),

δω0 =
3

4
γ
[(
ε̂ 2
‖ /2− ε̂

2
⊥

)
−
(
ε̂ 2
‖ /2 + ε̂ 2

⊥

)
∂ 2
z′

] cos z′

z′
, (13.76)

where z′ := 2k0z, we see that the oscillatory part of the shift is explained by the classical model (at least
for a single transition, for here we must sum over all lower energy levels). Thus, we can interpret the part
of the potential unique to excited states as a classical dipole potential due to the spontaneously radiated
field. However, what the classical model misses is the f(z) part, which is a manifestation of the quantum
vacuum. As we noted above, the ground-state Casimir–Polder potential is an effect of reflecting virtual
photons, and we now see that the excited-state potential also includes effects due to real photons bouncing
from the mirror.

To examine this more quantitatively, consider a two-level atom,8 in which case the excited-state shift
corresponding to Eq. (13.72) is

δEe

h̄
=

3Γ

4π

[(
ε̂ 2
‖ /2− ε̂

2
⊥

)
−
(
ε̂ 2
‖ /2 + ε̂ 2

⊥

)
∂ 2
z′

] π cos z′ − f(z′)
z′

. (13.77)

For large z′, f(z′) � π cos z′, and we recover the classical result (13.76). For small z′, π cos z′ − f(z′) =
π/2 + O(z′), and thus the quantum near-field (van der Waals) shift is half the classical value. If we choose
to identify the classical and quantum mean-square dipoles differently to make them agree in the near-field,
then the quantum shift will be double the classical shift in the far field.9 Thus, because of the vacuum
contribution, there is no simple way to exactly identify the shift of the atomic excited state of the two-level
atom with that of the classical dipole radiator.

8Note that the two-level atom has some artifacts due to different cancellations than in the full summation for a real atom. For
example, if we calculate the transition frequency shift to compare to the classical case, we get the combination π cos z′ − 2f(z′),
which vanishes to zeroth order. Thus, the 1/z3 leading-order contribution vanishes, which is not the case for real atoms, because
the coupling to other levels still generate this term. See G. Barton, op. cit.

9E. A. Hinds and V. Sandoghdar, ‘‘Cavity QED level shifts of simple atoms,’’ Physical Review A 43, 398 (1991) (doi:
10.1103/PhysRevA.43.398). See also S. Haroche, op. cit.

http://dx.doi.org/10.1103/PhysRevA.43.398
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13.8 Power–Zienau Transformation in Half-Space

One little detail that we have ignored is that the complete dipole interaction Hamiltonian that we derived
before in Eq. (9.38) has the form

HAF =
1

2

∫
d3r ρ(r)φ(r) + ere ·E⊥(0) +

1

2ε0

∫
d3r P⊥2(r)

=
1

2

∫
d3r ρ(r)φ(r)− d ·E⊥(0) + 1

2ε0

∫
d3r P⊥2(r)

= H̃Coulomb + H̃d·E + H̃self,

(13.78)

where the last term is a polarization energy due to the dipole, with

P⊥α (r) := −ere,βδ
⊥
αβ(r). (13.79)

Note that we are also now including the interaction of the electron charge density ρ(r) with the scalar
potential, because now we have a coupling to a longitudinal electric field: an instantaneous dipole moment of
the atom shows up as an instantaneous image dipole, to enforce the boundary conditions at the conducting
plane. The r ·E term does not account for this, as it was derived from the coupling to the vector potential
and thus includes only the coupling to the transverse field. We have neglected the first and last terms thus
far, although we have gotten the correct interaction, which yields the instantaneous dipole-dipole coupling
at short range and the retarded scaling at long range. We have already shown in Eq. (13.56) that the
instantaneous dipole-image interaction due to HCoulomb is given by

∆ECoulomb = − 1

(4πε0)

1

16z3
〈α|
(
d2‖ + 2d2⊥

)
|α〉. (13.80)

We have neglected the last term in Eq. (13.78), the dipole self-energy. This easy to justify, since the self-
energy is integrated over all space and thus independent of r. The contribution is thus z-independent and
disappears in the renormalization of the Casimir–Polder potential. Note that this term is important in
computing the Lamb shift, as we will show later.

Of course, the above interaction Hamiltonian was derived using a field commutator, specifically a free-
space field commutator. However, for this calculation we have been living in half space, and we should verify
that our interaction Hamiltonian is still appropriate. From our previous treatment of the Power–Zienau
transformation, specifically Eq. (9.33), the transformed electric field operator is given by

Ẽ⊥β (r) = U(re)E
⊥
β (r)U†(re)

= E⊥β (r) +
ie

h̄
re,α

[
Aα(zẑ), E

⊥
β (r)

]
,

(13.81)

if we regard the atomic position to be zẑ, with the conductor located at z = 0 (the transverse location is
arbitrary). We now use the commutator [from Eq. (8.215)]

[Aα(r, t), Eβ(r′, t)] = −
ih̄

ε0

[
δ⊥αβ(r− r′)− δ>αβ(r− − r′)

]
, (13.82)

where the transverse and ‘‘reflected transverse’’ delta functions are [from Eqs. (8.178) and (8.214), respec-
tively]

δ⊥αβ(r) =
1

(2π)3

∫
d3k

(
δαβ −

kαkβ
k2

)
eik·r

δ>αβ(r) =
1

(2π)3

∫
d3k

(
δ−αβ −

k−α kβ
k2

)
eik·r.

(13.83)
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(Recall that k−α = kα except k−z = −kz, and δ−αβ = δαβ except that δ−zz = −1.) We can thus write the
transformed field in half-space as

Ẽ⊥β (r) = E⊥β (r) +
e

ε0
re,α

[
δ⊥αβ(r− zẑ)− δ>αβ(r + zẑ)

]
. (13.84)

We now see that the transformed field has an extra contribution at the location of the image dipole. The
field energy thus transforms as

U(re)

[∫
z>0

d3r
[
E⊥(r)

]2]
U†(re) =

∫
z>0

d3r
[
U(re)E⊥(r)U†(re)

]2
=

∫
z>0

d3r
[
E⊥(r)

]2
+

2e

ε0
re ·E⊥(zẑ) +

2e

ε0
re ·E>(−zẑ)

+
1

ε 20

∫
z>0

d3r
[
P⊥(r− zẑ)

]2
+

1

ε 20

∫
z>0

d3r
[
P>(r + zẑ)

]2
+

2

ε 20

∫
d3rP⊥(r− zẑ) ·P>(r + zẑ).

(13.85)

We have defined here the reflected field

E>α (r) :=
1

2

∫
z>0

d3r′
[
δ>αβ(r′ − r) + δ>βα(r′ − r)

]
E⊥β (r′), (13.86)

which for our purposes here is the same as the usual transverse field, but with the opposite sign for the
z-component, and the reflected polarization

P>α (r) := −ere,βδ
>
αβ(r). (13.87)

The interaction Hamiltonian then becomes

H̃AF =
1

2

∫
d3r ρ(r)φ(r) + ere ·E⊥(zẑ) + ere ·E>(−zẑ)

+
1

2ε0

∫
z>0

d3r
[
P⊥(r + zẑ)

]2
+

1

2ε0

∫
z>0

d3r
[
P⊥(r− zẑ)

]2
+

1

ε0

∫
z>0

d3rP⊥(r− zẑ) ·P>(r + zẑ).

(13.88)
Thus we see that in half-space, there is an additional dipole-field interaction term and two additional self-
energy terms. However, the field operator E>(−zẑ) vanishes, since it refers to the field amplitude behind
the conductor, where it vanishes. The other polarization terms reduce very simply, using the properties

[P>(r)]2 = [P⊥(r−)]2 (13.89)

and
P⊥(r) ·P>(r′) = P>(r) ·P⊥(r′). (13.90)

In this case, the interaction Hamiltonian becomes

H̃AF =
1

2

∫
d3r ρ(r)φ(r) + ere ·E⊥(z) +

1

2ε0

∫
all z
d3r

[
P⊥(r)

]2
+

1

2ε0

∫
all z
d3rP⊥(r− zẑ) ·P>(r + zẑ)

= H̃Coulomb + H̃d·E + H̃self + H̃dipole-image.

(13.91)
Thus, we recover the usual dipole self-energy term, plus a second that is evidently due to the interaction
of the dipole with its image in the mirror. The usual term is z-independent and does not contribute to the
Casimir–Polder potential after renormalization. We will examine this term more closely in Section 13.12.2.1.
However, the new term does, and we will now evaluate it.
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To evaluate the dipole-image part of the Hamiltonian,

H̃dipole-image =
1

2ε0

∫
all z
d3rP⊥(r− zẑ) ·P⊥(r + zẑ), (13.92)

we first evaluate the integral

(I3)αγ =

∫
d3r δ⊥αβ(r− zẑ) δ>γβ(r + zẑ)

=
1

(2π)6

∫
d3r

∫
d3k

∫
d3k′

(
δαβ −

k′αk
′
β

k′2

)(
δ−γβ −

k−γ kβ

k2

)
eik·(r−zẑ)eik

′·(r+zẑ)

=
1

(2π)3

∫
d3k

∫
d3k′

(
δαβ −

k′αk
′
β

k′2

)(
δ−γβ −

k−γ kβ

k2

)
δ(k + k′) e−i(kz−k

′
z)z

=
1

(2π)3

∫
d3k

(
δαβ −

kαkβ
k2

)(
δ−γβ −

k−γ kβ

k2

)
e−i2kzz

=
1

(2π)3

∫
d3k

(
δ−αγ −

kαk
−
γ

k2

)
e−i2kzz.

(13.93)

Note that the z coordinate here is the location of the atom, not a component of the integration variable r.
Now we can evaluate the components on a case-by-case basis. Note that the integrand is axially symmetric,
except for the tensor part, and thus the integral vanishes if α 6= γ, as in this case the dependence on the
axial angle φ will be sin θ, cos θ, or sin θ cos θ. We can also see that the δ−αγ never contributes, in view of the
integral ∫

d3k e−i2kzz =

∫
d3k cos(2kz cos θ)

= 2π

∫ ∞
0

dk k2
∫ π

0

dθ sin θ cos(2kz cos θ)

=
2π

z

∫ ∞
0

dk k sin(2kz)

= lim
σ→0

2π

z

∫ ∞
0

dk k sin(2kz)e−kσ

= lim
σ→0

8πσ

(σ2 + 4z2)2

= 0.

(13.94)

If α = γ = z, then we have

(I3)zz =
1

(2π)3

∫
d3k

k 2
z

k2
e−i2kzz

=
1

(2π)3

(
−1

4
∂ 2
z

)∫
d3k

1

k2
cos(2kzz)

=
1

(2π)2

(
−1

4
∂ 2
z

)∫ ∞
0

dk

∫ π

0

dθ sin θ cos(2kz cos θ)

=
1

(2π)2

(
−1

4
∂ 2
z

) ∫ ∞
0

dk
sin(2kz)
kz

=
1

(2π)2

(
−1

4
∂ 2
z

)
π

2z

= − 1

16πz3
.

(13.95)

On the other hand, if α = γ = x or y, then

(I3)xx = (I3)yy = − 1

(2π)3

∫
d3k

k 2
‖

2k2
e−i2kzz = − 1

32πz3
, (13.96)
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where we have used the fact that the x- and y-directions are equivalent in this axisymmetric problem, and
k 2
‖ = k 2

x + k 2
y = k2 − k2z . Thus,

(I3)αβ = − 1

32πz3
(δαxδβx + δαyδβy + 2δαzδβz) . (13.97)

To second order in the atomic dipole moment (i.e., to order e2), it is sufficient to compute the shift due to
the dipole-image Hamiltonian to first order in perturbation theory. Thus, for the shift of level α,

∆Edipole-image,α = 〈α|H̃dipole-image|α〉

=
e2

2ε0
〈α|re,µre,ν |α〉(I3)µν

=
1

(4πε0)16z3
〈α|
[
d 2
j,‖ + 2d 2

j,z

]
|α〉.

(13.98)

This is the opposite of the static-dipole energy shift due to the Coulomb Hamiltonian.
Note that this result—where contributions boundary terms from the Power–Zienau transformation

cancel the static image energies—always holds, independent of the shape of the boundary. Thus, when
using the dipole Hamiltonian, it is sufficient to use the free-space version without worrying about Coulomb
interactions with images.10

13.9 Calculation in the Coulomb Gauge

Now we will show that the same Casimir–Polder potential obtains if we use the A-gauge form

H
(A)
AF =

e

me
pe ·A +

e2

2me
A2 (13.99)

of the interaction Hamiltonian from Eq. (9.49), including the sometimes-neglected A2 term. The ground-state
shift of the first term follows from adapting Eq. (13.32) to read

∆Ep·A =
1

16π3ε0

∑
j

[(
d 2
j,‖/2− d

2
j,z

)
I ′1j +

(
d 2
j,‖/2 + d 2

j,z

)
I ′2j

]
, (13.100)

where the above form is the same as before, but written in terms of new integrals

I ′1 = k 2
0

∫ ∞
−∞

dkx

∫ ∞
−∞

dky

∫ ∞
−∞

dkz
1

k(k + k0)
cos(2kzz)

I ′2 = k 2
0

∫ ∞
−∞

dkx

∫ ∞
−∞

dky

∫ ∞
−∞

dkz
k 2
z

k3(k + k0)
cos(2kzz).

(13.101)

This is because the matrix elements of the r · E and p ·A interaction Hamiltonians differ in magnitude by
a factor of ω/ωj0, as we showed in Section 9.3.2. Thus, the integrands are multiplied by factors of (kj0/k)2
compared to the previous calculation in the E gauge. Evaluating the I ′1 integral,

I ′1 = 2πk 2
0

∫ ∞
0

dk

∫ π

0

dθ
k sin θ cos(2kz cos θ)

(k + k0)

= 2πk 2
0

∫ ∞
0

dk
k

(k + k0)

sin(2kz)
kz

=
2πk 2

0

z

∫ ∞
0

dk
sin(2kz)
(k + k0)

=
2πk 2

0

z
f(2k0z).

(13.102)

10E. A. Power and T. Thirunamachandran, ‘‘Quantum electrodynamics in a cavity,’’ Physical Review A 25, 2473 (1982) (doi:
10.1103/PhysRevA.25.2473).

http://dx.doi.org/10.1103/PhysRevA.25.2473
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Recalling that

I1 = −π
2

(
1

z
∂ 2
z

)
f(2k0z) =

2πk 2
0

z
f(2k0z)−

πk0
z2

, (13.103)

we showed above that the second term vanished in the sum over levels by the TRK sum rule (13.43). Thus,
the two integrals give equivalent results for the asymmetric-dipole part of the Casimir–Polder potential.

To evaluate the second integral I ′2, the procedure is similar to the case for I2:

I ′2 = 2πk 2
0

∫ ∞
0

dk

∫ π

0

dθ
k sin θ cos2 θ cos(2kz cos θ)

(k + k0)

= 4π

∫ ∞
0

dk
k

(k + k0)

(
sin(2kz)

2kz
+ 2

cos(2kz)
(2kz)2

− 2
sin(2kz)
(2kz)3

)
= −πk 2

0

(
1

2z
∂ 2
z −

1

z2
∂z +

1

z3

)∫ ∞
0

dk
sin(2kz)
k2(k + k0)

= −π
2
k 2
0

(
∂ 2
z

1

z

)∫ ∞
0

dk
sin(2kz)
k2(k + k0)

= −π
2
k 2
0

(
∂ 2
z

1

z

)(
−4∂−2z

) ∫ ∞
0

dk
sin(2kz)
(k + k0)

= −π
2
k 2
0

(
∂ 2
z

1

z

)(
−4∂−2z

)
f(2k0z)

= −π
2

(
∂ 2
z

1

z

)
f(2k0z) +

π2

4

(
∂ 2
z

1

z

)
+ πk0

(
∂ 2
z

1

z

)
[z log(2k0z)− z]

= −π
2

(
∂ 2
z

1

z

)
f(2k0z) +

π2

2z3
− πk0

z2
,

(13.104)

where we used the antiderivative formula

∂−2z f(z) = −f(z) + π/2 + z log z − z. (13.105)

The π/2 is one of the constants of integration from evaluating the antiderivatives, while the other gives a
term of the form cz, which vanishes under the derivative. These constants are set by noting that the integral
in the fourth line above vanishes for z = 0, and that f(0) = π/2. Now recalling from Eq. (13.30) that

I2 = −π
2

(
∂ 2
z

1

z

)
f(2k0z), (13.106)

we see that there are two terms in I ′2 that do not appear in I2 that we must explain. The second term in I ′2
leads to an energy shift of the form

1

32πε0z3

∑
j

(
d 2
j,‖/2 + d 2

j,z

)
=

1

4πε0

1

16z3
〈g|
(
d 2
‖ + d 2

z

)
|g〉. (13.107)

This has the same form, except for the opposite sign, as the static dipole energy (13.54), if we interpret the
classical squared dipole moments as quantum expectation values. Thus, this term cancels the static Coulomb
energy of the instantaneous dipole moment interacting with the boundary, which we have so far neglected
to include, given by the Hamiltonian

HCoulomb =
1

2

∫
d3rρ(r)φ(r), (13.108)

where ρ(r) is the charge density corresponding to the atomic dipole, and φ(r) is the scalar potential, which
gives the energy contribution of the longitudinal field. This energy corresponds to an unretarded energy, and
clearly must be canceled to produce the correct quantum (retarded) shift.
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The third term in I ′2, which also does not appear in I1, also scales as k0 and therefore, by the TRK
sum rule (13.43), becomes independent of the level:

kj0
16π2ε0z2

∑
j

(
d 2
j,‖/2 + d 2

j,z

)
= − e2h̄

16π2ε0mecz2
. (13.109)

We will show below that this term exactly cancels the contribution from the A2 term of the A-gauge
interaction Hamiltonian.

Thus, we see that the A-gauge interaction Hamiltonian gives the same result as the total E-gauge dipole
interaction Hamiltonian. The same is true of the excited-level shifts, because the extra cos(2k0z) terms that
appear there do not generate extra terms when differentiated or integrated twice, and the extra terms we
generated turned out to be level-independent. Thus, the same branch-cut argument above produces the same
terms in the A gauge. However we see explicitly here the importance of summing over all the excited levels;
had we made a two-level atom approximation, we would have gotten different results in the two gauges.11

Then what about the rest of the A-gauge Hamiltonian? We still have left the field self-energy part

HAF,2 =
e2

2me
A2 (13.110)

of the interaction. Since our calculation is valid to lowest (second) nonvanishing order in the dipole matrix
element, we can compute the shift due to this Hamiltonian to order e2, and thus it suffices to compute the
shift to first order in perturbation theory:

∆EA2 = 〈g|HAF,2|g〉

=
e2

2me
〈g|A2|g〉.

(13.111)

Using the expression

A(r, t) =
∑
k,ζ

i

√
h̄

2ωkε0
fk,ζ(r)ak,ζ(t) + H.c. (13.112)

for the quantum vector potential in terms of the mode functions from Eq. (8.61), we find that only the
terms of the form ak,ζa

†
k,ζ , where both operators correspond to the same mode, contribute to the vacuum

expectation value above. Thus,

∆EA2 =
e2h̄

4meε0

∑
k,ζ

1

ωk
|fk,ζ(r)|2. (13.113)

Using the half-space mode functions in Eq. (13.3), the shift then becomes

∆EA2 =
e2h̄

2meε0V

∑
k,ζ

1

ωk

[
|ε̂k,ζ,‖|2 sin2 kzz + |ε̂k,ζ,z|2 cos2 kzz

]
=

e2h̄

2meε0V

∑
k

1

ωk

[(
1 +

k 2
z

k2

)
sin2 kzz +

(
1− k 2

z

k2

)
cos2 kzz

]
=

e2h̄

2meε0V

∑
k

1

ωk

[
1 +

k 2
z

k2
(
sin2 kzz − cos2 kzz

)]
=

e2h̄

2meε0V

∑
k

1

ωk

[
1− k 2

z

k2
cos(2kzz)

]
.

(13.114)

As usual, we can change this to an integral over all reciprocal space in the large-volume limit:

∆EA2 =
e2h̄

8π2meε0c

∫ π

0

dθ sin θ
∫ ∞
0

dk k

[
1− k 2

z

k2
cos(2kzz)

]
. (13.115)

11This point was made eloquently by G. Barton, op. cit.
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The first term in the integral is z-independent, and gives a correction to the Lamb shift:

∆EA2,Lamb =
e2h̄

4π2meε0c

∫ ∞
0

dk k. (13.116)

Renormalization thus removes this part from the Casimir–Polder shift. The remainder of the energy shift
is, using the same integration procedures as before,

∆EA2 = − e2h̄

8π2meε0c

∫ ∞
0

dk

∫ π

0

dθ sin θk
2
z

k
cos(2kzz)

= − e2h̄

8π2meε0c

∫ ∞
0

dk k

∫ π

0

dθ sin θ cos2 θ cos(2kz cos θ)

= − e2h̄

8π2meε0c

(
−1

4
∂ 2
z

1

z

)∫ ∞
0

dk
sin(2kz)
k2

= − e2h̄

8π2meε0c

(
∂ 2
z

1

z
∂−2z

)∫ ∞
0

dk sin(2kz)

= − e2h̄

16π2meε0c

(
∂ 2
z

1

z
∂−2z

)
1

z

= − e2h̄

16π2meε0c

(
∂ 2
z

1

z

)
(z log z − z)

= − e2h̄

16π2meε0c
∂ 2
z log z

= − e2h̄

16π2meε0cz2
= − h̄2α0

4πmez2
,

(13.117)

where α0 := e2/4πε0h̄c is the fine-structure constant. There is here no constant of integration from evaluating
the antiderivative, since the integral in the third step above vanishes for z = 0, and limz→∞(z log z− z) = 0;
the other constant of integration contributes a linear term that vanishes subsequently under the derivative.
Note that this is exactly the opposite of the extra term that we found in Eq. (13.109), and thus this
contribution cancels that one. Again, this term is level-independent, and thus this cancellation occurs
for any atomic level, not just the ground state.

13.10 Evaluation

If we are to evaluate the Casimir–Polder potential, it is useful to expand out the rather compact form of
Eq. (13.72). We can do this by noting

∂ 2
z′j

1

z′j

[
f(z′j)−Θjπ cos z′j

]
=

1

z′2j
+

(
2

z′3j
− 1

z′j

)[
f(z′j)−Θjπ cos z′j

]
+

2

z′2j

[
g(z′j)−Θjπ sin z′j

]
, (13.118)

and thus

Vα =
∑
j

sgnj |ωjα|3

(4πε0)πc3

(
d 2
j,‖/2− d

2
j,z

) 1

z′j

[
f(z′j)−Θjπ cos z′j

]
−
∑
j

sgnj |ωjα|3

(4πε0)πc3

(
d 2
j,‖/2 + d 2

j,z

)[ 1

z′2j
+

(
2

z′3j
− 1

z′j

)[
f(z′j)−Θjπ cos z′j

]
+

2

z′2j

[
g(z′j)−Θjπ sin z′j

]]
,

(general Casimir–Polder potential, expanded derivatives) (13.119)
we can then evaluate this expression computationally by summing over all the states, evaluating the auxiliary
functions in terms of the sine and cosine integrals.
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13.11 Numerical Evaluation: 87Rb

The dipole moments defined above must be written in terms of the appropriate dipole matrix element
connecting two hyperfine levels |F,mF 〉 and |F ′,m′F 〉 (primes referring to the excited level). The hyperfine
dipole moment can be factored in terms of a Wigner 3-j symbol,

〈F mF |erq|F ′ m′F 〉 = 〈F‖er‖F ′〉(−1)F
′−1+mF

√
2F + 1

(
F ′ 1 F
m′F q −mF

)
, (13.120)

where I is the nuclear spin and J is the composite electron spin. This can be further factored in terms of a
6-j symbol and a reduced matrix element for the fine-structure transition:

〈F‖er‖F ′〉 ≡ 〈J I F‖er‖J ′ I ′ F ′〉

= 〈J‖er‖J ′〉(−1)F ′+J+1+I
√
(2F ′ + 1)(2J + 1)

{
J J ′ 1
F ′ F I

}
.

(13.121)

This form is particularly convenient, as this dipole matrix element may be written in terms of the partial
lifetime for the decay path J ′ −→ J :

1

τJ′J
=

ω3
0

3πε0h̄c3
2J + 1

2J ′ + 1
|〈J‖er‖J ′〉|2. (13.122)

Experimental measurements usually consider only the total lifetime of a level, given by summing over all
possible decay paths

1

τJ′
=
∑
J

1

τJ′J
. (13.123)

However, using the partial lifetimes avoids confusion with myriad normalization conventions for dipole matrix
elements, oscillator strengths, etc.

We are only considering broadband ‘‘light,’’ so to good approximation we do not need to explicitly
consider hyperfine splittings. Thus, it is convenient to simply sum over the dipole matrix elements originating
from a particular hyperfine state |F,mF 〉. For the ground and D1 (5P1/2) states, we can evaluate this sum
with the above formulae, and it turns out to be particularly simple:∑

F ′

|〈F,mF |er0|F ′,mF 〉|2 =
1

3
|〈J‖er‖J ′〉|2. (13.124)

For the D2 excited states, the sum is somewhat more complicated but can be written in terms of a number
of compact forms. Taking I = 3/2, J = 3/2 for the excited state in the D2 line (5P3/2), there are two
possibilities depending on the type of transition. If we consider coupling to the ground (5S1/2) state, then
J = 1/2, J ′ = 3/2, and for the perpendicular dipole moment,

∑
F ′

|〈F,mF |er0|F ′,mF 〉|2 = |〈J‖er‖J ′〉|2 ×


(3−mF )(3 +mF )/30, F ′ = 3
1/6, F ′ = 2
(1 + 6m2

F )/30, F ′ = 1
1/6, F ′ = 0

. (13.125)

For the parallel dipole moment,∑
F ′

(
|〈F,mF |er1|F ′, (mF − 1)〉|2 + |〈F,mF |er−1|F ′, (mF + 1)〉|2

)
=

|〈J‖er‖J ′〉|2 ×


(12 +m2

F )/30, F
′ = 3

1/2, F ′ = 2
(13− 6m2

F )/30,F
′ = 1

1/6m2
F , F ′ = 0

.

(13.126)
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If we consider coupling to higher-lying excited states, then J = 3/2, J ′ = 1/2, 3/2, 5/2, and for the perpen-
dicular dipole moment,

∑
F ′

|〈F,mF |er0|F ′,mF 〉|2 = |〈J‖er‖J ′〉|2 ×



(3−mF )(3 +mF )/15, F = 3, J ′ = 1/2
1/3, F = 2, J ′ = 1/2
(1 + 6m2

F )/15, F = 1, J ′ = 1/2
1/3, F = 0, J ′ = 1/2
(9 + 4m2

F )/75, F = 3, J ′ = 3/2
1/3, F = 2, J ′ = 3/2
(17 + 24m2

F )/75, F = 1, J ′ = 3/2
1/3, F = 0, J ′ = 3/2
(29−m2

F )/75, F = 3, J ′ = 5/2
1/3, F = 2, J ′ = 5/2
(7 + 2m2

F )/25, F = 1, J ′ = 5/2
1/3, F = 0, J ′ = 5/2

. (13.127)

For the parallel dipole moment,∑
F ′

(
|〈F,mF |er1|F ′, (mF − 1)〉|2 + |〈F,mF |er−1|F ′, (mF + 1)〉|2

)
=

|〈J‖er‖J ′〉|2 ×



(6 +m2
F )/15, F = 3, J ′ = 1/2

2/3, F = 2, J ′ = 1/2
(14− 6m2

F )/15, F = 1, J ′ = 1/2
2/3, F = 0, J ′ = 1/2
(66− 45m2

F )/75,F = 3, J ′ = 3/2
2/3, F = 2, J ′ = 3/2
(41− 24m2

F )/75,F = 1, J ′ = 3/2
2/3, F = 0, J ′ = 3/2
(46 +m2

F )/75, F = 3, J ′ = 5/2
2/3, F = 2, J ′ = 5/2
(18− 2m2

F )/25, F = 1, J ′ = 5/2
2/3, F = 0, J ′ = 5/2

.

(13.128)

These formulae are sufficient to determine the dipole moments in the Casimir–Polder energy shift for the
excited state.

13.11.1 Tabulated Data

Now we tabulate the lines involved in the trap-depth calculations. For the ground-state shift, we need the
series of nP3/2 and nP1/2 transitions, as given here. Sources here are listed as Steck12, NIST13, Morton14,
Gomez15, and Safronova16.

12Daniel A. Steck, ‘‘Rubidium 87 D Line Data,’’ available online at http://steck.us/alkalidata.
13NIST Atomic Spectra Database (version 3.0), Available online at http://physics.nist.gov/PhysRefData /ASD/index.html.
14Donald C. Morton, ‘‘Atomic Data for Resonance Absorption Lines. II. Wavelengths Longward of the Lyman Limit for

Heavy Elements,’’ Astrophys. J. Supp. Ser. 130, 403 (2000) (doi: 10.1086/317349).
15E. Gomez, F. Baumer, A. D. Lange, G. D. Sprouse, and L. A. Orozco, ‘‘Lifetime measurement of the 6s level of rubidium,’’

Phys. Rev. A 72, 012502 (2005) (doi: 10.1103/PhysRevA.72.012502).
16M. S. Safronova, Carl J. Williams, and Charles W. Clark, ‘‘Relativistic many-body calculations of electric-dipole matrix

elements, lifetimes, and polarizabilities in rubidium,’’ Phys. Rev. A 69, 022509 (2004) (doi: 10.1103/PhysRevA.69.022509).

http://dx.doi.org/10.1086/317349
http://dx.doi.org/10.1103/PhysRevA.72.012502
http://dx.doi.org/10.1103/PhysRevA.69.022509
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transition λ (nm) source τJ′J (ns) type source
5S1/2 −→ 5P3/2 780.241209686(13) Steck 26.236(11) expt Steck
5S1/2 −→ 5P1/2 794.9788509(8) Steck 27.679(27) expt Steck
5S1/2 −→ 6P3/2 420.2989(10) NIST 565(28) expt Morton
5S1/2 −→ 6P1/2 421.6726(10) NIST 667(33) expt Morton
5S1/2 −→ 7P3/2 358.8073(10) NIST 2530(130) expt Morton
5S1/2 −→ 7P1/2 359.2597(10) NIST 3460(170) expt Morton
5S1/2 −→ 8P3/2 334.9658(10) NIST 7300(360) expt Morton
5S1/2 −→ 8P1/2 335.1775(10) NIST 1.122(56)× 104 expt Morton
5S1/2 −→ 9P3/2 322.8911(10) NIST 1.563(78)× 104 expt Morton
5S1/2 −→ 9P1/2 323.0088(10) NIST 2.60(13)× 104 expt Morton
5S1/2 −→ 10P3/2 315.8444(10) NIST 2.96(15)× 104 expt Morton
5S1/2 −→ 10P1/2 315.9173(10) NIST 4.98(25)× 104 expt Morton
5S1/2 −→ 11P3/2 311.3468(10) NIST 3.98(20)× 104 expt Morton
5S1/2 −→ 11P1/2 311.3950(10) NIST 7.87(39)× 104 expt Morton
5S1/2 −→ 12P3/2 308.2893(10) NIST 6.71(34)× 104 expt Morton
5S1/2 −→ 12P1/2 308.3229(10) NIST 1.43(72)× 105 expt Morton
5S1/2 −→ 13P3/2 306.1131(10) NIST 9.52(48)× 104 expt Morton
5S1/2 −→ 13P1/2 306.1375(10) NIST 2.22(11)× 105 expt Morton

The additional data for the treatment of the D2 excited (5P3/2) state are as follows:

transition λ (nm) source τJ′J (ns) type source
5P3/2 −→ 6S1/2 1366.875(10) NIST 68.35(26) expt Gomez
5P3/2 −→ 7S1/2 741.02136(10) NIST 219.7(88) theory Safronova
5P3/2 −→ 8S1/2 616.13310(10) NIST 458(18) theory Safronova
5P3/2 −→ 4D3/2 1529.261(10) NIST 563(23) theory Safronova
5P3/2 −→ 4D5/2 1529.366(10) NIST 93.7(37) theory Safronova
5P3/2 −→ 5D3/2 776.15716(10) NIST 1490(340) theory Safronova
5P3/2 −→ 5D5/2 775.97855(10) NIST 254(56) theory Safronova
5P3/2 −→ 6D3/2 630.09666(10) NIST 1586(20) theory Safronova
5P3/2 −→ 6D5/2 630.00670(10) NIST 269(20) theory Safronova

The additional data for the treatment of the D1 excited (5P1/2) state are as follows:

transition λ (nm) source τJ′J (ns) type source
5P1/2 −→ 6S1/2 1323.879(10) NIST 136.71(51) expt Gomez
5P1/2 −→ 7S1/2 728.20028(10) NIST 419(17) theory Safronova
5P1/2 −→ 8S1/2 607.24355(10) NIST 870(35) theory Safronova
5P1/2 −→ 4D3/2 1475.644(10) NIST 103(41) theory Safronova
5P1/2 −→ 5D3/2 762.10304(10) NIST 335(82) theory Safronova
5P3/2 −→ 6D3/2 620.80263(10) NIST 339(29) theory Safronova

13.11.2 Results

The ground-level shift is shown here with the long-distance Casimir–Polder result (∼1/z4), where the de-
viation is clear at distances much smaller than the main transition wavelengths around 800 nm. The shifts
in the long-distance approximation computed by summing the dipole moments agree with those computed
from the static polarizability value17 of α0 = h · 0.122 306(16) Hz/(V/cm)2 to within a few percent.

17Daniel A. Steck, ‘‘Rubidium 87 D Line Data’’ unpublished, available online at http://steck.us/alkalidata.
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The shift is much smaller at large distances. Here, the general and large-distance results are visually indis-
tinguishable.
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Comparing the general result instead to the small-distance (static-dipole) expression, we also see deviations
in the intermediate regime. It appears that the small-distance result is only very accurate in the regime of
such short distances that the accuracy of this calculation is questionable.
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general result
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The shift of the D1 excited manifold is much stronger and oscillates due to the standing-wave pattern formed
by the atomic radiation. The shift here is scalar, so that all hyperfine levels in the manifold are shifted equally.
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The shifts of the levels in the D2 excited manifold depend substantially on the level, but the same general
oscillatory behavior is apparent.
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13.12 Lamb Shift

The effect that we ignored when renormalizing the divergence in Section 13.3 is the Lamb shift,18 which is
the shift of any atomic transition frequency due to the quantum vacuum, even in free space.

13.12.1 Coulomb Gauge

We will now first examine a conventional nonrelativistic calculation of the Lamb shift using the usual
Coulomb-gauge interaction Hamiltonian

H
(A)
AF =

e

me
pe ·A +

e2

2me
A2. (13.129)

Again using second-order perturbation theory to compute the shift of level α, we can write

∆Eα = 〈α|HAF|α〉+
∑
j

∑
k,ζ

|〈α|HAF|j, 1k,ζ〉|2

Eα,0 − Ej,1k,ζ

, (13.130)

which we will again evaluate to order e2 (second order in the atomic dipole moment).
We will start by evaluating the first-order perturbation, to which only the A2 term contributes. Thus,

we will write the first-order shift as
∆E(1)

α =
e2

2me
〈α|A2|α〉. (13.131)

Using the expression

Ak,ζ(r, t) = i

√
h̄

2ωε0V
ε̂k,ζe

ik·rak,ζ(t) + H.c. (13.132)

18Willis E. Lamb, Jr. and Robert C. Retherford, ‘‘Fine Structure of the Hydrogen Atom by a Microwave Method,’’ Physical
Review 72, 241 (1947) (doi: 10.1103/PhysRev.72.241); H. A. Bethe, ‘‘The Electromagnetic Shift of Energy Levels,’’ Physical
Review 72, 339 (1947) (doi: 10.1103/PhysRev.72.339); H. A. Bethe, L. M. Brown, and J. R. Stehn, ‘‘Numerical Value of the
Lamb Shift,’’ Physical Review 77, 370 (1950) (doi: 10.1103/PhysRev.77.370); Edwin A. Power, ‘‘Zero-Point Energy and the
Lamb Shift,’’ American Journal of Physics 34, 516 (1966) (doi: 10.1119/1.1973082).

http://dx.doi.org/10.1103/PhysRev.72.241
http://dx.doi.org/10.1103/PhysRev.72.339
http://dx.doi.org/10.1103/PhysRev.77.370
http://dx.doi.org/10.1119/1.1973082


558 Chapter 13. Mechanical Effects of the Quantum Vacuum

from Eq. (8.68) for the vector potential quantized in free space, we can proceed in the usual way so that the
first-order shift becomes

∆E
(1)
α =

e2h̄

4meε0V

∑
k,ζ

1

ωk

=
e2h̄

2meε0V

∑
k

1

ωk

=
e2h̄

2(2π)3meε0c

∫
d3k

1

k

=
e2h̄

4π2meε0c

∫ ∞
0

dk k.

(13.133)

This result is independent of the state |α〉, and therefore only produces an overall shift of the atomic energy
level. Since it does not contribute to the observable shifts of the atomic transition energies, we can neglect
it.

In the second-order shift, only the pe ·A term contributes, and thus

∆Eα = ∆E
(2)
α =

e2

m 2
e

∑
j

∑
k,ζ

|〈α|pe ·A|j, 1k,ζ〉|2

Eα,0 − Ej,1k,ζ

=
e2

m 2
e

∑
j

∑
k,ζ

|〈α|pe ·A|j, 1k,ζ〉|2

Eα − Ej − h̄ωk

= − e2

m 2
e

h̄

2ε0V

∑
j

∑
k,ζ

1

ωk

|〈α|pe|j〉 · ε̂k,ζ |2

h̄(ωjα + ωk)
.

(13.134)

Recall here that h̄ωjα := Ej −Eα and thus can be positive if level j is an excited state or negative if |j〉 is a
ground state with respect to |α〉. In the continuum limit, the angular part of mode sum amounts an average
over the relative orientation of the dipole and the field direction. We can thus take a uniform average over all
dipole orientations and replace the squared dot product by a factor of 1/3. Continuing with the calculation,

∆Eα = ∆E
(2)
α = − e2

3m 2
e ε0V

∑
j

∑
k

|〈α|pe|j〉|2

ωk(ωjα + ωk)

= − e2

3(2π)3m 2
e ε0c

2

∑
j

|〈α|pe|j〉|2
∫
d3k

1

k(kjα + k)

= − e2

6π2m 2
e ε0c

2

∑
j

|〈α|pe|j〉|2
∫ ∞
0

dk
k

kjα + k
.

(13.135)

Clearly this expression is divergent, and the divergence is asymptotically linear in k. The basic problem here
is that high energies are only treated correctly in relativistic theory, and this is a nonrelativistic calculation.
Nevertheless, Bethe19 used this nonrelativistic theory in a clever way to produce a finite prediction for the
energy-level shift.

The first step in Bethe’s argument is to realize that to get a finite energy shift, we will need to cut off
the integral. Supposing that we cut off contributions from energies larger than some large energy Λ, we can
write

∆Eα = ∆E(2)
α = − e2

6π2m 2
e ε0c

2

∑
j

|〈α|pe|j〉|2
∫ Λ/h̄c

0

dk
k

kjα + k
. (13.136)

The next step is Bethe’s mass renormalization. The idea is that the above energy shift contains the energy
of the free electron, which is unobservable; we can only observe the shifts in transition frequencies, which

19H. A. Bethe, ‘‘The Electromagnetic Shift of Energy Levels,’’ Physical Review 72, 339 (1947) (doi: 10.1103/PhysRev.72.339).

http://dx.doi.org/10.1103/PhysRev.72.339
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are related to the electron energies only in bound states. We can find the free-electron energy by taking the
limit kjα −→ 0 in Eq. (13.136), corresponding to a vanishing binding potential, so that

∆Efree
α = − e2

6π2m 2
e ε0c

2

∑
j

|〈α|pe|j〉|2
∫ Λ/h̄c

0

dk. (13.137)

Subtracting this from Eq. (13.136), we use the integrand subtraction

k

kjα + k
− 1 = − kjα

kjα + k
, (13.138)

and thus we find the renormalized energy

∆Eα −∆Efree
α =

e2

6π2m 2
e ε0c

2

∑
j

kjα |〈α|pe|j〉|2
∫ Λ/h̄c

0

dk

kjα + k
. (13.139)

This renormalization is important in that it has reduced the divergence from linear to logarithmic, and thus
the result is now relatively insensitive to the value of the cutoff Λ. The interpretation of the renormalization
is as follows: in relativistic theory, the free electron energy due to the field coupling shifts the atomic rest
mass, but by using the observed (or renormalized) mass me, we have already included this contribution, and
should not double-count it. This is the rationale for subtracting it after computing the atom-field coupling
energy.20

Now we can carry out the integration in Eq. (13.139), using∫ t

0

dx

x+ a
=

∫ t

0

d(x+ a)

x+ a

= log |x+ a|
∣∣∣∣t
0

= log |t+ a| − log |a|

= log
∣∣∣∣ ta + 1

∣∣∣∣
≈ log t

|a|
,

(13.140)

where the last equality holds if t > 0 and t� |a|. Thus, we obtain the Bethe logarithm

∆Eα −∆Efree
α =

e2

6π2m 2
e ε0c

2

∑
j

kjα |〈α|pe|j〉|2 log Λ

h̄|ωjα|
. (13.141)

The final step is to choose the cutoff Λ. Bethe chose Λ = mec
2 as a reasonable energy beyond which the

nonrelativistic theory should fail. Thus,

∆Eα −∆Efree
α =

e2

6π2m 2
e ε0c

2

∑
j

kjα |〈α|pe|j〉|2 log mec
2

h̄|ωjα|
.

(13.142)
(Lamb shift)

This is the basic, nonrelativistic result for the Lamb shift of level |α〉. Notice that for the ground state,
kjg > 0, and thus the Lamb shift is positive. Viewed as a Stark shift, evidently the ultraviolet modes far
above the dominant transition frequencies are the most important in determining the shift.

20For a much more detailed discussion of this point, as well as a nice historical account and many viewpoints of the Lamb
shift, see Peter W. Milonni, op. cit., Sections 3.4-3.9, pp. 82-96.
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13.12.1.1 Evaluation

Using this energy shift, Bethe computed a numerical value for the Lamb shift of the 2S −→ 2P fine-structure
transition in atomic hydrogen—a transition between degenerate states according to the solutions to the
Dirac equation. As a rough approximation, Bethe noted that the arguments of the logarithms are large
and relatively weakly dependent on the transition frequencies. As a rough approximation, he assumed it
was constant in the level summation and replaced it by an average excitation energy. Thus, the level sum
amounts to the sum ∑

j

kjα|〈α|pe|j〉|2 =
1

h̄c

∑
j

(Ej − Eα)〈α|pe|j〉 · 〈j|pe|α〉

=
1

h̄c

∑
j

〈α|[pe,HA]|j〉 · 〈j|pe|α〉

= − i
c
〈α|(∇eV ) · pe|α〉

= − i

2c
〈α|[∇eV,pe]|α〉

=
h̄

2c
〈α|∇ 2

e V |α〉

=
h̄

2c

∫
d3re |ψα(re)|2∇ 2

e V (re)

=
2πh̄Ze2

c
|ψα(0)|2,

(13.143)

where in the last step we used the Coulomb binding potential

V (re) = −
Ze2

re
, (13.144)

so that
∇ 2

e V (re) = 4πZe2δ3(re). (13.145)

In this approximation, then only S (l = 0) states have a Lamb shift, since their probability densities are
nonvanishing at the nucleus. We can then write the observed Lamb shift from (13.142) as

∆Eobserved
α ≈ 4α0Z

3

(
eh̄

mec

)2

|ψα(0)|2 log mec
2

h̄|(ωjα)avg|
, (13.146)

where again α0 := e2/4πε0h̄c is the fine-structure constant. Then for a hydrogenic S state in orbital n,

|ψn(0)|2 =
1

π

(
Z

na0

)3

, (13.147)

where a0 = h̄/mecα0 is the Bohr radius, so that

∆Eobserved
n ≈ 8α 3

0Z
4

3πn3
R∞ log mec

2

h̄|(ωjα)avg|
,

(13.148)
(S-state Lamb shift)

where R∞ = e2/2a0 ≈ 13.6 eV is the Rydberg energy (hydrogen ionization energy). Bethe used the average
value (ωjα)avg ≈ 17.8R∞, computed by averaging log |(ωjα)avg|, weighted by |ωjα| |〈α|pe|j〉|2. The value
here is much larger than R∞ since evidently ionized states make a large contribution to the sum. Using
these results, Bethe arrived at a shift of 1040 MHz for the 2S state (with negligible shift for the 2P state).
This is in surprisingly good agreement with the modern value of about 1058 MHz, considering the ad hoc
nature of the calculation.
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13.12.2 Electric Dipole Interaction

It is again interesting to see how the Lamb shift arises from the electric-dipole Hamiltonian, which we showed
in Eq. (9.38) has the form in free space takes the form

HAF = −d ·E⊥(0) + 1

2ε0

∫
d3r P⊥2(r), (13.149)

where the last term is the dipole self-energy, with

P⊥α (r) := −ere,βδ
⊥
αβ(r). (13.150)

Starting with the second-order shift due to the −d ·E⊥(0) part of the interaction, we have already computed
as the position-independent part of the Casimir–Polder expression (13.17), which we can write as a shift for
level |α〉 as

∆Ed·E
α = − 1

2ε0V

∑
j

∑
k

ωk

(ωjα + ωk)

[(
d 2
jα,‖/2 + d 2

jα,z

)
+
k 2
z

k2

(
d 2
jα,‖/2− d

2
jα,z

)]
. (13.151)

For a spherically symmetric atom, the asymmetric part of the dipole vanishes, and so

∆Ed·E
α = − 1

3ε0V

∑
j

|djα|2
∑

k

ωk

ωjα + ωk

= − 1

3(2π)3ε0

∑
j

|djα|2
∫
d3k

k

kjα + k

= − 1

6π2ε0

∑
j

|djα|2
∫ ∞
0

dk
k3

kjα + k
.

(13.152)

Again, the infinite upper limit here is understood to be an appropriate ultraviolet cutoff. Note, however,
that the asymptotic scaling of the integrand is now k2, where it was k0 in the p ·A calculation. Obviously
we are missing some contributions that will make the scaling correct.

13.12.2.1 Dipole Self-Energy

Now to evaluate the dipole self-energy term

HP⊥ =
1

2ε0

∫
d3r P⊥2(r) (13.153)

of the interaction Hamiltonian. Since ∂αδ⊥αβ(r) = 0 (Problem 8.7), the transverse delta function is itself a
transverse vector field for any particular value of β, and thus we may write (see also Problem 8.11)∫

d3r δ⊥αβ(r)δ⊥βγ(r) = δ⊥αγ(0). (13.154)

Thus,

HP⊥ =
1

2ε0

∫
d3r P⊥2(r)

=
e2

2ε0

∫
d3r re,αδ

⊥
αβ(r)δ⊥βγ(r)re,γ

=
e2

2ε0
re,αre,βδ

⊥
αβ(0)

=
e2

2ε0(2π)3
re,αre,β

∫
d3k

(
δαβ −

kαkβ
k2

)
,

(13.155)
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where we have used the momentum-space representation of the transverse delta function from Eq. (8.178).
Again, since we are calculating the Lamb shift to order e2, it is sufficient to consider the level shift due

to the dipole self-energy to first order in perturbation theory. In this case, the shift of level α is

∆EP⊥

α = 〈α|HP⊥ |α〉

=
e2

2ε0(2π)3
〈α|re,µre,ν |α〉

∫
d3k

(
δµν −

kµkν
k2

)
=

e2

2ε0(2π)3

∑
j

〈α|re,µ|j〉〈j|re,ν |α〉
∫
d3k

(
δµν −

kµkν
k2

)
=

1

2ε0(2π)3

∑
j

(dαj)µ(d
∗
αj)ν

∫
d3k

(
δµν −

kµkν
k2

)
.

(13.156)

Notice that for a spherically symmetric atom, the dipole matrix elements are independent of direction, and
thus (dαj)µ is independent of µ, and we can carry out the sum to write

∆EP⊥

α = 〈α|HP⊥ |α〉

=
1

2ε0(2π)3

∑
j

|dαj |2

3

∫
d3k

(
3− kµkµ

k2

)
=

1

3ε0(2π)3

∑
j

|dαj |2
∫
d3k

=
1

6π2ε0

∑
j

|dαj |2
∫ ∞
0

dk k2.

(13.157)

We can then write the total shift as

∆Eα = ∆Ed·E
α +∆EP⊥

α

=
1

6π2ε0

∑
j

|djα|2
∫ ∞
0

dk

(
− k3

kjα + k
+ k2

)
=

1

6π2ε0

∑
j

kjα|djα|2
∫ ∞
0

dk
k2

kjα + k
.

(13.158)

By accounting for the dipole self-energy, we have reduced the order of the divergence, and we are on track
to obtain the correct Lamb shift.21

13.12.2.2 Mass Renormalization

Again, we must subtract the free-electron energy, which we will calculate from the Coulomb-gauge Hamilto-
nian (13.129). We computed the contribution from the A2 Hamiltonian in Eq. (13.133) and found

∆E(1), free
α =

e2h̄

4π2meε0c

∫ ∞
0

dk k. (13.159)

Recall from Eq. (13.41) that the TRK sum rule is∑
j

ωjα|〈α|re,β |j〉|2 =
h̄

2me
, (13.160)

21The importance of the dipole self-energy and the following renormalization procedure were pointed out by E. A. Power
and S. Zienau, ‘‘Coulomb Gauge in Non-Relativistic Quantum Electro-Dynamics and the Shape of Spectral Lines,’’ Philo-
sophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences 251, 427 (1959) (doi:
10.1098/rsta.1959.0008).

http://dx.doi.org/10.1098/rsta.1959.0008
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which we can also write as ∑
j

ωjα|〈α|re|j〉|2 =
3h̄

2me
. (13.161)

This gives

∆E(1), free
α =

1

6π2ε0

∑
j

kjα|djα|2
∫ ∞
0

dk k. (13.162)

Subtracting this part of the free-electron energy from the Lamb shift (13.158), we find

∆Eα −∆E
(1), free
α =

1

6π2ε0

∑
j

kjα|djα|2
∫ ∞
0

dk

(
k2

kjα + k
− k
)

= − 1

6π2ε0

∑
j

k 2
jα|djα|2

∫ ∞
0

dk
k

kjα + k
.

(13.163)

This result is, in fact, equivalent to the result (13.135) in the Coulomb-gauge Hamiltonian before mass
renormalization in that gauge. We can again perform the same renormalization with the p ·A part of the
Hamiltonian, which we have already computed in Eq. (13.137):

∆E
(2), free
α = − e2

6π2m 2
e ε0c

2

∑
j

|〈α|pe|j〉|2
∫ ∞
0

dk

= − 1

6π2ε0

∑
j

k 2
jα|djα|2

∫ ∞
0

dk.

(13.164)

Subtracting this part (i.e., the rest) of the electron free energy, we find

∆Eα −∆Efree
α =

1

6π2ε0

∑
j

k 2
jα|djα|2

∫ ∞
0

dk

(
− k

kjα + k
+ 1

)
=

1

6π2ε0

∑
j

k 3
jα|djα|2

∫ ∞
0

dk

kjα + k

=
1

6π2ε0

∑
j

k 3
jα|djα|2 log mec

2

h̄|ωjα|
.

(13.165)

This result is exactly equivalent to the Coulomb-gauge result (13.142), if we use the conversion between the
momentum and dipole matrix elements.

13.13 Casimir–Polder Potential for a Rarefied Dielectric Surface

At this point, we return to the atom–surface potential, but instead of a perfect conductor, as we have been
considering, we will consider instead a dielectric planar surface, with the dielectric filling half of all space. This
problem is better handled with the powerful formalism of electromagnetic Green tensors [Section 14.3.5.6,
particularly Eqs. (14.211) and (14.212)]; however, this setup is a nice example of the mode-summation
formalism applied to a different set of modes.22 We will also approach the problem slightly differently,
computing the local (renormalized) energy density of the electromagnetic field due to the surface, and then
convert this into a Casimir–Polder potential. To keep things simple, we will assume a ‘‘rarefied’’ dielectric,
such that the dielectric susceptibility χ [see Eqs. (14.16) and (14.18)] is small (i.e., we will work to first order
in χ). We will also ignore dispersion of the dielectric (i.e., χ is independent of frequency).

22for a general approach to the Casimir–Polder potential of an atom near a planar dielectric via mode summation, see
Shin-Tza Wu and Claudia Eberlein, ‘‘Quantum Electrodynamics of an Atom in Front of a Non-Dispersive Dielectric Half-
Space,’’ Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 455, 2487 (1999)
(doi: 10.1098/rspa.1999.0413). See also Nicola Bartolo and Roberto Passante, ‘‘Electromagnetic-field fluctuations near a
dielectric-vacuum boundary and surface divergences in the ideal conductor limit,’’ Physical Review A 86, 012112 (2012) (doi:
10.1103/PhysRevA.86.012122).

http://dx.doi.org/10.1098/rspa.1999.0413
http://dx.doi.org/10.1103/PhysRevA.86.012122
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z

c

For the geometry, we will assume as before that the atom is a distance z above the dielectric, with the
dielectric occupying the half space z < 0.

We want to calculate the electromagnetic energy density for the vacuum state of the field, which is the
expectation value of the Hamiltonian (8.34),

E (r) = EE(r) + EB(r)

=
ε0
2

〈
E2(r, t)

〉
+
ε0c

2

2

〈
B2(r, t)

〉
=
ε0
2
〈0|E2(r, t)|0〉+ ε0c

2

2
〈0|B2(r, t)|0〉,

(13.166)

where we use ε0 here instead of ε(r) since we are interested in the energy density outside the dielectric. Note
that the two contributions here, from the electric and magnetic fields, are in fact equal in vacuum, but we
will see that their changes due to a planar boundary are not the same.

We will begin with the electric-field energy, which is the important part for a polarizable, nonmagnetic
atom interacting with the dielectric, as it will not ‘‘see’’ the magnetic field (more generally, the interaction
via the magnetic dipole moment will be much weaker than via the electric dipole moment). The quantum
electric field from Eq. (8.56) is

E(r, t) = −
∑
k,ζ

√
h̄ωk

2ε0
fk,ζ(r) ak,ζ(t) + H.c., (13.167)

where the ak,ζ are the field annihilation operators, and the fk,ζ(r) are the unit-normalized mode functions.
Noting that in the vacuum expectation value, the only nonvanishing terms have the form of aa† for some
mode, and so

EE(r) =
1

2

∑
k,ζ

h̄ωk

2
|fk,ζ(r)|2〈0|ak,ζa

†
k,ζ |0〉 =

1

2

∑
k,ζ

h̄ωk

2
|fk,ζ(r)|2, (13.168)

which is half of the zero-point energy of each mode, spatially distributed via the mode function, and then
summed over all modes. We only have a half of the zero-point energy because we are ignoring the half due
to the magnetic fields thus far.

To set up the modes, we will need the Fresnel reflection coefficients23

rTE(θ) =
cos θ −

√
1 + χ− sin2 θ

cos θ +
√
1 + χ− sin2 θ

= − 1

4 cos2 θ
χ+O(χ2)

rTM(θ) =

√
1 + χ− sin2 θ − (1 + χ) cos θ√
1 + χ− sin2 θ + (1 + χ) cos θ

=
1

4

(
1

cos2 θ
− 2

)
χ+O(χ2),

(13.169)

which give the amplitude of the reflection of a plane wave from the dielectric surface, normalized to the
incident amplitude. Here, θ is the angle of incidence, measured from the normal, and the two polarizations
are transverse-electric (TE, where the electric field is parallel to the surface) and transverse-magnetic (TM,
where the magnetic field is parallel to the surface). We have already expanded these expressions to lowest
order in χ, in anticipation of our perturbative calculation.

23Daniel A. Steck, Classical and Modern Optics (2006), Chapter 9. Available at http://steck.us/teaching. Note that
rTE ≡ rS and rTM ≡ rP in the notation there. See also Eq. (14.175) for further usage information.

http://steck.us/teaching
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13.13.1 TE Energy Density

To proceed with the computation of the energy density, we will begin with the TE modes. Modes incident
from above must include incident, reflected, and transmitted plane-wave components, and the modes have
the form

f↓k,TE(r) = ε̂k,TE

[
eik·rΘ(z) + rTE(θ)e

ik−·rΘ(z) +
√
1− |rTE|2eikt·rΘ(−z)

]
, (13.170)

where the arrow superscript indicates the direction of incidence, k is the incident wave vector (with kz < 0),
k− = kxx̂ + ky ŷ − kz ẑ is the reflected wave vector, and kt is the transmitted wave vector. Notice that
the polarizations of all fields match, as required by continuity of the surface-transverse component of the
electric field.24 (Although kt is determined by Snell’s Law, its precise form turns out to be irrelevent to
the calculation here.) We have written the transmitted field in terms of the reflection coefficient so that
the mode is explicitly normalized to a unit integral like the free-space mode functions, which is sufficient
for our purposes here (technically, they should be normalized under an ε integral measure, but since we
are staying outside the dielectric, this will not matter). Notice also that we have adopted unconfined mode
functions (Section 8.7) here, so there is no explicit quantization volume. The contribution of these modes to
the electric-field energy density (13.168) is

EE
↓
TE(r) =

h̄c

4(2π)3

∫
kz<0

d3k k|f↓k,TE(r)|
2, (13.171)

where we have written the sum as an integral and written ωk = ck. Then for z > 0,

EE
↓
TE(r) =

h̄c

4(2π)3

∫
kz<0

d3k k
∣∣∣eik·r + rTE(θ)e

ik−·r
∣∣∣2

=
h̄c

4(2π)3

∫
kz<0

d3k k
[
1 + r 2

TE + 2rTE cos(2kzz)
]
.

(13.172)

Since we only want the renormalized energy, we drop the z-independent terms:

EE
↓
TE(r) =

h̄c

2(2π)3

∫
kz<0

d3k krTE(θ) cos(2kzz). (13.173)

Before proceeding, consider the TE modes incident from below, which are of the form

f↑k,TE(r) = ε̂k,TE

[
eik·rΘ(−z)− rTE(θ)e

ik−·rΘ(−z) +
√
1− |rTE|2eikt·rΘ(z)

]
, (13.174)

where the sign of the reflection is changed to respect the unitarity of the interface reflection, and kt is once
again the transmitted wave vector, which we will leave unspecified. The associated energy density is

EE
↑
TE(r) =

h̄c

4(2π)3

∫
kz>0

d3k k|f↑k,TE(r)|
2 =

h̄c

4(2π)3

∫
kz>0

d3k k
(
1− |rTE|2

)
, (13.175)

which is z-independent, and thus should be entirely dropped upon renormalization. Note that the total we
have discarded so far is equivalent to the total energy density of the free TE field, and the only contribution
that we have kept is the interference term between the incident and reflected fields.

Thus, the total TE energy density after renormalization is

EETE(r) =
h̄c

2(2π)3

∫
kz<0

d3k krTE(θ) cos(2kzz). (13.176)

This integral turns out to be somewhat tricky to evaluate. Writing out the integral in spherical coordinates,
we have

EETE(r) =
h̄c

8π2

∫ ∞
0

dk

∫ π/2

0

dθ sin θ k3rTE(θ) cos(2kz cos θ)

=
h̄c

8π2

∫ ∞
0

dk

∫ 1

0

dξ k3rTE(ξ) cos(2kzξ),
(13.177)

24Daniel A. Steck, op. cit.
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where we have chosen the range of θ integration to be compatible with the definition for the reflection-
coefficient angle, and

ξ = cos θ. (13.178)

The k integral can be performed most easily by inserting a convergence factor of exp(−ak) to cut off high
frequencies, and the letting a −→ 0 afterwards (recall the discussion of convergence in Section 13.5, with the
result

EETE(r) =
3h̄c

64π2z4

∫ 1

0

dξ
rTE(ξ)

ξ4
. (13.179)

This integral unfortunately diverges at ξ = 0; inserting the reflection coefficient doesn’t help, since it is
well-behaved at ξ = 0 (and diverges like 1/ξ2 for small χ). Our little convergence trick isn’t valid if the
result blows up!

13.13.1.1 Digression: Back to the Perfect Conductor

For inspiration on how to proceed, let’s briefly go back to the familiar territory of the perfect conductor,
where rTE = −1. We can then evaluate the integral as follows:

EETE(r) = −
h̄c

8π2

∫ ∞
0

dk

∫ π/2

0

dθ sin θ k3 cos(2kz cos θ)

= − h̄c

8π2

∫ ∞
0

dk k3
sin(2kz)

2kz

= − h̄c

8π2(2z)4

∫ ∞
0

dk k2 sin k

= − lim
a→0

h̄c

8π2(2z)4

∫ ∞
0

dk k2e−ak sin k

= − h̄c

8π2(2z)4
(−2)

=
h̄c

64π2z4
,

(13.180)

where we have first carried out the angular integral, and then carried out the k integral by inserting a
convergence factor. Finally, the result is

EETE(r) =
3h̄c

32π2z4

(
1

6

)
.

(TE energy density, perfect conductor) (13.181)
This is the energy density in the perfect-conductor limit, and we will comment on this after we complete the
TE and TM calculations for the rarefied dielectric.

13.13.1.2 Integral for the Rarefied Dielectric

Evidently, the key to the success in the perfect-conductor case is in first carrying out the angular integration,
and we will be more careful about the order of integration. Writing out the integral (13.176) again in spherical
coordinates, we have

EETE(r) =
h̄c

8π2

∫ 1

0

dξ rTE(ξ)

∫ ∞
0

dk k3 cos(2kzξ). (13.182)

The problem here is that while rTE(ξ) is a well-behaved function, it is complex enough that it is difficult to
perform the integration with the cos factor. And we can simplify the expression by using the lowest-order
expression in χ from Eqs. (13.169), but then the integral diverges at ξ = 0. We will handle this difficulty by
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first carrying out the k integral by parts to build up powers of ξ that will regularize the integral at ξ = 0.
Performing the k integral by parts four times, we have

EETE(r) =
h̄c

8π2

(2z)4

840

∫ 1

0

dξ rTE(ξ) ξ
4

∫ ∞
0

dk k7 cos(2kzξ). (13.183)

We have ignored boundary terms here. At k = 0, the integrand always involves a positive power of k, so this
is obvious. At k = ∞, we are again forcing the integral to converge by cutting it off with an exponential
convergence factor, or equivalently by regarding the cosine integration as being shifted in the complex plane
off of the real axis as

cos k =
1

2

(
ei(k+i0

+) + e−i(k−i0
+)
)
, (13.184)

so that the value at infinity is suppressed without affecting the value of the integral. We then proceed by
using Eqs. (13.169) to set rTE = −1/4ξ2, and proceed as in the perfect-conductor case,

EETE(r) = −
h̄c

8π2

z4

210
χ

∫ ∞
0

dk k7
∫ 1

0

dξ ξ2 cos(2kzξ)

= − h̄c

212105π2z4
χ

∫ ∞
0

dk k7
∫ 1

0

dξ ξ2 cos(kξ)

= − h̄c

212105π2z4
χ

∫ ∞
0

dk k7
(
2k cos k + (k2 − 2) sin k

k3

)
= − h̄c

212105π2z4
χ(−1008)

=
3h̄c

32π2z4

( χ
40

)
,

(13.185)

where we changed variables k −→ k/2z. The final result is

EETE(r) =
3h̄c

32π2z4

( χ
40

)
.

(TE electric energy density, rarefied dielectric) (13.186)
Note that this is equivalent to the energy density (13.181) for the perfect conductor, up to a factor 6χ/40.

13.13.2 TM Energy Density

Now we can repeat the calculation for the TM modes. The polarization of the modes here works out to
be slightly more complicated, because the polarization is not parallel to the surface, but only the parallel
component is continuous across the dielectric interface. The resulting mode is25

f↓k,TM(r) = ε̂k,TMe
ik·rΘ(z) + ε̂−k,TMrTM(θ)e

ik−·rΘ(z) + ε̂t
k,TM

√
1− |rTM|2eikt·rΘ(−z), (13.187)

where the reflected polarization vector ε̂−k,TM is the same as the incident vector ε̂k,TM, but with the z compo-
nent reversed, and ε̂t

k,TM is the polarization vector of the transmitted wave, whose precise form we will not
need. However, note that both polarization vectors are orthogonal to k and each other, so that

ε̂k,TM = k̂ × ε̂k,TE, ε̂−k,TM = k̂− × ε̂k,TE, ε̂t
k,TM = k̂t × ε̂k,TE, (13.188)

where k̂− also has its z-component reversed compared to k̂. Considering only the z > 0 region, the only
z-dependent part of the mode envelope that we will need is the cross-term between the incident and reflected
fields:

|f↓k,TM(r)|
2 = 2rTE(θ) cos 2θ cos 2kzz, (13.189)

25Daniel A. Steck, op. cit.
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where the angular factor comes from the inner product of the incident and reflected polarization vectors. As
in the TE case, the modes incident from the dielectric side do not contribute any z-dependent terms. Thus,
the TM contribution to the electric energy density (13.168) is

EETM(r) =
h̄c

2(2π)3

∫
kz<0

d3k krTM(θ)
[
2 cos2 θ − 1

]
cos(2kzz), (13.190)

after renormalizing away the vacuum contribution, changing the mode sum to an integral, and using the
double-angle formula cos 2θ = 2 cos2 θ − 1.

We will adopt the same method of evaluation as in the TE case. Writing out the integral in spherical
coordinates,

EETM(r) =
h̄c

8π2

∫ 1

0

dξ (2ξ2 − 1) rTM(ξ)

∫ ∞
0

dk k3 cos(2kzξ), (13.191)

where again ξ = cos θ. Integrating by parts in k four times,

EETM(r) =
h̄c

8π2

(2z)4

840

∫ 1

0

dξ ξ4(2ξ2 − 1) rTM(ξ)

∫ ∞
0

dk k7 cos(2kzξ), (13.192)

where we dropped boundary terms as before. Then using Eqs. (13.169) to set rTM = (1/ξ2 − 2)/4, and
proceeding as in the perfect-conductor case,

EETM(r) =
h̄c

8π2

z4

210
χ

∫ 1

0

dξ ξ4(2ξ2 − 1)

(
1

ξ2
− 2

)∫ ∞
0

dk k7 cos(2kzξ)

=
h̄c

8π2

z4

210
χ

∫ ∞
0

dk k7
∫ 1

0

dξ
(
−ξ2 + 4ξ4 − 4ξ6

)
cos(2kzξ)

=
h̄c

212105π2z4
χ

∫ ∞
0

dk k7
∫ 1

0

dξ
(
−ξ2 + 4ξ4 − 4ξ6

)
cos(kξ),

(13.193)

where we have again changed variables k −→ k/2z. Carrying out the ξ integral,

EETM(r) =
h̄c

212105π2z4
χ

∫ ∞
0

dk
(
−2880 + 1344k2 − 74k4 + k6

)
sin k − 2k

(
1440− 192k2 + 5k4

)
cos k

=
h̄c

212105π2z4
χ(14448)

=
43h̄c

1280π2z4
χ,

(13.194)
where we have again used a convergence factor to perform the k integration.

EETM(r) =
3h̄c

32π2z4

(
43χ

120

)
,

(TM electric energy density, rarefied dielectric) (13.195)
Note that this is equivalent to the TE energy density (13.186) up to an overall constant.
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13.13.2.1 Digression: TM Energy Density for the Perfect Conductor

For completeness, we can also compute the TM energy for the perfect-conductor case. Putting rTM = −1
into Eq. (13.191), we have

EETM(r) = −
h̄c

8π2

∫ ∞
0

dk k3
∫ 1

0

dξ (2ξ2 − 1) cos(2kzξ)

= − h̄c

8π2(2z)4

∫ ∞
0

dk k3
∫ 1

0

dξ (2ξ2 − 1) cos(kξ)

= − h̄c

8π2(2z)4

∫ ∞
0

dk
[
4k cos k + (k2 − 4) sin k

]
= − h̄c

8π2(2z)4
(−10),

(13.196)

with the same procedure as for the dielectric. Finally, the result is

EETM(r) =
3h̄c

32π2z4

(
5

6

)
.

(TM electric energy density, perfect conductor) (13.197)
This is the same as the TE energy density for the perfect conductor (13.181), but with an extra factor of 5.

13.13.3 Total Casimir–Polder Potential for a Polarizable Atom

Summing the two polarization contributions (13.186) and (13.195) for a rarefied dielectric, the total electric-
field energy density

EE(r) =
3h̄c

32π2z4

(
23χ

60

)
.

(electric energy density, rarefied dielectric) (13.198)
Notice that the contribution of the TM mode to the energy density is much larger than the contribution
of the TE mode (43/120 vs. 1/40). Similarly, summing the two contributions (13.181) and (13.197) for the
perfect conductor gives

EE(r) =
3h̄c

32π2z4
.

(electric energy density, perfect conductor) (13.199)
Note that we have written all of the energy densities as a fraction of this one, which is the largest of all the
cases. Again, the contribution of the TM mode to the energy density is much larger than the contribution
of the TE mode (5/6 vs. 1/6). This may be somewhat surprising, as in the dielectric case, |rTM| < |rTE|
(recall that TM light is transmitted perfectly at Brewster’s angle, but not TE light), and in both cases, the
interference is imperfect due to polarization mismatching in the TM case.

To relate the electric energy density to the Casimir–Polder potential for an atom, recall [see Eq. (1.60)]
that the dipole potential for an atom interacting via its induced dipole moment with an electric field has the
form Vdipole = −(1/2)α0E

2, where α0 is the dc polarizability. As noted above, we are ignoring dispersion
here, so we are implicitly assuming that the atomic polarizability satisfies α(ω) = α0—this is a far-field limit,
where only the low-frequency modes contribute to the potential (the equivalent of the limit of large atomic
resonance frequencies). There is no dc field, but we have exactly computed the vacuum expectation value of
E2 (with a factor of ε0/2), so we wish to consider

Vdipole = −1

2
α0

〈
E2
〉
. (13.200)

Combining this with Eq. (13.166), we can relate the atomic potential directly to the energy density via

Vdipole = −α0

ε0
EE(r).

(13.201)
(far-field Casimir–Polder potential)
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Using this result, the perfect-conductor Casimir–Polder potential becomes

Vdipole =
3h̄cα0

32π2ε0z4

(Casimir–Polder potential, perfect conductor) (13.202)
in the far field, which agrees with Eq. (13.60). For the rarified dielectric, the Casimir–Polder potential is

Vdipole =
3h̄cα0

32π2ε0z4

(
23χ

60

)
,

(Casimir–Polder potential, rarefied dielectric) (13.203)
or a factor of 23χ/60 times the perfect-conductor result, valid for χ � 1. The results here agree with the
limiting cases of the general treatment in Section 14.3.5.6.

13.13.4 Magnetic-Field Energies

While the magnetic fields do not contribute to the Casimir–Polder potential of an electrically polarizable
atom, it is nonetheless interesting to compute the magnetic-field energies, and sum these to find the total
energies. While the electric and magnetic field energies are equivalent in vacuum, the changes in the energy
densities due to the dielectric are not the same. The derivation will be approximately the same as for the
electric-field case, but with two modifications, due to the magnetic fields are orthogonal to both the electric
fields and wave vector (i.e., the magnetic-field modes involve ∇× f rather than f. The first modification is
that the interference terms from the incident and reflected fields in both polarizations gain a relative minus
sign compared to the electric-field case, because of this orthogonality condition (in particular, E ×B must
point in the direction of k. So for example, for normal incidence, if the incident and reflected waves are
assumed to have parallel (electric-field) polarizations, the magnetic-field vectors will be antiparallel. The
second modification is that the geometry factor of cos 2θ in the TM expression (13.189), which later becomes
a factor of 2ξ2 − 1, moves from the TM case to the TE case for the magnetic fields.

These considerations are best visualized by comparing a diagram of the electric and magnetic fields at
a dielectric interface for TE polarization,

c

z = 0

qi

qr qt

E0i
(+)

H0i
(+)

E0r
(+)

H0r
(+)

E0t
(+)

H0t
(+)

and for TM polarization,
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c

z = 0

qi

qr qt

E0i
(+)

H0i
(+)

H0r
(+)

E0r
(+)

E0t
(+)

H0t
(+)

noting the relative orientations of the incident and reflected vectors in each case.

13.13.4.1 Magnetic TE Energy Densities

Starting with the expression (13.182) and making the sign and geometric-factor changes, we have

EBTE(r) = −
h̄c

8π2

∫ 1

0

dξ (2ξ2 − 1) rTE(ξ)

∫ ∞
0

dk k3 cos(2kzξ). (13.204)

The procedure to evaluate this is to integrate by parts four times,

EBTE(r) = −
h̄c

8π2

(2z)4

840

∫ 1

0

dξ ξ4(2ξ2 − 1) rTE(ξ)

∫ ∞
0

dk k7 cos(2kzξ), (13.205)

where we dropped boundary terms as before. Then using Eqs. (13.169) to set rTE = −1/4ξ2, and proceeding
as in the perfect-conductor case,

EBTE(r) =
h̄c

8π2

z4

210
χ

∫ 1

0

dξ ξ4(2ξ2 − 1)

(
1

ξ2

)∫ ∞
0

dk k7 cos(2kzξ)

=
h̄c

8π2

z4

210
χ

∫ ∞
0

dk k7
∫ 1

0

dξ ξ2
(
2ξ2 − 1

)
cos(2kzξ)

=
h̄c

212105π2z4
χ

∫ ∞
0

dk k7
∫ 1

0

dξ ξ2
(
2ξ2 − 1

)
cos(kξ)

=
h̄c

212105π2z4
χ

∫ ∞
0

dk k2
[
6k(k2 − 8) cos k + (48− 22k2 + k4) sin k

]
=

h̄c

212105π2z4
χ(−2352),

(13.206)

or simplifying the result,

EBTE(r) =
3h̄c

32π2z4

(
− 7χ

120

)
.

(TE magnetic energy density, rarefied dielectric) (13.207)
For the perfect conductor case, we instead set rTE = −1. This is the same as the TM electric energy density
for the perfect conductor, so Eq. (13.197) can be adapted here as

EETM(r) =
3h̄c

32π2z4

(
−5

6

)
,

(TE magnetic energy density, perfect conductor) (13.208)
where we have only had to change the overall minus sign.
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13.13.4.2 Magnetic TM Energy Densities

For the TM polarization, we take the electric TE expression, remove the geometric factor, and put in an
overall minus sign, so Eq. (13.191) becomes

EBTM(r) = −
h̄c

8π2

∫ 1

0

dξ rTM(ξ)

∫ ∞
0

dk k3 cos(2kzξ), (13.209)

Then using Eqs. (13.169) to set rTM = (1/ξ2 − 2)/4, and proceeding as usual to integrate by parts.

EBTM(r) = −
h̄c

8π2

(2z)4

840

∫ 1

0

dξ ξ4 rTM(ξ)

∫ ∞
0

dk k7 cos(2kzξ)

= − h̄c

8π2

z4

210
χ

∫ 1

0

dξ ξ4
(

1

ξ2
− 2

)∫ ∞
0

dk k7 cos(2kzξ)

= − h̄c

8π2

z4

210
χ

∫ ∞
0

dk k7
∫ 1

0

dξ ξ2
(
1− 2ξ2

)
cos(2kzξ)

= − h̄c

212105π2z4
χ

∫ ∞
0

dk k7
∫ 1

0

dξ ξ2
(
1− 2ξ2

)
cos(kξ).

(13.210)

Remarkably, this is exactly the same integral as in the TE case, essentially because rTM = rTE(2ξ
2 − 1) for

small χ. Thus, we have the same contribution as in Eq. (13.207).

EBTM(r) =
3h̄c

32π2z4

(
− 7χ

120

)
.

(TM magnetic energy density, rarefied dielectric) (13.211)
For the perfect conductor case, we again instead set rTM = −1. This is the same as the TE electric energy
density for the perfect conductor, so Eq. (13.181) can be adapted here as

EBTM(r) =
3h̄c

32π2z4

(
−1

6

)
,

(TM magnetic energy density, perfect conductor) (13.212)
where we have again only changed the overall minus sign.

13.13.4.3 Total Magnetic and Electromagnetic Energy Densities

The total magnetic energy density for the rarefied dielectric is the sum of Eqs. (13.207) and (13.211) or

EB(r) =
3h̄c

32π2z4

(
−7χ

60

)
.

(magnetic energy density, rarefied dielectric) (13.213)
Then in the case of the rarefied dielectric, the total electromagnetic energy is given by the sum of Eqs. (13.198)
and (13.213), which is

E (r) = 3h̄c

32π2z4

(
4χ

15

)
.

(total electromagnetic energy density, rarefied dielectric) (13.214)
Thus, the magnetic energy density cancels some of the electric energy density (after renormalization against
vacuum).

For the perfectly conducting plane, the total magnetic energy density is the sum of Eqs. (13.208) and
(13.211)

EB(r) = −
3h̄c

32π2z4
,

(magnetic energy density, perfect conductor) (13.215)
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which is exactly the opposite of the electric-field contribution (13.199), so that the total energy density is

E (r) = 0.

(total electromagnetic energy density, perfect conductor) (13.216)
Remarkably, the change in the total energy density vanishes for the perfect conductor. While the dielectric
boundary increases the fluctuations (and thus the energy) of the electric field, it tends to suppress those of
the magnetic field, at least outside the dielectric. This means that a hypothetical atom that was not electri-
cally polarizable, but purely magnetic, would experience a repulsive Casimir–Polder force near a dielectric
boundary, at least in the limits of a weak and strong dielectric.
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13.14 Exercises

Problem 13.1
The sine integral is defined as

Si(x) := π

2
−
∫ ∞
x

sin t
t

dt, (13.217)

and the cosine integral is defined as

Ci(x) := −
∫ ∞
x

cos t
t

dt. (13.218)

The auxiliary functions are also defined as

f(z) = sin zCi(z) + cos z
[π
2
− Si(z)

]
g(z) = − cos zCi(z) + sin z

[π
2
− Si(z)

]
.

(13.219)

(a) Show that

f(z) =

∫ ∞
0

sin t
t+ z

dt (|arg z| < π)

g(z) =

∫ ∞
0

cos t
t+ z

dt (|arg z| < π).

(13.220)

(b) Show that

f(z) =

∫ ∞
0

e−zt

1 + t2
dt (Re[z] > 0)

g(z) =

∫ ∞
0

t e−zt

1 + t2
dt (Re[z] > 0).

(13.221)

You can do this by considering the combination g(z) + if(z), writing out its integral expression, and
then changing to an integral along the positive imaginary axis.
Note that simple changes of variable justify the more general integral formulae26

∫ ∞
0

sin(ax)
x+ β

dx = f(aβ) (|argβ| < π, a > 0)∫ ∞
0

cos(ax)
x+ β

dx = g(aβ) (|argβ| < π, a > 0)∫ ∞
0

e−µx

β2 + x2
dx =

f(βµ)

β
(Re[µ] > 0,Re[β] > 0)∫ ∞

0

x e−µx

β2 + x2
dx = g(βµ) (Re[µ] > 0,Re[β] > 0)

(13.222)

that are useful for evaluating the Casimir–Polder potential near perfectly conducting planes.

Problem 13.2
Prove the ‘‘branch-cut formulae’’ for the cosine integral,

Ci(−z) = Ci(z)− iπ (0 < arg z < π)

Ci(−z) = Ci(z) + iπ (−π < arg z < 0),
(13.223)

26See I. S. Gradstein and I. M. Ryzhik, Table of Integrals, Series, and Products, English translation 6th ed., A. Jeffrey and
D. Zwillinger, Eds. (Academic Press, 2000), Integrals 3.722.1, 3.722.3, 3.354.1, and 3.354.2.
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where recall that we define the cosine integral by

Ci(x) := −
∫ ∞
x

cos t
t

dt. (13.224)

You can do this as follows.
(a) Defining the exponential integral

E1(x) :=

∫ ∞
x

e−t

t
dt, (13.225)

show that

E1(x) = −γ − logx−
∞∑
j=1

(−1)jxj

jj!
, (13.226)

where γ ≈ 0.577 215 664 901 532 860 607 is the Euler–Mascheroni constant, defined to be the asymptotic
difference between the partial sums of the harmonic series and the logarithmic function:

γ := lim
n→∞

[
1 +

1

2
+

1

3
+ · · ·+ 1

n
− logn

]
. (13.227)

Hint: you may find it helpful to use the integral relation

γ = −
∫ ∞
0

e−t log t dt, (13.228)

but if you use it, you should prove it. Whether or not you use it, it will help to get started by proving
that

1 +
1

2
+

1

3
+ · · ·+ 1

n
=

∫ 1

0

1− (1− t)n

t
dt. (13.229)

You should prove this by induction (if you don’t know what that means, then make sure you find out).
Then recalling that the exponential function may be defined by

ex = lim
n→∞

(
1 +

x

n

)n
, (13.230)

you can, for example, establish Eq. (13.228). In general, you should be integrating by parts like crazy
in this problem.
(b) Let t −→ xt in Eq. (13.225) to remove x from the integration limit, and then show that

Ci(x) = −1

2

[
E1(ix) + E1(−ix)

]
. (13.231)

(c) Use the result of (a) to show that

Ci(x) = γ + logx+

∫ x

0

1− cos t
t

dt. (13.232)

(d) Now recall that the log function has a branch cut along the negative real axis, and is otherwise
defined by log z = log r + iθ for z = reiθ (r > 0, −π < θ < π). Use this property of the logarithm to
prove Eqs. (13.223).
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Problem 13.3
Show that the integrals

I1 =

∫
d3k

k

(k + k0)
cos(2kzz)

I2 =

∫
d3k

k 2
z

k(k + k0)
cos(2kzz).

(13.233)

can also be performed in cylindrical coordinates, and agree with the results from spherical-coordinate
integration in the region z > 0. Be careful to avoid infinities!

Problem 13.4
Show that the integrals

I ′1 = k 2
0

∫
d3k

1

k(k + k0)
cos(2kzz)

I ′2 = k 2
0

∫
d3k

k 2
z

k3(k + k0)
cos(2kzz).

(13.234)

can also be performed in cylindrical coordinates, and agree with the results from spherical-coordinate
integration in the region z > 0.

Problem 13.5
(a) Show that expression (13.46) for the Casimir–Polder potential

VCP =
1

(4πε0)8π

∑
j

[(
d 2
j,‖/2− d

2
j,z

) 4k 2
j0

z
−
(
d 2
j,‖/2 + d 2

j,z

)(
∂ 2
z

1

z

)]
f(2kj0z) (13.235)

reduces in the long-distance limit to

VCP = −
∑
j

c

(4πε0)4πωj0

(
d 2
j,‖ + d 2

j,z

) 1

z4
= −

∑
j

cd 2
j

(4πε0)4πωj0z4
, (13.236)

so that even for an anisotropic molecule, the far-field potential is independent of the molecular orien-
tation and the potential still scales as z−4.
(b) Defining the normal and parallel static polarizabilities by

αz0 := αz(0) =
∑
j

2d 2
j,z

h̄ωj0

α‖0 := α‖(0) =
∑
j

d 2
j,‖

h̄ωj0
,

(13.237)

show that the far-field Casimir–Polder potential can then be written

VCP = − h̄c

(4πε0)8π

(
αz0 + 2α‖0

) 1

z4
. (13.238)

Justify the above definitions of the static polarizability on the basis of the usual expression (13.61).
Also show that for an isotropic atom, the Casimir–Polder potential here reduces to the usual far-field
formula, Eq. (13.60).
(c) Argue that the anisotropic correction—the term involving (d 2

j,‖/2−d
2
j,z)—to the near-field potential

(van der Waals regime) should be negligible compared to the usual component for the spherically
symmetric part of the atom.
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Problem 13.6
Starting with the integral expression (13.23) for the Casimir–Polder potential,

VCP =
1

16π3ε0

∑
j

∫ ∞
−∞

dkx

∫ ∞
−∞

dky

∫ ∞
−∞

dkz
k

(kj0 + k)

[(
d 2
j,‖/2− d

2
j,z

)
+
k 2
z

k2

(
d 2
j,‖/2 + d 2

j,z

)]
cos(2kzz),

(13.239)
obtain directly the asymptotic form for large z for a spherically symmetric atom (that is, do not use
the full expression in terms of the auxiliary function f(z) as an intermediate step). To do this, note
that for large z, cos(2kzz) is a rapidly oscillating function of kz (and thus of k), and thus the integrand
only gives a nonvanishing contribution where kz (and thus k) is close to zero.

Problem 13.7
Work through the entire derivation of the Casimir–Polder potential near a planar conductor, but
with the following simplifications, which you should implement as early as possible in the derivation:
assume a spherically symmetric atom from the beginning, and work in the far field, where only low
frequencies are important (see the comment in Problem 13.6). Also, start with the mode functions
inside a rectangular cavity.

Problem 13.8
Compute the Casimir–Polder potential for a spherically symmetric atom near an L-shaped conductor,
where the conductor occupies the region x < 0 and z < 0, with the atom at (x > 0, y, z > 0). Use the
setup of Problem 13.7, including the assumption of being in the far-field regime.

z

x

In particular, you should find a potential of the form

VCP = V
(x)

CP + V
(z)

CP + V
(xz)

CP , (13.240)

where V (x)
CP and V (z)

CP have the form for atom-plane Casimir–Polder energies, and V (xz)
CP is a nonadditive

correction for the atom interacting with both surfaces. You should be able to give a simple interpreta-
tion for V (xz)

CP once simplified (in fact it is the Casimir–Polder potential for an atom–surface distance√
x2 + z2.

Problem 13.9
Work out an integral expression for the Casimir–Polder potential, in analogy to Eq. (13.23), for the
electromagnetic field in two dimensions (that is, two-dimensional space with a line conductor, which of
course does not correspond to reality; instead, consider the physical problem of an atom constrained to
be halfway between two planar, parallel conductors, spaced by the very small distance `, and the atom
is a distance z from a third planar conductor that intersects the other two conductors perpendicularly).
For simplicity, just work out the case of a spherically symmetric atom. Show that the potential scales
asymptotically as z−3 at large z.

Problem 13.10
Recompute the Casimir–Polder force for a spherically symmetric atom near a perfectly conducting
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plane, but using only the TE modes [Eq. (8.76)]

f(TE)

k (r) =
√

2

V

(
k̂‖ × ẑ sin kzz

)
eik‖·r (13.241)

(i.e., ignoring the contribution of the TM modes). Show that in the far-field regime, the TE modes
contribute only 1/6 of the total potential.

Problem 13.11
Derive an expression for the ground-state Casimir–Polder potential of an atom near a perfectly con-
ducting, infinite surface, generalized to the case where the electromagnetic field is at temperature
T .



Chapter 14

QED with Dielectric Media

14.1 Classical Electrodynamics in Dielectric Media

Our starting point will be Maxwell’s equations for the electromagnetic fields in a medium:

∇ ·D = ρ

∇ ·B = 0

∇×E = −∂tB
∇×H = ∂tD + j.

(14.1)
(Maxwell’s equations)

Here, D is the electric flux density or electric displacement, B is the magnetic flux density, E and
H are the usual electric and magnetic fields, respectively, ρ is the source charge density, and j is the source
current density. We will ignore magnetic effects, so that

B = µ0H, (14.2)

and the electric fields are related by
D = ε0E + P, (14.3)

where P is the polarization density of the medium (i.e., dipole moment per unit volume).

14.1.1 Effective Sources

There are multiple ways to treat the polarization field here. One is to treat it in terms of equivalent, effective
sources. To see this, we can put Eq. (14.3) into the first Maxwell equation, with the result

∇ ·E =
1

ε0
(ρ−∇ ·P) . (14.4)

Defining the effective ‘‘bound charge density’’ for the polarization field by

ρP := −∇ ·P, (14.5)
(bound charge density)

we see that the first Maxwell equation becomes

∇ ·E =
1

ε0
(ρ+ ρP) . (14.6)

This is the form for the free-space Maxwell equation, with an extra source charge density.
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Similarly, from the continuity equation

∇ · j = −∂tρ, (14.7)

the existence of the bound charge density implies a ‘‘bound current density:’’

∇ · (∂tP) = −∂tρP = ∇ · jP. (14.8)

Thus, we can define

jP := ∂tP
(14.9)

(bound polarization current density)

as the effective polarization current density. We then see that the last Maxwell equation,

∇×H = ∂tD + j, (14.10)

can be written
∇×B = µ0ε0∂tE + µ0(j + jP). (14.11)

This is the corresponding free-space Maxwell equation, with an extra source current density jP. If we were
not ignoring magnetic media, there would also be a second bound current associated with the magnetization.

These effective sources are useful ways to think about the medium response. In particular, one route
to quantizing the field in absorptive media is to realize that in quantum mechanics, absorption (dissipation)
is always accompanied by noise (fluctuations) to preserve commutation relations at all times. The noise
can be explicitly put in via noise source fields. However, for now, we will specialize to a linear, dispersive
medium, and instead treat the medium response by frequency-dependent response functions.

14.1.2 Linear, Dispersive Media

14.1.2.1 Frequency Domain

To continue, we will consider the Fourier transforms of the Maxwell equations (14.1)

∇ ·D(r, ω) = ρ(r, ω)
∇ ·B(r, ω) = 0

∇×E(r, ω) = iωB(r, ω)
∇×H(r, ω) = −iωD(r, ω) + j(r, ω).

(Maxwell’s equations, frequency domain) (14.12)
We are now explicitly marking the dependence of each field on space and frequency, with frequency ω of
course representing an implicit time dependence of the form e−iωt. Note that in our notation here, we are
writing fields such as E(t) and E(ω) as different functions comprising a Fourier-transform pair:

E(r, ω) =
∫ ∞
−∞

dtE(r, t) eiωt

E(r, t) = 1

2π

∫ ∞
−∞

dωE(r, ω) e−iωt.
(14.13)

Again ignoring magnetic effects, we can write

B(r, ω) = µ0H(r, ω), (14.14)

while the electric fields are still related by

D(r, ω) = ε0E(r, ω) + P(r, ω). (14.15)



14.1 Classical Electrodynamics in Dielectric Media 581

A linear, dispersive medium is defined such that the medium polarization is given by the relation

P(r, ω) = ε0χ(r, ω)E(r, ω), (14.16)

where χ(r, ω) is the dimensionless, linear, frequency dependent susceptibility of the medium. In this
context, ‘‘linear’’ means that the susceptibility is independent of the electric-field amplitude, and ‘‘dispersive’’
means that the polarization response is a simple proportionality at each frequency. Thus, the electric fields
are related by

D(r, ω) = ε(r, ω)E(r, ω), (14.17)

where
ε(r, ω) := ε0 [1 + χ(r, ω)] , (14.18)

is the (linear) dielectric permittivity (the dimensionless ratio ε/ε0 is the dielectric constant).

14.1.2.2 Time Domain

The description of dispersive media in the time domain is more complicated. According to the convolution
theorem (Section 17.1.2), the time-domain version of Eq. (14.16) is the convolution

P(r, t) = ε0

∫ ∞
0

dt′ gχ(r, t′)E(r, t− t′), (14.19)

where the susceptibility χ(r, ω) is the Fourier transform of the correlation function gχ(r, t):

χ(r, ω) =
∫ ∞
0

dt gχ(r, t) eiωt. (14.20)

Note that in writing down Eqs. (14.19) and (14.20), we are only integrating over positive times, where
normally the integration should extend over the entire real axis. We do this to avoid an unphysical feature:
otherwise, the medium response P(r, t) would depend on the input field E(r, t′), even for future times t′ > t.
It is thus physically reasonable to impose the causality requirement that the polarization field only depends
on the electric field in the present or in the past. We can also just as well write the causality requirement as

gχ(r, t) = gχ(r, t)Θ(t), (14.21)

where Θ(t) is the Heaviside step function. Based on these relations, we see that the electric fields are related
by

D(r, t) = ε0E(r, t) + ε0

∫ ∞
0

dt′ gχ(r, t′)E(r, t− t′). (14.22)

Of course, we could also write this relation down in terms of a permittivity kernel

ε(r, t) = ε0δ(t) + ε0gχ(r, t′), (14.23)

so that
D(r, t) =

∫ ∞
0−
dt′ ε(r, t′)E(r, t− t′). (14.24)

Here, the integration limit 0− denotes a limit of δ, where the limit δ −→ 0 is taken from below.

14.1.3 Classical Green Tensor

Now we can ask, what are the decoupled wave equations corresponding to the above Maxwell equations in
linear, dispersive media? It is most convenient to stick to the frequency domain, as we have seen above.
First, taking the curl of the third Maxwell equation in (14.12), and using B = µ0H,

∇× [∇×E(r, ω)] = iωµ0∇×H(r, ω). (14.25)
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Then using Eq. (14.17) and the last Maxwell equation, we arrive at the wave equation for the electric field:

∇× [∇×E(r, ω)]− ω2µ0ε(r, ω)E(r, ω) = iµ0ωj(r, ω).
(wave equation in dielectric media) (14.26)

In free space, it is conventional to continue by using the vector identity ∇× (∇×A) = ∇(∇ ·A)−∇2A to
replace the iterated curl in terms of the Laplacian. However, this doesn’t help much here because ∇ ·E 6= 0
in general for a dielectric, even without a source charge. Note that this wave equation in this form hides
the source charge density ρ. In general, this is not a concern because any time-dependent charge (such
as a dipole) will generate a field through the current density j, which is tied to the charge density by the
continuity constraint. Unfortunately the magnetic field H does not decouple as cleanly into its own wave
equation, so we will stick to analyzing the electric field E as the primary object.

Now as a general solution of the wave equation (14.26), we will introduce the classical Green tensor
G(r, r′, ω). Specifically, we will define the Green tensor component G(0)

αβ(r, r′, ω) to be the solution Eα(r),
given a localized source current

iµ0ωjµ(r, ω) −→ µ0ω
2δ3(r− r′) δµβ . (14.27)

That is, it is the α component of the electric-field solution to Eq. (14.26), assuming we replace the right-hand
side by a delta function, with an orientation along the β direction (the factor of µ0ω

2 is arbitrary, but we
will see the reason for this choice later). The Green tensor is thus the solution of the impulse-driven wave
equation

∇× [∇×G(r, r′, ω)]− ω2µ0ε(r, ω)G(r, r′, ω) = µ0ω
2δ3(r− r′),

(Green tensor wave equation) (14.28)
where the delta function on the right-hand side, being set equal to a tensor object, is understood to be
proportional to the identity tensor. We can write this same equation in components as

�αβG
(0)
βγ (r, r

′, ω) = µ0ω
2δαγδ

3(r− r′), (14.29)

where the box operator is defined by

� := (∇×∇×)− ω2µ0ε(r, ω), (14.30)

or in components,

�αβ := εαµγεγνβ∂µ∂ν − ω2µ0ε(r, ω)δαβ

= (∂α∂β −∇2δαβ)− ω2µ0ε(r, ω)δαβ ,
(14.31)

where εαβγ is the Levi-Civita permutation symbol [which is zero if any two indices have the same value,
or 1 or −1 if (αβγ) is respectively an even or odd permutation of (xyz)]. The first form follows from the
component representation of the vector curl as

(∇×A)α = εαβγ∂βAγ , (14.32)

while the second follows from the identity ∇×∇×A = ∇(∇ ·A)−∇2A. Note that by assuming a scalar
field ε(r, ω), we are implicitly assuming an isotropic medium, without ‘‘preferred’’ directions. In general, to
handle something such as a dielectric medium, we would have to make the generalization to a permittivity
tensor

ε(r, ω) δαβ −→ εαβ(r, ω), (14.33)

to give the most general linear response (in terms of direction) of the medium to the field.
As with any Green function, the Green tensor here is convenient to know, as it in principle represents a

very general solution to the wave equation. Because the wave equation is linear, the solution for an arbitrary
source iµ0ωj(r, ω) can then be written as the integral over the Green tensor and the source current,

E(r, ω) = i

ω

∫
d3r′G(r, r′, ω) · j(r′, ω), (14.34)
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or to disambiguate the tensor product,

Eα(r, ω) =
i

ω

∫
d3r′G

(0)
αβ(r, r

′, ω)jβ(r′, ω). (14.35)

This solution follows from the fact that the source can be viewed as a weighted sum over delta functions:

iµ0ωjα(r, ω) =
i

ω

∫
d3r′

[
µ0ω

2δαβδ(r− r′)
]
jβ(r′, ω). (14.36)

The Green tensor gives the solution in the case of each of the component delta functions µ0ω
2δαβδ(r− r′),

and the full solution is just a sum over the Green tensors, since the wave equation is linear.

14.1.3.1 Example: Green Tensor in Free Space

As it turns out, the electromagnetic Green tensor is quite simple in the case of free space: essentially, it is
just the electric field due to a single dipole. To see this, consider what is the meaning of an oscillating current
density localized to a single point. A simple model of an oscillating dipole is two opposite but equal charges,
one fixed (as in an atomic nucleus), and one oscillating in space. The moving charge, however, implies an
oscillating current density. Furthermore, the dipole idealization involves the contraction of the distance r
between the two charges to zero, while increasing the charge q such that the dipole moment d = qr remains
fixed. In this limit, the current density likewise becomes localized to a single point.

To see this more formally, the multipole expansion (cf. Section 9.5.4) about the origin r = 0 comes
from the identity

ρ(r, ω) =
∫
d3r′ δ3(r′ − r) ρ(r′, ω), (14.37)

along with the expansion [Eq. (9.110)]

δ3(r− r′) = δ3(r)− (r′ · ∇) δ3(r) + 1

2
(r′ · ∇)2 δ3(r) + · · · , (14.38)

so that

ρ(r, ω) =
[∫

d3r′ ρ(r′, ω)
]
δ3(r)−

[∫
d3r′ r′αρ(r′, ω)

]
∂αδ

3(r) +
[
1

2

∫
d3r′ r′αr

′
βρ(r′, ω)

]
∂α∂βδ

3(r) + · · · .

(14.39)
Repeated indices imply summations as usual here. The quantities in square brackets, from left to right, are
the monopole moment (total charge), the dipole moment vector, and the quadrupole moment tensor. When
the charge density is multiplied by another function under an integral, the moments act as coefficients of a
Taylor expansion, weighting each of the derivatives of the other function.

Now that we have defined the multipoles, we can compute the multipole expansion corresponding to
the localized current density

iµ0ωj = µ0ω
2δ3(r− r′) ε̂, (14.40)

where ε is a unit (polarization) vector. To simplify notation, we will take r′ = 0, so the expansion about the
origin is a multipole expansion about r′. The Fourier transform of the continuity constraint (14.7) is

∇ · j(r, ω) = iωρ(r, ω), (14.41)

so that the localized current implies the charge density

ρ(r, ω) = −ε̂ · ∇δ3(r). (14.42)

Clearly, the monopole moment of this charge density vanishes, since the integral of the derivative of the delta
function vanishes. This is perhaps more evident by examining the identity∫ ∞

−∞
dz δ′(z)f(z) = −f ′(0), (14.43)
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which is easy to prove via integration by parts.
Now to compute the dipole moment:

d(ω) =
∫
d3r rρ(r, ω)

= −
∫
d3r rε̂ · ∇δ3(r)

= ε̂

∫
d3r δ3(r)

= ε̂.

(14.44)

To get rid of the gradient here, we simply integrated by parts. Thus, the localized current density implied
by the Green tensor is simply a dipole, oriented in the same direction as the source delta-function vector,
of unit magnitude (now we see the reason for the factor of µ0ω

2 in front of the delta function in the Green-
tensor equation (14.28); without this factor, the dipole here would have amplitude 1/µ0ω

2). A calculation
analogous to this one shows that all higher-order multipoles vanish, because they involve higher powers of r.
After integration by parts, they will leave a final integral of the form

∫
d3r rαrβ · · · rγδ3(r), which vanishes.

Thus, the Green-tensor elements G(0)
αβ(r, r′, ω) in free space are constructed simply as follows: it is the

α component of the electric field vector at position r, due to an oscillating dipole located at r′, which is
oriented along r̂β and oscillates with unit ‘‘amplitude.’’ Note that the effective dipole amplitude, instead of
having the expected SI units of (C m), is in fact dimensionless, so that the resulting electric field, normally
of units (N/C), has units of N/C2m. Thus, the Green tensor has units of N/C2m, which agrees with what
we find by examining the defining relation (14.28), or by noting that the product with a dipole moment
Gαβ dβ should have the dimension of an electric field. The units we have chosen here are rather odd, but
they will yield a particularly simple form for the Green tensor (14.129) that will parallel other, familiar
Green functions that we have already used but not specifically identified as such.

We have written down the electric field for a single dipole, located at the origin and oscillating along
an arbitrary direction ε̂ before in Eqs. (1.42) and (1.115):

E(+)(r, ω) = 1

4πε0

{
[3(ε̂ · r̂)r̂ − ε̂]

[
1

r3
− i k

r2

]
− [(ε̂ · r̂)r̂ − ε̂] k

2

r

}
d(+)(ω) eikr. (14.45)

Recall that r̂ is a unit vector in the r direction, and ε̂ is a unit vector marking the dipole orientation. This
completely determines the form of the present Green tensor, and evidently from our discussion above, we
may write the free-space Green tensor as1

G
(0)
αβ(r, 0, ω) =

1

4πε0

{
[3r̂αr̂β − δαβ ]

[
1

r3
− i k

r2

]
− [r̂αr̂β − δαβ ]

k2

r

}
eikr,

(free-space Green tensor) (14.46)
where k = ω/c, r̂α ≡ rα/r is the component of the unit vector r̂ along the α direction, and the naught
superscript indicates that this is the Green tensor for free space. To obtain this expression, we have set
d(+)(ω) −→ 1, associated the index α with the field orientation, and associated the index β with the dipole
orientation ε̂. To obtain the general case of the Green function for a dipole located at r′ instead of the origin,
we may clearly write

G
(0)
αβ(r, r

′, ω) = G
(0)
αβ(r− r′, 0, ω), (14.47)

since the Green function here only depends on the difference between the two coordinates (i.e., free space is
invariant under translations).

In the presence of a material of some shape, the Green tensor is modified by reflections of fields at
interfaces, changes of wavelength due to dispersion, and attenuation via absorption. In general, it will be

1Technically, this expression, along with the radiation field (14.45), are only valid for r 6= 0. For these to be valid everywhere,
there should be an additional ‘‘contact’’ term, corresponding for example to −(1/3ε0)δαβ δ

3(r) in the Green tensor (14.46).
However, in the following we will not write this term, because it is typically not useful for Casimir–Polder calculations.
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quite a bit more complicated than in the simple free-space case. However, under the restrictions of our
assumptions about the media, the Green tensor completely characterizes the response of the medium to
external perturbations, even within quantum electrodynamics.

14.1.3.2 Green Tensor in Free Space: Alternate Forms

A couple of other forms of the free-space Green tensor (14.46) will be useful later on, and they provide a bit
more insight now, so we’ll go ahead and derive them. The first alternate form is

G
(0)
αβ(r, 0, ω) =

1

4πε0

(
k2δαβ + ∂α∂β

)eikr
r
.

(14.48)
(free-space Green tensor)

The equivalence of this expression to Eq. (14.46) can be verified directly by evaluating the derivatives in this
expression (see Problem 8.8). The factor here of (δαβ + ∂α∂β/k

2) is characteristic of a transverse field, as we
see by comparison with the momentum-representation expression for the transverse delta function δ⊥αβ(r),
Eq. (8.178). In fact, this is essentially the projection operator for a transverse wave at frequency ck, so from
this we see that the dipole field is just the transverse part of the scalar spherical wave. This form for the
Green tensor will be useful in deriving the Green tensor for a planar material interface (Section 14.3.5).

To arrive at the other alternate form, we can use ∇r = r̂ and ∇ · r̂ = 2/r to write

∇2 e
ikr

r
= −4πδ3(r) + 1

r
∇2eikr + 2

(
∇1

r

)
·
(
∇eikr

)
= −4πδ3(r) + ik

r
∇ ·
(
r̂eikr

)
+ 2

(
− r̂

r2

)
·
(
ikr̂eikr

)
= −4πδ3(r) +

(
−k2 e

ikr

r
+ 2ik

eikr

r2

)
+

(
−2ik e

ikr

r2

)
= −4πδ3(r)− k2 e

ikr

r
,

(14.49)

where we used ∇2(1/r) = −4πδ3(r). Thus, we can replace the k2 by −∇2, if we also introduce a delta-
function term, so that we arrive at the representation

G
(0)
αβ(r, 0, ω) =

1

4πε0

(
∂α∂β − δαβ∇2

)eikr
r
− 1

ε0
δαβδ

3(r). (14.50)
(free-space Green tensor)

We will use this form in deriving the Green tensor in the presence of a second atom (Section 14.3.7).

14.1.3.3 Derivation of the Formula for the Dipole Radiation Field

We derived the above forms for the free-space Green tensor based on the knowledge of the dipole radia-
tion field (14.45), which we simply wrote down. Now we are in a position to justify the above forms for
G(0)(r, r′, ω) and thus for the dipole radiation field. We start with the wave equation Eq. (14.28) with
ε(r, ω) = ε0, which defines the Green tensor in free space. We also use µ0ε0 = 1/c2, and ω = ck, obtaining

∇× [∇×G(0)(r, r′, ω)]− k2G(0)(r, r′, ω) = k2

ε0
δ3(r− r′). (14.51)

Then using the vector identity ∇× (∇×A) = ∇(∇ ·A)−∇2A, we rearrange terms to find(
∇2 + k2

)
G(0)(r, r′, ω) = ∇[∇ ·G(0)(r, r′, ω)]− k2

ε0
δ3(r− r′). (14.52)

In components, this relation reads(
∇2 + k2

)
G

(0)
αβ(r, r

′, ω) = ∂α∂γG
(0)
γβ (r, r

′, ω)− k2

ε0
δαβδ

3(r− r′). (14.53)
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Guided by our comments above, we make the ansatz that the dipole radiation field is the transverse part of
a scalar field, and thus we assume

G
(0)
αβ(r, r

′, ω) =
(
k2δαβ + ∂α∂β

)
ψ(r− r′), (14.54)

where ψ(r) is a scalar function to be determined. Putting this ansatz into the wave equation for the Green
tensor, we find(

k2δαβ + ∂α∂β

) (
∇2 + k2

)
ψ(r− r′) = ∂α∂γ

(
k2δγβ + ∂γ∂β

)
ψ(r− r′)− k2

ε0
δαβδ

3(r− r′)

= ∂α∂β

(
k2 +∇2

)
ψ(r− r′)− k2

ε0
δαβδ

3(r− r′).
(14.55)

Cancelling terms, we find

k2δαβ
(
∇2 + k2

)
ψ(r− r′) = −k

2

ε0
δαβδ

3(r− r′). (14.56)

For nonzero k, we then find (
∇2 + k2

)
ψ(r) = − 1

ε0
δ3(r). (14.57)

Evidently, ψ(r) is essentially the Green function for the scalar wave equation (Helmholtz equation). Note
that we already showed in Eq. (14.49) that

(
∇2 + k2

) eikr
r

= −4πδ3(r), (14.58)

and thus it follows that
ψ(r) = 1

4πε0

eikr

r
. (14.59)

That is, ψ(r) is a spherical wave. This result, together with the ansatz (14.54), establishes the validity of the
form (14.48) for the Green tensor, and thus of the other associated forms (14.46) and (14.50) and the dipole
radiation field (14.45). Note that the scalar Green function (14.59), and thus the Green tensor (14.48), can
correspond to outgoing or incoming waves, if k is respectively positive or negative.

14.1.4 Permittivity Properties

The medium itself is described solely by the function ε(r, ω) (or equivalently, the susceptibility), within
the assumptions of a medium that is: linear, dispersive, isotropic, spatially nondispersive, nonmagnetic,
and describable in terms of macroscopic variables (i.e., where one can coarse-grain away any microscopic
structure). It is thus worth spending some time looking at this function more carefully.2 First, since gχ(t),
as in Eq. (14.19), relates the real fields P(r, t) and E(r, t), gχ(t) itself is a real function. This implies that

χ(−ω) = χ∗(ω∗). (14.60)

This result is implied by the relation (14.16), because for any real field, A∗(ω) = A(−ω∗), since the frequency
components at ω and −ω∗, being complex conjugates, must be present with the same amplitude. From the
definition (14.18) of the permittivity, it has the same frequency constraint as the susceptibility:

ε(−ω) = ε∗(ω∗). (14.61)

In particular, this implies that Re[ε(ω)] is an even function of ω ∈ R, while Im[ε(ω)] is an odd function.
Furthermore, from the Fourier-transform relation (14.20), we can see that under the physically reason-

able assumption that gχ(t) is bounded, χ(r, ω) is analytic in the upper half of the complex-frequency plane,
2For further reading, see John David Jackson, Classical Electrodynamics, 3rd ed. (Wiley, 1999), section 7.10; or L. D. Landau

and E. M. Lifshitz, Electrodynamics of Continuous Media (Pergamon, 1960), §58-62.
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Im[ω] > 0. This is because the Fourier integral (14.20) is always cut off exponentially, and thus guaranteed
to converge. Thus, ε(ω) is also analytic in the upper half-plane. But what about right on the real axis?
For dielectrics, ε(ω) is analytic on the real axis, if we make the reasonable assumption that gχ(t) −→ 0
as t −→ ∞, so that the medium response ‘‘forgets’’ the input field in the distant past. In this case the
oscillatory integral (14.20) converges because of this cutoff. However, for conductors, which are also modeled
by a (complex) permittivity ε(ω), the situation is slightly more complicated. Starting with the assumption
of linear, dispersive conduction,

j(ω) = σ(ω)E(ω), (14.62)

where σ(ω) is the conductivity, the wave equation (14.26) becomes

∇× [∇×E(r, ω)]− ω2µ0ε(r, ω)E(r, ω) = iµ0ωσ(r, ω)E(r, ω). (14.63)

The source term can then be combined with the permittivity term as

∇× [∇×E(r, ω)]− ω2µ0

[
ε(r, ω) + i

σ(r, ω)
ω

]
E(r, ω) = 0. (14.64)

The bracketed quantity in the second term can then be interpreted as a complex permittivity,

ε̃(r, ω) =
[
ε(r, ω) + i

σ(r, ω)
ω

]
,

(14.65)
(permittivity for a conductor)

and we can henceforth regard ε(ω) as modeling conductors as well as dielectrics. Since the conductivity
tends to a finite constant at zero frequency, we see that for a conductor, the permittivity ε(ω) (including
conduction effects) has a simple pole at the origin. Thus, except for a possible simple pole at the origin,
ε(ω) is analytic for Im[ω] ≥ 0.3

14.1.4.1 Energy Loss and Poynting’s Theorem

Before, we argued that the total energy of the field in free space was [Eq. (8.34)]

U =
1

2

∫
d3r

[
ε0E

2 + µ0H
2
]
, (14.66)

so that the field energy density is
u =

1

2

[
ε0E

2 + µ0H
2
]
. (14.67)

As we recall, in considering loss of transported energy, we need only consider transverse fields here, though
we will drop the usual superscript denoting this. To generalize this expression to the dispersive-dielectric
case, we must decompose the fields into frequency components, and then make the replacement ε0 −→ ε(ω)
at each frequency ω. We can thus write the dielectric energy spectral density as

u(ω) =
1

2

∫
d3r

[
E(+)(r, ω) ·D(−)(r, ω) + H(+)(r, ω) ·B(−)(r, ω)

]
+ c.c., (14.68)

such that the total energy density is

u =

∫ ∞
0

dω u(ω). (14.69)

This comes from writing the real fields at frequency ω as, e.g., E(+)(r, ω)e−iωt + E(−)(r, ω)eiωt, and then
discarding the fast-rotating terms to effect a time average over short times corresponding to optical oscilla-
tions. Note that the electric-field part of the energy, represented by E ·D = ε0E

2 +P ·E explicitly contains
both the free-field energy as well as the coupling of the medium polarization to the field.

3In fact, under the assumption that Im[ε(ω)] > 0 on the real axis except at ω = 0, ε(ω)− ε0 also turns out to not have any
zeroes in the upper half-plane. See L. D. Landau and E. M. Lifshitz, Statistical Physics, 3rd ed. (Pergamon, 1980), §123.
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In fact, for a dispersive dielectric, this energy is not constant. However, differentiating this expression
is difficult, as in the time domain we recall from Eq. (14.24) that such a differentiation will not be simple.
Thus, we will start from a different direction. The force on a charge q due to the electric field is F = qE, and
thus the rate at which the field does work on the charge is F·v = qv·E (no work is done by the magnetic field,
since the force is normal to the velocity v). For a charge density ρ, the rate per unit volume at which the
electromagnetic field does work on the charge is ρv·E = j·E. This is the rate at which field energy is converted
to heat by the electromagnetic force, and thus represents an energy dissipation. Using the Maxwell equations
∇×H = ∂tD+ j and ∇×E = −∂tB, along with the vector identity ∇· (A×B) = B · (∇×A)−A · (∇×B),
we may write

j ·E = E · (∇×H)−E · ∂tD

= H · ∇ ×E−∇ · (E×H)−E · ∂tD

= −∇ · (E×H)− [E · ∂tD + H · ∂tB] .

(14.70)

Rearranging terms and using the definition S := E ×H of the Poynting vector, we arrive at Poynting’s
theorem:

−∇ · S = j ·E + [E · ∂tD + H · ∂tB] .
(14.71)

(Poynting’s theorem)

To see what this means, we can integrate over a volume and use the divergence theorem to write Poynting’s
theorem as

−
∮

S · da =

∫
d3r j ·E +

∫
d3r [E · ∂tD + H · ∂tB] .

(14.72)
(Poynting’s theorem)

Recalling that the Poynting vector represents the energy flux density of the field, the surface integral on the
left represents the rate of energy entering the volume. The stuff on the right-hand side must therefore tell
us where this incoming energy is going. We have already decided that the first term on the right-hand side
represents loss of energy due to motion of free charges, or equivalently conversion of electromagnetic energy
to heat. Now the important interpretation here is that the second term also represents field energy loss, but
due to bound charges, in the form of the polarization of the dielectric medium (and the magnetization in the
magnetodielectric case). Thus we may define

R := E · ∂tD + H · ∂tB.
(dielectric dissipation rate per unit volume) (14.73)

as the rate of energy loss per unit volume due to dielectric absorption.
For a monochromatic field, we have, using ε(−ω) = ε∗(ω) for ω ∈ R,

E(r, ω) · ∂tD(r, ω) =
(

E(+)e−iωt + E(−)eiωt
)
·
(
−iωε(ω)E(+)e−iωt + iωε∗(ω)E(−)eiωt

)
= [−iωε(ω) + iωε∗(ω)]

∣∣∣E(+)
∣∣∣2

= 2ωIm[ε(ω)]
∣∣∣E(+)

∣∣∣2 .
(14.74)

Note that in the second step, we discarded terms rotating at optical frequencies, replacing them by their
zero average values. The same calculation for the magnetic-field term gives

H(r, ω) · ∂tB(r, ω) = 2ωIm[µ0]
∣∣∣H(+)

∣∣∣2 = 0 (14.75)

for a nonmagnetic medium. Thus, the dissipation rate for a field at frequency ω is

R(ω) = 2ωIm[ε(ω)]
∣∣∣E(+)

∣∣∣2 .
(dielectric dissipation rate per unit volume) (14.76)
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Thus, we see that Im[ε(ω)] controls the dielectric dissipation of energy. Assuming a passive medium (i.e.,
one with no gain), R(ω) ≥ 0, and thus it follows that for positive frequencies,

Im[ε(ω)] ≥ 0 (ω > 0, passive medium). (14.77)

Similarly, a passive medium has Im[ε(ω)] ≥ 0 for ω < 0, which is consistent with the requirement from
Eq. (14.61) that Im[ε(ω)] be an odd function of ω.

14.1.4.2 Kramers–Kronig Relations

At this point we will need a couple of results from complex analysis. Consider a closed, simply connected
contour in the complex plane, and let f(z) be a function analytic everywhere inside the contour. Then an
integral around the contour vanishes, ∮

f(z) dz = 0, (14.78)

and Cauchy’s integral formula states that on the same contour,

f(a) =
1

2πi

∮
f(z)

z − a
dz (14.79)

if a is a point interior to the contour and the integration proceeds counterclockwise around the contour (a
clockwise integration implies an extra minus sign). The common terminology is that the function f(z)/(z−a)
has a simple pole at z = a, and f(z) is the residue of the function f(z)/(z − a) at the pole. Remarkably,
both results are independent of the contour, so long as the above conditions hold.

We can rewrite Cauchy’s integral formula as

ε(z)− ε0 =
1

2πi

∮
ε(ω′)− ε0
ω′ − z

dω′, (14.80)

where z is a point in the upper half-plane, where the contour runs along the real axis and along a semicircle
in the upper half-plane, with the radius of the semicircle expanding to infinity.

Re[w]

Im[w]

z

Our goal will be to keep only the part of the contour on the real axis, and get rid of the semicircular part.
If we integrate the Fourier-transform relation for χ(ω) by parts, we find

ε(ω)− ε0
ε0

= χ(ω) =

∫ ∞
0

dt gχ(t) e
iωt

=
igχ(0

+)

ω
−
g′χ(0

+)

ω2
−
ig′′χ(0

+)

ω3
+ · · · .

(14.81)

The arguments are 0+ because the integral extends over t ≥ 0. But under the assumption that gχ(t) is
continuous,

gχ(0
+) = gχ(0

−) = 0, (14.82)

so that the first term in the asymptotic expansion vanishes. The continuity requirement is physically rea-
sonable because gχ(t) represents a temporal response of the medium polarization to the input field. This
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signal involves the displacement of electrons, which cannot happen instantaneously in response to a sudden
change in the field. Thus, we have the asymptotic behavior

Re[ε(ω)− ε0] = O(ω−2)

Im[ε(ω)− ε0] = O(ω−3).
(14.83)

It is evident as the semicircle is taken out to infinity, its contribution to the contour integral vanishes. Thus,
we may write the contour integral (14.80) as

ε(z)− ε0 =
1

2πi

∫ ∞
−∞

ε(ω′)− ε0
ω′ − z

dω′. (14.84)

Now if we take the point z and move it to the real axis, z −→ ω + i0+, so that

ε(ω)− ε0 =
1

2πi

∫ ∞
−∞

ε(ω′)− ε0
ω′ − ω − i0+

dω′. (14.85)

Notice that by our contour construction, the 0+ says that the integration contour must be deformed below
the real line to avoid the pole at the real frequency ω. If we instead deform the contour above the real line,
the integral vanishes, because the semicircular contour no longer contains a pole:

0 =
1

2πi

∫ ∞
−∞

ε(ω′)− ε0
ω′ − ω − i0−

dω′. (14.86)

Adding together Eqs. (14.85) and (14.86), we can write

ε(ω)− ε0 = − i
π

–
∫ ∞
−∞

ε(ω′)− ε0
ω′ − ω

dω′, (14.87)

where the cut integral sign represents the Cauchy principal value integral,

–
∫ ∞
−∞

f(z′)

z′ − z
dz′ :=

1

2

[∫ ∞
−∞

f(z′)

z′ − z − i0+
dz′ +

∫ ∞
−∞

f(z′)

z′ − z − i0−
dz′
]
, (14.88)

which averages the results of avoiding the pole by deforming the contour on either side of it. Note that
the Cauchy principal value can be alternately defined as a symmetric excision of the pole from the real-axis
integral,

–
∫ ∞
−∞

f(z′)

z′ − z
dz′ = lim

δ−→0

[∫ z−δ

−∞

f(z′)

z′ − z
dz′ +

∫ ∞
z+δ

f(z′)

z′ − z
dz′

]
, (14.89)

as can be seen from the contour definition by considering semicircular deformations of the contour around
the pole. In either case, we may write out the real and imaginary parts of the complex relation (14.87) to
obtain the Kramers–Kronig relations

Re[ε(ω)− ε0] =
1

π
–
∫ ∞
−∞

Im[ε(ω′)− ε0]
ω′ − ω

dω′

Im[ε(ω)− ε0] = −
1

π
–
∫ ∞
−∞

Re[ε(ω′)− ε0]
ω′ − ω

dω′,

(14.90)
(Kramers–Kronig relations)

relating the real and imaginary parts of ε(ω)− ε0. These relations can be written more compactly in terms
of the Hilbert transform, defined as

H [f(x)] :=
1

π
–
∫ ∞
−∞

f(x′)

x′ − x
dx′, (14.91)
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so that
ε(ω)− ε0 = −iH [ε(ω)− ε0] , (14.92)

or separated into real and imaginary parts,

Re [ε(ω)− ε0] = H {Im [ε(ω)− ε0]}
Im [ε(ω)− ε0] = −H {Re [ε(ω)− ε0]} .

(14.93)

Note that the we derived the Kramers–Kronig relations just on the assumption that ε(ω) − ε0 represents a
causal response of the medium (polarization field) to an input stimulus (electric field). Any causal response
function, such as the gain spectrum of an amplifier circuit, must satisfy the same relations.

From the Kramers–Kronig relations, some features of the permittivity are immediately apparent. First,
notice that the Hilbert transform acts ‘‘something like’’ a derivative. To see this, note that the Hilbert
transform of a constant vanishes:

H [c] =
c

π
–
∫ ∞
−∞

dx′

x′ − x
= 0. (14.94)

This is because the convolution kernel 1/(x′ − x) is antisymmetric about x, and even though the integrand
is singular the contributions to the integral on either side of x cancel. This is precisely how the Cauchy
principal value avoids problems with the singular integrand. However, as soon as the integrand has a slope,
the antisymmetry of the kernel ‘‘picks it out,’’ because it upsets the cancellation in the above integral. In
terms of the Kramers–Kronig relations, this implies that any variation in the real part of ε implies a nonzero
imaginary part, and vice versa. We can rephrase this statement as: the existence of dispersion implies the
existence of absorption (though possibly at some other frequency). This is quite a general result, being only
due to the causal nature of the temporal response function gχ(t) = gχ(t)Θ(t), which implied that ε(ω) is
analytic in the upper half-plane, which allowed us to the whole contour-integral calculation. Of course, these
conclusions apply to any causal, dispersive response function.

The other obvious implication of the Kramers–Kronig relations is that for the integrals in Eqs. (14.93)
to converge, the integrands must vanish at large frequencies, so that ε(ω) −→ ε0 as ω −→ ∞. Physically,
this means that any medium must behave like the vacuum (i.e., become perfectly transparent) for very large
frequencies. This is reasonable in the context of Lorentz-type models for media, since the atom will refuse
to respond to fields with frequencies well over the atomic resonance frequencies. But we see here that this
property is also implied by causality.

Finally, we note that in the above derivation, we ignored any possible pole at ω = 0. In fact, the
Kramers–Kronig relations written above are valid only for dielectric media, and must be adapted to the case
of conductors (Problem 14.1).

14.1.4.3 Imaginary Frequencies

It turns out to be useful to know the behavior of the permittivity ε(ω) on the positive imaginary axis, ε(is)
for s > 0. First, from the reality constraint (14.61), we can let ω −→ −is to find

ε(is) = ε∗(is), (14.95)

and thus ε(is) ∈ R for s > 0. We can go even further along this line. Using the first of the Kramers–Kronig
relations (14.93) in the form (Problem 14.2),

Re[ε(ω)] = ε0 +
2

π
–
∫ ∞
0

ω′Im[ε(ω′)]

ω′2 − ω2
dω′, (14.96)

we can again let ω −→ −is so that

ε(is) = Re[ε(is)] = ε0 +
2

π

∫ ∞
0

ω′Im[ε(ω′)]

ω′2 + s2
dω′.

(permittivity for imaginary frequencies) (14.97)
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Since Im[ε(ω)] ≥ 0 for positive (real) frequencies in the absence of gain, as we showed above, clearly ε(is) ≥ 0,
where the equality only holds in vacuum. Furthermore, the nonnegative integrand decreases monotonically
with s, and thus ε(is) is a monotonically decreasing function of s, so long as s > 0. Finally, from this
expression it is apparent that for any imaginary frequency is, ε(is) contains information about ε(ω) over
the whole real axis. Specifically, the imaginary part of ε(ω) is involved here, although of course information
about the real part is implicitly included as well in view of the Kramers–Kronig relations.

As an example, consider the general permittivity for an atomic vapor corresponding to the Lorentz
model (1.32):

ε(ω) = ε0 +
Ne2

m

∑
j

f0j
ω 2
j0 − ω2 − iγjω

. (14.98)

For the imaginary frequency, this expression becomes

ε(is) = ε0 +
Ne2

m

∑
j

f0j
ω 2
j0 + s2 + γjs

, (14.99)

which is obviously positive, real, and monotonically decreasing with s. These same results obviously hold
for closely related functions such as the polarizability α(is) and the susceptibility χ(is).

Another way of thinking about the imaginary-axis permittivity comes from Eq. (14.20):

ε(is)− ε0
ε0

= χ(is) =

∫ ∞
0

dt gχ(t) e
−st. (14.100)

Hence ε(is) [and of course χ(is)] is related to the Laplace transform of gχ(t). This is of course because χ(ω)
is the Fourier transform of gχ(t), but the Laplace integral is properly cut off at zero here because gχ(t) is a
causal response function.

14.2 Generalized Susceptibility and Linear-Response Theory

Recall that the usual electromagnetic susceptibility χ(r, ω) gives the dispersive response of the dielectric
medium polarization P(r, ω) to an applied field E(r, ω):

P(r, ω) = ε0χ(r, ω)E(r, ω). (14.101)

Of course, this is only the linear response, valid for small applied fields. Now we want to generalize this
notion of the susceptibility to the quantum case, and to more general input-response situations.4

Consider the interaction Hamiltonian

Hint(t) = −xαFα(t), (14.102)

where x is an operator coupling to a time-dependent ‘‘force’’ function F(t). We can write the linear response
of the expectation value 〈xα(t)〉 in general as

δ〈xα(t)〉 =
∫ ∞
−∞

dt′ gαβ(t
′)Fβ(t− t′), (14.103)

assuming that the perturbation has been in effect since the distant past (corresponding to the +∞ integration
limit). Again, the integration limits ensure a causal response to the perturbation. The Fourier transform of
this relation is, by the convolution theorem,

δ〈xα(ω)〉 = χαβ(ω)Fβ(ω), (14.104)
4Ryogo Kubo and Kazuhisa Tomita, ‘‘A General Theory of Magnetic Resonance Absorption,’’ Journal of the Physical Society

of Japan 8, 888 (1954); R. B. Stinchcombe, ‘‘Kubo and Zubarev Formulations of Response Theory,’’ in Correlation Functions
and Quasiparticle Interactions in Condensed Matter, J. Woods Halley, Ed. (Plenum, 1978), p. 3; A. D. McLachlan, ‘‘Retarded
dispersion forces between molecules,’’ Proceedings of the Royal Society of London. Series A, Mathematical and Physical
Sciences 271, 387 (1963).

http://links.jstor.org/sici?sici=0080-4630%2819630122%29271%3A1346%3C387%3ARDFBM%3E2.0.CO%3B2-X
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where

χαβ(ω) =

∫ ∞
0

dτ gαβ(τ) e
iωτ

δ〈xα(ω)〉 =
∫ ∞
−∞

dt δ〈xα(t)〉 eiωt

Fα(ω) =

∫ ∞
−∞

dt Fα(t) e
iωt.

(14.105)

What we want to show is that the temporal response can be written as the correlation function

gαβ(τ) =
i

h̄

〈
[xα(τ), xβ(0)]

〉
Θ(τ), (14.106)

where xα(τ) is in the interaction picture. Note that the Heaviside function enforces a causal response in
Eq. (14.103). In what follows, we will want to show that the generalized susceptibility can be written

χαβ(ω) =
i

h̄

∫ ∞
0

dτ
〈
[xα(τ), xβ(0)]

〉
eiωτ .

(14.107)
(generalized susceptibility)

That is, in the linear regime, the generalized susceptibility can be written as a Fourier transform of a quantum
correlation function.

14.2.1 Proof

To prove these results, we will start by representing the quantum state by the density operator

ρ = ρ0 + δρ, (14.108)

where ρ0 represents the quantum state in the presence of only the background, time-independent Hamiltonian
H0, and δρ is the linear-order correction due to Hint. Then the equation of motion for the quantum state is

∂tρ = − i
h̄
[H0 +Hint, ρ0 + δρ] . (14.109)

Note that the use of Hamiltonian evolution here is generally valid even with dissipation, since we can always
extend the system to a larger Hilbert space where the evolution is Hamiltonian. Then canceling the zeroth-
order parts and discarding the second-order term [Hint, δρ], the equation of motion becomes

∂tδρ = − i
h̄
[H0, δρ]−

i

h̄
[Hint, ρ0]

= − i
h̄
[H0, δρ] +

i

h̄
[xα, ρ0]Fα(t).

(14.110)

Transforming to the interaction picture by defining

δρ̃(t) = eiH0t/h̄ δρ(t) e−iH0t/h̄, (14.111)

this equation of motion becomes

∂tδρ̃ =
i

h̄
eiH0t/h̄ [xα, ρ0]Fα(t) e

−iH0t/h̄. (14.112)

Integrating this equation gives

δρ̃(t) =
i

h̄

∫ t

−∞
dt′ eiH0t

′/h̄ [xα, ρ0]Fα(t
′) e−iH0t

′/h̄, (14.113)
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and then transforming out of the interaction picture, the formal solution for the perturbed state is

δρ(t) =
i

h̄

∫ t

−∞
dt′ eiH0(t

′−t)/h̄ [xα, ρ0]Fα(t
′) e−iH0(t

′−t)/h̄. (14.114)

Note that we have assumed δρ(t −→ −∞) = 0, corresponding to a perturbation turned on adiabatically in
the distant past.

Now the perturbation to the mean response it

δ〈xα(t)〉 = Tr [xα δρ(t)]

=
i

h̄

∫ t

−∞
dt′ Tr

{
xα e

iH0(t
′−t)/h̄ [xβ , ρ0] e

−iH0(t
′−t)/h̄

}
Fβ(t

′)

=
i

h̄

∫ t

−∞
dt′ Tr {xα(t− t′) [xβ , ρ0]}Fβ(t′)

=
i

h̄

∫ t

−∞
dt′ 〈[xα(t− t′), xβ ]〉Fβ(t′)

=
i

h̄

∫ 0

−∞
dτ 〈[xα(−τ), xβ ]〉Fβ(t+ τ)

=
i

h̄

∫ ∞
0

dτ 〈[xα(τ), xβ ]〉Fβ(t− τ).

(14.115)

Here we have used t′ = τ + t, we have defined the interaction-picture response operator

xα(t) = eiH0t/h̄ xα e
−iH0t/h̄, (14.116)

and, to linear order, we see that the expectation value is taken with respect to the background state ρ0.
Comparison to Eq. (14.103) thus allows us to identify

gαβ(τ) =
i

h̄
〈[xα(τ), xβ ]〉 =

i

h̄
〈[xα(τ), xβ(0)]〉Θ(τ), (14.117)

which is our desired result.

14.2.2 Atom and Field Susceptibilities

For the atom–field interaction, corresponding to the interaction Hamiltonian Hint = −d ·E, we can work out
two important generalized-susceptibility formulae. First thinking about the dipole moment as an operator
coupled to a classical electric field, we can consider the dipole response due to the field. In fact, we already
have treated this in detail, as the mean dipole induced by a classical field is the atomic polarizability α(ω).
In the general case, we can write the polarizability as a tensor,

dµ(ω) = αµν(ω)Eν(ω), (14.118)

so that we do not necessarily assume a spherically symmetric atom (molecule). Thus, Eq. (14.107) implies
that

αµν(ω) =
i

h̄

∫ ∞
0

dτ 〈[dµ(τ), dν(0)]〉 eiωτ .

(polarizability in terms of dipole correlation) (14.119)
It is clear from this expression that if dµ and dν represent completely independent degrees of freedom,
then the commutator vanishes and thus the particular component αµν likewise vanishes. This happens,
for example, when µ and ν refer to different principal axes of the atom. In fact, if the coordinate system



14.2 Generalized Susceptibility and Linear-Response Theory 595

is aligned with the principal atomic axes, then it follows that αµν is a diagonal tensor. For a spherically
symmetric atom, all orthogonal coordinate systems form principal axes, and hence

αµν(ω) = α(ω) δµν ,
(14.120)

(scalar polarizatibility)

where α(ω) is the scalar polarizability.
It is also useful to invert the Fourier transform here, so that

〈[dµ(τ), dν(0)]〉Θ(τ) =
h̄

2πi

∫ ∞
−∞

dω αµν(ω) e
−iωτ . (14.121)

To eliminate the step function here, we can write down the complex conjugate of this equation, using
[A,B]† = −[A,B] if A and B are Hermitian operators, with the result

〈[dµ(τ), dν(0)]〉Θ(τ) =
h̄

2πi

∫ ∞
−∞

dω α∗µν(ω) e
iωτ . (14.122)

Now, letting τ −→ −τ , exchanging the subscripts µ←→ ν, and using αµν = ανµ (we’ll show this in a bit),

〈[dν(−τ), dµ(0)]〉Θ(−τ) = h̄

2πi

∫ ∞
−∞

dω α∗µν(ω) e
−iωτ . (14.123)

Now reversing the operators in the commutator and advancing the time of both operators in the commutator
by τ (recall the correlation function only depends on time differences, since we aren’t considering transients),

〈[dµ(τ), dν(0)]〉Θ(−τ) = − h̄

2πi

∫ ∞
−∞

dω α∗µν(ω) e
−iωτ . (14.124)

Now adding this equation to Eq. (14.121), we find

〈[dµ(τ), dν(0)]〉 =
h̄

π

∫ ∞
−∞

dω Im[αµν(ω)] e
−iωτ .

(dipole correlation in terms of polarizability) (14.125)
Now, what about the symmetry of the polarization tensor? Recall that according to the Hamiltonian
Hint = −d ·E, the energy is the work required to adiabatically turn on the field in the presence of the
induced dipole:

U = −
∫ E

0

d(E′) · dE′ = −1

2
αµνEµEν (14.126)

This is valid at any for amplitudes of any component of frequency ω, though we will suppress the frequency
dependence. It is also valid for linear polarization (i.e., it omits circular polarization), so this argument is
not completely general. The change in energy due to a small field change is

δU = −d(E) · δE = EµαµνδEν . (14.127)

Of course, we can equivalently write this as

δU = −δE · d(E) = δEµαµνEν = EµανµδEν . (14.128)

For both these relations to hold for every field Eµ and every change δEν , we must identify αµν(ω) = ανµ(ω),
and thus the polarizability tensor is symmetric.

Similarly, thinking of the field at r as responding to a classical dipole at position r′, we may write
the generalized susceptibility for the field. Recall that the classical Green tensor was precisely this response
function for a dipole of unit amplitude, and thus we may write the Green tensor in terms of the correlation
function as

Gαβ(r, r′, ω) =
i

h̄

∫ ∞
0

dτ 〈[Eα(r, τ), Eβ(r′, 0)]〉 eiωτ .

(Green tensor in terms of field correlation) (14.129)
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The inverse relation is correspondingly

〈[Eµ(r, τ), Eν(r′, 0)]〉 =
h̄

π

∫ ∞
−∞

dω Im[Gµν(r, r′, ω)] e−iωτ .

(field correlation in terms of Green tensor) (14.130)
As it turns out, the expressions here are very useful in treating interactions between an atom and the
quantum electromagnetic field.

One more note is in order here. The permittivity ε(ω)− ε0 is another generalized susceptibility. Thus,
the properties derived in Section 14.1.4 that were not specific to the electromagnetic field apply also to
αµν(ω) and Gαβ(r, r′, ω). To summarize, Gαβ(r, r′, ω) is analytic in the upper half-plane,

Gαβ(r, r′,−ω) = G∗αβ(r, r′, ω∗)

Re[Gαβ(r, r′, ω)] =
1

π
–
∫ ∞
−∞

Im[Gαβ(r, r′, ω)]
ω′ − ω

dω′

Im[Gαβ(r, r′, ω)] = −
1

π
–
∫ ∞
−∞

Re[Gαβ(r, r′, ω)]
ω′ − ω

dω′,

(14.131)

and Gαβ(r, r′, is) is real and monotonically decreasing with s > 0. Of course, all these properties apply to
αµν(ω) as well.

14.3 Atom–Surface Potentials Near Dielectric Media

Now we can use the above formalism to compute the energy shift for a ground-state atom due to the
electromagnetic vacuum, modified by a dielectric medium. The potential shift is given by second-order
perturbation theory as

VCP = 〈g|H0|g〉+ 〈g|HAF|g〉+
∑
j

∑
k,ζ

|〈g|HAF|ej , 1k,ζ〉|2

Eg,0 − Eej ,1k,ζ

, (14.132)

just as in our treatment of the Casimir–Polder potential in the conducting-plane case of Chapter 13, where
|g〉 is the ground state, the excited states are |ej〉, and the field modes are labeled by the wave vector k and
the polarization index ξ. We are again considering the usual dipole interaction Hamiltonian HAF = −d ·E.
Both the zeroth- and first-order terms vanish, leaving

VCP = −
∑
j

∑
k,ζ

|〈g|d|ej〉 · 〈0|E|1k,ζ〉|2

h̄(ωj0 + ωk)
,

(14.133)
(second-order level shift)

where ωj0 := (Ej−E0)/h̄, with E0 ≡ Eg the energy of the ground state. Before proceeding we will now need
to derive expressions for the atom and field susceptibilities up to a consistent order in perturbation theory.

14.3.1 Kramers–Heisenberg Formula

Recall that the atomic dipole susceptibility (polarizability) gives the mean induced dipole from the interaction

HAF = −d ·E
= −

∑
j

[
〈g|d|ej〉σj + 〈ej |d|g〉σ†j

]
·
[
ε̂E

(+)
0 e−iωt + ε̂∗E

(−)
0 eiωt

] (14.134)

with the classical electric field E(t), which is of the same form as the linear-response interaction (14.102).
Here, σj := |g〉〈ej | is the usual atomic lowering operator for the |g〉 −→ |ej〉 transition. Now we wish to
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compute the generalized susceptibility (atomic polarizability) for the mean dipole response to the applied
classical field. We can treat this interaction in time-dependent perturbation theory by deriving the perturbed
ground state |g〉+ δ|g〉, where the state response

δ|g〉 =
∑
j

(
a
(+)
j e−iωt + a

(−)
j eiωt

)
e−iE0t/h̄|ej〉, (14.135)

to the perturbation represents the mixing in of the excited states by the interaction (E0 is the ground-
state energy). The coefficients a(±)j remain to be determined. The idea is to then put this ansatz into the
Schrödinger equation

∂t

[
|g〉+ δ|g〉

]
= − i

h̄
(H0 +HAF)

[
|g〉+ δ|g〉

]
, (14.136)

so that to first order
∂t δ|g〉 = −

i

h̄
H0 δ|g〉 −

i

h̄
HAF|g〉, (14.137)

where |g〉 = |g(t)〉 = |g(0)〉e−iE0t/h̄. The result is∑
j

[
−i(ω + E0/h̄)a

(+)
j e−iωt + i(ω − E0/h̄)a

(−)
j eiωt

]
e−iE0t/h̄|ej〉

= − i
h̄

∑
j

Ej

(
a
(+)
j e−iωt + a

(−)
j eiωt

)
e−iE0t/h̄|ej〉

+
i

h̄

∑
j

〈ej |d|g〉 ·
[
ε̂E

(+)
0 e−iωt + ε̂∗E

(−)
0 e−iωt

]
e−iE0t/h̄|ej〉.

(14.138)

Matching coefficients of e±iωt|ej〉,

−i(ω + E0/h̄)a
(+)
j = − i

h̄
Eja

(+)
j +

i

h̄
〈ej |d|g〉 · ε̂E(+)

0

i(ω − E0/h̄)a
(−)
j = − i

h̄
Eja

(−)
j +

i

h̄
〈ej |d|g〉 · ε̂∗E(−)

0 ,

(14.139)

and thus the perturbation coefficients are

a
(+)
j =

〈ej |d|g〉 · ε̂E(+)
0

h̄(ωj0 − ω)

a
(−)
j =

〈ej |d|g〉 · ε̂∗E(−)
0

h̄(ωj0 + ω)
,

(14.140)

where again ωj0 := (Ej − E0)/h̄, and E0 ≡ Eg is the ground-state energy. Now the mean dipole in the new
ground state due to the perturbation is

〈d(t)〉 = 〈g(t)|d|δg(t)〉+ 〈δg(t)|d|g(t)〉, (14.141)

to first order in the perturbation, assuming that 〈d〉 = 0 in the unperturbed ground state. Thus,

〈d(t)〉 =
∑
j

〈g|d|ej〉〈ej |d|g〉 ·
(

ε̂E
(+)
0

h̄(ωj0 − ω)
e−iωt +

ε̂∗E
(−)
0

h̄(ωj0 + ω)
eiωt

)

+
∑
j

(
ε̂∗E

(−)
0

h̄(ωj0 − ω)
eiωt +

ε̂E
(+)
0

h̄(ωj0 + ω)
e−iωt

)
· 〈g|d|ej〉〈ej |d|g〉.

(14.142)

Given that there is no circular polarization, the polarization vector ε̂ is real, and thus

〈d(t)〉 =
∑
j

2ωj0〈g|d|ej〉〈ej |d|g〉
h̄(ω 2

j0 − ω2)
· ε̂
[
E

(+)
0 e−iωt + E

(−)
0 eiωt

]
. (14.143)
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Writing out only the positive-frequency amplitude,〈
d(+)(ω)

〉
=
∑
j

2ωj0〈g|d|ej〉〈ej |d|g〉
h̄(ω 2

j0 − ω2)
· ε̂E(+)

0 (14.144)

and then using tensor-component notation,〈
d(+)
µ (ω)

〉
=
∑
j

2ωj0〈g|dµ|ej〉〈ej |dν |g〉(E(+)
0 )ν

h̄(ω 2
j0 − ω2)

, (14.145)

we can compare this expression to the defining relation〈
d(+)
µ (ω)

〉
= αµν(ω)(E

(+)
0 )ν (14.146)

for the polarizability tensor to arrive at the following expression for the polarizability in terms of the dipole
matrix elements:

αµν(ω) =
∑
j

2ωj0〈g|dµ|ej〉〈ej |dν |g〉
h̄(ω 2

j0 − ω2)
.

(14.147)
(Kramers–Heisenberg formula)

For a spherically symmetric atom, all dipole-operator components dµ are identical, and to be consistent with
Eq. (14.120), which says αµν = α δµν , we find the scalar polarizability

α(ω) =
∑
j

2ωj0|〈g|dz|ej〉|2

h̄(ω 2
j0 − ω2)

.
(14.148)

(scalar Kramers–Heisenberg formula)

Either expression is referred to as a Kramers–Heisenberg formula for the atomic polarizability. We
derived this expression for the atomic ground state, but of course it is valid for any atomic state |q〉, by letting
0 −→ q and g −→ q in the above expression, being careful to pay attention to the sign of ωjq = (Ej −Eq)/h̄,
which is negative for states of lower energy than |q〉.

Actually, we obtained the polarizability by calculating the physical dipole moment, which only involves
the real part of αµν(ω). Thus, we have so far only computed the real part:

Re[αµν(ω)] =
∑
j

2ωj0〈g|dµ|ej〉〈ej |dν |g〉
h̄(ω 2

j0 − ω2)
. (14.149)

According to the Kramers–Kronig relations, variation in Re[αµν(ω)] leads to nonzero values of Im[αµν(ω)].

Im[αµν(ω)] = −
1

π
–
∫ ∞
−∞

Re[αµν(ω′)]
ω′ − ω

dω′. (14.150)

However, it turns out to be easier to guess Im[αµν(ω)] from the inverse relation,

Re[αµν(ω)] =
1

π
–
∫ ∞
−∞

Im[αµν(ω
′)]

ω′ − ω
dω′, (14.151)

if we compare it to Eq. (14.149) in the form

Re[αµν(ω)] =
∑
j

〈g|dµ|ej〉〈ej |dν |g〉
h̄

(
1

ωj0 − ω
+

1

ωj0 + ω

)
. (14.152)

The two expressions are consistent if

Im[αµν(ω)] =
π

h̄

∑
j

〈g|dµ|ej〉〈ej |dν |g〉
[
δ(ω − ωj0)− δ(ω + ωj0)

]
. (14.153)
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These expressions are equivalent to the classical polarizability expression (from Chapter 1, if we write the
oscillator strength in terms of the dipole matrix elements)

αµν(ω) = lim
Γj→0

∑
j

〈g|dµ|ej〉〈ej |dν |g〉
h̄
[
(ω 2
j0 − ω2)2 + Γ 2

j ω
2
] [(ω 2

j0 − ω2) + iΓjω
]
, (14.154)

if we take the limit of zero damping, being careful to note the emergence of the delta function in the imaginary
part.

What happens if we don’t assume that the field is linearly polarized? Going back to Eq. (14.147),
this is still the correct formula for the tensor and scalar [Eq. (14.148)] parts. For the vector part, going
back to Eq. (14.142), we can use the fact that the dipole combination is antisymmetric and the polarization
conjugate ε̂∗ = −ε̂ to write

〈d(t)〉 =
∑
j

〈g|d|ej〉〈ej |d|g〉 ·
(

ε̂E
(+)
0

h̄(ωj0 − ω)
e−iωt − ε̂E

(−)
0

h̄(ωj0 + ω)
eiωt

)

−
∑
j

〈g|d|ej〉〈ej |d|g〉 ·
(
− ε̂E

(−)
0

h̄(ωj0 − ω)
eiωt +

ε̂E
(+)
0

h̄(ωj0 + ω)
e−iωt

)
,

(14.155)

so that (note the ω instead of the ωj0 in the numerator)

〈d(t)〉 =
∑
j

2ω〈g|d|ej〉〈ej |d|g〉
h̄(ω 2

j0 − ω2)
· ε̂
[
E

(+)
0 e−iωt + E

(−)
0 eiωt

]
. (14.156)

The same line of reasoning gives

α(1)
µν (ω) =

∑
j

2ω〈g|dµ|ej〉〈ej |dν |g〉
h̄(ω 2

j0 − ω2)

(Kramers–Heisenberg formula, vector part) (14.157)
for the vector part of the polarizability tensor (in the case of circular polarization).

14.3.2 Green Tensor

The interaction is symmetric with respect to the dipole and field operators. Thus, thinking of the mean,
linear quantum response at r of all the electromagnetic field modes (labeled by k, ζ) to a dipole at r′, we
may write down the analogous Kramers–Heisenberg formula for the Green tensor as

Re[Gαβ(r, r′, ω)] =
∑
n

∑
k,ζ

2nωk〈0|Eα(r, ωk)|nk,ζ〉〈nk,ζ |Eβ(r′, ωk)|0〉
h̄ (n2ω 2

k − ω2)
. (14.158)

Again, the numbers here denote the number of photons in the labeled mode, and the energy of |nk,ζ〉 is
nh̄ωk. Since the field is a harmonic oscillator, the electric field operators are effectively a sum over creation
and annihilation operators. Thus, when considering the response of the vacuum, only the one-photon states
contribute to this sum:

Re[Gαβ(r, r′, ω)] =
∑
k,ζ

2ωk〈0|Eα(r, ωk)|1k,ζ〉〈1k,ζ |Eβ(r′, ωk)|0〉
h̄ (ω 2

k − ω2)
.

(Kramers–Heisenberg formula for Green tensor) (14.159)
Correspondingly, the imaginary part of the Green tensor is

Im[Gαβ(r, r′, ω)] =
π

h̄

∑
k,ζ

〈0|Eα(r, ωk)|1k,ζ〉〈1k,ζ |Eβ(r′, ωk)|0〉
[
δ(ω − ωk)− δ(ω + ωk)

]
, (14.160)

for consistency with causality.
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14.3.2.1 Mode Expansion of the Green Tensor

A particular application of the Kramers–Heisenberg formula is to write down a Green tensor in terms of
electromagnetic field modes, assuming such modes exist. This happens, for example, when quantizing in an
enclosed domain, as in a cavity with perfectly conducting walls. Recall that in such cases, the electric-field
operator has the form [Eq. (8.61)]

E(r, t) =
∑
k,ζ

−
√
h̄ωk

2ε0
fk,ζ(r)ak,ζ(t) + H.c., (14.161)

where the fk,ζ(r) are the normalized classical mode functions for wave vector k and polarization ζ. Putting
this field operator into Eq. (14.159), we find the general expression

Re[Gαβ(r, r′, ω)] =
1

ε0

∑
k,ζ

ω 2
k

ω 2
k − ω2

fk,ζ,α(r)f∗k,ζ,β(r′).

(mode expansion of Green tensor) (14.162)
The Green tensor is in principle a more general object, however, and simple mode functions may not exist in
particular when the Green tensor represents dispersive (and thus absorbing) media. However, this general
approach below to the interaction energy doesn’t depend on the existence of mode functions in this simple
sense; in principle, when absorption is present, the system can be extended to include extra, effective
‘‘absorbing’’ fields that account for absorption, while making the total, extended system Hamiltonian. Mode
functions that span multiple fields exist in this case, and though possibly difficult to write down, their
existence allows our arguments below to go through.

14.3.3 Interaction Energy

We will now claim that the second-order interaction energy (14.133) may be written in the form5

VCP(r) = −
h̄

2π

∫ ∞
0

dsTr
[
α(is) ·G(r, r, is)

]
= − h̄

2π

∫ ∞
0

dsαµν(is)Gνµ(r, r, is),

(14.163)
(Casimir–Polder potential)

where r denotes the location of the atom. This is a rather remarkable result, as although it assumes that both
the atom and the field are quantized, it does not require us to state exactly how the field was quantized. This
simplifies things dramatically, as quantization with dissipation is not simple. This result is also remarkable
in that it only involves the classical susceptibilities, although to derive this we restricted ourselves to a linear
(and thus lowest-order) interaction Hamiltonian between the atom and the quantum electromagnetic field.

To confirm this result, first note that Im[αµν(is)] and Im[Gαβ(r, r′, is)] will vanish for s ∈ R, because
they involve delta functions of the form δ(is − ωj), which will always vanish for real ωj . Thus, on the
imaginary axis, both susceptibilities are given only by their real parts, which again for any generalized
susceptibility (Section 14.1.4.3) turn out to be real, monotonically decreasing functions of s. Now, we can

5A. D. McLachlan, ‘‘Retarded dispersion forces between molecules,’’ Proceedings of the Royal Society of London. Series A,
Mathematical and Physical Sciences 271, 387 (1963); A. D. McLachlan, ‘‘Van der Waals forces between an atom and a surface,’’
Molecular Physics 7, 381 (1963) (doi: 10.1080/00268976300101141); J. M. Wylie and J. E. Sipe, ‘‘Quantum electrodynamics
near an interface,’’ Physical Review A 30, 1185 (1984) (doi: 10.1103/PhysRevA.30.1185).

http://links.jstor.org/sici?sici=0080-4630%2819630122%29271%3A1346%3C387%3ARDFBM%3E2.0.CO%3B2-X
http://dx.doi.org/10.1080/00268976300101141
http://dx.doi.org/10.1103/PhysRevA.30.1185
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substitute the above expressions for the susceptibilities into (14.163) to obtain

VCP = − h̄

2π

∫ ∞
0

ds
∑
j

2ωj0〈g|dµ|ej〉〈ej |dν |g〉
h̄(ω 2

j0 + s2)

∑
k,ζ

2ωk〈0|Eν(r, ωk)|1k,ζ〉〈1k,ζ |Eµ(r, ωk)|0〉
h̄ (ω 2

k + s2)

= − 2

πh̄

∑
j

∑
k,ζ

|〈g|d|ej〉 · 〈0|E(r, ωk)|1k,ζ〉|2
∫ ∞
0

ds
ωj0 ωk

(ω 2
j0 + s2)(ω 2

k + s2)

= −
∑
j

∑
k,ζ

|〈g|d|ej〉 · 〈0|E(r, ωk)|1k,ζ〉|2

h̄(ωj0 + ωk)
.

(14.164)

Here, we have used the identity∫ ∞
0

dx
ab

(a2 + x2)(b2 + x2)
=

π

2(a+ b)
, (a, b > 0) (14.165)

which follows by noting the integrand is an even function of x, changing to a contour integral over the great
semicircle in the upper half-plane, and using the Cauchy integral formula, since the contour encloses the
poles at x = ia and x = ib. Note that the last expression in Eqs. (14.164) is precisely the second-order
perturbation expression (14.133) that we started off with, so we see that Eq. (14.163) gives the correct
atom–material interaction energy. The only result that we really needed to derive Eq. (14.163), beyond the
contour integral, was the Kramers–Heisenberg formula (applied to both the atom and field susceptibilities).

14.3.4 Renormalization

We have already considered the form for the free-space Green tensor in Section 14.1.3.1. Thus, there is an
interaction energy associated with an atom in free space,

V (0) = − h̄

2π

∫ ∞
0

dsTr
[
α(is) ·G(0)(r, r, is)

]
, (14.166)

where G(0)(r, r, ω) is the free-space Green tensor, Eq. (14.46). We have already seen (Section 13.12) that this
energy diverges and after renormalization gives the Lamb shift. To investigate the vacuum interaction energy
of an atom with a dielectric body, we will need to subtract this contribution to obtain the energy difference
in the presence vs. the absence of the body. The correct (observed) renormalized interaction potential is
thus V (r)

CP = VCP − V (0), or

VCP = − h̄

2π

∫ ∞
0

dsTr
[
α(is) ·G(s)(r, r, is)

]
,

(renormalized Casimir–Polder potential) (14.167)
after dropping the superscript, where

G(s)(r, r′, ω) := G(r, r′, ω)−G(0)(r, r′, ω) (14.168)
(scattering Green tensor)

is the scattering part of the Green tensor, i.e., the part of the Green tensor due specifically to the
presence of the dielectric body.

14.3.5 Planar Interface

To compute the atom–surface interaction with a planar interface, we will first start by expanding the free-
space Green function into plane waves.6 The idea is that in a very general way, we can compute the effect

6A. D. McLachlan, ‘‘Retarded dispersion forces between molecules,’’ Proceedings of the Royal Society of London. Series A,
Mathematical and Physical Sciences 271, 387 (1963); J. E. Sipe, ‘‘The Dipole Antenna Problem in Surface Physics: A New
Approach’’ Surface Science 105, 489 (1981) (doi: 10.1016/0039-6028(81)90014-5); T. Setälä, M. Kaivola, and A. T. Friberg,
‘‘Decomposition of the point-dipole field into homogeneous and evanescent parts,’’ Physical Review E 59, 1200 (1999) (doi:
10.1103/PhysRevE.59.1200).

http://links.jstor.org/sici?sici=0080-4630%2819630122%29271%3A1346%3C387%3ARDFBM%3E2.0.CO%3B2-X
http://dx.doi.org/10.1016/0039-6028(81)90014-5
http://dx.doi.org/10.1103/PhysRevE.59.1200
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of the planar interface on a plane wave, via the usual optical reflection coefficients. Then, summing over
all plane-wave contributions, we can obtain the effect of the surface on a dipole field, and thus obtain the
scattering Green tensor for the surface. We start by recalling the free-space Green tensor in the form (14.48):

G
(0)
αβ(r, 0, ω) =

1

4πε0

(
k2δαβ + ∂α∂β

)eikr
r
, (14.169)

The spherical-wave factor eikr/r has the plane-wave expansion7

eikr

r
=

i

2π

∫ ∞
−∞
dkx

∫ ∞
−∞
dky

1

kz
ei(kxx+kyy+kz|z|), (14.170)

where the magnitude of the wave vector k must be simply k = ω/c, so

kz =


√
k2 − k 2

x − k 2
y if k 2

x + k 2
y ≤ k2

i
√
k 2
x + k 2

y − k2 if k2x + k2y > k2.
(14.171)

Note that kx and ky correspond to transverse wave numbers in a wave-vector expansion, while kz corresponds
to the longitudinal wave number, thinking about propagation along the z direction. Small values of kx and
ky (the upper expression for kz) thus correspond to propagating waves (with a longitudinal phase factor of
eikzz), while, large values (the lower expression for kz) correspond to evanescent waves8 (with longitudinal
exponential decay of e−kzz). Thus, we may write the expansion for the free-space Green function as

G
(0)
αβ(r, 0, ω) =

i

8π2ε0

∫ ∞
−∞
dkx

∫ ∞
−∞
dky

1

kz

(
k2δαβ + ∂α∂β

)
ei(kxx+kyy+kz|z|).

(free-space Green tensor, plane-wave decomposition) (14.172)
We will generally imagine the interface to be below the dipole (i.e., smaller values of z), so that we will need
the Green tensor in the region z < 0

G
(0)
αβ(r, 0, ω) =

i

8π2ε0

∫ ∞
−∞
dkx

∫ ∞
−∞
dky

1

kz

(
k2δαβ − k−α k−β

)
ei(kxx+kyy−kzz), (14.173)

where k− := kxx̂ + ky ŷ − kz ẑ, to determine the scattering from the surface. Further, we will ultimately
need a Green tensor of the form Gαβ(0, 0, ω), so we can discard the transverse spatial dependence by setting
x = y = 0, since the planar surface is invariant under transverse displacement. Further restoring the explicit
coordinate z′ for the dipole,

G
(0)
αβ(z, z

′, ω) =
i

8π2ε0

∫ ∞
−∞
dkx

∫ ∞
−∞
dky

1

kz

(
k2δαβ − k−α k−β

)
e−ikz(z−z

′), (14.174)

where again this expression is valid for z < z′.

14.3.5.1 Reflection Coefficients

Now we will introduce the reflection coefficients for the plane-wave field amplitudes r⊥(θ, ω) and r‖(θ, ω).
These are defined such that in incoming and reflected field amplitudes are related by Eout = rEin. The
subscripts denote whether the incoming field polarization is perpendicular or parallel to the plane of incidence
(the plane containing both the surface-normal vector and the incoming wave vector), and θ is the angle
between the surface normal and the wave vector (θ = 0 corresponds to normal incidence). The reflection
coefficients are in general complex, reflecting phase shifts from the surface reflection. Note that these can be
readily calculated by matching electromagnetic boundary conditions for bodies with planar-type symmetry,

7This is the Weyl representation for the spherical wave; see Leonard Mandel and Emil Wolf, Optical Coherence and
Quantum Optics (Cambridge, 1995), Eq. (3.2-61).

8The evanescent modes are plasmonic modes in the case of a metal and polaritonic modes in the case of a dielectric.
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including simple interfaces or stacks of thin films, including conducting films.9 For example, for plane waves
incident from vacuum onto a planar interface to a medium of dispersive permittivity ε(ω), the reflection
coefficients are

r⊥(θ, ω) =
cos θ −

√
n2(ω)− sin2 θ

cos θ +
√
n2(ω)− sin2 θ

r‖(θ, ω) =

√
n2(ω)− sin2 θ − n2(ω) cos θ√
n2(ω)− sin2 θ + n2(ω) cos θ

,

(14.175)
(Fresnel reflection coefficients)

where the refractive index n(ω) is defined by n2(ω) = ε(ω)/ε0. Note that the convention here is such that
at normal incidence,

r⊥(θ = 0, ω) = r‖(θ = 0, ω) =
1− n(ω)
1 + n(ω)

, (14.176)

whereas a common alternate convention is to flip the sign of r‖ compared to what we have here. These
coefficients are then sufficient to determine the scattering part of the Green tensor in the presence of the
interface, because we can now calculate how each plane-wave component of the free-space Green tensor is
reflected by it.

14.3.5.2 Scattering Green Tensor Due to the Planar Interface

Now let us define our coordinates such that ẑ is normal to the planar interface at z = 0, and we may assume
the atom to be located at x = y = 0. We want the scattering Green tensor at the same location as the
source dipole, G(s)

αβ(z, z, ω). In this particular case, the off-diagonal components of the scattering Green
tensor vanish: the reflection of an oscillating dipole in the rα-direction will be polarized in the rα-direction,
from the point of view of the original dipole. This is just due to the symmetry of the surface, since the effect
of the reflection on a wave vector k is the transformation k −→ k−. We can start with the dipole oscillating
in the z-direction. The scattering part of the Green tensor is then given by multiplying the dipole field by
−r‖, since the z-axis is always in the plane of incidence, but the extra minus sign is present because the
z-component of the polarization vector is always reversed upon reflection from the surface. The phase factor
is given by that of a wave traveling the distance z down to the surface and back, and the result is

G(s)
zz (z, z, ω) = −

i

8π2ε0

∫ ∞
−∞
dkx

∫ ∞
−∞
dky

1

kz

(
k2 − k 2

z

)
r‖(θ, ω) e

2ikzz. (14.177)

Switching the integration to cylindrical coordinates, we can carry out the angular integral and write

G(s)
zz (z, z, ω) = −

i

4πε0

∫ ∞
0

dkT
k 3

T

kz
r‖(θ, ω) e

2ikzz, (14.178)

where the transverse part of the wave vector is

kT = kxx̂+ ky ŷ, (14.179)

so that
kT =

√
k 2
x + k 2

y =
√
k2 − k 2

z , (14.180)

and now the incidence angle θ can be defined in the integration coordinates by tan θ = kT/kz. To evaluate
the transverse components of the Green tensor, first pretend that kT = kTx̂. That is, choose the transverse
part of the wave vector to point in the x-direction.

9Daniel A. Steck, Classical and Modern Optics (2006), Chapters 9-10, available online at http://steck.us/teaching/. Note
that r⊥ ≡ rS and r‖ ≡ rP in the notation there.

http://steck.us/teaching/
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x

xoáo||

yoáoπ

k

kT

plane of incidence

y

z

Then a dipole oscillating about x has a field polarized parallel to the incidence plane, and a dipole in the y-
direction produces a perpendicular polarization. Thus, the appropriate scattering Green tensor components
are

G
(s)
xx (z, z, ω) =

i

8π2ε0

∫ ∞
−∞
dkx

∫ ∞
−∞
dky

1

kz

(
k2 − k 2

T

)
r‖(θ, ω) e

2ikzz

G
(s)
yy (z, z, ω) =

i

8π2ε0

∫ ∞
−∞
dkx

∫ ∞
−∞
dky

1

kz

(
k2
)
r⊥(θ, ω) e

2ikzz.

(14.181)

Switching to cylindrical components and carrying out the angular integral amounts to simply replacing the
xx and yy components by their average:

G(s)
xx (z, z, ω) = G(s)

yy (z, z, ω) =
i

8πε0

∫ ∞
0

dkT
kT

kz

(
k 2
z r‖(θ, ω) + k2r⊥(θ, ω)

)
e2ikzz. (14.182)

These Green-tensor components are all we need to characterize the surface in terms of the atom–surface
potential, which we now evaluate.

14.3.5.3 Explicit Expressions for the Atom–Surface Potential

Putting these Green-tensor components into the expression (14.167) for the atomic potential due to the
planar surface, we find

VCP = − h̄

2π

∫ ∞
0

dsαµν(is)G
(s)
νµ(r, r, is)

= − ih̄

8π2ε0

∫ ∞
0

ds

∫ ∞
0

dkT
kT

kz

[
[αxx(is) + αyy(is)]

2

(
k 2
z r‖(θ, is) + k2r⊥(θ, is)

)
− αzz(is)k 2

T r‖(θ, is)

]
e2ikzz,

(14.183)
where k = is/c, and kz = i

√
s2/c2 + k 2

T . Defining the real quantity

κ(s, kT) := −ikz =
√
s2/c2 + k 2

T , (14.184)

we may rewrite this expression as

VCP =
h̄

8π2ε0

∫ ∞
0

ds

∫ ∞
0

dkT
kT

κ

[
[αxx(is) + αyy(is)]

2

(
κ2r‖(θ, is) +

s2

c2
r⊥(θ, is)

)
+ αzz(is)k

2
T r‖(θ, is)

]
e−2κz,

(Casimir–Polder potential in terms of reflection coefficients) (14.185)
so that now the potential is written entirely in terms of the reflection coefficients, the polarizability, real (non-
negative) integration variables, and real functions of the integration variables. Notice that for a medium with
n > 1, the reflection coefficients are in fact negative at normal incidence. So long as they stay predominantly
negative, the overall potential is negative, and thus attractive (as the contributions decay exponentially with
distance).
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Suppose now that the atom is spherically symmetric, as is appropriate for typical ground-state atoms.
Then the polarizability tensor becomes a scalar, and so10

VCP =
h̄

8π2ε0c2

∫ ∞
0

ds s2 α(is)

∫ ∞
0

dkT
kT

κ

[
r⊥(θ, is) +

(
1 +

2k 2
T c

2

s2

)
r‖(θ, is)

]
e−2κz.

(Casimir–Polder potential, spherically symmetric atom) (14.186)
Note that the integrand here is rather smooth, and not oscillatory. As a function of the imaginary part s of
the frequency, α(is) decreases monotonically owing to its function as a susceptibility. The same can be said
of r⊥,‖(θ, is), which can also be regarded as a susceptibility (linear response) of the reflected-field amplitude
to the input field. Similarly κ increases smoothly with s, and any explicit dependence on s is smooth.

14.3.5.4 Perfect-Conductor Limit

To gain some more insight into the basic result, we can examine the potential (14.186) in various limits. The
first limit we can examine is that of a perfect conductor, corresponding to perfect reflections:

r⊥,‖(θ, is) −→ 1. (14.187)

In this case, the potential (14.186) becomes

VCP =
h̄

4π2ε0c2

∫ ∞
0

ds s2 α(is)

∫ ∞
0

dkT
kT

κ

(
1 +

k 2
T c

2

s2

)
e−2κz. (14.188)

Using Eq. (14.148) for the polarizability in the form

α(is) =
∑
j

2kj0|〈g|dz|ej〉|2

h̄c(s2/c2 + k 2
j0)

, (14.189)

and putting in the explicit form for κ, we find

VCP =
1

2π2ε0c

∑
j

d 2
j,zkj0

∫ ∞
0

ds

∫ ∞
0

dkT
kT

√
s2/c2 + k 2

T

s2/c2 + k 2
j0

e
−2z

√
s2/c2+k 2

T

=
1

4π2ε0c

∑
j

d 2
j,zkj0 ∂z

∫ ∞
0

ds

s2/c2 + k 2
j0

∫ ∞
0

dkT kT e
−2z

√
s2/c2+k 2

T

=
1

8π2ε0c

∑
j

d 2
j,zkj0 ∂z

∫ ∞
0

ds

s2/c2 + k 2
j0

∫ ∞
0

d(k 2
T ) e

−2z
√
s2/c2+k 2

T ,

(14.190)

where again d 2
j,z is shorthand for |〈g|dz|ej〉|2. We can evaluate the second integral using∫ ∞

0

dx e−2z
√
s2/c2+x =

1 + 2zs/c

2z2
e−2zs/c, (14.191)

so that

VCP =
1

16π2ε0c

∑
j

d 2
j,zkj0 ∂z

1

z2

∫ ∞
0

ds
1 + 2zs/c

s2/c2 + k 2
j0

e−2zs/c

= − 1

16π2ε0c

∑
j

d 2
j,zkj0 ∂

2
z

1

z

∫ ∞
0

ds

s2/c2 + k 2
j0

e−2zs/c.

(14.192)

10cf. Werner Vogel and Dirk-Gunnar Welsch, Quantum Optics, 3rd ed. (Wiley, 2006), Eq. (10.84), noting the alternate sign
convention for r‖. Also see A. D. McLachlan, ‘‘Van der Waals forces between an atom and a surface,’’ Molecular Physics 7,
381 (1963) (doi: 10.1080/00268976300101141), Eq (3.9) for the case of a simple dielectric interface.

http://dx.doi.org/10.1080/00268976300101141
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Now, we can evaluate the last integral, using the integral formula (Problem 13.1)11∫ ∞
0

dx
e−µx

β2 + x2
=
f(βµ)

β
(Re[β] > 0,Re[µ] > 0), (14.193)

where f(z) is an auxiliary function to the sine and cosine integrals [see Eq. (13.26)]. Thus, the Casimir–Polder
potential in this case becomes

VCP = − 1

16π2ε0

∑
j

d 2
j,z ∂

2
z

1

z
f(2kj0z),

(Casimir–Polder potential, perfect conductor) (14.194)
which of course agrees exactly with the result we computed before, Eq. (13.51).

14.3.5.5 Near-Field Limit

In the near-field limit (2kj0z � 1 for all j), we can simplify the potential (14.186) for a spherically symmetric
atom. First, note that due to the exponential factor in Eq. (14.186), only relatively small values of κ,

κ2 =
s2

c2
+ k 2

T .
1

4z2
, (14.195)

will contribute in the integral to the potential. However, due to the form of the factor s2α(is)/κ, the most
important values of s in the integral are of the order of ωj0. But then in the near-field regime, we can
conclude that

s

c
� 1

2z
. (14.196)

This means that typically in the integral,
κ ∼ kT ∼

1

2z
, (14.197)

and these are all large compared to s/c. Physically, since |s/c| is the optical wave vector, this means that
the evanescent-wave modes—modes that propagate along the surface, decaying exponentially away from the
surface—dominate the atom–surface potential in this regime. This is sensible, as surface modes should be
most important in the near field.

We will proceed by considering an atom in the near field of a simple dielectric interface, so that the
reflection coefficients are given by the Fresnel expressions (14.175). In the near field, we can use the relations
above to simplify the Fresnel coefficients, since we may represent the incidence angle by

sin θ = kT

k
= −i ckT

s

cos θ = kz
k

=
cκ

s
.

(14.198)

11See I. S. Gradstein and I. M. Ryzhik, Table of Integrals, Series, and Products, English translation 6th ed., A. Jeffrey and
D. Zwillinger, Eds. (Academic Press, 2000), Formula 3.354.1.
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In the case of transverse polarization, then, using s/c� kT, κ,

r⊥(θ, is) =
cos θ −

√
n2(is)− sin2 θ

cos θ +
√
n2(is)− sin2 θ

=
κ−

√
s2n2/c2 + k2T

κ+
√
s2n2/c2 + k2T

≈ κ− s2n2/2c2kT − kT

κ+ s2n2/2c2kT + kT

≈ (s2/2c2kT)(1− n2)
2kT + (s2/2c2kT)(1 + n2)

≈ s2

4c2k2T
(1− n2),

(14.199)

where we have used

κ =

√
s2

c2
+ k 2

T ≈
s2

2c2kT
+ kT. (14.200)

Thus, in the near field, r⊥ � 1, and we will in fact neglect it compared to the longitudinal reflection
coefficient, which is

r‖(θ, is) =

√
n2(is)− sin2 θ − n2(is) cos θ√
n2(is)− sin2 θ + n2(is) cos θ

=

√
n2 + c2k 2

T /s
2 − n2cκ/s√

n2 + c2k 2
T /s

2 + n2cκ/s

≈ 1− n2(is)
1 + n2(is)

=
ε0 − ε(is)
ε0 + ε(is)

.

(14.201)

Putting this coefficient into Eq. (14.186) and ignoring the transverse reflection,

VCP = − h̄

8π2ε0c2

∫ ∞
0

ds s2 α(is)
ε(is)− ε0
ε(is) + ε0

∫ ∞
0

dkT
kT

κ

(
1 +

2k 2
T c

2

s2

)
e−2κz

= − h̄

8π2ε0

∫ ∞
0

dsα(is)
ε(is)− ε0
ε(is) + ε0

∫ ∞
s/c

dκ

(
s2

c2
+ 2k 2

T

)
e−2κz

≈ − h̄

4π2ε0

∫ ∞
0

dsα(is)
ε(is)− ε0
ε(is) + ε0

∫ ∞
0

dκκ 2 e−2κz.

(14.202)

The second integral is easy to carry out, with the result12

VCP = − h̄

16π2ε0z3

∫ ∞
0

dsα(is)
ε(is)− ε0
ε(is) + ε0

(14.203)
(van der Waals potential)

for the near-field (van der Waals) force near a dielectric surface of permittivity ε(ω). This is the dipole-dipole
interaction of an atom with its image, located at distance z inside the dielectric. In the static case, the image
charge distribution has a charge of (ε− ε0)/(ε+ ε0) times the original charge.13 The expression here is the
extension of that image concept to all frequencies, and the contribution to the atomic energy is weighted by
the response α(ω), and then the energy is summed over all frequencies.

12A. D. McLachlan, op. cit., Eq. (3.7).
13See John David Jackson, Classical Electrodynamics, 3rd ed. (Wiley, 1999), p. 157.
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14.3.5.6 Far-Field Limit

In the far-field limit, where z becomes very large, the values of κ, and thus s and kT, that contribute to the
integral are very small. In particular, we can replace α(is) by the static polarizability

α0 = α(0) =
∑
j

2d 2
j,z

h̄ωj0
, (14.204)

and we can replace the reflection coefficients by their dc values as well. Then the potential becomes

VCP =
h̄α0

8π2ε0c2

∫ ∞
0

ds s2
∫ ∞
0

dkT
kT

κ

[
r⊥(θ, 0) +

(
1 +

2k 2
T c

2

s2

)
r‖(θ, 0)

]
e−2κz

=
h̄α0

8π2ε0c2

∫ ∞
0

ds s2
∫ ∞
s/c

dκ

[
r⊥(θ, 0) +

(
2c2κ2

s2
− 1

)
r‖(θ, 0)

]
e−2κz

=
h̄α0

8π2ε0c3

∫ ∞
1

dξ
[
r⊥(θ, 0) +

(
2ξ2 − 1

)
r‖(θ, 0)

] ∫ ∞
0

ds s3 e−2sξz/c,

(14.205)

where we have introduced ξ = cκ/s. Carrying out the s integral,

VCP =
3h̄cα0

64π2ε0z4

∫ ∞
1

dξ

ξ4
[
r⊥(θ, 0) +

(
2ξ2 − 1

)
r‖(θ, 0)

]
, (14.206)

where again the angle θ is determined by the relation cos θ = ξ. In the limit of a perfect conductor, the
reflection coefficients are replaced by −1, and thus

VCP = − 3h̄cα0

32π2ε0z4

∫ ∞
1

dξ

ξ2
, (14.207)

and since the integral evaluates to unity,

VCP = − 3h̄cα0

32π2ε0z4
.

(14.208)
(far field, perfect conductor)

This is precisely the far-field (retarded) Casimir–Polder potential that we obtained before in Eq. (13.60).
Note, however, that the z−4 scaling in this regime is universal, as we see from Eq. (14.206): the distance
scaling is independent of the material properties.

To be a bit more general, we can write out Eq. (14.207) in the case of a simple dielectric interface, in
which case Eqs. (14.175) gives the reflection coefficients as

r⊥(θ, 0) =
ξ −

√
ε/ε0 − 1 + ξ2

ξ +
√
ε/ε0 − 1 + ξ2

r‖(θ, 0) =

√
ε/ε0 − 1 + ξ2 − ξε/ε0√
ε/ε0 − 1 + ξ2 + ξε/ε0

,

(14.209)

where ε = ε(0). Then Eq. (14.207) takes on the rather cumbersome form

VCP = − 3h̄cα0

64π2ε0z4

∫ ∞
1

dξ

ξ4

[√
χ+ ξ2 − ξ√
χ+ ξ2 + ξ

+
(
1− 2ξ2

) √χ+ ξ2 − ξ(1 + χ)√
χ+ ξ2 + ξ(1 + χ)

]
, (14.210)

where χ ≡ χ(ω = 0) = ε/ε0 − 1 is the dc susceptibility of the material. This is the Lifshitz expression for
the Casimir–Polder potential for a dielectric surface, and the integral can be evaluated explicitly, with the
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result14

VCP = − 3h̄cα0

32π2ε0z4
η(χ),

(14.211)
(far field, dielectric)

where we have defined the ‘‘efficiency’’

η(χ) :=
4

3
+ χ+

4− (2 + χ)
√
1 + χ

2χ
−

sinh−1√χ
2χ3/2

[
2 + χ+ 2(1 + χ)χ2

]
+

(1 + χ)2√
2 + χ

(
sinh−1

√
1 + χ− sinh−1 1√

1 + χ

)
,

(14.212)

which ranges from 0 to 1, and measures the strength of the far-field Casimir–Polder potential compared to the
perfect-conductor case, Eq. (14.208). This function is plotted below, as the strength of the Casimir–Polder
potential for a surface of dc susceptibility χ, compared to a perfectly reflecting surface, χ −→∞.
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The function η(χ) varies smoothly with χ, and of course the potential here for finite χ is always weaker
than for the perfect conductor. For small χ, η(χ) ≈ (23/60)χ, and as χ −→ ∞, η(χ) −→ 1; both of these
asymptotic forms are also plotted in the figure. For example, for synthetic fused silica (pure optical glass),
the refractive index n tends to a value near 2.0 at low frequencies, so we may take χ ≈ 1.0 and conclude
that the amplitude of the long-range Casimir–Polder potential is about 25% of that of the perfect conductor.
Schott LaSFN9 glass has a refractive index tending to 4.2 near dc, so that VCP in the far field is about
47% of the perfect-conductor amplitude. Note that in view of the zero-frequency pole in the permittivity
for a conductor, Eq. (14.65), the limit χ −→ i∞, where η(χ) −→ 1, is appropriate even for an imperfect
conductor.

The efficiency (14.212) can also be separated into the relative contributions by the TE (⊥) and TM
(‖) polarizations as

η(χ) = ηTE(χ) + ηTM(χ), (14.213)
where

ηTE(χ) :=
1

6
+

1

χ
−
√
1 + χ

2χ
−

sinh−1√χ
2χ3/2

ηTM(χ) :=
7

6
+ χ+

2− (1 + χ)
√
1 + χ

2χ
−

sinh−1√χ
2χ3/2

[
1 + χ+ 2(1 + χ)χ2

]
+

(1 + χ)2√
2 + χ

(
sinh−1

√
1 + χ− sinh−1 1√

1 + χ

)
,

(14.214)

14E. M. Lifshitz, ‘‘The Theory of Molecular Attractive Forces between Solids,’’ Soviet Physics JETP 2, 73 (1956); for the
explicit form, see I. E. Dzyaloshinskii, E. M. Lifshitz, L. P. Pitaevskii, ‘‘The general theory of van der Waals forces,’’ Advances
in Physics 10, 165 (1961), Eqs. (4.37)-(4.38).
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by integrating separately the two terms in Eq. (14.210). The relative contributions are plotted below,
compared to the total.

TE

TM

TE + TM

c
10

-6
10

6
10

-4
10

-2
10

0
10

2
10

4

h
oo(
c
)

10
1

10
-7

10
0

10
-1

10
-2

10
-3

10
-4

10
-5

10
-6

Interestingly, the contribution from the TM polarization is much larger than from the TE polarization—
note that this is true even though the reflection coefficient for TM polarization is always smaller for the
same angle than for TE polarization (the reflection coefficient for TM polarization vanishes at Brewster’s
angle, for example). This is evidently due to the importance of the weighting factor (1 + 2k 2

T c
2/s2) for

the TM contribution in Eq. (14.186). In the perfect-conductor limit χ −→ ∞, the relative contributions
are ηTE(χ −→∞) = 1/6 and ηTM(χ −→∞) = 5/6. In the rarefied-dielectric limit of small χ, For small χ,
η(χ) ≈ (23/60)χ, ηTE(χ) ≈ χ/40 and ηTM(χ) ≈ (43/120)χ.

14.3.5.7 Dielectric Thin Films

Suppose we consider the ground-state interaction of an atom with a thin dielectric film, surrounded on either
side by vacuum.15 The film is described by the reflection coefficient16

r
(‖,⊥)
film (θ, is) =

r‖,⊥(θ, is) (1− eiφ)
1− r 2

‖,⊥(θ, is) e
iφ

(14.215)

for the two polarizations in terms of the appropriate Fresnel coefficients, where the round-trip phase φ in
the film is given by

φ = 2kd

√
n2(is)− sin2 θ. (14.216)

The other parameters here are the refractive index n(θ, is) of the film and the film thickness d. For a very
thin film, we may expand the above expression to first order in the film thickness, with the result

r
(‖,⊥)
film (θ, is) = −i

r‖,⊥ φ

1− r 2
‖,⊥

, (14.217)

assuming |r‖,⊥| 6= 1. The Casimir–Polder potential is then given by Eq. (14.186), with the reflection coeffi-
cients given by Eq. (14.217) for thin films, or by by Eq. (14.215) in the more general case. Here, we will only
consider the limit of very thin films. Obviously, this situation is much more complicated than for a simple
dielectric interface, and so we will again concentrate on evaluating the near- and far-field limits.

15The results here were derived by Yu. S. Barash, ‘‘Van der Waals interaction of thin conducting layers,’’ Soviet Physics—
Solid State 30, 1578 (1988), Eqs. (25)-(26); and Fei Zhou and Larry Spruch, ‘‘van der Waals and retardation (Casimir)
interactions of an electron or an atom with multilayered walls,’’ Physical Review A 52, 297 (1995), Eqs. (4.57)-(4.58) (doi:
10.1103/PhysRevA.52.297).

16Daniel A. Steck, Classical and Modern Optics, available online at http://steck.us/teaching.

http://dx.doi.org/10.1103/PhysRevA.52.297
http://steck.us/teaching
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In the near-field regime,

φ = 2kd

√
n2(is)− sin2 θ = i

2sd

c

√
n2(is) +

c2k 2
T

s2
≈ i2kTd ≈ i2κd. (14.218)

Recalling that κ . 1/2z, the thin-film approximation will be good if d � z. Thus, this treatment will be
valid for atom–surface distances much smaller than any resonance wavelength, but still far enough away that
the film appears to be thin. Physically, because the evanescent modes are most important in the near field,
evanescent modes whose skin depths are of the order of the film thickness will be modified appropriately.
The film reflection coefficients scale to lowest order as r‖,⊥, so just as in the case of the simple dielectric
interface, we will ignore the small contribution of r⊥ compared to r‖. Then we arrive at the same result
(14.202), but with the replacement

r‖ ≈
ε0 − ε(is)
ε0 + ε(is)

−→
r‖

1− r 2
‖
2κd. (14.219)

Explicitly, then, we have

VCP ≈
h̄d

2π2ε0

∫ ∞
0

dsα(is)
r‖(is)

1− r 2
‖ (is)

∫ ∞
0

dκκ 3 e−2κz. (14.220)

After evaluating the second integral, we have the result

VCP ≈
3h̄d

16π2ε0z4

∫ ∞
0

dsα(is)
r‖(is)

1− r 2
‖ (is)

. (14.221)

Writing out the Fresnel reflection coefficient explicitly, e.g., as in Eq. (14.219), we finally have

VCP ≈ −
3h̄d

64π2ε0z4

∫ ∞
0

dsα(is)

[
ε(is)

ε0
− ε0
ε(is)

]
.

(dielectric thin film, near field) (14.222)
Thus, we see that the thin film has a different scaling of z−4 in the near field, as compared to the z−3 scaling
for the bulk material. The dependence on the dielectric material has been modified as well.

In the far field of a thin dielectric film, we again consider the limit of ω = is −→ 0 in the response
functions. However, in this limit, the thin-film phase φ defined in Eq. (14.216) also vanishes, leading to
vanishing thin-film reflection coefficients, as in Eq. (14.215). Thus, for the thin-film reflection coefficients,
we should keep them to lowest nonvanishing order in s:

φ = 2kd

√
n2(is)− sin2 θ ≈ i2sd

c

√
n2(0)− 1 + ξ2 = i

2sd

c

√
χ+ ξ2. (14.223)

Again, we are using the notation ξ = cκ/s = cos θ, and χ is the dc susceptibility of the film medium. Then
our analysis from Section 14.3.5.6 carries through with the replacements

r‖,⊥ −→ −i
r‖,⊥

1− r 2
‖,⊥

φ =
r‖,⊥

1− r 2
‖,⊥

2sd

c

√
χ+ ξ2. (14.224)

Making this replacement in Eq. (14.205), we find

VCP =
h̄α0d

4π2ε0c4

∫ ∞
1

dξ
√
χ+ ξ2

[
r⊥(θ, 0)

1− r 2
⊥(θ, 0)

+
(
2ξ2 − 1

) r‖(θ, 0)

1− r 2
‖ (θ, 0)

]∫ ∞
0

ds s4 e−2sξz/c. (14.225)

The final integral is easy to evaluate, with the result

VCP =
3h̄cα0d

16π2ε0z5

∫ ∞
1

dξ

√
χ+ ξ2

ξ5

[
r⊥(θ, 0)

1− r 2
⊥(θ, 0)

+
(
2ξ2 − 1

) r‖(θ, 0)

1− r 2
‖ (θ, 0)

]
.

(dielectric thin film, far field) (14.226)
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Of course, we could write the integrand out explicitly in terms of ξ, eliminating θ, using the far-field expres-
sions (14.209). However, we won’t be quite so masochistic right now. The important thing to notice from
this relation is again, the different scaling of the far-field potential with distance due to a thin, dielectric film
is z−5, compared to the z−4 scaling that we derived for a bulk material, whether a perfect conductor or a
dielectric.

14.3.5.8 Metallic Thin Films

For a thin metallic film,17 we have to modify the above calculation, because now the permittivity may
become quite large in relevant frequency ranges due to the existence of the dc pole. Furthermore, we can
take as an explicit model of the metal’s response the Drude–Lorentz model (Problem 1.4)

ε(is)

ε0
= 1 +

ω 2
p

s(s+ γ)
, (14.227)

where ωp is the plasma frequency, and γ is a material damping rate, given by γ = ε0ω
2
p /σ0, where σ0 is the

dc conductivity.
In the near field, we may take the limit γ −→ 0, as the relevant frequencies that contribute to the

result are of the order of the atomic resonances, which are generally much larger than γ. Thus, we will in
fact use the plasma model for the metal,

ε(is)

ε0
= 1 +

ω 2
p

s2
. (14.228)

As we argued in the dielectric case, the near field corresponds to kT � s/c. Furthermore, we will note
that n2s2/c2 = (s2 + ω 2

p )/c
2. But we will consider the case where the plasma frequency is of comparable

magnitude to the atomic resonance frequencies, which is reasonable for real atoms and metals, so that
ω ∼ ωp. Thus, k 2

T � n2s2/c2, just as in the dielectric case. In particular, this implies that as before, we can
write the Fresnel reflection coefficients as r⊥ ≈ 0 and

r‖ ≈
ε0 − ε(is)
ε0 + ε(is)

= −
ω 2

p

2s2 + ω 2
p
. (14.229)

Then we can use Eq. (14.215) for the thin-film reflection coefficient to write r(⊥)film = 0 and

r
(‖)
film(θ, is) =

r‖ (1− e−2kTd)

1− r 2
‖ e
−2kTd

= −
ω 2

p (2s
2 + ω 2

p )
(
1− e−2kTd

)
(2s2 + ω 2

p )
2 − ω 4

p e
−2kTd

, (14.230)

where we used the film round-trip phase φ = i2d
√
n2s2/c2 + k 2

T ≈ i2kTd, and again d is the film thickness.
Note that we are not yet expanding this expression in d: unlike the dielectric case, the Fresnel reflection
coefficient can be close to unity, leading to an unphysical divergence in the thin-film reflection coefficient
unless we keep factors of e−2kTd around for now. We can put these bits into Eq. (14.186), replacing the
polarizability by the dc value α(is) −→ α0, since for a very thin film, the reflection coefficient will be small
except near zero frequency due to the dc pole in ε(is). We thus obtain

VCP = −
h̄ω 2

pα0

4π2ε0

∫ ∞
0

dκκ2e−2κz
(
1− e−2κd

) ∫ ∞
0

ds
2s2 + ω 2

p

(2s2 + ω 2
p )

2 − ω 4
p e
−2κd , (14.231)

after changing the integration variable kT to κ (with kT ≈ κ as before). Recall [Eq. (14.184)] that κ and s
are related by κ2 = s2/c2 + k 2

T , but they are independent as far as integration variables are concerned, since
s represents the (imaginary) optical ‘‘frequency,’’ whereas κ (or kT) parameterizes the (independent) wave

17These results were derived by Yu. S. Barash, op. cit., Eqs. (28) and (30); and M. Boström and Bo E. Sernelius, ‘‘van der
Waals energy of an atom in the proximity of thin metal films,’’ Physical Review A 61, 052703 (2000), Eqs. (21) and (23) (doi:
10.1103/PhysRevA.61.052703).

http://dx.doi.org/10.1103/PhysRevA.61.052703
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vector, whose magnitude is unconstrained when we consider the entire family of propagating and evanescent
modes. Now we can evaluate the second integral as∫ ∞

0

ds
2s2 + ω 2

p

(2s2 + ω 2
p )

2 − ω 4
p e
−2κd =

π√
8ωp

1 +
√
1− e−2κd

√
1− e−2κd

(√
1− e−κd +

√
1 + e−κd

)
≈ π

4
√
2κdωp

,

(14.232)

where we have kept only the lowest-order term in d in the last expression. Thus, taking the d −→ 0 limit in
the rest of Eq. (14.231), we find

VCP = − h̄ωpα0

√
d

8
√
2πε0

∫ ∞
0

dκκ5/2 e−2κz. (14.233)

After evaluating the final integral, we find the result

VCP = − 15h̄ωpα0

√
d

1024
√
πε0z7/2

.
(14.234)

(metallic thin film, near field)

Thus, for a metallic thin film, the main difference with the case of a bulk metal or dielectric is the fractional-
power scaling of z−7/2, which is faster than z−3 for the bulk case and slower than z−4 for the dielectric-thin-
film case. The other obvious difference from the case of the thin dielectric film is the

√
d scaling with the

metallic-film thickness, as opposed to the linear scaling in the dielectric case.
The far-field case of a metallic film is fairly easy, by comparison. Again, the conductivity leads to a

dc pole in ε(ω), which dominates the far-field response. Thus, in the far-field limit of a metallic film, the
Casimir–Polder potential is given by the usual perfect-conductor expression (14.208):

VCP = − 3h̄cα0

32π2ε0z4
.

(14.235)
(metallic thin film, far field)

Physically, this is because as the relevant frequencies decrease to zero, so does the depth of penetration of
the field modes into the film, and so the thinness of the film becomes irrelevant.

14.3.6 Perfectly Conducting, Spherical Cavity

A geometrically more challenging example of the Casimir–Polder potential is the potential felt by an atom
within a metallic, spherical cavity. For simplicity we consider only the limit of perfect conductivity. Inside the
spherical cavity, we can use the mode-expansion formula (14.162) for the Green tensor and the appropriate
mode functions from Section (8.4.4) to obtain the Green tensor

Re[Gαβ(r, r′, ω)] =
1

ε0

∑
nlm

ω 2
nl

ω 2
nl − ω2

f (TE)

nlm,α(r)f
(TE)∗
nlm,β(r

′) +
1

ε0

∑
nlm

ω 2
nl

ω 2
nl − ω2

f (TM)

nlm,α(r)f
(TM)∗
nlm,β(r

′),

(spherical-cavity Green tensor) (14.236)
where the TE and TM modes are given from Eqs. (8.111) and (8.118) in terms of spherical Bessel functions
and vector spherical harmonics by

f(TE)

nlm(r) = N (TE)

nl jl(knlr)Xm
l (θ, φ) where jl(knlR) = 0,

f(TM)

nlm (r) =
N (TM)

nl

knl
∇× [jl(knlr)Xm

l (θ, φ)] , where ∂r
[
r jl(knlr)

]∣∣
r=R

= 0,

(spherical-cavity modes) (14.237)
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with normalization factors

N (TE)

nl =

[
R3

2
j 2
l+1(knlR)

]−1/2
N (TM)

nl =

[
R3

2

(
1− l(l + 1)

k 2
nlR

2

)
j 2
l (knlR)

]−1/2
.

(14.238)
(normalization factors)

However, this calculation in the spherical-cavity case turns out to miss a singular term −δαβδ3(r− r′)/ε0.18

However, this doesn’t matter for the Casimir–Polder-type calculations below, since it corresponds to a term
independent of the size of the cavity, which thus disappears after renormalization, as discussed below.

In fact, for Casimir–Polder-type calculations, what we will need is the Green tensor evalutated at
r′ = r and ω = is. Also, for spherically symmetric atoms we only need the trace of the Green tensor. For
example, for the spherical cavity we thus need

Gαα(r, r, is) =
1

ε0

∑
nlm

ω 2
nl

ω 2
nl + s2

∣∣f(TE)

nlm(r)
∣∣2 + 1

ε0

∑
nlm

ω 2
nl

ω 2
nl + s2

∣∣f(TM)

nlm (r)
∣∣2 . (14.239)

We then write out the TE and TM squared modes using Eqs. (8.124), (8.124), and (8.108) as

∣∣f(TE)

nlm(r)
∣∣2 = [N (TE)

nl ]2j 2
l (knlr) |Xm

l (θ, φ)|2∣∣f(TM)

nlm (r)
∣∣2 = [N (TM)

nl ]2

[
l(l + 1)

(
jl(knlr)

kr

)2

|Y ml (θ, φ)|2 +
(
∂r[rjl(knlr)]

kr

)2

|Xm
l (θ, φ)|2

]
.

(14.240)

Now employing the sum rules (8.88) and (8.110) for the scalar and vector spherical harmonics, we can
compute the sum over m as

l∑
m=−l

∣∣f(TE)

nlm(r)
∣∣2 =

(2l + 1)

4π
[N (TE)

nl ]2j 2
l (knlr)

l∑
m=−l

∣∣f(TM)

nlm (r)
∣∣2 =

(2l + 1)

4π
[N (TM)

nl ]2

[
l(l + 1)

(
jl(knlr)

kr

)2

+

(
∂r[rjl(knlr)]

kr

)2
]
,

(14.241)

and so the Green tensor finally becomes

Gαα(r, r, is) =
1

4πε0

{∑
nl

ω 2
nl

ω 2
nl + s2

(2l + 1)[N (TE)

nl ]2j 2
l (knlr)

+
∑
nl

ω 2
nl

ω 2
nl + s2

(2l + 1)[N (TM)

nl ]2

[
l(l + 1)

(
jl(knlr)

kr

)2

+

(
∂r[rjl(knlr)]

kr

)2
]}

.

(14.242)
Recall the two summations are different the first referring to TE-mode boundary conditions, while the second
refers to TM modes. The remaining sums are more cumbersome, and can be carried out numerically or by
using simpler but approximate asymptotic forms.

To compute the potential, we will assume a spherically symmetric atom and use the Kramers–
Heisenberg formula (14.253) and the scalar form of the polarizability αµν(ω) = δµνα(ω), where

α(ω) =
∑
j

2ωj0d
2
j,z

h̄(ω 2
j0 − ω2)

, (14.243)

18Chen-To Tai, Dyadic Green Functions in Electromagnetic Theory, 2nd ed. (IEEE Press, 1994), Section 10-4, pp. 218-220.
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where we use the shorthand dj,z := 〈g|dµ|ej〉 for the dipole matrix elements. Now using Eq. (14.163), we can
write

VCP = − h̄

2π

∫ ∞
0

dsα(is)Gµµ(r, r, is)

= − 1

π(4πε0)

∑
j

d 2
j,z

∫ ∞
0

ds
ωj0

ω 2
j0 + s2

{∑
nl

ω 2
nl

ω 2
nl + s2

(2l + 1)[N (TE)

nl ]2j 2
l (knlr)

+
∑
nl

ω 2
nl

ω 2
nl + s2

(2l + 1)[N (TM)

nl ]2

[
l(l + 1)

(
jl(knlr)

kr

)2

+

(
∂r[rjl(knlr)]

kr

)2
]}

.

(14.244)
Again using the formula (14.165) to carry out the imaginary-frequency integral,

VCP = − 1

2(4πε0)

∑
j

d 2
j,z

{∑
nl

ωnl
ωnl + ωj0

(2l + 1)[N (TE)

nl ]2j 2
l (knlr)

+
∑
nl

ωnl
ωnl + ωj0

(2l + 1)[N (TM)

nl ]2

[
l(l + 1)

(
jl(knlr)

kr

)2

+

(
∂r[rjl(knlr)]

kr

)2
]}

.

(Casimir–Polder potential, spherical cavity) (14.245)
In general, this sum must be performed numerically to obtain an answer. Furthermore, this expression is
divergent; it must still be renormalized by subtracting off the same expression, but in the limit R −→ ∞.
However, the potential turns out again to be negative and divergent as the atom nears the cavity surface,
while the potential becomes weakest at the center of the sphere.19

14.3.7 Ground-State Atom–Atom Potentials

This formalism can handle not only the interaction of atoms with macroscopic bodies, but also with other
atoms. To see this, we will consider the vacuum atom–atom interaction potential in otherwise free space. We
suppose the atoms to have polarizability tensors α(1)

µν and α(2)
µν , and without loss of generality we may assume

them to be separated along the z axis at a distance r. From Eq. (14.167), we may write the interaction
potential from the point of view of the first atom as

V12(r) = −
h̄

2π

∫ ∞
0

dsα(1)
µν (is)G

(s)
νµ(0, 0, is), (14.246)

in terms of the scattering Green tensor describing the influence of the second atom, assuming atom 1 to be
located at the origin.

To compute the Green tensor, we begin with the free-space Green tensor in the form of Eq. (14.50):

G
(0)
αβ(r, 0, ω) =

1

4πε0

(
∂α∂β − δαβ∇2

)eikr
r
− 1

ε0
δαβδ

3(r). (14.247)

For our purposes, this will describe the electric field at atom 2 due to a unit dipole at the origin (i.e., atom
1). Since we will assume a nonzero separation between the two atoms, we will henceforth drop the last
(contact) term in this Green tensor.

Atom 2 then responds to this field according to its polarizability, producing a dipole moment given by
α
(2)
µγ (ω)G

(0)
γν (r, 0, ω). Another multiplication with the free-space Green tensor gives the field back at atom 1,

and thus we may write the scattering Green tensor as

G(s)
νµ(0, 0, ω) = G(0)

νγ (0, r, ω) α
(2)
γβ (ω) G

(0)
βµ(r, 0, ω). (14.248)

19W. Jhe and K. Jang, ‘‘Cavity quantum electrodynamics inside a hollow spherical cavity,’’ Physical Review A 53, 1126
(1996) (doi: 10.1103/PhysRevA.53.1126).

http://dx.doi.org/10.1103/PhysRevA.53.1126
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Thus, the interaction potential is

V12(r) = −
h̄

2π

∫ ∞
0

dsα(1)
µν (is) G

(0)
νγ (0, r, is) α

(2)
γβ (is) G

(0)
βµ(r, 0, is). (14.249)

This result is correct, but there is a subtlety with the overall coefficient. Because the second dipole moment
is induced by the first, there is an overall factor of 1/2 because this is an induced-dipole energy. However, this
cancels the factor of 2 from summing over the (identical) energy shifts of both atoms. This induced-dipole
factor is justified more formally later [see the second term in Eq. (14.408)]. Now putting in the form (14.247)
for the free-space Green tensor, we find the resulting expression

V12(r) = −
h̄

2π(4πε0)2

∫ ∞
0

dsα(1)
µν (is)α

(2)
γβ (is)

[(
∂ν∂γ − δνγ∇2

)e−sr/c
r

] [(
∂β∂µ − δβµ∇2

)e−sr/c
r

]
(atom–atom potential) (14.250)

for the atom–atom potential.

14.3.7.1 Near-Field van der Waals–London Potential

If we consider this potential in the near field, we can set e−sr/c ≈ 1, so that(
∂α∂β−δαβ∇2

)e−sr/c
r
≈
(
∂α∂β−δαβ∇2

)1
r
= −∂α

rβ
r3

+4πδ3(r) δαβ =
3rαrβ
r5
− δαβ
r3

+4πδ3(r) δαβ . (14.251)

Dropping the contact term in this result, the near-field potential becomes

V12(r) = −
h̄

2π(4πε0)2

(
δνγ
r3
− 3rνrγ

r5

)(
δβµ
r3
− 3rβrµ

r5

)∫ ∞
0

dsα(1)
µν (is)α

(2)
γβ (is), (14.252)

and then using the Kramers–Heisenberg formula (14.147),

αµν(ω) =
∑
j

2ωj0〈g|dµ|ej〉〈ej |dν |g〉
h̄(ω 2

j0 − ω2)
, (14.253)

we may write the near-field potential as

V12(r) = −
2

π(4πε0)2h̄

∑
j,j′

∣∣∣∣∣∣d
(1)
j · d

(2)∗
j′

r3
−

3
(

d(1)
j · r

)(
d(2)∗
j′ · r

)
r5

∣∣∣∣∣∣
2 ∫ ∞

0

ds
ωj0 ωj′0

(ω 2
j0 + s2)(ω 2

j′0 + s2)
, (14.254)

where dj := 〈g|d|ej〉. Now using the integral formula (14.165), we can evaluate the integral, with the result

V12(r) = −
1

(4πε0)2r6

∑
j,j′

∣∣∣d(1)
j · d

(2)∗
j′ − 3

(
d(1)
j · r̂

)(
d(2)∗
j′ · r̂

)∣∣∣2
h̄(ωj0 + ωj′0)

(near-field van der Waals–London potential) (14.255)
that the near-field potential scales at r−6. Comparing this to the classical interaction energy between two
dipoles,

Vdip =
d1 · d2 − 3(r̂ · d1)(r̂ · d2)

(4πε0)r3
, (14.256)

we see a similar dependence on the dipole, but the present interaction behaves more like V 2
dip. This is

because the ground-state interaction is an interaction of atom 1 with the dipole of atom 2 induced by atom
1’s ground-state fluctuations. Hence, the much weaker interaction at long ranges. In the simpler case of
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identical, isotropic atoms, where the dipole matrix elements are independent of direction, the result (14.255)
becomes

V12(r) = −
1

(4πε0)2r6

∑
j,j′

|dz,j |2|dz,j′ |2

h̄(ωj0 + ωj′0)
(δµν − 3r̂µr̂ν) (δνµ − 3r̂ν r̂µ) = −

6

(4πε0)2r6

∑
j,j′

|dz,j |2|dz,j′ |2

h̄(ωj0 + ωj′0)

(14.257)
where as usual dz,j ≡ ẑ · dj . If we assume that only one transition makes the dominant contribution to the
force, then we can make a two-level-atom approximation and write the potential as20

V12(r) = −
3|dz|4

(4πε0)2h̄ω0r6
= − 3h̄ω0α

2
0

(4πε0)24r6
,

(near-field van der Waals–London potential, identical two-level atoms) (14.258)
where the two-level static polarizability is α0 = 2d 2

z /h̄ω0.
Note that at very close separations, the dipole approximation breaks down, and the atoms should repel

due to the overlap of their electron clouds. This is commonly modeled by the Lennard–Jones potential,21

which is literally a kludge of adding a repulsive r−12 term (or some other high-order power, but r−12 is most
common) to the r−6 van der Waals–London potential to model the repulsion.

14.3.7.2 Far-Field Potential

The atom–atom potential is also simple in the far-field regime where retardation effects are important. As
for the atom–mirror interaction, the exponential factors in (14.250) indicate that only modes with small
frequencies contribute to the potential at large separations. Thus, we may replace the atomic polarizabilities
with their dc values and pull them out of the integral:

V12(r) = −
h̄ α

(1)
µν (0)α

(2)
γβ (0)

2π(4πε0)2

∫ ∞
0

ds

[(
∂ν∂γ − δνγ∇2

)e−sr/c
r

] [(
∂β∂µ − δβµ∇2

)e−sr/c
r

]
(14.259)

Then we can evaluate the integral, with the result

V12(r) = −
h̄c α

(1)
µν (0)α

(2)
γβ (0)

2π(4πε0)2

(
∂ν∂γ − δνγ∇2

)(
∂′β∂

′
µ − δβµ∇′2

) 1

rr′(r + r′)

∣∣∣∣
r′=r

, (14.260)

where the normal derivatives act on r only, the primed derivatives act on r′ only, and r′ is set to r after the
derivatives are evaluated. To continue, we specialize to the case of scalar polarizabilities, αµν = αδµν , so
that

V12(r) = −
h̄c α

(1)
0 α

(2)
0

2π(4πε0)2

(
∂µ∂ν − δµν∇2

)(
∂′ν∂

′
µ − δνµ∇′2

) 1

rr′(r + r′)

∣∣∣∣
r′=r

= − h̄c α
(1)
0 α

(2)
0

2π(4πε0)2

(
∂µ∂

′
µ∂ν∂

′
ν +∇2∇′2

) 1

rr′(r + r′)

∣∣∣∣
r′=r

.

(14.261)

The derivatives are cumbersome but easy to carry out with the help of a computer, with the result22

V12(r) = −
23h̄c α

(1)
0 α

(2)
0

(4πε0)24πr7
.

(retarded atom–atom potential, spherically symmetric atoms) (14.262)
Thus, in the far field, where retardation is important, the atom–atom potential scales as r−7, compared to
the near-field r−6 dependence. This is similar to the case of an atom near a planar mirror, where retardation
caused the near-field power-law dependence to gain an extra power (there, from r−3 to r−4).

20This result originally derived by F. London, ‘‘Über einige Eigenshaften und Anwendungen der Molekularkräfte,’’ Zeitschrift
für Physikalische Chemie 11, 222 (1930), Eq. (6). For the more general short-range expression (14.255), see H. B. G. Casimir
and D. Polder, ‘‘The Influence of Retardation on the London-van der Waals Forces,’’ Physical Review 73, 360 (1948) (doi:
10.1103/PhysRev.73.360), Eq. (51); and A. D. McLachlan, ‘‘Retarded dispersion forces between molecules,’’ Proceedings of the
Royal Society of London. Series A, Mathematical and Physical Sciences 271, 387 (1963), Eq. (6.6).

21J. E. Lennard-Jones, ‘‘Cohesion,’’ Proceedings of the Physical Society 43, 461 (1931) (doi: 10.1088/0959-5309/43/5/301).
22H. B. G. Casimir and D. Polder, op. cit., Eq. (56); A. D. McLachlan, op. cit., Eq. (6.10).

http://dx.doi.org/10.1103/PhysRev.73.360
http://links.jstor.org/sici?sici=0080-4630%2819630122%29271%3A1346%3C387%3ARDFBM%3E2.0.CO%3B2-X
http://dx.doi.org/10.1088/0959-5309/43/5/301
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14.3.7.3 General Form for Scalar Polarizabilities

To evaluate the atom–atom interaction potential more generally, we can write out Eq. (14.250) in the case
of scalar polarizabilities,

V12(r) = −
h̄

2π(4πε0)2

[(
∂µ∂

′
µ∂ν∂

′
ν +∇2∇′2

) 1

rr′

∫ ∞
0

dsα(1)(is)α(2)(is) e−s(r+r
′)/c

]
r′=r

= − 2

9πh̄(4πε0)2

∑
jj′

|d(1)j d
(2)
j′ |

2ωj0ωj′0

[(
∂µ∂

′
µ∂ν∂

′
ν +∇2∇′2

) 1

rr′

∫ ∞
0

ds
e−s(r+r

′)/c

(s2 + ω 2
j0)(s

2 + ω 2
j′0)

]
r′=r

,

(14.263)
where dj = 〈g|d|ej〉 =

√
3〈g|dz|ej〉. Thus, we need to evaluate an integral of the form

I(ω, ω′) =

∫ ∞
0

ds
e−s(r+r

′)/c

(s2 + ω2)(s2 + ω′2)

=
1

ω2 − ω′2

∫ ∞
0

ds

[
1

s2 + ω′2
− 1

s2 + ω2

]
e−s(r+r

′)/c

=
ωf [k′(r + r′)]− ω′f [k(r + r′)]

ωω′(ω2 − ω′2)
,

(14.264)

where k = ω/c, k′ = ω′/c, and we have used the integral formula (Problem 13.1)23∫ ∞
0

dx
e−µx

β2 + x2
=
f(βµ)

β
(Re[β] > 0,Re[µ] > 0), (14.265)

and f(z) is an auxiliary function to the sine and cosine integrals [see Eq. (13.26)]. Note that I(ω, ω′) has a
removable singularity at ω = ω′, so that we may write

I(ω, ω) =
f [k(r + r′)] + k(r + r′) g[k(r + r′)]

2ω3
. (14.266)

Thus, the atom–atom potential finally becomes

V12(r) = −
2

9πh̄(4πε0)2

∑
jj′

|d(1)j d
(2)
j′ |

2ωj0ωj′0

[(
∂µ∂

′
µ∂ν∂

′
ν +∇2∇′2

) 1

rr′
I(ωj0, ωj′0)

]
r′=r

.

(scalar, ground-state atom–atom potential) (14.267)
In principle we have obtained the full potential, in terms of analytic functions and derivatives. The derivatives
are unfortunately cumbersome. However, we can see that we recover our former results. For example, in the
far field, we can use the large-z forms f(z) ∼ 1/z and g(z) ∼ 1/z2 so that

I(ω, ω) =
c

ω4(r + r′)
. (14.268)

Using this result and restricting to a single, dominant resonance while using α0 = 2d2/3h̄ω0, we recover
the far-field result in the form (14.261) from the general form (14.267). For small separations, we can set
r = r′ = 0 in Eq. (14.264) and use f(0) = π/2 to obtain

I(ω, ω′) =
π

2ωω′(ω + ω′)
. (14.269)

Putting this into Eq. (14.267), we recover the near-field result (14.257) by evaluating the derivatives in the
same way as before in the near-field case.

23See I. S. Gradstein and I. M. Ryzhik, Table of Integrals, Series, and Products, English translation 6th ed., A. Jeffrey and
D. Zwillinger, Eds. (Academic Press, 2000), Formula 3.354.1.



14.3 Atom–Surface Potentials Near Dielectric Media 619

14.3.7.4 Three-Atom Potential

Another interesting example is the Casimir–Polder potential due to three atoms. By the same reasoning
leading to the two-atom potential (14.249), we obtain

V123(r2, r3) = −
3!

3

h̄

2π

∫ ∞
0

dsα(1)
µν (is) G

(0)
νγ (0, r2, is) α

(2)
γβ (is) G

(0)
βδ (r3, r2, is) α

(3)
δσ (is) G

(0)
σµ(r3, 0, is), (14.270)

for scattering from the first atom at r = 0 to atom 3 at r3, to atom 2 at r2, and back to the first atom. The
factor of 1/3 is because this is an induced-dipole energy. This induced-dipole factor is justified more formally
later [see the thirdterm in Eq. (14.408)]. The factor of 3! counts the permutations of the three atoms (all of
which are equivalent as far as the energy is concerned). Using Eq. (14.247) again for the free-space Green
tensor, we find the resulting expression

V123(r2, r3) = −
h̄α

(1)
0 α

(2)
0 α

(3)
0

π(4πε0)3

×
∫ ∞
0

ds

[(
∂µ∂ν − δµν∇2

)e−sr2/c
r2

] [(
∂ν∂γ − δνγ∇2

)e−sr32/c
r32

] [(
∂γ∂µ − δγµ∇2

)e−sr3/c
r3

]
(14.271)

for the three-atom potential, where we are simplifying the calculation by assuming scalar polarizibilities for
the atoms, and we are considering the far-field limit, where only the dc limit of the atomic polarizibilities
matter. Note also that r32 := r3 − r2. Carrying out the s integral, we obtain

V123(r2, r3) = −
h̄cα

(1)
0 α

(2)
0 α

(3)
0

π(4πε0)2

(
∂µ∂ν − δµν∇2

)(
∂′ν∂

′
γ − δνγ∇′2

)(
∂′′γ∂

′′
µ − δγµ∇′′2

) 1

rr′r′′(r + r′ + r′′)

∣∣∣∣ r=r2

r′=r32

r′′=r3

.

(14.272)
Multiplying out the derivatives leads to

V123(r2, r3) = −
h̄cα

(1)
0 α

(2)
0 α

(3)
0

π(4πε0)3

(
∂′′µ∂µ∂ν∂

′
ν∂
′
γ∂
′′
γ − ∂µ∂′µ∂ν∂′ν∇′′2 − ∂′µ∂′′µ∂′ν∂′′ν∇2 − ∂′′µ∂µ∂′′ν ∂ν∇′2

)
× 1

rr′r′′(r + r′ + r′′)

∣∣∣∣ r=r2

r′=r32

r′′=r3

,
(14.273)

or in index-free notation,

V123(r2, r3) = −
h̄cα

(1)
0 α

(2)
0 α

(3)
0

π(4πε0)3

(
(∇′′ · ∇)(∇ · ∇′)(∇′ · ∇′′)− (∇ · ∇′)2∇′′2 − (∇′ · ∇′′)2∇2 − (∇′′ · ∇)2∇′2

)
× 1

rr′r′′(r + r′ + r′′)

∣∣∣∣ r=r2

r′=r32

r′′=r3

.

(14.274)
At this point it is best to consider specific configurations. For example, for three atoms in a straight line
with distance r between adjacent atoms, we have r2 = rẑ, r3 = 2rẑ, and r32 = rẑ, in which case evaluating
the derivatives above leads to

V123(r) = −
93h̄cα

(1)
0 α

(2)
0 α

(3)
0

512π(4πε0)2r10
= −93h̄cα

(1)
0 α

(2)
0 α

(3)
0

29π(4πε0)2r10
. (14.275)

equilateral triangle: r2 = rẑ, r3 = ẑr/2 + ŷ
√
3r/2, and r32 = −ẑr/2 + ŷ

√
3r/2

V123(r) = −
1264h̄cα

(1)
0 α

(2)
0 α

(3)
0

243π(4πε0)2r10
= −24 × 79h̄cα

(1)
0 α

(2)
0 α

(3)
0

35π(4πε0)2r10
. (14.276)

Note that at the same order of accuracy there are other lower-body interactions, for example propor-
tional to (α

(1)
0 )3 or (α(1)

0 )2α
(2)
0 that we are ignoring; we are only focusing on the true three-body contribution

to the potential.
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14.3.8 Temperature Dependence

In our treatment above, we have computed energy expectation values always respect to the ground/vacuum
state of the combined atom/field system. However, we can also extend this formalism to cover other states,
in particular thermal states

ρ =
∑
n

P (n)|n〉〈n|, (14.277)

where the occupation probability of each energy eigenstate |n〉 is

P (n) =
1

Z
e−En/kBT , (14.278)

where
Z :=

∑
n

e−En/kBT (14.279)

is the partition function. Of course, we can compute the energy shifts for other states, but the thermal
state is a reasonable equilibrium state that accounts to some extent for excited states, and reduces to the
vacuum-state results that we have derived above in the limit T −→ 0.

14.3.8.1 Fluctuation–Dissipation Relation

To look at the fluctuations of a physical quantity, we can recall as motivation the optical Wiener–Khinchin
theorem (Sections 2.2 and 5.7), and then write down the power spectral density as a Fourier transform
of a correlation function. Specifically, we will write the two-sided power spectral density for the dipole
fluctuations for the system in state |n〉 in terms of a symmetrized correlation tensor as

S̃(n)
µν (ω) :=

1

4π

∫ ∞
−∞

dτ eiωτ 〈n|[dµ(0), dν(τ)]+|n〉, (14.280)

and then write the one-sided tensor spectral density as

S(n)
µν (ω) := S̃(n)

µν (ω) + S̃(n)
µν (−ω) = S̃(n)

µν (ω) + S̃(n)
νµ (ω). (14.281)

We are as usual assuming steady state, so we suppress any explicit dependence on the absolute time t.
This is somewhat different from the spectrum we have written down before, but it clearly represents some
fluctuation at frequency ω, and the sum over all frequencies properly represents the total dipole fluctuation
in state |n〉, ∫ ∞

0

dω S(n)
µν (ω) =

∫ ∞
−∞

dω S̃(n)
µν (ω)

=
1

4π

∫ ∞
−∞

dτ

∫ ∞
−∞

dω eiωτ 〈n|[dµ(0), dν(τ)]+|n〉

=
1

2

∫ ∞
−∞

dτ δ(τ)〈n|[dµ(0), dν(τ)]+|n〉

=
1

2
〈n|[dµ, dν ]+|n〉 = 〈n|dµdν |n〉

(14.282)

where in the second step we used the fact that the correlation function is an even function of τ , if we assume
the power spectral density S(n)

µν (ω) to be symmetric. In particular, the trace of this relation is mostly what
we would associate with the total fluctuations,∫ ∞

0

dω S(n)
µµ (ω) = 〈n|d2|n〉 (14.283)

(with the usual implied summation). Technically speaking, the diagonal elements of the spectral tensor
represent the fluctuations, while the off-diagonal elements represent correlations (covariances) between fluc-
tuations of different dipole-operator components.
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Now our goal will be to relate these fluctuations to the dissipation (absorption) in the system. We will
start by rewriting the spectral (fluctuation) tensor as

2S̃
(n)
µν (ω) =

1

2π

∫ ∞
−∞

dτ eiωτ 〈n|
[
dµ(0) dν(τ) + dν(τ) dµ(0)

]
|n〉

=
1

2π

∑
j

∫ ∞
−∞

dτ eiωτ
[
〈n|dµ(0)|j〉〈j|dν(τ)|n〉+ 〈n|dν(τ)|j〉〈j|dµ(0)|n〉

]
=

1

2π

∑
j

∫ ∞
−∞

dτ eiωτ
[
〈n|dµ(0)|j〉〈j|dν(0)|n〉eiωjnτ + 〈n|dν(0)|j〉〈j|dµ(0)|n〉eiωnjτ

]
=
∑
j

[
〈n|dµ|j〉〈j|dν |n〉δ(ω + ωjn) + 〈n|dν |j〉〈j|dµ|n〉δ(ω + ωnj)

]
=
∑
j

〈n|dµ|j〉〈j|dν |n〉
[
δ(ω + ωjn) + δ(ω + ωnj)

]
.

(14.284)

Here, the frequency interval ωnj is as usual

ωnj =
En − Ej

h̄
(14.285)

in terms of the eigenstate energies.
Now we can compute the spectral tensor in the case of a thermal state by summing over all states |n〉,

with each term weighted by the occupation probability (14.278).

2S̃µν(ω) =
∑
nj

P (n) 〈n|dµ|j〉〈j|dν |n〉
[
δ(ω + ωjn) + δ(ω + ωnj)

]
=
∑
nj

[
P (n) + P (j)

]
〈n|dµ|j〉〈j|dν |n〉 δ(ω + ωnj)

=
∑
nj

P (n)
[
1 + eh̄ωnj/kBT

]
〈n|dµ|j〉〈j|dν |n〉 δ(ω + ωnj)

=
∑
nj

P (n)
[
1 + e−h̄ω/kBT

]
〈n|dµ|j〉〈j|dν |n〉] δ(ω + ωnj).

(14.286)

In the second step here we interchanged (relabeled) the summation indices, and in the last step we used the
projection property of the delta function.

Now that we have the spectral tensor in this form, we will turn our attention to the dissipation. Recall
from Section 14.1.4.1 that the imaginary part of a response function is responsible for the loss or dissipation
from energy. This result certainly applies to the polarizability, and we showed explicitly this to be the case
in its classical treatment, as in Eq. (1.85). From Eq. (14.153), the imaginary part of the atomic polarizability
for an atom in state |n〉 is

Im[α(n)
µν (ω)] =

π

h̄

∑
j

〈n|dµ|j〉〈j|dν |n〉
[
δ(ω + ωnj)− δ(ω + ωjn)

]
. (14.287)

Similarly averaging this expression over the thermal state (14.277), we find

Im[αµν(ω)] =
π

h̄

∑
nj

P (n) 〈n|dµ|j〉〈j|dν |n〉
[
δ(ω + ωnj)− δ(ω + ωjn)

]
=
π

h̄

∑
nj

[
P (n)− P (j)

]
〈n|dµ|j〉〈j|dν |n〉 δ(ω + ωnj)

=
π

h̄

∑
nj

P (n)
[
1− e−h̄ω/kBT

]
〈n|dµ|j〉〈j|dν |n〉 δ(ω + ωnj).

(14.288)
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Comparing this result to Eq. (14.286), we can see the similarity and identify

S̃µν(ω) =
h̄

2π
Im[αµν(ω)]

1 + e−h̄ω/kBT

1− e−h̄ω/kBT
=

h̄

2π
Im[αµν(ω)] coth

[
h̄ω

2kBT

]
.

(fluctuation–dissipation relation) (14.289)
This result is known as the fluctuation–dissipation relation,24 relating the spectral density Sµν(ω) of
fluctuations at frequency ω to the dissipation part of the response function Im[αµν(ω)]. Again, summing
Eq. (14.280) over all levels,

S̃µν(ω) =
1

4π

∫ ∞
−∞

dτ eiωτ 〈[dµ(0), dν(τ)]+〉 , (14.290)

where the expectation value here is again taken with respect to the thermal state at temperature T . Note
that

coth
[
h̄ω

2kBT

]
=
eh̄ω/kBT + 1

eh̄ω/kBT − 1
= 2

[
1

2
+

1

eh̄ω/kBT − 1

]
, (14.291)

where the last quantity in brackets represents the mean thermal energy of a quantum harmonic oscillator
at frequency ω, in units of h̄ω—the first term is the zero-point energy, while the second term represents the
thermal contribution.

We can invert the Fourier transform in the fluctuation–dissipation relation (14.289) and use Eq. (14.290)
to write the fluctuations directly in terms of the dipole autocorrelation function:

1

2
〈[dµ(0), dν(τ)]+〉 =

h̄

2π

∫ ∞
−∞

dω e−iωτ Im[αµν(ω)] coth
[
h̄ω

2kBT

]
.

(fluctuation–dissipation relation) (14.292)
Then the covariance matrix for the dipole fluctuations is given by taking τ = 0 in this expression, with the
result

〈dµdν〉 =
h̄

π

∫ ∞
0

dω Im[αµν(ω)] coth
[
h̄ω

2kBT

]
.

(fluctuation–dissipation relation) (14.293)
As written here, the covariance matrix is obviously symmetric, so we have dropped the anticommutator.
Thus, any absorptive character of the atomic dipole necessarily leads to dipole fluctuations. Of course, any
dispersion implies some absorption by the Kramers–Kronig relations, so dispersion also implies fluctuations.
Note that cothx −→ 1 as x −→ ∞, so fluctuations persist even as T −→ 0. These zero-temperature
fluctuations are obviously quantum-mechanical in nature. However, for high temperatures, we can use
cothx −→ 1/x for small x to write

〈dµdν〉 =
2kBT

π

∫ ∞
0

dω

ω
Im[αµν(ω)] = kBT Re[αµν(0)],

(14.294)
(large T )

which no longer involves h̄. (We used the Kramers–Kronig relations (14.90) to evaluate the integral here.)
In this case, the quantum fluctuations are negligible compared to the (classical) thermal fluctuations.

Of course, all of these results apply as well to any observable and its linear response function, assuming
a linear interaction Hamiltonian. In particular, for the electric field,

1

2
〈[Eµ(r, 0), Eν(r′, τ)]+〉 =

h̄

2π

∫ ∞
−∞

dω e−iωτ Im[Gµν(r, r′, ω)] coth
[
h̄ω

2kBT

]
.

(fluctuation–dissipation relation) (14.295)
The imaginary part of the Green tensor represents dissipation (material absorption) of the electromagnetic
field, which again implies field fluctuations.

24Herbert B. Callen and Theodore A. Welton, ‘‘Irreversibility and Generalized Noise,’’ Physical Review 83, 34 (1951) (doi:
10.1103/PhysRev.83.34); L. D. Landau and E. M. Lifshitz, Statistical Physics, 3rd ed. (Pergamon, 1980), §124.

http://dx.doi.org/10.1103/PhysRev.83.34
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14.3.8.2 Fluctuation–Dissipation Example: Johnson Noise

As a simple example and application of the fluctuation–dissipation relation, we can consider Johnson
noise,25 the intrinsic noise in a any resistor, independent of the details of its material composition, geometry,
and so on. The resistance obviously represents the dissipation, and we will show that it implies fluctuations
in the form of voltage noise. We start with an interaction Hamiltonian in the form of (14.102), which will
represent the energy of electrons in a resistor:

Hint = V
∑
j

qjxj
L

. (14.296)

Here, V is the ‘‘voltage operator,’’ L is the length of the conduction path of the resistor, and qj and xj
are respectively the charge and position of particle j. In linear-response theory, the voltage operator will
respond to the classical ‘‘force’’

F (t) = −
∑
j

qjxj
L

. (14.297)

The current represents the flow of charge as a rate of charge per unit time, and thus

I(t) = −Ḟ (t) =
∑
j

qj ẋj
L

. (14.298)

That is, Ḣint = V I(t) is the power dissipated due to motion of the charges in the resistor, assuming a constant
voltage. Expressed as a Fourier transform,

I(ω) = iωF (ω). (14.299)

The Fourier transform of Ohm’s law reads

V (ω) = Z(ω)I(ω), (14.300)

where Z(ω) is the frequency-dependent impedance of the resistor. In terms of the ‘‘force’’ function,

V (ω) = iωZ(ω)F (ω), (14.301)

and thus iωZ(ω) is the generalized susceptibility for the resistor. Now using the fluctuation–dissipation
relation in the high-temperature limit (14.294), we can write the variance of the voltage fluctuations as

〈
V 2
〉
=

2kBT

π

∫ ∞
0

dω
Im[iωZ(ω)]

ω
=

2kBT

π

∫ ∞
0

dωRe[Z(ω)]. (14.302)

The real part of the impedance is the resistance, and thus26

〈
V 2
〉
=

2kBT

π

∫ ∞
0

dω R(ω).
(14.303)

(Johnson noise)

These voltage fluctuations are what are referred to as Johnson noise. The voltage noise is typically measured
only over some bandwidth ∆ν. Changing to a ‘‘regular’’ frequency from the angular frequency,

〈
V 2
〉
= 4kBT

∫ ∆ν

0

dν R(ν), (14.304)

25Johnson noise is named after the first person to measure it: J. B. Johnson, ‘‘Thermal Agitation of Electricity in Conductors,’’
Physical Review Letters 32, 97 (1928) (doi: 10.1103/PhysRev.32.97). It is also called Johnson–Nyquist noise, named additionally
after the first to describe it theoretically: H. Nyquist, ‘‘Thermal Agitation of Electric Charge in Conductors,’’ Physical Review
Letters 32, 110 (1928) (doi: 10.1103/PhysRev.32.110).

26Herbert B. Callen and Theodore A. Welton, op. cit., Eq. (4.11).

http://dx.doi.org/10.1103/PhysRev.32.97
http://dx.doi.org/10.1103/PhysRev.32.110
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and if the resistance is roughly constant over the measurement bandwidth, we arrive at the well-known
expression 〈

V 2
〉
= 4RkBT ∆ν.

(14.305)
(Johnson noise, ∆ν bandwidth limit)

The noise is proportional to temperature (in the classical limit of high temperature), and has the character
of white noise, so long as R(ω) is constant over the range of the bandwidth limit. For example, at T = 293 K,
a 10 kΩ resistor measured over a 10 kHz bandwidth has an intrinsic, thermal rms voltage noise of 1.2 µV.
At the same temperature, a 1 MΩ resistor measured over a 1 MHz bandwidth has an rms voltage noise of
0.12 mV, which is starting to become significant on the scale of laboratory voltages.

If we use the fluctuation–dissipation relation in the more general form (14.293), we similarly find the
general result 〈

V 2
〉
=
h̄

π

∫ ∞
0

dω ωR(ω) coth
[
h̄ω

2kBT

]
.

(14.306)
(Johnson noise, arbitrary T )

If we take the limit of small temperature, we can replace the coth by 1:

〈
V 2
〉
=
h̄

π

∫ ∞
0

dω ωR(ω).
(14.307)

(Johnson noise, small T )

The same bandwidth limit leads in this case to zero-temperature noise of〈
V 2
〉
= 2πh̄R∆ν2,

(Johnson noise, small T , ∆ν bandwidth limit) (14.308)
assuming a constant resistance over the bandwidth. Clearly, quantum fluctuations persist even at zero
temperature, producing ‘‘quantum Johnson noise.’’27

14.3.8.3 Temperature-Dependent Shifts

Now on to the level shift.28 In the zero-temperature case, we used the second-order perturbation expression

δEn =
∑
j

|〈n|Hint|j〉|2

En − Ej
(14.309)

for the shift of level |n〉 due to the interaction energy Hint, where the indices label combined states of the
atom and field. Now, for a thermal state, we must perform the average

δE =
∑
nj

P (n)
|〈n|Hint|j〉|2

En − Ej
(14.310)

over the thermal occupation probabilities (14.278) to treat the shift at nonzero temperature. We will now
claim that this second-order shift may be written in terms of the correlation function

δE =
i

2h̄

∫ 0

−∞
dτ 〈[Hint(τ),Hint(0)]〉 .

(14.311)
(perturbative energy shift)

This result is, of course, valid for any stationary state, not just the thermal ones, and gives a nice,
representation-independent expression for the shift. Strictly speaking, this result assumes that the per-
turbation is turned on adiabatically in the distant past, so that we may insert a convergence factor to

27For a measurement of the coth dependence of Johnson noise at low temperature, see R. Movshovich, B. Yurke, P. G.
Kaminsky, A. D. Smith, A. H. Silver, R. W. Simon, and M. V. Schneider, ‘‘Observation of zero-point noise squeezing via a
Josephson-parametric amplifier,’’ Physical Review Letters 65, 1419 (1990) (doi: 10.1103/PhysRevLett.65.1419).

28The derivation here closely follows A. D. McLachlan, ‘‘Retarded Dispersion Forces in Dielectrics at Finite Temperatures,’’
Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 274, 80 (1963).

http://dx.doi.org/10.1103/PhysRevLett.65.1419
http://links.jstor.org/sici?sici=0080-4630%2819630625%29274%3A1356%3C80%3ARDFIDA%3E2.0.CO%3B2-1
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guarantee a sensible result:

δE = lim
σ→0+

i

2h̄

∫ 0

−∞
dτ 〈[Hint(τ),Hint(0)]〉 eστ . (14.312)

To see this, we perform algebraic steps that are similar to what we used for the fluctuation–dissipation
relation:

δE =
i

2h̄

∑
n

P (n)

∫ 0

−∞
dτ 〈n|[Hint(τ),Hint(0)]|n〉

=
i

2h̄

∑
nj

P (n)

∫ 0

−∞
dτ 〈n|Hint(τ)|j〉〈j|Hint(0)|n〉 − 〈n|Hint(0)|j〉〈j|Hint(τ)

]
|n〉

=
i

2h̄

∑
nj

P (n)

∫ 0

−∞
dτ |〈n|Hint|j〉|2

(
eiωnjτ − eiωjnτ

)
=

i

2h̄

∑
nj

[
P (n)− P (j)

] ∫ 0

−∞
dτ |〈n|Hint|j〉|2 eiωnjτ .

(14.313)

As we mentioned, we should really have a convergence factor here, so

δE =
i

2h̄

∑
nj

[
P (n)− P (j)

]
lim
σ→0+

∫ 0

−∞
dτ |〈n|Hint|j〉|2 eiωnjτ eστ

=
1

2h̄

∑
nj

[
P (n)− P (j)

] |〈n|Hint|j〉|2

ωnj

=
∑
nj

P (n)
|〈n|Hint|j〉|2

h̄ωnj
.

(14.314)

This last expression is equivalent to the second-order expression Eq. (14.310).
Now to evaluate the commutator in Eq. (14.311) for the dipole interaction Hamiltonian Hint = −d·E =

−dµEµ. We can then write

[Hint(τ),Hint(0)] = [dµ(τ)Eµ(τ), dν(0)Eν(0)]

= dµEµdνEν − dνEνdµEµ
= dµdνEµEν − dνdµEνEµ
=

1

2

[(
dµdνEµEν + dµdνEνEµ − dνdµEµEν − dνdµEνEµ

)
+
(
dµdνEµEν − dµdνEνEµ + dνdµEµEν − dνdµEνEµ

)]
=

1

2

(
[dµ(τ), dν(0)] [Eµ(τ), Eν(0)]+ + [dµ(τ), dν(0)]+ [Eµ(τ), Eν(0)]

)
,

(14.315)

where we used the shorthands dµ ≡ dµ(τ), dν ≡ dν(0), Eµ ≡ Eµ(τ), and Eν ≡ Eν(0), and we have used the
fact that under unperturbed evolution, d(τ) and E(τ ′) commute even at different times. We can then take
the expectation value of the commutator [Hint(τ),Hint(0)] and then use the commutator-correlation-function
expressions in the forms of Eqs. (14.125) and (14.130), as well as the fluctuation–dissipation relations in the
forms (14.292) and (14.295), to write

〈[Hint(τ),Hint(0)]〉 =
1

2

(
〈[dµ(τ), dν(0)]〉 〈[Eµ(τ), Eν(0)]+〉+ 〈[dµ(τ), dν(0)]+〉 〈[Eµ(τ), Eν(0)]〉

)
=

h̄2

2π2

∫ ∞
−∞
dω

∫ ∞
−∞
dω′ Im[αµν(ω)] Im[Gνµ(r, r, ω′)]

{
coth

[
h̄ω

2kBT

]
+ coth

[
h̄ω′

2kBT

]}
e−i(ω+ω

′)t.

(14.316)



626 Chapter 14. QED with Dielectric Media

The energy shift (14.311) represents the finite-temperature version of the Casimir–Polder potential, and thus
we can now write

VCP =
ih̄

4π2

∫ 0

−∞
dτ

∫ ∞
−∞

dω

∫ ∞
−∞

dω′ Im[αµν(ω)] Im[Gνµ(r, r, ω′)]
{

coth
[
h̄ω

2kBT

]
+ coth

[
h̄ω′

2kBT

]}
e−i(ω+ω

′)τ

= − h̄

4π2

∫ ∞
−∞

dω

∫ ∞
−∞

dω′
Im[αµν(ω)] Im[Gνµ(r, r, ω′)]

ω + ω′

{
coth

[
h̄ω

2kBT

]
+ coth

[
h̄ω′

2kBT

]}
,

(14.317)
where we implicitly used the usual convergence factor in the time integral. We can then use the Kramers–
Kronig relations (14.90) adapted to the dipole and field response functions,

Re[αµν(ω)] =
1

π
–
∫ ∞
−∞

Im[αµν(ω
′)]

ω′ − ω
dω′

Re[Gµν(r, r′, ω)] =
1

π
–
∫ ∞
−∞

Im[Gµν(r, r′, ω′)]
ω′ − ω

dω′,

(14.318)

to carry out the ω′ integral (changing variables beforehand in the second term), with the result

VCP = − h̄

4π

∫ ∞
−∞

dω
[
Re[αµν(−ω)] Im[Gνµ(r, r, ω)] + Im[αµν(ω)]Re[Gνµ(r, r,−ω)]

]
coth

[
h̄ω

2kBT

]
= − h̄

4π

∫ ∞
−∞

dω Im[αµν(ω)Gνµ(r, r, ω)] coth
[
h̄ω

2kBT

]
,

(14.319)

where we have used the fact that the real parts of the response functions are even functions of the real
frequency ω. We may rewrite this last expression as

VCP = − h̄

4πi
–
∫ ∞
−∞

dω αµν(ω)Gνµ(r, r, ω) coth
[
h̄ω

2kBT

]
, (14.320)

if we recall that cothx has a simple pole at x = 0 and that Re[αµν(ω)Gνµ(r, r, ω)] is an even function of ω,
so that it leads to a vanishing contribution in the principal-value integral.

Now we will reduce this integral to a summation as follows. Since coth ix = −i cotx, cothx has simple
poles at x = iπn for every integer n. Thus, coth(h̄ω/2kBT ) has poles at ω = isn, where the imaginary
frequencies are given by

sn = n
2πkBT

h̄
.

(14.321)
(Matsubara frequencies)

These discrete frequencies are called the Matsubara frequencies.29 Furthermore, the residues of the
thermal function coth(h̄ω/2kBT ) at each ω = isn is simply 2kBT/h̄. We can then change the integral in
Eq. (14.320) to a contour integral over the great semicircle in the upper half-plane, as we did to derive the
Kramers–Kronig relations in Eq. (14.1.4.2). The semicircular part of the contour vanishes because αµν(ω)
decays at least as fast as 1/|ω|2 for large |ω|, as we saw in our derivation of the Kramers–Kronig relations,
Eq. (14.83). Thus, by Cauchy’s integral formula, the integral in Eq. (14.320) changes to 2πi times the sum
over residues at frequencies isn, with the result

VCP = −kBT

2
αµν(is0)Gνµ(r, r, is0)− kBT

∞∑
n=1

αµν(isn)Gνµ(r, r, isn) (14.322)

Notice that the pole at ω = 0 only contributes half its residue because of the principal value that we take in
Eq. (14.320) knocks out half the contribution of any real-axis pole. Using the original notation of Lifshitz,30

29After Takeo Matsubara, ‘‘A New Approach to Quantum Statistical Mechanics,’’ Progress in Theoretical Physics 14, 351
(1955) (doi: 10.1143/PTP.14.351).

30E. M. Lifshitz, ‘‘The Theory of Molecular Attractive Forces between Solids,’’ Soviet Physics JETP 2, 73 (1956).

http://dx.doi.org/10.1143/PTP.14.351
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we may write this sum as

VCP = −kBT

∞∑ ′

n=0

αµν(isn)Gνµ(r, r, isn).

(temperature-dependent Casimir–Polder shift) (14.323)
where the primed summation symbol

∑′ denotes that the n = 0 term is accompanied by an extra factor of
1/2. Again, to avoid a divergence and to focus only on the interaction of the atom with a macrocopic body,
we should remove the free-field contribution and use only the scattering part of the Green tensor:

VCP = −kBT

∞∑ ′

n=0

αµν(isn)G
(s)
νµ(r, r, isn).

(14.324)
(renormalized form)

Thus, compared to the zero-temperature expression (14.163), which involved an integral over imaginary
frequency of the product of the dipole and field susceptibilities, the finite-temperature case involves a discrete
sum over the Matsubara frequencies.

14.3.8.4 Imaginary Time and the Low-Temperature Limit

Recalling from Eq. (14.129) that the Green tensor is given as a correlation function as

Gαβ(r, r′, ω) =
i

h̄

∫ ∞
0

dτ 〈[Eα(r, τ), Eβ(r′, 0)]〉 eiωτ , (14.325)

we can see that for imaginary frequencies ω = is, the Green tensor amounts to a Laplace transform:

Gαβ(r, r′, is) =
i

h̄

∫ ∞
0

dτ 〈[Eα(r, τ), Eβ(r′, 0)]〉 e−sτ . (14.326)

Shifting to an imaginary time τ −→ −iτ , we return to the Fourier-type integral expression

Gαβ(r, r′, is) =
1

h̄

∫ ∞
0

dτ 〈[Eα(r,−iτ), Eβ(r′, 0)]〉 eisτ . (14.327)

However, the point of the discussion above is that the Green tensor effectively vanishes everywhere except
at the Matsubara frequencies isn,

VCP = − h̄

2π

∫ ∞
0−

dsαµν(is) G̃νµ(r, r, is), (14.328)

where

G̃αβ(r, r, is) :=
2πkBT

h̄

∞∑ ′

n=0

Gαβ(r, r, isn) δ(s− sn). (14.329)

Thus, the finite-temperature potential takes on the same form as the zero-temperature potential (14.163),
under the replacement Gαβ(r, r, is) −→ G̃αβ(r, r, is). Since the spectrum Gαβ(r, r, is) is then effectively
discrete and periodic, we may refer to our discussion of sampling and the sampling theorem (Section 25.1)
to note that we may think of its Fourier transform as a periodic function in the imaginary time, with the
‘‘samples’’ given by

Gαβ(r, r′, isn) =
1

h̄

∫ h̄/kBT

0

dτ 〈[Eα(r,−iτ), Eβ(r′, 0)]〉 eisnτ . (14.330)

That is, the values (kBT/h̄)Gαβ(r, r′, isn) are the Fourier components of the imaginary-time Green tensor

Gαβ(r, r′, τ) :=
1

h̄
〈[Eα(r,−iτ), Eβ(r′, 0)]〉Θ(τ), (14.331)

which we may regard as time-periodic with period h̄/kBT . In the low-temperature limit as T −→ 0, the period
diverges, and under an integral sign we see from the definition (14.329) that G̃αβ(r, r, is) −→ Gαβ(r, r, is),
so that we obtain the previous expression for the zero-temperature Casimir–Polder shift.
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14.3.8.5 High-Temperature Limit

The high-temperature limit of the potential (14.324) comes by noting that the spacing between the Matsubara
frequencies becomes very large for large T . Since the summand of Eq. (14.324) decreases monotonically with
frequency, for sufficiently high temperature only the dc term will make a substantial contribution. Thus, to
leading order,

VCP = −1

2
kBT αµν(0)G

(s)
νµ(r, r, 0).

(14.332)
(large T )

This expression is evidently the classical Stark shift of the atom due to the presence of thermal photons,
where the quantum zero-point contribution is negligible, since h̄ is absent in this expression. (In the general
time-dependent expression, h̄ appears in the definition of the frequencies sn.) In the case of a nondegenerate
ground state, the imaginary parts of the susceptibilities vanish at ω = 0, since there is no mechanism for
dissipation. Then31

VCP = −1

2
kBT Re[αµν(0)]Re[G(s)

νµ(r, r, 0)] = −
〈dµdν〉〈EµEν〉

2kBT
= −

〈
H 2

AF

〉
2kBT

, (14.333)

where we used the high-temperature fluctuation–dissipation relation (14.294) and its analog for the field.
Again the expectation values here are relative to their values in free space, since we have discarded the
divergent free-space contribution.

14.3.8.6 Planar Boundaries at Nonzero Temperature

As an example of temperature-dependent effects, we will consider an atom near a planar surface. For
simplicity, we will consider the high-temperature limit in the far field, and also a spherically symmetric
atom. Comparing the general expression (14.167) at zero temperature to the high-temperature expression
(14.332) we see that we can obtain the high-temperature result from the zero-temperature result by omitting
the integral over s, setting s = 0 in the remaining integrand, and multiplying by πkBT/h̄. Doing this in
Eq. (14.205), we obtain

VCP =
kBTα0

4πε0

∫ ∞
0

dκκ2r‖(θ, 0) e
−2κz, (14.334)

where with s = 0, we can use kT = κ. Furthermore, for s = 0, the reflection coefficient is replaced as in the
far-field limit by [ε0 − ε(0)]/[ε0 + ε(0)]. Then evaluating the remaining integral, we find

VCP = − kBTα0

16πε0z3

(
ε(0)− ε0
ε(0) + ε0

)
.

(planar dielectic, high-temperature/large-distance limit) (14.335)
For a conductor, ε(0) −→∞, and thus

VCP = − kBTα0

16πε0z3
.

(conductor, high-temperature/large-distance limit) (14.336)
When do these high-temperature expressions hold? Essentially, the second term in the Matsubara sum
(14.323), at frequency s1 = 2πkBT/h̄, must be negligible compared to the dc term. Since the Green tensor
is damped as e−2κz ≤ e−2sz/c, this will occur for

z � c

2s1
=

h̄c

4πkBT
.

(14.337)
(high-temperature condition)

At room temperature, this condition amounts to z � 0.6 µm. The low-temperature limit corresponds to
the opposite regime z � h̄c/4πkBT , where the terms in the Matsubara sum are closely spaced in frequency
and can be well approximated by the zero-temperature integral. Thus, even for normal temperatures corre-
sponding to kBT � h̄ω0 (i.e., T � 10 kK for optical transitions), where the atom is essentially in the ground

31A. D. McLachlan, op. cit.
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state, it is still possible to be in a regime of ‘‘high temperature’’ if the distance is sufficiently large.32 Thus,
for a ground-state atom near the planar surface of a bulk dielectric, the interaction potential scales as z−3
in the near-field regime, then as z−4 in the retarded regime of (2k0j)−1 � z � h̄c/4πkBT (for all integer j).
Then, in the very long-distance regime of z � h̄c/4πkBT , the potential scales again as z−3.

Comparing the general expression (14.167) at zero temperature to the temperature-dependent ex-
pression (14.324) we can write the temperature-dependent result by adapting the zero-temperature result
as follows: replace the integral over s by an appropriate sum over Matsubara frequencies, and multiply-
ing by 2πkBT/h̄. Doing this in Eq. (14.186), we find a general expression for the temperature-dependent
Casimir–Polder potential near a planar surface in terms of the reflection coefficients:

VCP =
kBT

4πε0c2

∞∑ ′

n=0

s 2
n α(isn)

∫ ∞
0

dkT
kT

κn

[
r⊥(θ, isn) +

(
1 +

2k 2
T c

2

s 2
n

)
r‖(θ, isn)

]
e−2κnz.

(Lifshitz formula: temperature-dependent potential, planar surface) (14.338)
Here κn =

√
s 2
n/c

2 + k 2
T , and the angle θ still depends on sn and kT. This is the Lifshitz expression for

the atom–surface potential, after the original treatment of Lifshitz for the temperature-dependent potential
between two surfaces,33 from which this expression for the atom–surface force may be deduced.34

Again, in the limit of small temperature, the sum goes over to an integral, and we recover the zero-
temperature expression (14.186). Then at small temperatures, by how much does the sum differ from the
integral? To obtain a perturbative correction due to nonzero temperature, we can use the Euler–Maclaurin
summation formula in the form35

∞∑ ′

j=0

f(j∆t) =
1

∆t

∫ ∞
0

dt f(t)−
∞∑
j=1

(∆t)2j−1

(2j)!
B2jf

(2j−1)(0)

=
1

∆t

∫ ∞
0

dt f(t)− ∆t

12
f ′(0) +

(∆t)3

720
f ′′′(0) + · · ·

(14.339)

to look at precisely this difference, where Bn are the Bernoulli numbers. Then in the general case, we can
approximately evaluate the Matsubara sum in Eq. (14.324) for small T by keeping only the correction terms
shown explicitly in Eq. (14.339):

VCP ≈ −
h̄

2π

∫ ∞
0

dsαµν(is)G
(s)
νµ(r, r, is)

+
2π(kBT )

2

12h̄

[
∂s

(
αµν(is)G

(s)
νµ(r, r, is)

)]
s=0
− (2π)3(kBT )

4

720h̄3

[
∂ 3
s

(
αµν(is)G

(s)
νµ(r, r, is)

)]
s=0

+O(T 6).

(small T expansion) (14.340)
The first term is the usual zero-temperature expression, while the rest are effectively a power series in the
temperature. Let’s evaluate these perturbative corrections for a perfect conductor, in which case Eq. (14.338)
becomes

VCP =
kBT

2πε0c2

∞∑ ′

n=0

s 2
n α(isn)

∫ ∞
0

dkT
kT

κn

(
1 +

k 2
T c

2

s 2
n

)
e−2κnz. (14.341)

To expand this expression as in Eq. (14.340), we first consider the zero-temperature formula (14.192), which
we may write in the form

VCP = − h̄

16π2ε0z3

∫ ∞
0

dsα(is)

(
1 +

2sz

c
+

2s2z2

c2

)
e−2sz/c. (14.342)

32For the experimental observation of the large-distance temperature-dependent corrections, but in a nonequilibrium ther-
mal state, see J. M. Obrecht, R. J. Wild, M. Antezza, L. P. Pitaevskii, S. Stringari, and E. A. Cornell, ‘‘Measurement of
the Temperature Dependence of the Casimir-Polder Force,’’ Physical Review Letters 98, 063201 (2007) (doi: 10.1103/Phys-
RevLett.98.063201).

33E. M. Lifshitz, op. cit.
34See J. F. Babb, G. L. Klimchitskaya, and V. M. Mostepanenko, ‘‘Casimir–Polder interaction between an atom and a cavity

wall under the influence of real conditions,’’ Physical Review A 70, 042901 (2004) (doi: 10.1103/PhysRevA.70.042901).
35E. M. Lifshitz, op. cit.; Milton Abramowitz and Irene A. Stegun, Handbook of Mathematical Functions (Dover, 1965), p.

806, Eq. (23.1.30).

http://dx.doi.org/10.1103/PhysRevLett.98.063201
http://dx.doi.org/10.1103/PhysRevLett.98.063201
http://dx.doi.org/10.1103/PhysRevA.70.042901
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To write the temperature expansion in Eq. (14.340), the zeroth-order term is simply given by this expression.
The order T 2 correction is given by this same expression, if we remove the integral sign, hit the integrand with
∂s, set s −→ 0, and multiply by −(2πkBT/h̄)

2/12. The order T 4 correction is given by this same expression,
if we remove the integral sign, hit the integrand with ∂ 3

s , set s −→ 0, and multiply by (2πkBT/h̄)
4/720.

Noting that ∂sα(is) = 0 at s = 0, we simply need to expand the remaining integrand(
1 +

2sz

c
+

2s2z2

c2

)
e−2sz/c = 1− 4z3s3

3c3
+O(s4), (14.343)

to see that the order T 2 correction vanishes. Then with the order T 4 correction the potential becomes

VCP(z, T ) = VCP(z, 0) +
π2(kBT )

4α0

90ε0h̄
3c3

+O(T 6), (14.344)

where VCP(z, 0) is given by Eq. (14.194). The lowest-order nonvanishing temperature correction thus just
amounts to a z-independent offset. If we compare the correction to the far-field expression (14.208), the
temperature-dependent corrections should be negligible so long as

z � 4

√
135

16

(
h̄c

πkBT

)
.

(14.345)
(zero-temperature validity condition)

At room temperature, this condition amounts to z � 4 µm.

14.3.9 Excited-Level Shifts

Thus far, we have mainly treated level shifts only of the ground state, but what happens to excited levels
due to the presence of some extra body? The shift of level |n〉 is given in second-order perturbation theory
by the same expression (14.133) as for the ground state,

Vn = −
∑
j

∑
k,ζ

|〈j|d|n〉 · 〈0|E|1k,ζ〉|2

h̄(ωjn + ωk)
, (14.346)

but now the difference is that ωjn may be negative for states |j〉 lower in energy than |n〉, whereas for the
ground state this frequency was always positive. To see how the level shift changes due to this sign change,
we can try out the ground-state expression (14.163)

V
(1)
n = − h̄

2π

∫ ∞
0

dsα(n)
µν (is)Gνµ(r, r, is),

(‘‘ground-state part’’ of level shift) (14.347)
where now α

(n)
µν is the polarizability tensor for |n〉, given by rewriting the Kramers–Heisenberg formula

(14.147) as

α(n)
µν (ω) =

∑
j

2ωjn〈n|dµ|j〉〈j|dν |n〉
h̄(ω 2

jn − ω2)
. (14.348)

Substituting this expression and also Eq. (14.159) for the Green tensor into this relation as before, we find

V
(1)
n = − h̄

2π

∫ ∞
0

ds
∑
j

2ωjn〈n|dµ|j〉〈j|dν |n〉
h̄(ω 2

jn + s2)

∑
k,ζ

2ωk〈0|Eν(r, ωk)|1k,ζ〉〈1k,ζ |Eµ(r′, ωk)|0〉
h̄ (ω 2

k + s2)

= − 2

πh̄

∑
j

∑
k,ζ

|〈n|d|j〉 · 〈0|E(r, ωk)|1k,ζ〉|2
∫ ∞
0

ds
ωjn ωk

(ω 2
jn + s2)(ω 2

k + s2)

= −
∑
j

∑
k,ζ

|〈n|d|ej〉 · 〈0|E(r, ωk)|1k,ζ〉|2

h̄(ωjn + ωk sgnωjn)
,

(14.349)
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where we have used the generalization of the integral formula (14.165)∫ ∞
0

dx
ab

(a2 + x2)(b2 + x2)
=

π

2(a2 − b2)
(a sgn b− b sgn a) (a, b ∈ R, a, b 6= 0). (14.350)

(See Problem 14.5.) Thus, we don’t quite recover the perturbation expression (14.347), due to the presence
of the extra sgnωjn, whenever ωjn < 0. However, note that we may write the total shift as

Vn = V (1)
n + V (2)

n ,
(14.351)

(total level shift)

where V (1)
n is the expression (14.349) that describes the energy shift of |n〉, and V (2)

n is the difference between
the full shift (14.346) and V

(1)
n in the form (14.349):

V
(2)
n = −

∑
j

∑
k,ζ

|〈j|d|n〉 · 〈0|E|1k,ζ〉|2

h̄

(
1

ωjn + ωk
− 1

ωjn + ωk sgnωjn

)
= −

∑
j

Θ(ωnj)
∑
k,ζ

|〈j|d|n〉 · 〈0|E|1k,ζ〉|2

h̄

(
1

ωjn + ωk
− 1

ωjn − ωk

)
= 2

∑
j

Θ(ωnj)
∑
k,ζ

ωk |〈j|d|n〉 · 〈0|E|1k,ζ〉|2

h̄
(
ω 2
jn − ω 2

k
) .

(14.352)

Notice that the Heaviside function Θ(ωnj) ‘‘activates’’ whenever En > Ej , that is, whenever |n〉 acts as an
excited state with respect to |j〉. Then we may use the Kramers–Heisenberg formula (14.159) for the Green
tensor to eliminate the electric-field matrix elements and the sum over modes to obtain

V
(2)
n = −

∑
j

Θ(ωnj)〈n|dα|j〉〈j|dβ |n〉Re[Gαβ(r, r, ωjn)].

(extra level shift for excited states) (14.353)
The extra shift here is due to the interaction of the atomic dipole with fields at the atomic resonance
frequencies for every transition where |n〉 is the excited state. In fact, we may regard this shift as the Stark
shift of the atom due to coupling to its own field. We have already treated this in the case of a perfectly
conducting plane in terms of a mode sum in Section 13.7 along with the comparison to the same predictions
of the Lorentz model in Section 1.5.1. From our previous discussion, we may conclude that this shift is a
classical shift, which is consistent with its form: it is simply the coupling of the dipole covariance matrix
to the Green tensor, which represents the light backscattered to the atom by the external body. We can
see this directly from our construction of the Green tensor in Section (14.1.3). Given a classical dipole dβ
at location r and oscillating at frequency ω, dβ Gαβ(r, r, ω) gives the electric field at r due to the dipole
and any other bodies that may reflect or otherwise influence the dipole’s radiated field. The interaction
energy will then be the product of the original dipole with the field, or dα dβ Gαβ(r, r, ω). The real part is
then taken in Eq. (14.353) since the Green tensor represents a complex field amplitude, and the Heaviside
function limits this mechanism to radiative (excited) states. The Green tensor is then evaluated only at
the transition frequencies, since those are the frequencies of the dipole radiation; the radiation rates of each
transition are given by the magnitudes of the corresponding dipole matrix elements.
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Again, we must renormalize this shift to remove the divergent free-field contribution, with the result36

Vn = V (1)
n + V (2)

n

V
(1)
n = − h̄

2π

∫ ∞
0

dsα(n)
µν (is)G

(s)
νµ(r, r, is)

V
(2)
n = −

∑
j

Θ(ωnj)〈n|dα|j〉〈j|dβ |n〉Re[G(s)
αβ(r, r, ωjn)]

(14.354)
(renormalized level shift)

for the shift of an arbitrary atomic level |n〉.

14.3.9.1 Example: Spherically Symmetric Atom, Perfectly Conducting Plane

As an example of applying this formalism, let’s consider a spherically symmetric atom near a perfectly
conducting plate. The spherically symmetric atom has a scalar polarizability, and hence the shift reduces
to

Vn = V (1)
n + V (2)

n

V
(1)
n = − h̄

2π

∫ ∞
0

dsα(n)(is)G(s)
µµ(r, r, is)

V
(2)
n = −

∑
j

Θ(ωnj)|〈n|dz|j〉|2 Re[G(s)
αα(r, r, ωjn)]

(spherically symmetric atom) (14.355)
The V (1)

n part of the shift is already given in terms of the reflection coefficients by (14.186),

V
(1)
n =

h̄

8π2ε0c2

∫ ∞
0

ds s2 α(n)(is)

∫ ∞
0

dkT
kT

κ

[
r⊥(θ, is) +

(
1 +

2k 2
T c

2

s2

)
r‖(θ, is)

]
e−2κz, (14.356)

while we now must compute V (2)
n . The diagonal Green-tensor components are given by Eqs. (14.178) and

(14.182) and the trace of the Green tensor is thus given by

G(s)
αα(z, z, ω) =

i

4πε0

ω2

c2

∫ ∞
0

dkT
kT

kz

[
r⊥(θ, ω) +

(
1− 2k 2

T c
2

ω2

)
r‖(θ, ω)

]
ei2kzz, (14.357)

where kz =
√
ω2/c2 − k 2

T . Then V
(2)
n can be written directly in terms of this form.

For a perfect conductor, we replace the reflection coefficients by unity, and so

G
(s)
αα(z, z, ω) =

i

2πε0

ω2

c2

∫ ∞
0

dkT
kT

kz

(
1− k 2

T c
2

ω2

)
ei2kzz

=
1

8πε0
∂z

∫ ∞
0

d(k 2
T ) e

i2z
√
ω2/c2−k 2

T

=
1

16πε0
∂z

(
i2ωz

c
− 1

)
ei2ωz/c

z2

=
1

16πε0
∂ 2
z

ei2ωz/c

z
.

(14.358)

Putting this into (14.355), we find

V (2)
n (z) = − 1

16πε0

∑
j

Θ(ωnj)|〈n|dz|j〉|2 ∂ 2
z

1

z
cos(2kjnz), (14.359)

36cf. J. M. Wylie and J. E. Sipe, ‘‘Quantum electrodynamics near an interface. II,’’ Physical Review A 32, 2030 (1985) (doi:
10.1103/PhysRevA.32.2030), Eqs. (4.3)-(4.4); also Werner Vogel and Dirk-Gunnar Welsch, Quantum Optics, 3rd ed. (Wiley,
2006), Eqs. (10.75)-(10.77), noting the different normalization convention there for the Green tensor.

http://dx.doi.org/10.1103/PhysRevA.32.2030
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where kjn = ωjn/c. We already computed the other part of the shift in Eq. (14.194), with the result

V (1)
n (z) = − sgnωjn

16π2ε0

∑
j

|〈n|dz|j〉|2 ∂ 2
z

1

z
f(2|kjn|z), (14.360)

though we have had to modify it here by introducing the factor sgnωjn and introducing the absolute value
of kjn in the argument of f(z). This is because due to the form (14.348) of the polarizability, the integral
for V (1)

n in Eqs. (14.355) is of the form∫ ∞
0

ds
ωjn h(s)

ω 2
jn + s2

=
1

2

∫ ∞
−∞

ds
ωjn h(s)

(s+ i|ωjn|)(s− i|ωjn|)

=
1

2

2πiωjn h(i|ωjn|)
2i|ωjn|

=
π

2
h(i|ωjn|) sgnωjn

(14.361)

for the appropriate (even) function h(s), where we have used Cauchy’s integral formula applied to the contour
around the upper half-plane. Of course, for the ground state ωjn > 0, so the absolute value and sgn function
were unnecessary, but they are needed now.

Putting these parts together, the total level shift is

Vn(z) = V (1)
n (z) + V (2)

n (z) = − sgnωjn
16π2ε0

∑
j

|〈n|dz|j〉|2 ∂ 2
z

1

z

[
f(|2kj0|z)−Θ(ωnj)π cos(2|kjn|z)

]
,

(level shift near perfectly conducting plane, spherically symmetric atom) (14.362)
This agrees with the result of our previous mode-summation calculation, Eq. (13.68), if we restrict that result
to a spherically symmetric atom. Of course, the formalism here covers the case of an anisotropic atom, with
only a bit more work.

14.3.10 Lifetime Shifts

Now we will consider the complementary problem to the body-induced level shifts: the shifts in the lifetimes
or decay rates of atomic excited levels. In our classical treatment (Section 1.5) of this problem in the special
cases of an atom near a planar mirror or another atom, we saw that the shifts of the decay rate and the
transition frequency were different aspects of the same effect. Here we treat the decay-rate shifts separately
from the level shifts, due to the additional complexity of the formalism here.

14.3.10.1 Decay Rate Near a Macroscopic Body

To treat the general decay problem in the presence of a macroscopic body, we start with Fermi’s golden rule
in the form (11.58)

Γi→f =
2π

h̄
|〈i|Hint|f〉|2δ(Ei − Ef). (14.363)

We are interested in the decay from atomic state |i〉 to state |f〉 due to the interaction with the field; we
should thus also include initial and final field states:

Γi→f =
2π

h̄

∑
I F

P (I) |〈i I|Hint|f F 〉|2δ(Ei + EI − Ef − EF ). (14.364)

Here, I and F are parameters labeling initial and final field states, respectively, and P (I) is the initial (t = 0)
occupation probability for the field state |I〉. If we use the integral representation of the delta function, this
becomes

Γi→f =
1

h̄2

∑
I F

P (I)

∫ ∞
−∞

dτ |〈i I|Hint|f F 〉|2ei(Ei+EI−Ef−EF )τ/h̄

=
1

h̄2

∑
I F

P (I)

∫ ∞
−∞

dτ |〈i I|Hint|f F 〉|2eiωifτei(EI−EF )τ/h̄,

(14.365)
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where ωif = (Ei − Ef)/h̄ > 0 as usual. For the dipole interaction Hamiltonian,

Γi→f =
1

h̄2

∑
I F

P (I)

∫ ∞
−∞

dτ
∣∣〈i|d|f〉 · 〈I|E(r)|F 〉

∣∣2eiωifτei(EI−EF )τ/h̄

=
1

h̄2
〈i|dα|f〉〈f|dβ |i〉

∑
I F

P (I)

∫ ∞
−∞

dτ 〈I|Eα(r)|F 〉〈F |Eβ(r)|F 〉 eiωifτei(EI−EF )τ/h̄

=
1

h̄2
〈i|dα|f〉〈f|dβ |i〉

∑
I F

P (I)

∫ ∞
−∞

dτ 〈I|Eα(r, τ)|F 〉〈F |Eβ(r, 0)|I〉 eiωifτ

=
1

h̄2
〈i|dα|f〉〈f|dβ |i〉

∑
I

P (I)

∫ ∞
−∞

dτ 〈I|Eα(r, τ)Eβ(r, 0)|I〉 eiωifτ

=
1

h̄2
〈i|dα|f〉〈f|dβ |i〉

∫ ∞
−∞

dτ 〈Eα(r, τ)Eβ(r, 0)〉 eiωifτ ,

(14.366)

where the final expectation value is an ensemble average over initial states, and we have transformed the
field operators to the Heisenberg picture (technically, the interaction picture, since they evolve as if they
were unperturbed).

To evaluate the field correlation function, we will need Eq. (14.130) for the commutator correlation
function,

〈[Eα(r, τ), Eβ(r′, 0)]〉 =
h̄

π

∫ ∞
−∞

dω Im[Gαβ(r, r′, ω)] e−iωτ , (14.367)

along with the fluctuation–dissipation theorem (14.295),

〈[Eα(r, 0), Eβ(r′, τ)]+〉 =
h̄

π

∫ ∞
−∞

dω e−iωτ Im[Gαβ(r, r′, ω)] coth
[
h̄ω

2kBT

]
. (14.368)

It follows, for example, from the Kramers–Heisenberg formulae (14.159) and (14.160) that the Green tensor
is symmetric, Gαβ(r, r′, ω) = Gβα(r′, r, ω), and thus we may switch the order of the anticommutator and
rewrite the fluctuation–dissipation relation as

〈[Eα(r, τ), Eβ(r′, 0)]+〉 =
h̄

π

∫ ∞
−∞

dω e−iωτ Im[Gαβ(r, r′, ω)] coth
[
h̄ω

2kBT

]
. (14.369)

We can alternately see this since the left-hand side is real, the time dependence on the right-hand side is
of the form cos(ωτ); thus the correlation function is an even function of the time difference τ . Now adding
Eqs. (14.367) and (14.369), we obtain

〈Eα(r, τ)Eβ(r′, 0)〉 =
h̄

2π

∫ ∞
−∞

dω e−iωτ Im[Gαβ(r, r′, ω)]
{
1 + coth

[
h̄ω

2kBT

]}
=
h̄

π

∫ ∞
−∞

dω e−iωτ
Im[Gαβ(r, r′, ω)]

1− exp
[
− h̄ω

kBT

] . (14.370)

Inverting the Fourier transform leads to∫ ∞
−∞

dτ 〈Eα(r, τ)Eβ(r′, 0)〉 eiωτ = 2h̄
Im[Gαβ(r, r′, ω)]

1− exp
[
− h̄ω

kBT

] , (14.371)
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and putting this into Eq. (14.366), we find37

Γi→f =
2

h̄
〈i|dα|f〉〈f|dβ |i〉

Im[Gαβ(r, r, ωif)]

1− exp
[
− h̄ωif

kBT

] .
(atomic spontaneous decay rate, finite T ) (14.372)

Notice that this rate diverges linearly with T when kBT � h̄ωif. Taking the T −→ 0 limit, we find

Γi→f =
2

h̄
〈i|dα|f〉〈f|dβ |i〉 Im[Gαβ(r, r, ωif)]

(atomic spontaneous decay rate, T = 0) (14.373)
for the rate of spontaneous decay for the atomic |i〉 −→ |f〉 transition. Comparing this result to the excited
level shift V (2) from Eqs. (14.354) we see that the two expressions have the nearly same form. The obvious
differences here are: the extra factor of 2/h̄ here because we are considering a decay rate of population
rather than a level shift; the absence here of a level sum and a Heaviside function, although we are implicitly
considering only transitions of unstable excited states to lower-energy states, and the total decay rate from
any level follows from summing over all posssible decay paths; and finally, the important difference is the
presence of the imaginary part of the Green tensor, as opposed to the real part from the level shift. We
saw precisely this dependence on the field quadratures before in the classical treatment of these problems
[cf. Eq. (1.125)]. This is also what we expected from what we know about generalized susceptibilities from
Section 14.1.4.1; the imaginary part alone leads to dissipation.

14.3.10.2 Free Space: Green-Tensor Example

Now we can work out the general decay rate (14.373) for the case of free space. Recall that the free-space
Green tensor is, from Eq. (14.46),

G
(0)
αβ(r, 0, ω) =

1

4πε0

{
[3r̂αr̂β − δαβ ]

[
1

r3
− i k

r2

]
− [r̂αr̂β − δαβ ]

k2

r

}
eikr. (14.374)

In computing the decay rate, we need a product of the form dαG
(0)
αβdβ . The first (near-field) term of the free-

space Green tensor then gives a contribution of the form dα[3r̂αr̂β−δαβ ]dβ = 3(d·r̂)2−d2, which vanishes for a
spherically symmetric atom. The tensor second term is of the form −dα[r̂αr̂β−δαβ ]dβ = d2−(d· r̂)2 = 2d2/3;
taking the imaginary part and then letting r −→ 0 gives a factor

lim
r→0

k2Im[eikr]

r
= k3. (14.375)

Putting all the pieces together, we find the free-space decay rate for a two-level atom:

Γ0 =
2

h̄
〈e|dα|g〉〈g|dβ |e〉 Im[G

(0)
αβ(0, 0, ωeg)] =

ω 3
eg|〈g|d|e〉|2

3πε0h̄c3
.

(free-space atomic spontaneous decay rate) (14.376)
This is the same result that we found directly from Fermi’s golden rule, Eq. (11.68), and of course our result,
Eq. (11.29), from our previous Weisskopf–Wigner calculation.

In general, then, we can write the decay rate in the presence of a macroscopic body as

Γ(r) = Γ0 +
2

h̄
〈e|dα|g〉〈g|dβ |e〉 Im[G

(s)
αβ(r, r, ωeg)],

(atomic spontaneous decay rate) (14.377)
so that the deviation from the free-space decay rate is given in terms of the scattering part of the Green
tensor.

37cf. J. M. Wylie and J. E. Sipe, ‘‘Quantum electrodynamics near an interface,’’ Physical Review A 30, 1185 (1984) (doi:
10.1103/PhysRevA.30.1185), Eq. (2.5). The derivation here is essentially identical to theirs. For the zero-temperature limit,
see also J. M. Wylie and J. E. Sipe, ‘‘Quantum electrodynamics near an interface. II,’’ Physical Review A 32, 2030 (1985) (doi:
10.1103/PhysRevA.32.2030), Eq. (4.5); and Werner Vogel and Dirk-Gunnar Welsch, Quantum Optics, 3rd ed. (Wiley, 2006),
Eq. (10.27), again noting the different normalization convention there for the Green tensor.

http://dx.doi.org/10.1103/PhysRevA.30.1185
http://dx.doi.org/10.1103/PhysRevA.32.2030
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14.3.10.3 Planar Reflector

As another example, we take the case of an atom near a planar interface. We recall from Eqs. (14.182) and
(14.178) the nonvanishing Green-tensor components

G
(s)
xx (z, z, ω) = G

(s)
yy (z, z, ω) =

i

8πε0

∫ ∞
0

dkT
kT

kz

(
k 2
z r‖(θ, ω) + k2r⊥(θ, ω)

)
e2ikzz

G
(s)
zz (z, z, ω) = −

i

4πε0

∫ ∞
0

dkT
k 3

T

kz
r‖(θ, ω) e

2ikzz.

(14.378)

Taking the matrix elements to be the same in the x and y directions, the shift in the decay rate due to the
interface is

δΓ(z) = Γ(z)− Γ0 =
2

h̄
〈e|dα|g〉〈g|dβ |e〉 Im[G

(s)
αβ(z, z, ωeg)]

=
1

2πε0h̄
Re
{∫ ∞

0

dkT
kT

kz

[
(d 2

ge,‖/2)
(
k 2
z r‖(θ, ωeg) + k 2

egr⊥(θ, ωeg)
)
− d 2

ge,z
(
k 2

eg − k 2
z

)
r‖(θ, ωeg)

]
e2ikzz

}
(decay-rate shift near planar interface) (14.379)

where k 2
T + k 2

z = k 2
eg = (ωeg/c)

2. Unfortunately, we can’t go much further here without a specific assumption
regarding the angle dependence of the reflection coefficients.

Near a perfectly conducting interface, we may set both reflection coefficients to unity. Then we change
integration variables to κ = −ikz, so that k 2

T − κ2 = k 2
eg, with the result

δΓ(z) =
k 2

eg

2πε0h̄

[(
d 2

ge,‖/2− d
2
ge,z

)
− 1

4k 2
eg

(
d 2

ge,‖/2 + d 2
ge,z

)
∂ 2
z

]
Re

{
i

∫ ∞
−ikeg

dκ e−2κz

}

=
k 2

eg

4πε0h̄

[(
d 2

ge,‖/2− d
2
ge,z

)
− 1

4k 2
eg

(
d 2

ge,‖/2 + d 2
ge,z

)
∂ 2
z

]
1

z
Re
[
ie2ikegz

]
= −

k 2
eg

4πε0h̄

[(
d 2

ge,‖/2− d
2
ge,z

)
− 1

4k 2
eg

(
d 2

ge,‖/2 + d 2
ge,z

)
∂ 2
z

]
sin(2kegz)

z

= −
k 3

eg

2πε0h̄

[(
d 2

ge,‖/2− d
2
ge,z

)
−
(
d 2

ge,‖/2 + d 2
ge,z

)
∂ 2
z′

] sin z′

z′
,

(14.380)

where we have switched to the scaled coordinate z′ := 2kegz. Now using the free-space decay rate (14.376),
we may write the shift as

δΓ(z) = −3

2
Γ0

[(
ε̂ 2
‖ /2− ε̂

2
z

)
−
(
ε̂ 2
‖ /2 + ε̂ 2

z

)
∂ 2
z′

] sin z′

z′
,

(decay-rate shift near perfect mirror) (14.381)
where ε̂ 2

‖ := d 2
ge,‖/d

2
ge and ε̂ 2

z := d 2
ge,z/d

2
ge. This result is identical to what we derived using the classical

model, Eq. (1.132). Recall that the spatial dependence of the quantum modes is purely classical, and that’s
what determines the spatial dependence of the shift. Evidently, all the ‘‘quantumness’’ in this relation is
buried in the details of the free-space decay rate Γ0.

14.4 Casimir Energy

Thus far, we have concentrated on the evaluation of Casimir–Polder energies—energies of an atom (or
molecule or other point particle) interacting with a dielectric body or bodies. Here we will (relatively
briefly) consider the analogous problem of Casimir energies, or interactions involving only macroscopic
bodies. Of course, the Casimir–Polder effect is just a special case of this more general Casimir effect, and
we will take advantage of this fact.

In the case where we neglect dispersion, it is relatively straightforward to come up with an expression
for the Casimir energy within linear-response theory. For example, for a dispersionless medium with dielectric
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and magnetic response, we can write the field Hamiltonian as [see Eq. (8.309) for the dielectric case, and we
are also appropriately generalizing the magnetic response here]

H =

∫
d3r (E ·D + B ·H) =

∫
d3r

[
ε(r)E2 +

1

µ(r)B
2

]
.

(electromagnetic Hamiltonian) (14.382)
The Casimir energy VC is then just the expectation value in the vacuum state:

VC =

∫
d3r

〈
ε(r)E2 +

1

µ(r)B
2

〉
. (14.383)

Formally this is a divergent quantity, as in the Casimir–Polder case, where we subtracted the vacuum
contribution to the energy in Eq. (14.167). Here, we will simply note that it is important to compute the
difference in energy between two configurations of the dielectric bodies in order to obtain a sensible result.
To write this energy in terms of the Green tensor, we can adapt the correlation function (14.295), with T = 0
and at equal times, so that

〈[Eµ(r), Eν(r′)]+〉 =
h̄

π

∫ ∞
−∞

dω Im[Gµν(r, r′, ω)] sgn(ω). (14.384)

Adding this to the τ = 0 form of the anticommutator version (14.130),

〈[Eµ(r), Eν(r′)]〉 =
h̄

π

∫ ∞
−∞

dω Im[Gµν(r, r′, ω)], (14.385)

we obtain
〈Eµ(r)Eν(r′)〉 =

h̄

π

∫ ∞
0

dω Im[Gµν(r, r′, ω)]. (14.386)

For the magnetic contribution, we can similarly write

〈∂tBµ(r) ∂tBν(r′)〉 = ∇×∇′ ×〈Eµ(r)Eν(r′)〉 =
h̄

π

∫ ∞
0

dω∇×∇′ × Im[Gµν(r, r′, ω)], (14.387)

or

〈Bµ(r)Bν(r′)〉 = −
h̄

π

∫ ∞
0

dω ω2∇×∇′× Im[Gµν(r, r′, ω)] =
h̄

π

∫ ∞
0

dω

ω2
∇× Im[Gµν(r, r′, ω)]×

←−
∇ ′. (14.388)

In these expressions, ∇ operates only on r, ∇′ operates only on r′, and the arrow on the last ∇′ indicates
that it operates to the left on the Green tensor. Putting these expressions into Eq. (14.383), we have38

VC =
h̄

π

∫
d3r

∫ ∞
0

dω

[
ε(r) Im[Gµµ(r, r′, ω)] +

1

µ(r)ω2
∇× Im[Gµµ(r, r′, ω)]×

←−
∇ ′
∣∣∣
r=r′

]
,

(Casimir energy, no dispersion) (14.389)
where the repeated µ’s are summed.

Although it is reasonably simple to obtain this expression in the absence of dispersion, the case where
we include dispersion is more subtle, and must be handled with some care. For example, simply replacing
ε(r) by ε(r, ω) does not work in either Eq. (14.383) or Eq. (14.382).

14.4.1 Casimir Energy of Dispersive Dielectric Bodies

To incorporate dispersion into the Casimir energy, we will take advantage of the fact that we have already
incorporated dispersion into the Casimir–Polder energy, which in terms of an imaginary-frequency integral
is

VCP = − h̄

2π

∫ ∞
0

dsTr
[
α(is) ·G(s)(r, r, is)

]
, (14.390)

38A similar expression can be found in K. A. Milton, The Casimir Effect: Physical Manifestations of Zero-Point Energy
(World Scientific, 2001), p. 84, Eq. (5.27a) (ISBN: 9810243979).

http://www.amazon.com/gp/search/?field-isbn=9810243979
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from Eq. (14.167), or as a real-frequency integral from Eq. (14.319),

VCP = − h̄

2π
Im
∫ ∞
0

dωTr[α(ω) ·G(s)(r, r, ω)] (14.391)

after taking the zero-temperature limit, exploiting the even nature of the integrand, and renormalizing by
subtracting the free-space Green tensor.

Although these corrections correctly model a dispersive interaction of an atom with a macroscopic body
(or collection of bodies), it implicitly assumes that the effect of introducing the atom has a negligible effect
on the vacuum field (e.g., via the Green tensor). In introducing a macroscopic body in the context of the
Casimir effect, this is no longer true, and we have to be more careful with the notion of the interaction energy.
This procedure will allow us to generalize these expressions into the correct expressions to model Casimir
energies for dispersive objects.39 To simplify this treatment somewhat, we will only consider dielectric bodies,
ignoring any magnetic effects.

14.4.1.1 Induced Interaction Energies

First, we will have a short digression to treat the general notion of an ‘‘induced’’ interaction energy.40 That
is, consider the Hamiltonian

Hλ = H0 + λV, (14.392)
which is parameterized by λ, which satisfies 0 ≤ λ ≤ 1. Then λ smoothly interpolates between the ‘‘unper-
turbed’’ Hamiltonian H0 and the ‘‘perturbed’’ Hamiltonian H0 + V . Unlike perturbation theory, however,
we will not make any assumptions about having a weak perturbation: the interaction V may be as strong
as we like.

We will assume we know the energy Eλ corresponding to an eigenstate |Eλ〉, for every possible value
of λ:

Hλ|Eλ〉 = Eλ|Eλ〉. (14.393)
Often this technique will be useful for analyzing ground-state shifts (such as Casimir energies), but we need
not assume this explicitly. Now differentiating the energy Eλ with respect to λ, we obtain

∂Eλ
∂λ

=
∂

∂λ
〈Eλ|Hλ|Eλ〉

=

[
∂

∂λ
〈Eλ|

]
Hλ|Eλ〉+ 〈Eλ|Hλ

[
∂

∂λ
|Eλ〉

]
+ 〈Eλ|

∂Hλ

∂λ
|Eλ〉

= Eλ

[
∂

∂λ
〈Eλ|

]
|Eλ〉+ Eλ〈Eλ|

[
∂

∂λ
|Eλ〉

]
+ 〈Eλ|V |Eλ〉

= Eλ
∂

∂λ
〈Eλ|Eλ〉+ 〈Eλ|V |Eλ〉

= 〈Eλ|V |Eλ〉

=
1

λ
〈Eλ|λV |Eλ〉.

(14.394)

Note that in the next-to-last equality, we used 〈Eλ|Eλ〉 = 1. The result above is often called the Hellmann–
Feynman theorem;41 we will write this in integral form here as

E1 − E0 =

∫ 1

0

dλ

λ
〈Eλ|λV |Eλ〉.

(14.395)
(Hellmann–Feynman theorem)

39From here through Section 14.4.1.7, we are closely following the derivation of F. S. S. Rosa, D. A. R. Dalvit, and P. W.
Milonni, ‘‘Electromagnetic energy, absorption, and Casimir forces. II. Inhomogeneous dielectric media,’’ Physical Review A 84,
053813 (2011) (doi: 10.1103/PhysRevA.84.053813).

40Alexander L. Fetter and John Dirk Walecka, Quantum Theory of Many-Particle Systems (McGraw-Hill, 1971), pp. 69-70
(ISBN: 0070206538).

41For a history of this theorem, see David Wallace, An Introduction To Hellmann–Feynman Theory, Master’s thesis (University
of Central Florida, 2005), available at http://stars.library.ucf.edu/cgi/viewcontent.cgi?article=1412&context=etd.

http://dx.doi.org/10.1103/PhysRevA.84.053813
http://www.amazon.com/gp/search/?field-isbn=0070206538
http://stars.library.ucf.edu/cgi/viewcontent.cgi?article=1412&context=etd
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This gives the energy difference E1 −E0 between the system in the presence and absence of the interaction
V .

As a simple example, consider the energy due to an induced dipole in a static electric field. Setting
ω = 0 in the Kramers–Heisenberg expression (14.148) for the polarizability gives the static polarizability

α0 =
∑
j

2|〈g|dz|ej〉|2

h̄ωj0
. (14.396)

The interaction Hamiltonian for the dipole–field interaction is V = −d ·E. The perturbation-theory analysis
of the dipole response in Section 14.3.1 gives d = α0E in the static limit. Then 〈V 〉 = α0(λ)E

2, where the
λ-dependent polarizability is α0(λ) = λ2α0, because if we associate λ with the dipole moment, we can note
that V ∼ d but α0 ∼ d2. Thus the energy shift (14.395) becomes

∆E =

∫ 1

0

dλ

λ
α0(λ)E

2, (14.397)

and so putting in the explicit factor of λ2, we find

∆E =

∫ 1

0

dλλα0E
2 =

1

2
α0E

2. (14.398)

This is exactly what we expect for the energy of an induced dipole, specifically the factor of 1/2. For example,
we can obtain the same result by bringing the electric field up from zero to the final value, integrating the
work in doing this along the way, we obtain

∆E = −
∫ E

0

dE′ d(E′) = −
∫ E

0

dE′ α0E
′ =

1

2
α0E

2, (14.399)

which gives the same factor of 1/2. However, Eq. (14.397) is a more general expression than (1/2)α0E
2 of the

induced dipole energy, because different functional forms for α0(λ), due to more complicated interactions,
can lead to different final expressions for the energy. This is precisely the path we will follow in adapting
the Casimir–Polder potential to the Casimir energy.

14.4.1.2 Assembling a Dielectric Medium, Atom by Atom

Now we will model the dielectric media as a collection of N atoms. Since a dipole responds to an applied
electric field via the tensor polarizability α as

d = α ·E, (14.400)

we can write the dipole response dn(ω) at frequency ω for each atom at rn as

dn(ω) = α(ω) ·E(rn, ω). (14.401)

We assume the electric field to comprise an externally applied field E0 as well as the induced field from each
dipole. The latter contribution can be written in terms of the free-space Green tensor G0, so that the total
dipole response for the nth atom is

dn(ω) = α(ω) ·E0(rn, ω) +α(ω) ·
N∑
j=1

G(0)(rn, rj , ω) · dj(ω). (14.402)

Grouping the dipole moments together, we may formally write this system of equations in matrix form as[
1−α(ω) ·G(0)(ω)

]
· d(ω) = α(ω) ·E0(ω), (14.403)
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where the matrices encode both polarization and ‘‘which-atom’’ degrees of freedom. That is, the ‘‘1’’ in
the left-hand matrix should be interpreted as the 3N × 3N idendity matrix I3N , and α(ω) and G0(ω) are
similarly 3N × 3N , while d(ω) and E0(ω) are column vectors of dimension 3N . In this form, we may just
as well introduce the freedom to assign a different polarizability tensor to each atom, which corresponds to
replacing α(ω) by α(n)(ω) in Eq. (14.401). Then solving for the collection of dipole moments, we obtain

d(ω) =
[
1−α(ω) ·G(0)(ω)

]−1
·α(ω) ·E0(ω). (14.404)

The collective polarizability of the N atomic dipoles is just the entire matrix that acts on the field vector
E0(ω) on the right-hand side. Thus, to adapt the unrenormalized form of the single-atom interaction energy
(14.391), we can replace the polarizability in that expression with the collective polarizability and the Green
tensor with the free-space tensor, with the result

VC = − h̄
π

∫ 1

0

dλ

λ
Im
∫ ∞
0

dωTr
{[

1−α(ω, λ) ·G(0)(ω)
]−1
·α(ω, λ) ·G(0)(ω)

}
, (14.405)

which follows from introducing the correct integral over the interaction parameter λ as in Eq. (14.395). As in
the induced-dipole example of Eq. (14.397), the coupled form of the polarizability tensor is α(ω, λ) = λ2α(ω),
so that

VC = − h̄
π

Im
∫ ∞
0

dωTr
{∫ 1

0

dλλ
[
1− λ2α(ω) ·G(0)(ω)

]−1
·α(ω) ·G(0)(ω)

}
. (14.406)

Note again that the trace here extends over not only the polarization degrees of freedom, but also the
coordinates of all N atoms. Hence, this expression corresponds to a Casimir energy of the entire collection
of atoms. Carrying out the λ integral then gives the expression

VC =
h̄

2π
Im
∫ ∞
0

dωTr log
[
1−α(ω) ·G0(ω)

]
(14.407)

for the Casimir energy. Note that since the matrices do not commute, technically we should verify this
by Taylor expansion, which we can do as follows. The nth term (starting with n = 0) in the expansion
of (1 − λ2A)−1 is λ2nAn, so the nth term in the expansion of (1 − λ2A)−1λA is λ2n+1An+1. Integrating
over λ gives An+1/2(n + 1). This matches the series expansion of (−1/2) logA. The Taylor expansion of
Eq. (14.407) is itself interesting,

VC = − h̄

2π
Im
∫ ∞
0

dωTr
[
α(ω) ·G(0)(ω)

+
1

2
α(ω) ·G(0)(ω) ·α(ω) ·G(0)(ω)

+
1

3
α(ω) ·G(0)(ω) ·α(ω) ·G(0)(ω) ·α(ω) ·G(0)(ω) + · · ·

]
,

(14.408)

since the terms correspond to one-body, two-body, three-body, etc. interactions. As a simple example,
consider a collection of N = 2 atoms, in which case the two-body term gives the two-atom interaction

V12 = − h̄

4π
Im
∫ ∞
0

dωTr
[
α(ω) ·G(0)(ω) ·α(ω) ·G(0)(ω)

]
= − h̄

4π
Im
∫ ∞
0

dω

2∑
n,k=1

Tr
[
α(n)(ω) ·G(0)(rn, rk, ω) ·α(k)(ω) ·G(0)(rk, rn, ω)

]
= − h̄

2π
Im
∫ ∞
0

dωTr
[
α(1)(ω) ·G(0)(r1, r2, ω) ·α(2)(ω) ·G(0)(r2, r1, ω)

]
(14.409)

In the second step, we wrote out the spatial part of the trace, so that the remaining trace refers only
to polarization. In the last step, we dropped terms with n = k, corresponding to (divergent) one-body
interactions. The result gives the Casimir–Polder potential between two atoms; this result is equivalent via
Wick rotation to the result (14.249) that we derived directly.
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14.4.1.3 Conversion to Permittivity

In going over from a collection of atoms to the continuum limit, we can, for example, take the two-body
interaction term from Eq. (14.408) and modify it via

Tr
[
α(ω) ·G(0)(ω) ·α(ω) ·G(0)(ω)

]
−→ Tr

∫
d3r

∫
d3r′N(r)N(r′)α(r, ω) ·G(0)(r, r′, ω) ·α(r′, ω) ·G(0)(r′, r, ω)

= Tr
∫
d3r

∫
d3r′ ε 20 χ(r, ω) ·G(0)(r, r′, ω) · χ(r′, ω) ·G(0)(r′, r, ω)

= Tr
[
ε0χ(ω) ·G(0)(ω)

]2
,

(14.410)

where note that in the middle two expressions, the overall spatial integration is written out explicitly, while
it is buried in the the trace in the other two expressions. Also, the dielectric susceptibility tensor χ is related
to the polarizability tensor [in a tensor generalization of Eq. (1.17)] via

χ(r, ω) = N(r)
ε0

α(r, ω), (14.411)

where N(r) is the atomic number density, and recall that the susceptibility is related to the dielectric
permittivity tensor ε by χ(r, ω) = ε(r, ω)/ε0− 1. Now performing these same replacements term-by-term in
the series expansion of the logarithm, Eq. (14.407) becomes

VC =
h̄

2π
Im
∫ ∞
0

dωTr log
[
1− ε0χ(ω) ·G(0)(ω)

]
,

(dispersive Casimir energy, with free-space Green tensor) (14.412)
where again the trace in this expression encompasses position integral.

14.4.1.4 Introduction of the Dielectric Green Tensor

Thus far, the expression (14.412) represents the field in terms of the vacuum Green tensor, but more it would
be more sensible to have the Green tensor in the presence of the dielectric to represent the field. Recall the
defining relation (14.28) for the Green tensor:

∇× [∇×G(r, r′, ω)]− ω2µ0ε(r, ω) ·G(r, r′, ω) = µ0ω
2δ3(r− r′). (14.413)

Taking the difference between the dielectric and vacuum cases gives

∇×∇×
[
G−G(0)

]
− ω2µ0

[
ε(ω) ·G− ε0G(0)

]
= 0. (14.414)

Then rearranging and subtracting ω2µ0ε0G from both sides,

∇×∇×
[
G−G(0)

]
− ω2µ0ε0

[
G−G(0)

]
= ω2µ0

[
ε(ω)− ε0

]
·G = ω2µ0ε0χ(ω) ·G. (14.415)

This has the same form as the defining wave equation (14.413), but in vacuum, and with ‘‘source’’ ω2µ0ε0χ(ω)G.
The solution is thus G(0) ‘‘convolved’’ with the ‘‘source’’ ε0χ(ω) ·G:

G−G(0) = G(0) · ε0χ(ω) ·G. (14.416)

With explicit position dependence, this solution is

G(r, r′, ω)−G(0)(r, r′, ω) =
∫
d3r′′G(0)(r, r′′, ω) · ε0χ(r′′, ω) ·G(r′′, r′, ω). (14.417)
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Now a transpose gives
G−G(0) = G · ε0χ(ω) ·G(0), (14.418)

while operating with the left-inverse of G gives

1− ε0χ(ω) ·G(0) = G−1 ·G(0). (14.419)

Using this result in Eq. (14.412) gives the energy expression

VC = − h̄

2π
Im
∫ ∞
0

dωTr log
[(

G(0)
)−1 ·G]

(dispersive Casimir energy, trace-log form) (14.420)
after trading an overall minus sign for the inverse of the matrix inside the log. We can also write this
expression more simply as

VC = − h̄

2π
Im
∫ ∞
0

dωTr log G(ω),

(dispersive Casimir energy, trace-log form) (14.421)
with the understanding that we should renormalize the energy (which in this expression is divergent) by
subtracting the energy of the vacuum or some other comparable dielectric configuration. Although we have
been working in the space of real frequencies ω, any of these expressions may be Wick-rotated to imaginary
frequency. For example, Eq. (14.421) becomes

VC = − h̄

2π

∫ ∞
0

dsTr log G(is),

(dispersive Casimir energy, Wick-rotated trace-log form) (14.422)
upon letting ω −→ is.

14.4.1.5 Explicit Permittivity Dependence

We can arrive at an alternate expression for the Casimir energy that highlights the direct dependence on the
dispersive permittivity and allows a direct comparison to the nondispersive expression (14.389). Continuing
with the unrenormalized expression (14.421), and keeping in mind the necessity of renormalizing the final
result, we can integrate by parts to obtain

VC =
h̄

2π
Im Tr

∫ ∞
0

dω ω∂ω log G =
h̄

2π
Im Tr

∫ ∞
0

dω ωG−1∂ωG. (14.423)

To evaluate ∂ωG(ω), we can multiply through by ω−2 and then differentiate the wave equation (14.413) to
obtain

∇×∇× ∂ω[ω−2G]− ω2µ0ε · ∂ω[ω−2G] = 2ω−1µ0ε ·G + µ0(∂ωε) ·G. (14.424)

In analogy with Eq. (14.416), we can write the solution as

∂ω
[
ω−2G

]
= G · ω−2

[
2ω−1ε+ (∂ωε)

]
·G, (14.425)

or simplifying this,

∂ωG = 2ω−1G + G ·
[
2ω−1ε+ (∂ωε)

]
·G = 2ω−1G + G · ∂ω(ω

2ε)

ω2
·G. (14.426)

Putting this into Eq. (14.424), but discarding the first term (which produces a constant term that vanishes
under renormalization), we arrive at

VC =
h̄

2π
Im Tr

∫ ∞
0

dω

ω

[
∂ω(ω

2ε)
]
·G,

(14.427)
(dispersive Casimir energy)
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or writing out the trace in the spatial degrees of freedom,

VC =
h̄

2π
Im Tr

∫
d3r

∫ ∞
0

dω

ω

[
∂ω
[
ω2ε(r, ω)

]]
·G(r, r, ω),

(dispersive Casimir energy) (14.428)
In the limit of a nondispersive, isotropic dielectric, [ω2ε]′ = 2ωε, and this relation reduces to the first
(electric-field) term of the nondispersive expression (14.389), if we also ignore any imaginary part of the
permittivity. However, the nondispersive expression (14.389) does not generalize in a completely obvious
way to a dispersive medium, because of the presence of a term of the form ωε′(ω).

14.4.1.6 Free-Space Energy

A simple check on the Casimir-energy expression is to examine the energy in free space, by letting ε −→ ε0
in Eq. (14.428):

VC =
h̄ε0
π

∫
d3r

∫ ∞
0

dωTr Im G(0)(r, r, ω). (14.429)

Using the free-space Green tensor (14.46),

G
(0)
αβ(r, 0, ω) =

1

4πε0

{
[3r̂αr̂β − δαβ ]

[
1

r3
− i k

r2

]
− [r̂αr̂β − δαβ ]

k2

r

}
eikr, (14.430)

we can discard the first portion in the trace and keep only the imaginary part to find

Tr Im G(0)(r, 0, ω) = 1

2πε0

{
k2

r

}
sin kr. (14.431)

Then at the same source and effect points, we have

Tr Im G(0)(r, r, ω) = k3

2πε0
=

ω3

2πε0c3
. (14.432)

In Eq. (14.429), this leads to the free-space energy

VC =

∫
d3r

∫ ∞
0

dω
h̄ω3

2π2c3
=

∫
d3r

∫ ∞
0

dω

(
1

2
h̄ω

)
2

(
ω2

2π2c3

)
, (14.433)

where we can interpret the last expression as counting zero-point energies h̄ω/2 for each mode, with 2
polarizations per frequency and a vacuum mode density ω2/2π2c3. We can verify this energy by direct
mode summation in a large quantization volume V , in analogy with the steps in the calculation of the
spontaneous-emission rate in Section 11.3:

V0 :=
∑
k,ζ

h̄ωk
2

= h̄
∑

k

ωk

−→ h̄cV

8π3

∫
d3k k

=
h̄cV

2π2

∫
dk k3

=
h̄V

2π2c3

∫
dω ω3.

(14.434)

The vacuum mode density here also agrees with the density of states from the Fermi-Golden-rule calculation
of the spontaneous-emission rate, where Eq. (11.66) gives ρ(E) dE = E2V dE/π2h̄3c3, and letting E = h̄ω
gives ρ(ω) dω = ω2V dω/π2c3, which already counts both polarization.
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14.4.1.7 Reduction to the Casimir–Polder Potential

Now to make contact again with the Casimir–Polder potential, consider a small variation δε in the permit-
tivity ε. Then the variation in the Casimir energy (14.427) is

δVC =
h̄

2π
Im Tr

∫ ∞
0

dω

ω

{[
∂ω(ω

2δε)
]
·G +

[
∂ω(ω

2ε)
]
· δG

}
. (14.435)

Note that it is critical here to consider the variation δG in the Green tensor, which depends implicitly on
the permittivity, as well as the direct variation δε. The same variation in the wave equation (14.413) gives

∇×∇× δG− ω2µ0ε · δG = ω2µ0δε ·G, (14.436)

which has solution
δG = G · δε ·G. (14.437)

We can use this result to eliminate δG in the integrand of Eq. (14.427):[
∂ω(ω

2δε)
]
·G +

[
∂ω(ω

2ε)
]
· δG =

[
∂ω(ω

2δε)
]
·G +

[
∂ω(ω

2ε)
]
·G · δε ·G. (14.438)

Then using Eq. (14.426) in the form

G−1 · ω2∂ωG = 2ω + ∂ω(ω
2ε) ·G, (14.439)

we can rewrite the last term of Eq. (14.438), with the result[
∂ω(ω

2δε)
]
·G +

[
∂ω(ω

2ε)
]
· δG =

[
∂ω(ω

2δε)
]
·G + G−1 · ω2∂ωG · δε ·G− 2ωδε ·G

=
[
ω2∂ωδε

]
·G + G−1 · ω2∂ωG · δε ·G

(14.440)

Then Eq. (14.427) becomes

δVC =
h̄

2π
Im Tr

∫ ∞
0

dω

ω

{
ω2∂ωδε ·G + ω2δε · ∂ωG

}
(14.441)

after cyclic permutation of matrices under the trace. Simplifying further gives

δVC =
h̄

2π
Im Tr

∫ ∞
0

dω ω ∂ω
(
δε ·G

)
, (14.442)

and then integration by parts gives

δVC = − h̄

2π
Im Tr

∫ ∞
0

dω δε ·G = − h̄

2π
Im Tr

∫
d3r

∫ ∞
0

dω δε(r, ω) ·G(r, r, ω),

(Casimir-energy variation) (14.443)
where we have written out the spatial part of the trace in the second expression. Now using Eq. (14.411) to
identify the permittivity variation with a single localized atom at rA,

δε(r, ω) = N(r)
ε0

α(r, ω) = δ(r− rA)

ε0
α(ω), (14.444)

the delta function removes the spatial integral, and we are left with

VCP(rA) ≡ δVC = − h̄

2π
Im Tr

∫ ∞
0

dωα(ω) ·G(r, r, ω), (14.445)

in agreement with Eq. (14.391), if we renormalize by subtracting the same expression with the vacuum Green
tensor. Note that the variation expression (14.443) is also useful in other situations with a small change in
the dielectric, such as computing the force between two planar dielectric slabs (where the idea is to compute
the difference between two slightly different distances, so δε corresponds to a thin film on one of the surfaces).
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14.4.1.8 Temperature Dependence

In generalizing these expressions for the Casimir energy to the case of nonzero temperature, we can appeal
to the following expression,

VCP = − h̄

2π
Im
∫ ∞
0

dωTr
[
α(ω) ·G(r, r, ω)

]
coth

[
h̄ω

2kBT

]
, (14.446)

which follows from the temperature-dependent Casimir–Polder expression(14.319), exploiting the odd nature
of the integrand (specifically, the imaginary parts of the response functions). Note that this is precisely the
same as the starting expression (14.391) for the Casimir–Polder energy at zero temperature, except for the
presence of the coth factor here. Thus, all the results here carry through by judiciously inserting this factor.
For example, the trace-log expression (14.420) becomes42

VC = − h̄

2π
Im
∫ ∞
0

dωTr log
[(

G(0)
)−1 ·G] coth

[
h̄ω

2kBT

]
.

(dispersive Casimir energy, trace-log form) (14.447)
The same contour integration that we used in the Casimir–Polder case applies here, leading to the Matsubara
frequencies appearing due to the poles in the coth function.

42Compare to, for exmaple, Francesco Intravaia and Ryan Behunin, ‘‘Casimir effect as a sum over modes in dissipative
systems,’’ Physical Review A 86, 062517 (2012), Eq. (42) (doi: 10.1103/PhysRevA.86.062517).

http://dx.doi.org/10.1103/PhysRevA.86.062517


646 Chapter 14. QED with Dielectric Media

14.5 Exercises

Problem 14.1
Suppose we denote the permittivity including conduction by

ε̃(ω) := ε(ω) +
iσ(ω)

ω
, (14.448)

where ε(ω) is analytic in the upper half-plane (Im[ω] ≥ 0) and obeys the usual Kramers–Kronig
relations (14.90)

Re[ε(ω)− ε0] =
1

π
–
∫ ∞
−∞

Im[ε(ω′)− ε0]
ω′ − ω

dω′

Im[ε(ω)− ε0] = −
1

π
–
∫ ∞
−∞

Re[ε(ω′)− ε0]
ω′ − ω

dω′.

(14.449)

Show that ε̃(ω) satisfies the modified Kramers–Kronig relations

Re[ε̃(ω)− ε0] =
1

π
–
∫ ∞
−∞

Im[ε̃(ω′)− ε0]
ω′ − ω

dω′

Im[ε̃(ω)− ε0] = −
1

π
–
∫ ∞
−∞

Re[ε̃(ω′)− ε0]
ω′ − ω

dω′ +
σ0
ω
,

(14.450)

where σ0 = σ(0) is the dc conductivity, which is a real number. You may also assume σ(ω) −→ 0 as
ω −→∞.
Hint: the algebra is simple if you keep the relations as much as possible in terms of the Hilbert-transform
operator H .

Problem 14.2
Show that the Kramers–Kronig relations for the permittivity

Re[ε(ω)] = ε0 +
1

π
–
∫ ∞
−∞

Im[ε(ω′)]

ω′ − ω
dω′

Im[ε(ω)] = − 1

π
–
∫ ∞
−∞

Re[ε(ω′)]− ε0
ω′ − ω

dω′
(14.451)

can be written in the equivalent form

Re[ε(ω)] = ε0 +
2

π
–
∫ ∞
0

ω′Im[ε(ω′)]

ω′2 − ω2
dω′

Im[ε(ω)] = − 2ω

π
–
∫ ∞
0

Re[ε(ω′)]− ε0
ω′2 − ω2

dω′.

(14.452)

Hint: use the property ε(−ω∗) = ε∗(ω).

Problem 14.3
Consider the (classical) forced, damped harmonic oscillator

ẍ+ γẋ+ ω 2
0 x = f(t), (14.453)

subject to the forcing function f(t).
(a) Find the Green function g(t, t′) for the initially undisturbed system, defined as the solution x(t)
where the forcing function f(t) = δ(t− t′) is an impulse at time t′, and with x(t) = 0 for t < t′. That
is, g(t, t′) satisfies

g̈ + γġ + ω 2
0 g = δ(t− t′), (14.454)
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subject to the boundary condition g(t′, t′) = 0. Assume underdamped oscillation, and don’t bother to
derive the solution to Eq. (14.453) (look it up from a reputable source).
(b) Write down the general solution to Eq. (14.453) [by integrating Eq. (14.454) over t′] for an arbitrary
forcing function f(t) as an integral involving the Green function. Noting that g(t, t′) = g(t− t′), show
that the integral is in fact a convolution of f(t) with g(t).
(c) Derive the frequency-space Green function g̃(ω), defined as the amplitude x̃(ω), where

x(t) = x̃(ω)e−iωt, (14.455)

and x(t) is the solution to Eq. (14.453) due to a unit-amplitude, monochromatic forcing at frequency
ω,

f(t) = e−iωt. (14.456)

(d) For an arbitrary forcing function f(t) with Fourier transform f̃(ω), use the convolution theorem to
show that the solution x(t) may be written

x(t) =
1

2π

∫ ∞
−∞

dω g̃(ω)f̃(ω)e−iωt. (14.457)

Thus, g̃(ω) is the transfer function for the damped harmonic oscillator, because it gives the ‘‘trans-
fer efficiency’’ for the forcing amplitude at frequency ω through the system. Of course g̃(ω) is also
the generalized susceptibility for the damped harmonic oscillator, and thus, for example, obeys the
Kramers–Kronig relations.

Problem 14.4
In Section 14.1.4, we argued that gχ(t −→ ∞) −→ 0, where gχ(t) is the inverse Fourier transform of
the susceptibility χ(ω),

gχ(t) =
1

2π

∫ ∞
−∞

dω χ(ω) e−iωt, (14.458)

was a reasonable requirement, since a dielectric medium ‘‘forgets’’ any electromagnetic perturbations
in the distant past. However, this conclusion is not valid for a conductor.
(a) For a conductor with permittivity

ε̃(r, ω) =
[
ε(r, ω) + i

σ(r, ω)
ω

]
, (14.459)

take χ(ω) = ε̃(r, ω)/ε0 − 1 to be the susceptibility. Then show that limt→∞ gχ(t) = σ0/ε0, where
σ0 = σ(0).
Note: this is not a technically difficult problem, but it is rather tricky for two reasons. First, when
you set up the semicircular contour integral, the contour you choose will depend on the sign of t, in
order to get the curved part to go away. Second, the χ(ω) is actually not quite correct at ω = 0; go
ahead and compute gχ(t) from χ(ω), but then adjust the ω = 0 component of χ(ω) to obtain a result
consistent with a causal response.
(b) Since gχ(t −→ ∞) −→ 0 fails to hold for a conductor, this means that a conductor doesn’t forget
perturbations in the distant past. Give a physical interpretation of this statement by considering a
(near-dc) pulsed electric field applied to a medium (assume that the sign of the electric field is always
positive). What is the net effect of the pulse long after it finishes for a dielectric vs. a conductor?

Problem 14.5
Prove the integral formula (14.350)∫ ∞

0

dx
ab

(a2 + x2)(b2 + x2)
=

π

2(a2 − b2)
(a sgn b− b sgn a) (a, b ∈ R, a, b 6= 0) (14.460)

by considering the contour around the great upper half-plane.
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Problem 14.6
Justify the formula

lim
ε→0+

1

x± iε
= P 1

x
∓ iπδ(x). (14.461)

Here, the ‘‘P’’ denotes the Cauchy principal value, i.e.,∫ ∞
−∞

dxP f(x) ≡ P
∫ ∞
−∞

dx f(x) ≡ –
∫ ∞
−∞
dx f(x). (14.462)

Note: the delta function is defined in terms of its action on a test function f(x) under an integral, i.e.∫
dx f(x) δ(x) = f(0). Show that the formula (14.461) holds in the same sense. Are there restrictions

on the test functions f(x) for which this formula is valid?

Problem 14.7
A linear circuit has the following frequency response for the output voltage amplitude |Vout(ω)| as a
function of the constant input-voltage amplitude Vin(ω). Sketch the corresponding phase lag δ(ω) of
the output voltage, given by Vout = |g(ω)|Vin(ω) e

iδ(ω) for some (complex) gain function g(ω). Explain.

w

|Vouto(w)o|

Problem 14.8
Understand and use the expression (14.210)

VCP = − 3h̄cα0

64π2ε0z4

∫ ∞
1

dξ

ξ4

[√
χ+ ξ2 − ξ√
χ+ ξ2 + ξ

+
(
1− 2ξ2

) √χ+ ξ2 − ξ(1 + χ)√
χ+ ξ2 + ξ(1 + χ)

]
(14.463)

for the Casimir–Polder energy, and adapt it to the magnetic-field case as follows. First, replace the
dc electric polarizability with the analogous dc magnetizability αm0, defined such that the induced
magnetic-dipole moment is µ = αm0B, making sure to keep the dimensions correct. Then use the
considerations of the dielectric-mode-sum analysis of Section 13.13.4 to modify the integrals for the
magnetic field. To keep things simple, consider only the limits of very small and very large χ.



Chapter 15

Resolvent Operator

We will now develop a method of calculation based on the resolvent operator.1 This method is quite formal
but also quite powerful, especially in scattering problems and problems involving transitions to continua.

15.1 Definition

The resolvent operator is defined in the complex plane in terms of the time-independent Hamiltonian H
by

G(z) :=
1

z −H
.

(15.1)
(resolvent operator)

Expanding into a basis |α〉 of eigenstates of H (i.e., multiplying by the identity in this basis on either side
of the resolvent), we see that

G(z) =
∑
α

|α〉〈α|
z − Eα

. (15.2)

Thus, we see that G(z) has a simple pole at each eigenvalue Eα of H. In the case of a continuum of states,
where the eigenvalues cluster together into a continuous interval along the real line, G(z) has instead a
branch cut. For example, for a bound system with ionized states, G(z) has poles at each bound-state energy,
but a branch cut beginning at the smallest ionization energy and extending to +∞ along the real axis. There
are some subtleties in dealing with branch cuts in G(z) that we will return to later. However, away from the
real axis, the resolvent operator is analytic (in the sense that all its matrix elements are analytic functions
off the real axis).

15.2 Green Functions for the Schrödinger Equation

15.2.1 Energy-Space Green Functions

Consider the following function, defined by the integral expression

G+(E) := − lim
δ→0+

i

h̄

∫ ∞
0

dτ ei(E−H)τ/h̄e−τδ/h̄, (15.3)

1The oft-cited canonical references are Marvin L. Goldberger and Kenneth M. Watson, Collision Theory (Wiley, 1964); and
Albert Messiah, Quantum Mechanics (Wiley, 1958) (ISBN: 0486409244). However, a detailed description with many examples
appears in Claude Cohen-Tannoudji, Jacques Dupont-Roc, and Gilbert Grynberg, Atom–Photon Interactions: Basic Processes
and Applications (Wiley, 1992), Chapter III (ISBN: 0471625566). Also, in the context of spontaneous emission, see the section
on the ‘‘Goldberger–Watson method’’ in G. S. Agarwal, ‘‘Quantum Statistical Theories of Spontaneous Emission and their
Relation to Other Approaches,’’ Springer Tracts Modern Physics 70, 1 (1974) (doi: 10.1007/BFb0042382). Another nice, more
general introduction is given by Doron Cohen, ‘‘Lecture Notes in Quantum Mechanics,’’ arXiv.org preprint (arXiv: quant-
ph/0605180v3) (2008). For the resolvent method applied to the master equation, see P. Lambropoulos, ‘‘Spectral Line Shape
in the Presence of Weak Collisions and Intense Fields,’’ Physical Review 164, 84 (1967) (doi: 10.1103/PhysRev.164.84).

http://www.amazon.com/gp/search/?field-isbn=0486409244
http://www.amazon.com/gp/search/?field-isbn=0471625566
http://dx.doi.org/10.1007/BFb0042382
http://arxiv.org/abs/quant-ph/0605180v3
http://arxiv.org/abs/quant-ph/0605180v3
http://dx.doi.org/10.1103/PhysRev.164.84
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where the δ factor is inserted to guarantee convergence of the integral. Carrying out this integral,

G+(E) = − lim
δ→0+

i

h̄

∫ ∞
0

dτ ei(E−H+iδ)τ/h̄

= − lim
δ→0+

ei(E−H+iδ)τ/h̄

E −H + iδ

∣∣∣∣∞
0

= lim
δ→0+

1

E −H + iδ

=
1

E −H + i0+

= G(E + i0+).

(15.4)

Similarly, we can define the function

G−(E) := lim
δ→0+

i

h̄

∫ 0

−∞
dτ ei(E−H)τ/h̄e+δτ/h̄, (15.5)

which becomes
G−(E) = lim

δ→0+

i

h̄

∫ 0

−∞
dτ ei(E−H−iδ)τ/h̄

=
1

E −H − i0+

= G(E − i0+).

(15.6)

For reasons we will see, G+(E) is called the retarded Green function, in energy (frequency) space, while
G−(E) is called the advanced Green function in energy space. We have thus shown that both Green
functions are related to the resolvent via

G±(E) = G(E ± i0+) = 1

E −H ± i0+
.

(retarded and advanced Green functions) (15.7)
That is, they are essentially the resolvent along the line displaced infinitesimally above and below the real
axis. These differ due to the singular nature of the resolvent along the real axis.

15.2.2 Time-Dependent Green Functions and Propagators

Now note that the definition (15.3) can be rewritten

G+(E) =
1

ih̄

∫ ∞
−∞

dτ ei(E+i0+)τ/h̄ U(τ, 0)Θ(τ), (15.8)

where Θ(τ) is the Heaviside step function and U(τ, 0) = e−iHτ/h̄ is the unitary time-evolution operator from
time 0 to τ for evolution under the time-independent Hamiltonian H. That is, G+(E) is (within a spe-
cific normalization convention) the Fourier transform of ‘‘half’’ of the time-evolution operator, U(τ, 0)Θ(τ).
Similarly, from the definition (15.5), we see that

G−(E) =
1

ih̄

∫ ∞
−∞

dτ ei(E−i0
+)τ/h̄ [−U(τ, 0)Θ(−τ)], (15.9)

so that up to a minus sign, G−(E) is the Fourier transform of the ‘‘other half’’ of the time-evolution operator,
U(τ, 0)Θ(−τ). Thus, defining the time-dependent Green functions

G±(t, t0) := ±U(t, t0)Θ[±(t− t0)],
(retarded and advanced Green functions) (15.10)
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these are related by the above Green functions by a Fourier transform:

G±(E) =
1

ih̄

∫ ∞
−∞

dτ ei[E+(sgnτ)i0+]τ/h̄G±(τ, 0).

(Green-function Fourier transform) (15.11)
Since the energy-space Green function G±(E) is the Fourier transform of the time-domain function G±(τ, 0),
the former is commonly written G̃±(E). However, since we will usually be in the energy domain, here we
will just use the argument of the Green function to determine in which space it lives. Note that since we are
dealing with time-independent systems, G±(t, t0) only depends on t− t0.

Why the terminology of advanced and retarded Green functions? First, recall [Eq. (4.36)] that the
time-evolution operator satisfies the Schrödinger equation,

ih̄∂tU(t, t0) = HU(t, t0). (15.12)

We can use this relation and ∂τΘ(τ) = δ(τ) to differentiate the Green functions:

ih̄∂tG
±(t, t0) = ±ih̄∂t

{
U(t, t0)Θ[±(t− t0)]

}
= ±HU(t, t0)Θ[±(t− t0)]± ih̄U(t, t0)

[
± δ(t− t0)

]
= HG±(t, t0) + ih̄δ(t− t0).

(15.13)

In the last step, we used U(t0, t0) = 1. Thus, we have shown that

(ih̄∂t −H)G±(t, t0) = ih̄δ(t− t0).
(Green functions for the Schrödinger equation) (15.14)

Thus, G±(t, t0) is the solution to the Schrödinger equation, ‘‘driven’’ by a delta-function impulse at t = t0. In
particular, G+(t, t0) is the ‘‘retarded’’ Green function, because the ‘‘source’’ is in the past, and the response
follows after the impulse, t > t0. Similarly, G−(t, t0) is the ‘‘advanced’’ Green function, because the source
is in the future, and the response comes before the impulse, t < t0. Both Green functions obey the same
equation, but correspond to different boundary conditions.

Inverting the Fourier-transform relation (15.11) gives

G±(τ, 0) = − 1

2πi

∫ ∞
−∞

dE e−iEτ/h̄G±(E).

(Green-function inverse Fourier transform) (15.15)
In particular, the case of G+(τ, 0) is important, as it gives the time-evolution operator for evolving the
system forward from t = 0 to τ :

U(τ, 0) = − 1

2πi

∫ ∞
−∞

dE e−iEτ/h̄G+(E) (τ > 0).

(Green-function Fourier relation) (15.16)
This relation is particularly useful in that it shows that matrix elements of the evolution operator,

K(β, t;α, t0) := 〈β|U(t, t0)|α〉,
(15.17)

(propagator)

collectively called the propagator, can be computed from matrix elements of the retarded Green function.
The propagator gives the transition amplitude, or the probability amplitude for the system to be in state β
at time t, given that it was in state α at the (earlier) time t0. Note that in the case of forward propagation
t > t0, the propagator can also be regarded as the collection of matrix elements of of the retarded Green
function G+(t, t0) in view of the definition (15.10).
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15.2.3 Relation to Laplace Transform

We have seen what amounts to this formalism before, when solving the optical Bloch equations via the
Laplace-transform method. Recall (Section 5.5.2.1) that the Laplace transform of a time derivative is

L [ẏ(t)] = sL [y(t)]− y(0), (15.18)

where the Laplace transform is defined in general by

L [y](s) :=

∫ ∞
0

dt e−st y(t). (15.19)

The Laplace transform of ∂tU(t, t0) is then

L [∂tU(t, t0)] = sL [U(t, t0)]− U(t0, t0) = sL [U(t, t0)]− 1. (15.20)

Then the Laplace transform of Eq. (15.12) reads

ih̄sL [U(t, t0)]− ih̄ = HL [U(t, t0)], (15.21)

or
(ih̄s−H)L [U(t, t0)] = ih̄, (15.22)

so that the Laplace transform of the evolution operator becomes

1

ih̄
L [U(t, t0)] =

1

ih̄s−H
. (15.23)

Comparing this to the definition (15.1) of the resolvent, we can identify z = ih̄s as the rescaled coordinate,
and G(z) is proportional to the Laplace transform of the evolution operator, but with a rescaled coordinate,
rotated along the imaginary axis. The propagator relation (15.16) is essentially the inverse Laplace transform
for τ > 0, representing a convenient method to algebraically solve the initial-value problem for the propagator.

15.3 Transitions Between Discrete States

Consider a quantum system described by Hamiltonian

H = H0 + V, (15.24)

where H0 is the unperturbed Hamiltonian, with interaction V causing transitions among the eigenstates of
H0. We then have two resolvents, one corresponding to the perturbed Hamiltonian and given by the original
definition (15.1), and one corresponding to the unperturbed system,

G0(z) :=
1

z −H0
.

(15.25)
(unperturbed resolvent operator)

It is convenient to relate these two operators. Starting with B = A + (B − A) for arbitrary A and B, we
multiply on the left by B−1 and on the right by A−1 to obtain the identity

1

A
=

1

B
+

1

B
(B −A) 1

A
. (15.26)

Letting A = z −H0 − V and B = z −H0, we find

G(z) = G0(z) +G0(z)V G(z).
(15.27)

(perturbed resolvent)
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This relation may be used directly, or it may be iterated to obtain a perturbation series in terms of the
unperturbed resolvent:

G = G0 +G0V G0 +G0V G0V G0 +G0V G0V G0V G0 + · · · .
(15.28)

(perturbed resolvent)

In the nonperturbative case, we may take matrix elements of the relation (15.27) in the basis of eigenstates
of H0. The diagonal matrix elements become

〈α|G(z)|α〉 = 〈α|G0(z)|α〉+ 〈α|G0(z)V G(z)|α〉

=
1

z − Eα
+

1

z − Eα

∑
j

〈α|V |j〉〈j|G(z)|α〉,
(15.29)

while the off-diagonal elements become

〈β|G(z)|α〉 = 〈β|G0(z)|α〉+ 〈β|G0(z)V G(z)|α〉

=
1

z − Eβ

∑
j

〈β|V |j〉〈j|G(z)|α〉,
(15.30)

for β 6= α. Writing these more compactly,

(z − Eα)Gαα(z) = 1 +
∑
j

VαjGjα(z)

(z − Eβ)Gβα(z) =
∑
j

VβjGjα(z) (β 6= α).

(15.31)
(resolvent matrix elements)

The strategy then is to solve the algebraic equations, and then compute the inverse Fourier transform for
the resolvent matrix elements to obtain the propagator.

15.3.1 Example: Rabi Oscillations

As an example, we revisit the Rabi-flopping problem in the two-level atom from Section 5.2.2. In the rotating
frame of the laser field, the free atomic Hamiltonian is

H0 = −h̄∆|e〉〈e|, (15.32)

while the laser-driven interaction is

V =
h̄Ω

2

(
σ + σ†

)
=
h̄Ω

2

(
|g〉〈e|+ |e〉〈g|

)
. (15.33)

Then the relations Eqs. (15.31) for the resolvent matrix elements become

(z + h̄∆)Gee = 1 +
h̄Ω

2
Gge

zGgg = 1 +
h̄Ω

2
Geg

(z + h̄∆)Geg =
h̄Ω

2
Ggg

zGge =
h̄Ω

2
Gee.

(15.34)

Taking the third relation and using the second relation to eliminate Ggg decouples the relations and gives a
relation for Geg alone:

(z + h̄∆)Geg =
h̄Ω

2
Ggg =

h̄Ω

2z

(
1 +

h̄Ω

2
Geg

)
. (15.35)
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Solving for Geg, we find

Geg(z) =
h̄Ω/2

z2 + h̄∆z − h̄2Ω2/4
. (15.36)

Factoring the quadratic denominator,

Geg(z) =
h̄Ω/2(

z +
h̄∆

2
+
h̄Ω̃

2

)(
z +

h̄∆

2
− h̄Ω̃

2

) , (15.37)

we see that this matrix element has poles at

z = − h̄∆
2
± h̄Ω̃

2
, (15.38)

where as before
Ω̃ :=

√
Ω2 +∆2 (15.39)

is the generalized Rabi frequency. Now the corresponding matrix element of the retarded Green function is

G+
eg(E) = Geg(E + i0+) =

h̄Ω/2(
E +

h̄∆

2
+
h̄Ω̃

2
+ i0+

)(
E +

h̄∆

2
− h̄Ω̃

2
+ i0+

) . (15.40)

In this expression, the i0+ terms have the effect of shifting both poles infinitesimally below the real axis.
Now according to Eq. (15.16), the relevant propagator is given by the inverse Fourier transform

〈e|U(τ, 0)|g〉 = − 1

2πi

∫ ∞
−∞

dE e−iEτ/h̄G+
eg(E) (τ > 0). (15.41)

Due to the form of the exponential factor, in the lower complex plane E = x− iy gives a damping factor of
the form e−yτ/h̄. Thus to evaluate this integral, we complete the contour around the lower half-plane.

Re[z]

Im[z]

The contribution from the lower great half-circle vanishes due to the exponential factor and the asymptotic
E−2 dependence of the remaining part of the integrand. However, the contour encloses both poles, and
the Cauchy integral formula [Eq. (14.79)] states that the integral is 2πi times the sum of the two residues;
however, because the contour runs clockwise, we should also include another minus sign.. We thus find

〈e|U(τ, 0)|g〉 = (h̄Ω/2)ei(∆+Ω̃)τ/2

−h̄Ω̃
+

(h̄Ω/2)ei(∆−Ω̃)τ/2

h̄Ω̃

= −iΩ
Ω̃
ei∆τ/2 sin Ω̃τ

2
.

(15.42)

This gives the probability amplitude of finding the atom in the excited state at time τ , given that it was in
the ground state at time 0. Thus, it agrees with our earlier solution in Section 5.2.2.1.
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15.4 Level-Shift Operator

Again, let’s start with a system with Hamiltonian H = H0 + V , where H0 is the unperturbed Hamiltonian.
Working with the eigenstates of H0, we may be interested in particular in the matrix element Gαα(z), which
reflects the survival probability of state |α〉 due to the perturbation V . Now suppose we define projection
operators for |α〉 and everything but |α〉:2

Pα := |α〉〈α|, Qα := 1− Pα =
∑
j 6=α

|j〉〈j|. (15.43)

Now recalling that the resolvent is defined by

(z −H)G(z) = (z −H0 − V )G(z) = 1, (15.44)

we can insert a (Pα +Qα) before the resolvent, and then operate on the right with Pα:

(z −H0 − V )(Pα +Qα)G(z)Pα = Pα. (15.45)

This then becomes

(z −H0 − V )Pα[PαG(z)Pα] + (z −H0 − V )Qα[QαG(z)Pα] = Pα. (15.46)

where we used P 2
α = Pα and Q 2

α = Qα. Operating on the left with Pα, and using PαQα = QαPα = 0 [in
particular, Pα(z −H0)Qα = 0],

Pα(z −H)Pα[PαG(z)Pα]− PαV Qα[QαG(z)Pα] = Pα. (15.47)

Operating on the left of Eq. (15.46) instead with Qα,

−QαV Pα[PαG(z)Pα] +Qα(z −H)Qα[QαG(z)Pα] = 0. (15.48)

Solving for QαG(z)Pα,

QαG(z)Pα =
Qα

Qα(z −H)Qα
V Pα[PαG(z)Pα], (15.49)

and putting this into Eq. (15.47) to decouple these two equations,

Pα(z −H)Pα[PαG(z)Pα]− PαV Qα
Qα

Qα(z −H)Qα
V Pα[PαG(z)Pα] = Pα. (15.50)

Simplifying and expanding out the Hamiltonian, we find

Pα

[
z −H0 − V − V

Qα
z −QαH0Qα −QαV Qα

V

]
PαG(z)Pα = Pα. (15.51)

The part of the quantity in braces involving the interaction potential is important, and is called the level-
shift operator:

R(z) := V + V
Qα

z −QαH0Qα −QαV Qα
V.

(15.52)
(level-shift operator)

Then Eq. (15.51) becomes
Pα [z −H0 −R(z)]PαG(z)Pα = Pα, (15.53)

or

PαG(z)Pα =
Pα

z − PαH0Pα − PαR(z)Pα
.

(15.54)
(projection of the resolvent)

2We are essentially following the derivation of C. Cohen-Tannoudji et al., op. cit., Section III.B.2, p. 174. Essentially the
same derivation is also given by P. Lambropoulos and P. Zoller, ‘‘Autoionizing states in strong laser fields,’’ Physical Review A
24, 379 (1981) (doi: 10.1103/PhysRevA.24.379).

http://dx.doi.org/10.1103/PhysRevA.24.379
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In particular, by matching the coefficient of Pα, this means that the relevant matrix element of the resolvent
is given by

Gαα(z) =
1

z − Eα −Rαα(z)
.

(resolvent matrix element in terms of level-shift operator) (15.55)
Note that so far this is an exact expression. Furthermore, this formalism is easy to generalize to the case
of survival among a subspace of multiple states: Pα is redefined as the sum of projectors over the relevant
states, and we still have Qα = 1 − Pα, with all the algebra so far carrying through except for the last
expression above.

15.4.1 Decomposition of the Level-Shift Operator

In analyzing the resolvent G(z), recall that we in general require the resolvent just next to the real axis,
G(E ± i0+). We will similarly require the level-shift operator at the same locations, R(E ± i0+). Using the
relation (Problem 14.6)

1

x± i0+
= P 1

x
∓ iπδ(x), (15.56)

where the ‘‘P’’ denotes that an integral taken over that term is interpreted as a Cauchy principal value, we
can rewrite Eq. (15.52) just off the real axis as

R(E ± i0+) = V + PV Qα
E −QαHQα

V ∓ iπV Qαδ(E −QαHQα)QαV. (15.57)

Now defining the Hermitian operators

∆(E) := P 1

h̄
V

Qα
E −QαHQα

V

(Hermitian part of level-shift operator) (15.58)
and

Γ(E) :=
2π

h̄
V Qαδ(E −QαHQα)QαV,

(anti-Hermitian part of level-shift operator) (15.59)
we see that these are the Hermitian and anti-Hermitian parts of the level-shift operator, which we can now
write as

R(E ± i0+) = V + h̄∆(E)∓ i h̄Γ(E)

2
.

(15.60)
(level-shift operator)

The operators ∆ and Γ correspond to dispersive and dissipative effects (i.e., Stark shifts and decay) due to
the perturbation V . To see this explicitly, we can write down the retarded Green function as

G+
αα(E) = Gαα(E + i0+) =

1

E − Eα − Vαα − h̄∆αα(E) + i[h̄Γαα(E)/2 + 0+]
. (15.61)

In this form, the resolvent appears to have a pole where E satisfies

E = Eα + Vαα + h̄∆αα(E)− ih̄Γαα(E)

2
, (15.62)

though of course the nature of the singularities of the resolvent depends on the exact forms of ∆αα(E)
or Γαα(E). In the pole approximation, we assume that the interaction V leads only to a very weak
perturbation and thus we can replace E by Eα on the right-hand side of this expression:

E ≈ Eα + Vαα + h̄∆αα(Eα)− ih̄
Γαα(Eα)

2
. (15.63)
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Then the propagator from Eq. (15.16) becomes

Uαα(τ, 0) = −
1

2πi

∫ ∞
−∞

dE e−iEτ/h̄G+(E) (τ > 0)

= e−i(Eα+Vαα)τ/h̄ e−i∆αα(Eα)τ e−Γαα(Eα)τ/2.

(15.64)

Thus, we see that the energy of the state |α〉 has been shifted by the first-order shift Vαα as well as the
higher-order shift ∆αα(Eα). The population of the state |α〉 also decays at the rate Γαα(Eα).

15.4.2 Perturbation Expansion

Though exact, the expression we have is not yet so illuminating, particularly in the form of the level-shift
operator (15.52). However, we can first note that

Qα
1

z −H0
Qα =

Qα
z −QαH0Qα

=
Qα

z −H0
. (15.65)

That is, since Qα is a sum of projectors of eigenstates of H0, the operators Qα and (z −H0)
−1 commute, and

(z −H0)
−1 acts as a scalar when multiplied by each of the projectors in Qα. The level-shift operator (15.60)

has the form R = V + V QαGQαV ; then using the series (15.28) for the resolvent, we see the expanded
level-shift operator has the expansion

R(z) = V + V
Qα

z −H0
V + V

Qα
z −H0

V
Qα

z −H0
V + · · · .

(series expansion of level-shift operator) (15.66)
Then the matrix element we need for Eq. (15.55) is

Rαα(z) = Vαα +
∑
β 6=α

VαβVβα
z − Eβ

+
∑
β 6=α
γ 6=α

VαβVβγVγα
(z − Eβ)(z − Eγ)

+ · · · .

(series expansion of level-shift matrix element) (15.67)
This series can be truncated at any order in V . Note that, at least up to the second-order term, setting
z = Eα gives the energy shift of the unperturbed level α in time-independent perturbation theory.

To gain a bit more insight into this perturbation expansion, note that Eq. (15.55) can be expanded as

Gαα(z) =
1

z − Eα

[
1 +

Rαα(z)

z − Eα
+

R 2
αα(z)

(z − Eα)2
+ · · ·

]
. (15.68)

Thus, even when Rαα(z) is truncated to some order in the perturbation, Gαα(z) in the form (15.55) still
contains contributions at all orders in V , and so corresponds to some nonperturbative expansion of the
resolvent. We can compare this to the direct series expansion (15.28) of the resolvent, which gives

Gαα(z) =
1

z − Eα

1 + Vαα
z − Eα

+
∑
β

VαβVβα
(z − Eα)(z − Eβ)

+
∑
βγ

VαβVβγVγα
(z − Eα)(z − Eβ)(z − Eγ)

+ · · ·

 . (15.69)

[Note that the summation indices are not restricted as in Eq. (15.67).] The two series expansions (15.67) and
(15.69) have exactly the same terms, but correspond to different orderings of the term. The direct expansion
(15.69) is strictly in powers of the perturbation V . However, in the expression (15.67), we note that Rαα
never contains (z − Eα) in any denominator. Thus, the expansion (15.68) for Gαα(z) corresponds to a power
series (Laurent series) in (z − Eα)−1. This focus on the pole at Eα is sensible if we are interested in the
effects of the perturbation on the state |α〉, whose properties are determined by the resolvent in the vicinity
of the perturbed energy of state |α〉. Given a small perturbation, the pole should not have shifted too much,
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so we are still maintaining accuracy in the relevant region.3 (For example, the residue of the shifted pole
gives the perturbed dynamics, and thus accuracy in this neighborhood is important.)

It is also convenient to give the series expansion in terms of the Hermitian and anti-Hermitian parts
of R(E ± i0+). The Hermitian part ∆(E) from Eq. (15.58) expands in the same way as the resolvent in
Eq. (15.67):

∆(E) = V + V
Qα

E −H0
V + V

Qα
E −H0

V
Qα

E −H0
V + · · · .

(expansion of level-shift operator, Hermitian part) (15.70)
The diagonal matrix elements are then

h̄∆αα(E) = Vαα +
∑
β 6=α

VαβVβα
E − Eβ

+
∑
β 6=α
γ 6=α

VαβVβγVγα
(E − Eβ)(E − Eγ)

+ · · · .

(matrix-element expansion of level-shift operator, Hermitian part) (15.71)
The same matrix element of the anti-Hermitian part, from Eq. (15.59), is

Γαα(E) =
2π

h̄

∑
β 6=α
γ 6=α

VαβVγαδ(E − δβγEβ − Vβγ),

(anti-Hermitian part of level-shift operator) (15.72)
Notice the similarity to Fermi’s Golden Rule [Eq. (11.58)], except here we are summing over all possible
decay paths.

15.5 Spontaneous Decay

15.5.1 Pole Approximation

As in our previous analysis of spontaneous emission in Chapter 11, we take the state |e〉 to be coupled to
|g, 1k,ζ〉, with the relevant matrix element of the interaction Hamiltonian reading [Eq. (11.63)]

〈e|HAF|g, 1k,ζ〉 =
√

h̄ωk

2ε0V
(ε̂k,ζ · dge) e

ik·r. (15.73)

Since we wish to examine the survival probability, we consider the diagonal matrix element of the resolvent,
which from Eq. (15.55) we can write in terms of the level-shift operator as

Gee(z) =
1

z − Ee −Ree(z)
. (15.74)

Near the real axis, we can use Eq. (15.60) to write

Gee(E ± i0+) =
1

E − Ee − h̄∆ee(E)± ih̄Γee(E)/2
, (15.75)

where we have used (HAF)ee = 0. We showed in Section 15.4.1 that in the pole approximation, Γee(Ee) is
the decay rate of the excited state, and ∆ee(Ee) is the energy (Stark) shift of the excited state. We now
must evaluate the dispersive matrix element from Eqs. (15.70),

h̄∆ee(E) =
∑
β 6=e

(HAF)eβ(HAF)βe

E − Eβ
+
∑
β 6=e
γ 6=e

(HAF)eβ(HAF)βγ(HAF)γe

(E − Eβ)(E − Eγ)
+ · · · . (15.76)

3This point is discussed in detail by Claude Cohen-Tannoudji, Jacques Dupont-Roc, and Gilbert Grynberg, op. cit., Section
III.B.1, p. 172.
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Truncating this expression to lowest order and making the pole approximation (E ≈ Ee), we have

h̄∆ee(E) ≈
∑
β 6=e

(HAF)eβ(HAF)βe

Ee − Eβ
, (15.77)

which is just the Lamb shift of the excited state |e〉 in second-order perturbation theory (evaluated in
Section 13.12). Evidently, solving the full expansion (15.76) self-consistently for E leads to the exact Lamb-
shifted energy

Ẽe = Ee + h̄∆ee(Ẽe). (15.78)

We also need the absorptive matrix element

Γee(E) =
2π

h̄

∑
β 6=e
γ 6=e

(HAF)eβ(HAF)γeδ(E − δβγEβ − (HAF)βγ). (15.79)

Note that in the pole approximation, we can drop the off-diagonal terms where β 6= γ, since the interaction
HAF is assumed to be weak enough to justify perturbation theory, and thus the delta function can never
reach resonance without the presence of the Eβ term in the argument. Thus,

Γee(Ee) ≈
2π

h̄

∑
β 6=e

|(HAF)eβ |2 δ(Ee − Eβ − (HAF)ββ). (15.80)

But there is no first-order shift due to the dipole interaction HAF, so

Γee(Ee) ≈
2π

h̄

∑
β 6=e

|(HAF)eβ |2 δ(Ee − Eβ). (15.81)

This expression is equivalent to Fermi’s Golden Rule, as in Eq. (11.58), explicitly summed over the continuum
of final states |g, 1k,ζ〉, and we know from Section 11.6.1 that this leads to the correct spontaneous decay rate
in free space. Again, not making any perturbative expansion would yield the same expression for the decay
rate, but with Ee replaced by Ẽe (i.e., the transition frequency ω0 in the decay-rate formula (11.68) is the
exact value, including the Lamb shift computed to all orders). Henceforth, we will simply absorb the Lamb
shift into the bare-state energy Eα, since we will assume that when applying the results of any calculation,
we will use the observed atomic energies, which already include the correct Lamb shift.

15.5.2 Line Shape of Spontaneous Decay

To compute the line shape of spontaneous decay, we will use the matrix element 〈g, 1k,ζ |G(z)|e〉 of the
resolvent operator, which will give the rate to create a photon in mode (k, ζ), of frequency ωk = ck. Starting
with the second identity in Eqs. (15.31), we have

〈g, 1k,ζ |G(z)|e〉 =
1

z − h̄ωk
〈g, 1k,ζ |HAF|e〉〈e|G(z)|e〉. (15.82)

The excited-state matrix element of the resolvent is given by Eq. (15.61), with the shift and decay rate
determined in the last section:

〈e|G+(E)|e〉 = 1

E − h̄ω0 − h̄∆ee + ih̄Γ/2 + i0+
. (15.83)

In the pole approximation, recall that Γ is the usual decay rate of |e〉, and ∆ee is the Lamb shift of the
excited state, which we will absorb into the excited-state energy h̄ω0:

〈e|G+(E)|e〉 = 1

E − h̄ω0 + ih̄Γ/2 + i0+
. (15.84)
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Thus, from (15.82) and (15.84), we can write down the Green function

〈g, 1k,ζ |G+(E)|e〉 = 〈g, 1k,ζ |HAF|e〉
(E − h̄ωk + i0+)(E − h̄ω0 + ih̄Γ/2 + i0+)

. (15.85)

Transforming to find the propagator,

〈g, 1k,ζ |U(τ, 0)|e〉 = − 1

2πi

∫ ∞
−∞

dE e−iEτ/h̄〈g, 1k,ζ |G+(E)|e〉

= −〈g, 1k,ζ |HAF|e〉
2πi

∫ ∞
−∞

dE
e−iEτ/h̄

(E − h̄ωk + i0+)(E − h̄ω0 + ih̄Γ/2 + i0+)
.

(15.86)

We carry out this integral as in Section 15.3.1 by completing the contour around the lower half-plane. The
result is

〈g, 1k,ζ |U(τ, 0)|e〉 = 〈g, 1k,ζ |HAF|e〉
[

e−iωkτ

h̄(ωk − ω0) + ih̄Γ/2
+

e−iω0τe−Γτ/2

−h̄(ωk − ω0)− ih̄Γ/2

]
, (15.87)

where the first term is the residue of the pole at E = h̄ωk and the second term is the residue of the pole at
E = h̄ω0 − ih̄Γ/2. Simplifying this expression, we find

〈g, 1k,ζ |U(τ, 0)|e〉 = 〈g, 1k,ζ |HAF|e〉
h̄(ωk − ω0 + iΓ/2)

[
e−iωkτ − e−iω0τe−Γτ/2

]
. (15.88)

Therefore, the probability to decay into mode (k, ζ) is the squared modulus of this amplitude:

P (k, ζ, τ) = |〈g, 1k,ζ |U(τ, 0)|e〉|2 =
|〈g, 1k,ζ |HAF|e〉|2

h̄2[(ωk − ω0)2 + Γ2/4]

[
1 + e−Γτ − 2e−Γτ/2 cos(ωk − ω0)τ

]
. (15.89)

Let’s expand out the matrix element, using Eq. (15.73), which becomes

|〈g, 1k,ζ |HAF|e〉|2 =
h̄ωk

6ε0V
|dge|2 (15.90)

for an isotropic atom in quantization volume V . In passing to the continuum limit, recall that we make the
replacement ∑

k

−→ V

(2π)3

∫
d3k. (15.91)

Converting to spherical coordinates, in free space this is isotropic, so we may carry out the angular integral,
and change variables ω = ck, with the result∑

k

−→ V

2π2c3

∫ ∞
0

dω ω2. (15.92)

Since the summations are implicit in a later calculation of a probability, for now we can let

V −1 −→ ω2

2π2c3
dω (15.93)

so that
|〈g, 1k,ζ |HAF|e〉|2 =

h̄ω 3

12π2ε0c3
|dge|2dω =

h̄2Γ

4π
dω, (15.94)

where
Γ :=

ω 3
0 |dge|2

3πε0h̄c3
(15.95)



15.5 Spontaneous Decay 661

is the usual free-space decay rate, and we have taken ω ≈ ω0. The we can rewrite Eq. (15.89) as a continuous
probability density for emission after changing variables: at frequency ω = ωk and polarization ζ at time τ :

P (ω, ζ, τ) dω =
Γ

4π[(ω − ω0)2 + Γ2/4]

[
1 + e−Γτ − 2e−Γτ/2 cos(ω − ω0)τ

]
dω. (15.96)

If we don’t care about the polarization of the emitted light, we can sum over the two orthogonal polarizations
to find

P (ω, τ) dω =
Γ

2π[(ω − ω0)2 + Γ2/4]

[
1 + e−Γτ − 2e−Γτ/2 cos(ω − ω0)τ

]
dω.

(time-dependent spontaneous-emission line shape) (15.97)
In the long-time limit, when a photon has certainly been emitted, this becomes

P (ω) dω =
Γ

2π[(ω − ω0)2 + Γ2/4]
dω,

(15.98)
(spontaneous-emission line shape)

which is a properly normalized Lorentzian line shape of full width at half maximum of Γ. Alternately,
integrating the transition probability density over all frequencies gives

P (τ) =

∫ ∞
0

dω P (ω, τ) ≈
∫ ∞
−∞

dω P (ω, τ) = 1− e−Γτ , (15.99)

which is the expected exponential behavior.
Of course, the above treatment predicts some nontrivial time dependence to the line shape, including

an oscillatory component. The line shape is shown here for several interaction times.

Gtoáo"
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Gto=o3

Gto=o2
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-5 50
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The departures from the long-time Lorentzian only occur if Γτ is not too large. However, to resolve any such
difference would require a measurement time much longer than Γ−1, so these differences would be difficult to
detect experimentally. Intuitively, the oscillations arise here when the exponential decay is ‘‘interrupted’’ at
time τ . The spectral response should thus be the convolution of the long-time Lorentzian with a sinc function
that becomes increasingly narrow in time. Unless, of course, there is a way to ‘‘freeze’’ the interaction after
some short time. This is not normally possible in spontaneous emission, but is possible in the spontaneous
Raman problem we consider below.

15.5.3 Branches of the Resolvent

In the previous section, we found the following situation: an atom in the excited state |e〉 decays to the ground
state |g〉 an energy h̄ω0 lower, but the energy photon emitted has an uncertainty that doesn’t necessarily
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match, as it can be emitted in a range of width h̄Γ around the transition energy h̄ω0. Clearly, energy is
conserved on average, but we have a time-independent Hamiltonian for the coupled quantum atom–field
system, so energy should be conserved in each process individually. So what gives? Well, first of all, we
will see below that the coupled state |e〉 no longer has a well-defined energy. We might expect this: since it
decays, it is not an eigenstate of the full Hamiltonian, so it should not have a definite energy. Furthermore,
the energy that goes into preparing the atom in |e〉 must be yet more uncertain, since in view of the unstable
nature of the state, the preparation must take place on a time scale much shorter than 1/Γ. Thus, the
uncertainty in the energy of the emitted photon is easily accounted for by the uncertainty in the energy of
setting up the problem.

But now let’s explore the idea that the coupled state |e〉 has no well-defined energy. The matrix element

〈e|G0(z)|e〉 =
1

z − h̄ω0
(15.100)

of the unperturbed resolvent has a single pole at the excited-state energy h̄ω0. However, in Eq. (15.75) we
wrote an expression for the same matrix element of the coupled resolvent

〈e|G(E ± i0+)|e〉 = 1

E − h̄[ω0 +∆ee(E)]± ih̄Γee(E)/2
, (15.101)

in the vicinity of the real axis, where we see that the value of G(z) jumps as we cross the real axis. In
coupling the atom to the continuum, the pole at the bare atomic energy appears to have changed into
a branch cut, reflecting the unstable nature of the state, and the fact that it has no well-defined energy.
Note that this was not the case in the Rabi-flopping example in Eq. (15.35)—rather, it is a consequence
of coupling the excited state to a continuum. In particular, note from Eq. (15.75) that the retarded Green
function G+

ee(E) = Gee(E + i0+) appears to have a pole at E = h̄[ω0 +∆ee(E)]− ih̄Γee(E)/2, below the real
axis. However, G+

ee(E) is only defined above the real axis; just below the real axis, the resolvent is given by
the different value G−ee(E) = Gee(E − i0+). So while the pole appears to have changed into a branch cut,
we can view it as having ‘‘disappeared’’ behind the branch cut that formed. That is, we may still find the
pole if we analytically continue G+

ee(E) = Gee(E + i0+) into the lower half plane. In this case, rather than
suffer the discontinuity in the resolvent in crossing the branch cut, one can think of crossing continuously
through the real axis, but ending up in a different Riemann sheet, or the second Riemann sheet, since
the function value in the lower half plane defined in this way differs from the function value given with the
branch cut. Then we have the function

GII
ee(z) =

1

z − h̄[ω0 +∆ee(z)] + ih̄Γee(z)/2
, (15.102)

which has the same functional form as G+
ee(E) = Gee(E+ i0+), but unlike Gee(z), it is defined in this way in

the lower half of the complex plane Im[z] < 0, and thus corresponds to the function extended to the second
Riemann sheet.

The usual example for extending through branch cuts is log(z), which, when defined as a function, has
a branch cut along the negative real axis. Thus, log(−x±iδ) = log(x)±i(π+δ) if x > 0, which is a difference
of 2πi + 2δ that does not vanish as δ −→ 0. This preserves the continuity (analyticity) and single-valued
nature of log z, basically by excluding the discontinuity from the function’s domain to | arg z| < π (i.e., such
that the discontinuity is never ‘‘detected’’ along a continuous path). Of course, adding any integer multiple of
2πi to log z is still valid as a logarithm, since when inverted, exp(log z+2πin) = z. Each n thus corresponds
to an ‘‘extension’’ of the logarithm function to a different Riemann sheet.

15.5.4 Nonexponential Decay

Thus, in making the pole approximation in Section 15.5.1 to arrive at the rate Γ of exponential decay of
the excited state, we were somewhat sloppy, as it turns out. Implicitly, we solved an integral by closing a
contour around the lower half-plane as in Section 15.3.1. But to do so, we needed to cross a branch cut, and
we need to be more careful about this.
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To locate the branch cut in the resolvent, recall Eq. (15.81) for Γee(E). There we can see that the
branch cut exists anywhere that Γee(E) is nonzero, since it represents the discontinuity across the branch
cut. This function is in fact nonzero for any energy where there exists a possible decay energy Eβ . But since
the decay is to state |g, 1k,ζ〉, where the atomic ground state has zero energy, the possible decay energies
are h̄ωk, that is to say, any positive real number. So the branch cut extends from the origin, and along the
entire positive real axis. When we close the contour, including the branch cut, we can do so as shown here.

Re[z]

Im[z]

Eo=o0

The contour starts into the lower half of the complex plane, but in crossing the branch cut, we enter the
second Riemann sheet (where the contour is shown by a dotted line). To compensate for this, we return
along the negative real axis, turn around the branch point at the origin, and then continue along the great
semicircle. This contour still encloses the pole, which is again in the second Riemann sheet (and thus shown
as a grey dot), and the residue here results in the exponential decay that we have already derived. The
extra contribution is due to the two portions along the negative imaginary axis, which comes from extending
Eq. (15.16) to these portions, along with the Eqs. (15.101) and (15.102) for the appropriate Green-function
expressions, with the result

〈e|U‖(τ, 0)|e〉 = − 1

2πi

∫ 0

−∞
d(iy) eyτ/h̄ [GII

ee(iy)−Gee(iy)]

= − 1

2π

∫ 0

−∞
dy eyτ/h̄

[
1

iy − h̄ω0 + ih̄Γ/2
− 1

iy − h̄ω0 − ih̄Γ/2

]
=

1

2πi

∫ ∞
0

dy e−yτ/h̄
[

1

y − ih̄ω0 − h̄Γ/2
− 1

y − ih̄ω0 + h̄Γ/2

]
,

(15.103)

where we have absorbed the Lamb shift into ω0. To compute the integral here, first note that the exponential
integral (Problem 13.2) E1(z) is defined by

E1(z) :=

∫ ∞
z

dy
e−y

y
. (15.104)

Letting y −→ αy (with Re[α] > 0 to guarantee convergence),

E1(z) =

∫ ∞
z/α

dy
e−αy

y
, (15.105)

and letting y −→ y + β (β not on the negative real axis, and β 6= 0, as we will see from the expansion for
E1(z) later on),

E1(z) = e−αβ
∫ ∞
z/α−β

dy
e−αy

y + β
. (15.106)

Now taking z = αβ, we find the integral formula∫ ∞
0

e−αy

y + β
dy = eαβE1(αβ) (Re[α] > 0, β /∈ R−, β 6= 0). (15.107)

Then Eq. (15.103) becomes

〈e|U‖(τ, 0)|e〉 = e−iω0τ

2πi

[
e−Γτ/2E1(−iω0τ − Γτ/2)− eΓτ/2E1(−iω0τ + Γτ/2)

]
(15.108)
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Using the asymptotic expansion (Problem 15.3)

E1(z) =
e−z

z

{
1− 1

z
+

2

z2
− 3!

z3
+ · · ·+ n!

(−z)n
+ · · ·

}
(15.109)

to lowest order,

〈e|U‖(τ, 0)|e〉 = 1

2πi

[
1

−iω0τ − Γτ/2
− 1

−iω0τ + Γτ/2

]
+O(τ−2)

=
iΓ

2π(ω 2
0 + Γ2/4)τ

+O(τ−2).

(15.110)

Thus, we see that at long times, this calculation predicts a slow power-law decay of the excited-state pop-
ulation as t−2, which dominates the exponential decay at long times. Unfortunately, this calculation is not
quite right, as we have ignored the dependence of Γee(E) on E, replacing it by its pole-approximation value
of Γ.

15.5.5 Frequency-Dependent Decay Rate

To derive an improved expression for Γee(E), we return to Eq. (15.81), but without making the pole approx-
imation:

Γee(E) ≈ 2π

h̄

∑
β 6=e

|(HAF)eβ |2 δ(E − Eβ). (15.111)

In our treatment of spontaneous emission using Fermi’s Golden rule (Section 11.6), we showed that the sum
over the continuum modes and the delta function are replaced by the density of states ρ(E), so that

Γee(E) =
2π

h̄
|(HAF)eβ |2 ρ(E). (15.112)

The density of states is [Eq. (11.66)]

ρ(E) =
E 2V

π2h̄3c3
, (15.113)

and we have the usual matrix element [Eq. (11.63)]

|(HAF)eβ |2 = |〈e|HAF|g, 1k,ζ〉|2 =
h̄ωkd

2
ge

6ε0V
=
Ed 2

ge

6ε0V
, (15.114)

upon identifying the initial and final-state energies as the same (due to the delta function), so that E = h̄ωk.
Combining Eqs. (15.111)-(15.114), we find

Γee(E) =
E 3d 2

ge

3πε0h̄
4c3

= Γ
E 3

(h̄ω0)3
, (15.115)

after using the usual expression

Γ =
ω 3
0 d

2
ge

3πε0h̄c3
. (15.116)

This is, in fact, not the answer we want. This result comes from using the electric-dipole Hamiltonian
HAF = −d ·E. On the other hand, we can use the alternative Coulomb-gauge interaction Hamiltonian
HAF = (e/me)pe ·A from Section 9.3. As we discussed before in Section 9.3.2, the ratio of the dipole to the
Coulomb Hamiltonians is ω/ω0, or in this case E/h̄ω0. Since the square of the matrix element enters our
calculation, Eq. (15.115) instead becomes

Γee(E) =
Γ

h̄ω0
E

(15.117)
(decay-function matrix element)
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in the Coulomb gauge. Of course, in the pole approximation none of this matters, since we identify ω ≈ ω0

anyway.
Why prefer the Coulomb gauge to the dipole gauge now? Recall that they should give the same result,

but provided that all atomic levels are included in the interaction, which we are not doing. But in a practical
sense, putting the cubic expression (15.115) into Eq. (15.103) in place of Γ means we have to factor a cubic
polynomial to find the poles and thus carry out the contour integration, and frankly, who wants to do that?
The other reason comes from the origin of Γ(E) as the singular part of ∆(E), as in the factorization starting
with Eq. (15.56). To see this, we can start with the second-order truncation of Eq. (15.66)

Ree(z) = Vee +
∑
β 6=e

VeβVβe

z − Eβ
=
∑
β 6=e

VeβVβe

z − Eβ
, (15.118)

where we have dropped the first-order term, which we will comment on in a bit. The usual mode sum
becomes ∑

β 6=e

|Veβ |2 −→
h̄2Γ

2πω 3
0

∫ ∞
0

dω ω3, (15.119)

with Eβ −→ h̄ω, so that

Ree(z) =
h̄2Γ

2πω 3
0

∫ ∞
0

dω
ω3

z − h̄ω
. (15.120)

This is the (divergent) expression for the Lamb shift in the rotating-wave approximation (before separating
out the decay). Then applying Eq. (15.56),

Ree(E ± i0+) =
h̄2Γ

2πω 3
0

–
∫ ∞
0

dω
ω3

E − h̄ω
∓ i h̄

2Γ

2ω 3
0

∫ ∞
0

dω ω3δ(E − h̄ω)

=
h̄2Γ

2πω 3
0

–
∫ ∞
0

dω
ω3

E − h̄ω
∓ i h̄ΓE

3

2(h̄ω0)3
,

(15.121)

where we identify the last term as (∓ih̄/2)Γee(E), gives us the result (15.115). But recall that the first (Lamb-
shift) term here, which diverges as ω2, must be renormalized by adding the dipole self-energy contribution
[Eq. (13.153), Section 13.12.2.1]

HP⊥ =
1

2ε0

∫
d3r P⊥2(r), (15.122)

which comes in at first order here, and then the result must be mass-renormalized. The result then agrees
with the Coulomb-gauge calculation, which is only linearly divergent:

Ree(E ± i0+) =
h̄2Γ

2πω0
–
∫ ∞
0

dω
ω

E − h̄ω
∓ i h̄ΓE

2h̄ω0
. (15.123)

Since the renormalization is necessary to get a physical answer anyway, here we will prefer the Coulomb
gauge (particularly in that the renormalization is not straightforward when z is not fixed to ω0).
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15.5.6 Branch Contribution

Now we return to calculating corrections to exponential decay, using our improved expression (15.117) for
Γee(E). Retracing the derivation above, starting with Eq. (15.103), we find

〈e|U‖(τ, 0)|e〉 = − 1

2πi

∫ 0

−∞
d(iy) eyτ/h̄ [GII

ee(iy)−Gee(iy)]

= − 1

2π

∫ 0

−∞
dy eyτ/h̄

[
1

iy − h̄ω0 + ih̄Γ(iy)/2
− 1

iy − h̄ω0 − ih̄Γ(iy)/2

]
=

1

2πi

∫ ∞
0

dy e−yτ/h̄
[

1

y − ih̄ω0 − iyΓ/2ω0
− 1

y − ih̄ω0 + iyΓ/2ω0

]
=
β−
2πi

∫ ∞
0

dy
e−yτ/h̄

y − ih̄ω0β−
− β+

2πi

∫ ∞
0

dy
e−yτ/h̄

y − ih̄ω0β+

=
1

2πi

[
β−e

iβ−ω0τE1(iβ−ω0τ)− β+eiβ+ω0τE1(iβ+ω0τ)
]
,

(15.124)

where we have introduced the notation

β± :=
1

1± i Γ

2ω0

=
ω0(ω0 ∓ iΓ/2)
ω 2
0 + Γ2/4

, (15.125)

where β± ≈ 1 for the typical case of ω0 � Γ. The asymptotic expansion to lowest order vanishes,

〈e|U‖(τ, 0)|e〉 = 1

2πi

[
β−

iβ−ω0τ
− β+
iβ+ω0τ

]
+O(τ−2) = O(τ−2), (15.126)

so keeping the second-order term in the expansion (15.109), we find

〈e|U‖(τ, 0)|e〉 = 1

2πi

[
− β−
(iβ−ω0τ)2

+
β+

(iβ+ω0τ)2

]
+O(τ−3)

=
1

2πiω 2
0 τ

2

[
1

β−
− 1

β+

]
+O(τ−3)

= − Γ

2πω 3
0 τ

2
+O(τ−3).

(15.127)

Thus, this dominates the exponential decay at long times, so the probability amplitude decreases asymptot-
ically as t−4. That is, the survival probability P (t) eventually becomes4

P (t) ∼
(

Γ

2πω 3
0

)2
1

t4
, (15.128)

but for typical transitions where ω0 � Γ, the crossover from exponential to this power-law behavior happens
only at extremely long times, where the survival probability is essentially undetectably small.

15.5.7 Pole Contribution

Returning to Eq. (15.75) for the retarded Green function,

G+
ee(E) =

1

E − Ee + ih̄Γee(E)/2
, (15.129)

4J. Mostowski and K. Wódkiewicz, ‘‘On the Decay Law of Unstable States,’’ Bulletin L’Académie Polonaise des Science,
Série des Sciences Mathématiques, Astronomiques et Physiques 21, 1027 (1973); P. L. Knight and P. W. Milonni, ‘‘Long-
Time Deviations from Exponential Decay in Atomic Spontaneous Emission Theory,’’ Physics Letters 56A 275 (1976) (doi:
10.1016/0375-9601(76)90306-6).

http://dx.doi.org/10.1016/0375-9601(76)90306-6
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we can use the expression (15.117) for the function Γee(E) to go beyond the pole approximation for the
contribution of the pole, which previously just gave exponential decay at rate Γ. We now have

G+
ee(E) =

1

E − h̄ω0 + iΓE/2ω0
=

β+
E − β+h̄ω0

, (15.130)

and thus, with Eq. (15.16), the pole contribution to the propagator becomes

〈e|U•(τ, 0)|e〉 = − 1

2πi

∫ ∞
−∞

dE e−iEτ/h̄G+
ee(E)

= β+e
−iβ+ω0τ

=
ω0(ω0 − iΓ/2)
ω 2
0 + Γ2/4

e−iω̃0τe−Γ̃τ/2 =
(ω̃0 − iΓ̃/2)

ω0
e−iω̃0τe−Γ̃τ/2,

(15.131)

where the contour completed around the lower half-plane encloses the single pole at β+, and we have defined
the shifted resonance frequency

ω̃0 :=
ω 3
0

ω 2
0 + Γ2/4

=
ω0

1 + (Γ/2ω0)2
(15.132)

(shifted resonance frequency)

and the shifted decay rate

Γ̃ :=
Γ

1 + (Γ/2ω0)2
,

(15.133)
(shifted decay rate)

both of which have very small corrections of order (Γ/ω0)
2 (typically ∼10−16 for alkali dipole transitions)

as a result of the more precise treatment of the pole, accounting for the frequency dependence of the decay
rate (15.117).

15.5.8 Short Times

To focus on short times, we will need the series expansion of the exponential integral around z = 0 (see
Problem 13.2),

E1(x) = −γ − logx−
∞∑
j=1

(−1)jxj

jj!
, (15.134)

where γ ≈ 0.577 215 664 901 532 860 607 is the Euler–Mascheroni constant. From Eq. (15.124), we had the
branch contribution

〈e|U‖(τ, 0)|e〉 = 1

2πi

[
β−e

iβ−ω0τE1(iβ−ω0τ)− β+eiβ+ω0τE1(iβ+ω0τ)
]

(15.135)

to the propagator, where

β± :=
1

1± i Γ

2ω0

=
ω0(ω0 ∓ iΓ/2)
ω 2
0 + Γ2/4

=
ω̃0 ∓ iΓ̃/2

ω0
. (15.136)

Sadly, this expression diverges at short times. Namely, the logarithmic term in Eq. (15.134) leads to a
short-time scaling of

〈e|U‖(τ, 0)|e〉 = − 1

2πi

[
β− log(iβ−ω0τ)− β+ log(iβ+ω0τ)

]
. (15.137)

Since the terms do not exactly cancel, there is a logarithmic divergence at short times. Evidently, there is a
problem at short times with taking the integral over all frequencies.
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15.5.8.1 Hard Cutoff

To handle this, we can introduce a high-energy cutoff Λ for the integrals. This echoes the strategy in the
Lamb shift (Section 13.12), where the argument was that the logarithmically divergent integral should be
cut off at the large energy Λ = mec

2, where relativistic effects should take over and naturally cut off the
integral.5 To evaluate the integral with the frequency cutoff,∫ Λ

0

e−αy

y + β
dy =

∫ ∞
0

e−αy

y + β
dy −

∫ ∞
Λ

e−αy

y + β
dy

=

∫ ∞
0

e−αy

y + β
dy − e−αΛ

∫ ∞
0

e−αy

y + β + Λ
dy

(15.138)

where we have let y −→ y + Λ in the second step. Then using Eq. (15.138), we have the integral formula∫ Λ

0

e−αy

y + β
dy = eαβE1(αβ)− eα(β+Λ)E1[α(β + Λ)] (Re[α] > 0, β /∈ R−, β + Λ /∈ R−, β 6= 0, β + Λ 6= 0).

(15.139)
Then retracing the derivation of Eq. (15.124), but cutting off the integral at energy Λ,

〈e|U‖(τ, 0)|e〉 = β−
2πi

∫ Λ

0

dy
e−yτ/h̄

y − ih̄ω0β−
− β+

2πi

∫ Λ

0

dy
e−yτ/h̄

y − ih̄ω0β+

=
1

2πi

[
β−e

iβ−ω0τE1(iβ−ω0τ)− β+eiβ+ω0τE1(iβ+ω0τ)
]

− 1

2πi

[
β−e

(iβ−ω0−Λ/h̄)τE1[(iβ−ω0 − Λ/h̄)τ ]− β+e(iβ+ω0−Λ/h̄)τE1[(iβ+ω0 − Λ/h̄)τ ]
]
.

(15.140)
at short times, using the expansion (15.134), this becomes

〈e|U‖(τ, 0)|e〉 = 1

2πi

[
β− log (1− Λ/iβ−h̄ω0)− β+ log (1− Λ/iβ+h̄ω0)

]
+O(τ), (15.141)

which is finite. Notice that even for large Λ, the logarithms are still comparatively of order unity and almost
the same because the β± are both close to unity. The two terms then nearly cancel, with the difference of
order

β− − β+ =
ω0Γ

ω 2
0 + Γ2/4

≈ Γ

ω0
, (15.142)

which is much smaller than unity. Thus, the contribution at τ = 0 is negligible compared to the pole
contribution. In principle, the decay rate should vanish at τ = 0 (Section 11.7.1), but this does not appear
to be the case here with this cutoff or the soft cutoff below.

The problem with this cutoff procedure is that it modifies the long-time scaling. The asymptotic
calculation to O(τ−1) from Eq. (15.126) should now have the extra contribution

〈e|U‖Λ(τ, 0)|e〉 = 1

2πi

[
β−

iβ−ω0τ − Λ/h̄
− β+
iβ+ω0τ − Λ/h̄

]
+O(τ−2) (15.143)

from the new cutoff terms. However, due to the presence of Λ, these terms no longer cancel, but

〈e|U‖Λ(τ, 0)|e〉 = χ

π[χ2 + (1− iξ2)](Λ/h̄)τ
+O(τ−2)

≈ χ

π(Λ/h̄)τ
+O(τ−2),

(15.144)

5For issues regarding this hard cutoff and the dipole approximation in this calculation, see J. Seke and W. N. Herfort,
‘‘Deviations from exponential decay in the case of spontaneous emission from a two-level atom,’’ Physical Review A 38, 833
(1988) (doi: 10.1103/PhysRevA.38.833); J. Seke and W. Herfort, ‘‘Finite-time deviations from exponential decay in the case of
spontaneous emission from a two-level hydrogenic atom,’’ Physical Review A 40, 1926 (1989) (doi: 10.1103/PhysRevA.40.1926).
Note that they obtain a slightly different, cutoff-dependent asymptotic scaling.

http://dx.doi.org/10.1103/PhysRevA.38.833
http://dx.doi.org/10.1103/PhysRevA.40.1926
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where χ := Γ/2ω0 � 1 and ξ := h̄ω0/Λ� 1. Thus, the long-time scaling behavior is

P (t) ∼ χ2

π2(Λ/h̄)2τ2
=

Γ2

4π2ω 2
0 (Λ/h̄)

2τ2
, (15.145)

which is not the τ−4 behavior we expect from Eq. (15.128). Note that there was no divergence problem at
long times before, so this new scaling is a symptom that indicates this cutoff procedure is not quite right:
the long-time scaling behavior should be cutoff-independent. Since it scales as Λ−2, we might expect the
numerical coefficient to be small, but it will still eventually dominate.

15.5.8.2 Soft Cutoff

A different scenario for cutting off the integral is to smoothly bring the integral to zero at large frequencies.
Physically, this represents the fact that the effects of short wavelengths should be attenuated by the finite
size of the atom, since the atom ‘‘smooths’’ out the wave on this length scale. Thus, it is appropriate to take
a cutoff energy of Λ ∼ 2πc/a, where a is the atomic radius (Bohr radius). We explicitly miss this effect in
the dipole approximation, which treats the atom as a point. A simple functional form for the cutoff is an
exponential of the form e−y/Λ to cut off large energies y. This corresponds to assuming a Lorentzian shape
for the atom, with the cutoff modeling the convolution of the atomic profile with the field modes of different
frequencies. Thus, Eq. (15.124) becomes

〈e|U‖(τ, 0)|e〉 = 1

2πi

∫ ∞
0

dy e−yτ/h̄
[

1

y − ih̄ω0 − iyΓ/2ω0
− 1

y − ih̄ω0 + iyΓ/2ω0

]
e−y/Λ

=
1

2πi

∫ ∞
0

dy e−y(τ+h̄/Λ)/h̄

[
1

y − ih̄ω0 − iyΓ/2ω0
− 1

y − ih̄ω0 + iyΓ/2ω0

]
=

1

2πi

{
β−e

iβ−ω0(τ+h̄/Λ)E1[iβ−ω0(τ + h̄/Λ)]− β+eiβ+ω0(τ+h̄/Λ)E1[iβ+ω0(τ + h̄/Λ)]
}
,

(15.146)
which is exactly the same as the result without any cutoff, but with the time displaced forward τ −→ τ+h̄/Λ.
This avoids the singularity at τ = 0 since there

〈e|U‖(τ = 0, 0)|e〉 = − 1

2πi

[
β− log[iβ−h̄ω0/Λ]− β+ log[iβ+h̄ω0/Λ]

]
, (15.147)

which is again finite and negligible compared to unity. At long times, τ + h̄/Λ ≈ τ , so we obtain the correct
τ−4 scaling at long times.

15.5.9 Intermediate Times

The total survival probability is then given by combining the pole amplitude from Eq. (15.131) and the
branch amplitude from Eq. (15.146):

P (τ) = |〈e|U(τ, 0)|e〉|2 =
∣∣〈e|U•(τ, 0)|e〉+ 〈e|U‖(τ, 0)|e〉∣∣2

=

∣∣∣∣β+e−iβ+ω0τ +
1

2πi

{
β−e

iβ−ω0(τ+h̄/Λ)E1[iβ−ω0(τ + h̄/Λ)]− β+eiβ+ω0(τ+h̄/Λ)E1[iβ+ω0(τ + h̄/Λ)]
}∣∣∣∣2.

(15.148)
We have seen that for short times, the pole contribution dominates, and thus the decay is exponential. For
long times, the branch contribution dominates, and the decay crosses over to a power law. At intermediate
times, when both contributions are important, the behavior is somewhat more complicated. The pole contri-
bution always oscillates at optical frequencies, but we have seen that asymptotically, the branch contribution
does not. Thus, there can be optical-frequency beating between the two contributions. Unfortunately, it is
difficult to visualize these high-frequency beats on the long decay time scales, except for the unrealistic case
where Γ is not too different from ω0. This plot shows the case Γ/ω0 = 10−1, with a cutoff Λ/h̄Γ = 102, along
with the exponential pole decay alone and the asymptotic τ−4 decay from Eq. (15.128). The oscillations at
the crossover are clear here.
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This next plot shows the case Γ/ω0 = 10−2, with a cutoff Λ/h̄Γ = 103, again, along with the exponential pole
decay alone and the asymptotic τ−4 decay from Eq. (15.128). Here, the oscillations are already too rapid to
meaningfully plot, so we instead plot the envelope of the oscillations (calculated from the sum and difference
of the absolute values of the two contributions). The increases in both parameters shift the crossover to a
later time and smaller survival probability.
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For the realistic case of 87Rb on the 780 nm D2 transition, we have Γ/2π = 6.07 MHz and ω0/2π =
384.23 THz. We can also take Λ = hc/a, where the atomic radius a = 2.99 a0 comes from the dipole
moment of 2.99 ea0 for the |F = 2,mF = 2〉 −→ |F ′ = 3,m′F = 3〉 stretched-state hyperfine transition, and
a0 ≈ 0.529 Å is the Bohr radius. Thus, the parameters we need are Γ/ω0 = 1.58×10−8 and Λ/h̄Γ = 5×1010.
Note that to obtain the correct asymptotic behavior numerically, a cancellation between the different terms
is necessary to get a smaller number, so arbitrary-precision arithmetic is required in this regime (standard
double-precision, floating-point arithmetic gives an error-dominated asymptotic scaling as τ−2.) Also, note
that had we instead used the hard cutoff, the asymptotic scaling (15.145) makes a substantial difference in
the long-time region of this plot, even with the relativistic cutoff.
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The crossover occurs after some 130 lifetimes, with a survival probability well below 10−50. Long-time
nonexponential decay of atomic spontaneous emission is unlikely to ever be seen in an experiment. This is
the way the numbers work out in this problem but keep in mind that long-time nonexponential decay is a
generic phenomenon, and the method here is a good way to get the full time dependence of the decay.

15.5.10 Interpretation of Nonexponential Decay

What is the meaning of this long, nonexponential tail of the decay curve? First of all recall that exponential
decay follows from having a constant rate of decay,

∂tP = −ΓP (t) −→ P (t) = P (0) e−Γt. (15.149)

This fundamentally means that the system decays in exactly the same way at each instant in time, inde-
pendent of its past history. This solution is unique, so any deviation from exponential decay points to a
‘‘memory’’ in the system, or a breakdown of the Markov approximation (the Born–Markov master equation
of Section 4.5, or equivalently the Lindblad master equation of Section 19.1 assume the Markov approxima-
tion and thus cannot predict this kind of nonexponential decay). The ‘‘memory’’ of the atom of the emitted
photon is somewhat counterintuitive, however: evidently the photon-emission amplitude, even though it
propagates rapidly away from the atom to infinity, has some long tail that interacts with the atom and
interferes with the remaining decay amplitude.

15.6 Spontaneous Raman Scattering

As another example of the resolvent method, consider spontaneous Raman scattering in a three-level Λ atom,
where the transition |g〉 −→ |e〉 is coupled by a laser field with detuning ∆, and spontaneous decay occurs
on the |e〉 −→ |f〉 transition at rate Γ.

D

W
G

|og‚

|oe‚

|ofo‚
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Technically, |e〉 must also decay to |g〉 if the transition can be coupled by the laser, but we assume that this
decay route is much slower than the decay to |f〉 (see Problem 15.5). This model also describes quenching
of a metastable state by coupling to a quickly decaying state, or influence on the metastability of a state by
coupling to another decaying level.6

The free Hamiltonian is
H0 = h̄∆|g〉〈g| − h̄ωef|f〉〈f| (15.150)

in the rotating frame of the laser field (Section 5.1.5), taking the energy Ee of |e〉 to be zero, and where
ωef = (Ee − Ef)/h̄. The atom–field coupling is given in the rotating-wave approximation by

V =
h̄Ω

2

(
σ + σ†

)
+
∑
k,ζ

h̄
[
gk,ζ(r)σ†f ak,ζ + H.c.

]
, (15.151)

where σ := |g〉〈e|, σf := |f〉〈e|, Ω is the usual Rabi frequency for the laser field, and gk,ζ are the free-space
coupling coefficients for the vacuum field [Eq. (11.7)].

Now we can focus on the coupling between |g〉 and |e〉. Defining the projector P := |g〉〈g|+ |e〉〈e| and
the orthogonal projector Q := 1− P , we can use the result (15.54) in terms of the level-shift operator,

PG(z)P =
P

z − PH0P − PR(z)P
. (15.152)

The resolvent in the subspace of |g〉 and |e〉 can then be written in matrix form as[
Gee(z) Geg(z)
Gge(z) Ggg(z)

]
=

[
z − Ee −Ree(z) −Reg(z)
−Rge(z) z − Eg −Rgg(z)

]−1
. (15.153)

Since we want to analyze the survival probability of |g〉, we can use the inversion formula[
a b
c d

]−1
=

1

ad− bc

[
d −b
−c a

]
(15.154)

to write
Ggg(z) =

z − Ee −Ree(z)

[z − Ee −Ree(z)][z − Eg −Rgg(z)]−Rge(z)Reg(z)
, (15.155)

which we will now evaluate.
Using Eq. (15.60) for the level-shift operator, we can compute the matrix element

Ree(E + i0+) = Vee + h̄∆ee(E)− i h̄Γee(E)

2
. (15.156)

In the pole approximation, we take E = Ee, and then h̄∆ee(Ee) is the Lamb shift—which we absorb into
the excited-state energy—of |e〉 due to the coupling to the vacuum continuum, and Γ = Γee(Ee) represents
the spontaneous decay of |e〉 −→ |f〉 due to the vacuum coupling, and thus

Ree(E + i0+) = −i h̄Γ
2
. (15.157)

Similarly,
Rgg(E + i0+) = 0, (15.158)

since |g〉 is not coupled to the vacuum continuum. To get the off-diagonal matrix elements, we can use the
perturbative expansion (15.66) up to second order,

R(z) = V + V
Q

z −H0
V, (15.159)

6Claude Cohen-Tannoudji, Jacques Dupont-Roc, and Gilbert Grynberg, Atom–Photon Interactions: Basic Processes and
Applications (Wiley, 1992), Section III.C.3.
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so that to second order
Reg(z) = Veg =

h̄Ω

2
, (15.160)

with the same result for Rge(z), since

〈e|V QV |g〉 =
∑
k,ζ

〈e|V |f, 1k,ζ〉〈f, 1k,ζ |V |g〉 = 0, (15.161)

again since |g〉 is not coupled to the vacuum.
Now that we have the level-shift operator in the subspace of |g〉 and |e〉, we note that a nice interpre-

tation of Eq. (15.152) is that PG(z)P is the resolvent operator of the effective subspace Hamiltonian

P [H0 −R(z)]P =

[
Ee − ih̄Γ/2 h̄Ω/2

h̄Ω/2 Eg

]
, (15.162)

which is now no longer Hermitian due to the decay. Returning now to the resolvent matrix element (15.155),
which now becomes

G+
gg(E) = Ggg(E + i0+) =

E − Ee + ih̄Γ/2

(E − Ee + ih̄Γ/2)(E − Eg)− (h̄Ω/2)2
, (15.163)

which has poles

E± =
1

2

Ee + Eg −
ih̄Γ

2
±

√(
Ee − Eg −

ih̄Γ

2

)2

+ (h̄Ω)
2

 (15.164)
(shifted energies)

corresponding to the eigenvalues of the effective Hamiltonian (15.162).
Thus, the propagator from the inversion formula (15.16) gives the survival amplitude

〈g|U(τ, 0)|g〉 = − 1

2πi

∫ ∞
−∞

dE e−iEτ/h̄G+
gg(E). (15.165)

We can do this integral via a contour around the lower half-plane, which encloses both poles, since the square
root of Eq. (15.164) always has an imaginary part smaller in magnitude than ih̄Γ/2 (this is apparent when
visualizing the squaring and square root operations as respectively doubling and halving the complex angle).
Then with

G+
gg(E) =

E − Ee + ih̄Γ/2

(E − E+)(E − E−)
, (15.166)

the propagator becomes

〈g|U(τ, 0)|g〉 = 1

E+ − E−

[(
E+ − Ee +

ih̄Γ

2

)
e−iE+τ/h̄ −

(
E− − Ee +

ih̄Γ

2

)
e−iE−τ/h̄

]
,

(survival amplitude) (15.167)
which is a fairly complicated expression, which we can analyze more intuitively in the the limits of weak and
strong pumping.

15.6.1 Weak Pumping

For weak pumping, Ω is small, and thus we can expand the square root in Eq. (15.164) to lowest order in Ω:

E± ≈
1

2

Ee + Eg −
ih̄Γ

2
±
(
Ee − Eg −

ih̄Γ

2

)1 +
(h̄Ω)

2

2

(
Ee − Eg −

ih̄Γ

2

)2


 , (15.168)
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or

E+ ≈ Ee −
ih̄Γ

2
+

(h̄Ω)
2

4

(
Ee − Eg −

ih̄Γ

2

)
E− ≈ Eg −

(h̄Ω)
2

4

(
Ee − Eg −

ih̄Γ

2

) . (15.169)

Note that the eigenvalues here are only small corrections to the original eigenvalues. Recalling that Ee = 0
and Eg = h̄∆,

E+

h̄
≈ − iΓ

2
− Ω2

4

(
∆+

iΓ

2

) = − iΓ
2
− Ω2 (∆− iΓ/2)

4
(
∆2 + Γ2/4

) = − iΓ
2
− ∆̃ +

iΓ̃

2

E−
h̄
≈ ∆+

Ω2

4

(
∆+

iΓ

2

) = ∆+
Ω2 (∆− iΓ/2)
4
(
∆2 + Γ2/4

) = ∆+ ∆̃− iΓ̃

2
,

(15.170)

where we have defined

∆̃ :=

[
Ω2

4
(
∆2 + Γ2/4

)]∆ (15.171)
(shift of |g〉)

and

Γ̃ :=

[
Ω2

4
(
∆2 + Γ2/4

)]Γ. (15.172)
(decay rate of |g〉)

Thus, the survival amplitude (15.167) becomes

〈g|U(τ, 0)|g〉 =

(
∆̃− iΓ̃

2

)
ei∆̃τe−(Γ−Γ̃)τ/2 +

(
∆+ ∆̃ +

i(Γ− Γ̃)

2

)
e−i(∆+∆̃)τe−Γ̃τ/2

(∆ + iΓ/2) + 2(∆̃− iΓ̃/2)
, (15.173)

or noting that Γ̃� Γ and ∆̃� ∆,

〈g|U(τ, 0)|g〉 ≈ e−i(∆+∆̃)τe−Γ̃τ/2,
(15.174)

(weak-pumping survival amplitude)

This expression shows that the survival amplitude rotates at the natural (unperturbed) frequency of ∆, plus
an ac Stark shift ∆̃ due to the pumping laser. There is also the slow decay of |g〉 at rate Γ̃. Note that in the
full expression (15.173) there is also a fast-decaying term, decaying at rate Γ − Γ̃, and shifted by −∆̃ from
zero energy. This is because the weak field mixes the ground and excited states slightly, so the part of |e〉
mixed into |g〉 decays essentially at the decay rate for |e〉, and has the opposite Stark shift as expected for a
two-level system.

One curious effect is that Γ̃ −→ 0 as Γ −→ ∞. Since a decay from |e〉 to |f〉 is a measurement of
whether or not the atom is in |e〉 (indicated by the detection of an emitted photon), Γ is essentially the rate
at which the measurement is taking place. If this measurement is strong enough, the atom can never be
promoted from |g〉 to |e〉 in the first place—an example of the quantum Zeno effect.

15.6.2 Strong Pumping

In the limit of strong pumping (Ω� Γ), the eigenvalues/poles from Eq. (15.164) become

E± ≈
1

2

[
Ee + Eg −

ih̄Γ

2
± h̄Ω̃

]
=
h̄

2

[
∆− iΓ

2
± Ω̃

]
, (15.175)
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where
Ω̃ :=

√
Ω2 +∆2 (15.176)

is the usual generalized Rabi frequency. Then the survival amplitude (15.167) becomes

〈g|U(τ, 0)|g〉 = 1

Ω̃

[(
∆+ Ω̃

)
e−i∆τ/2e−Γτ/4e−iΩ̃τ −

(
∆− Ω̃

)
e−i∆τ/2e−Γτ/4eiΩ̃τ

]
, (15.177)

or

〈g|U(τ, 0)|g〉 = e−i∆τ/2e−Γτ/4

[
cos Ω̃τ

2
− i∆

Ω̃
sin Ω̃τ

2

]
.

(strong-pumping survival amplitude) (15.178)
These are the usual generalized Rabi oscillations [cf. Eq. (5.59)], noting the sign difference in ∆], but now
damped at rate Γ/2. Here the field mixes |g〉 and |e〉 together in equal parts, so |g〉 decays at half the decay
rate of |e〉.

15.6.3 General Case

The general case interpolates between simple exponential decay and damped Rabi oscillations in a reasonable
obvious way, as shown here for the on-resonance case ∆ = 0.
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Even for relatively weak pumping Ω/Γ = 0.1, when the decay is essentially exponential, the one obvious
feature is the nonexponential decay at short times, since the whole process must start via a part of a Rabi
oscillation from |g〉 to |e〉. Of course, we already know that the decay must be nonexponential at short times
in any case (Section 11.7.1).
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For the off-resonance case (with Ω = 1), the Rabi oscillations are incomplete, and become more rapid, since
the oscillations occur around the generalized Rabi frequency. Obviously, the decay becomes slower for larger
detunings, but also note that the fast oscillations damp out before a smooth decay takes over.
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15.7 Exercises

Problem 15.1
Show that the resolvent operator

G(z) :=
1

z −H
(15.179)

for the Hamiltonian H is analytic off the real axis, in the sense that every matrix element 〈ψ|G(z)|ψ′〉
for arbitrary states |ψ〉, |ψ′〉 is an analytic function anywhere away from the real axis. State explicitly
your criteria for analyticity.

Problem 15.2
The inhomogeneous Helmholtz equation(

∇2 + k2
)
ψ(r) = −f(r), (15.180)

where f(r) is an arbitrary source function, has a Green function (resolvent) defined by [see Eq. (14.57),
noting that we are ditching the ε0 but keeping the minus sign](

−∇2 − k2
)
G(r, r′; k2) = δd(r− r′) (15.181)

in d spatial dimensions.
(a) If we assume the Helmholtz equation to be defined on a compact domain, show that the retarded
‘‘energy-space’’ Green function G(r, r′; k2) can be written in the form7

G+(r, r′; k2) =
∑
n

ψn(r)ψ∗n(r′)
k 2
n − k2 − i0+

, (15.182)

where ψn(x) are the eigenfunctions of the homogeneous version of Eq. (15.180) with (discrete) eigen-
values k = kn. Be careful with the sign of the imaginary deformation here!
(b) Show that in the continuum limit where kn −→ p, the (retarded) Green function may be written
as

G+(r, r′; k2) = 1

(2π)d

∫
ddp

ψp(r)ψ∗p(r′)
p2 − k2 − i0+

(15.183)

in d spatial dimensions.

Problem 15.3
Derive the asymptotic expansion

E1(z) =
e−z

z

{
1− 1

z
+

2

z2
− 3!

z3
+ · · ·+ n!

(−z)n
+ · · ·

}
. (15.184)

Problem 15.4
Work out a formula for the inverse Laplace transform, using the integral formula for the propagator in
terms of the resolvent operator. State any restrictions on the validity of your formula.

Problem 15.5
In analyzing the spontaneous Raman problem, we ignored any decay back to the initial (ground) state
|g〉. Suppose we modify the setup to explicitly include a decay rate of Γ′ from |e〉 −→ |g〉.

7see, e.g., Marco Schäfer, Idrish Huet, and Holger Gies, ‘‘Energy-momentum tensors with worldline numerics,’’ International
Journal of Modern Physics Conference Series 14, 511 (2012) (doi: 10.1142/S2010194512007647), arXiv.org preprint (arXiv:
quant-ph/0605180v3).

http://dx.doi.org/10.1142/S2010194512007647
http://arxiv.org/abs/quant-ph/0605180v3
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D

W
G

Goo'

|og‚

|oe‚

|ofo‚

(a) Why is the resolvent method not a natural approach to handle this new problem?
(b) Derive a corrected formula for the decay rate of |g〉 in the weak pumping limit, accounting for the
new decay path. Hint: set up and solve Einstein-type rate equations for this system, generalizing the
results from the resolvent approach as appropriate (e.g., introducing an auxiliary decay path). You
need not retrace the derivation using the resolvent method if you can just indicate the appropriate
changes.

Problem 15.6
Consider an atom at a fixed location in an optical cavity. The optical cavity is initially in the vacuum
state, and its resonance frequency ω does not necessarily coincide with the atomic resonance frequency
ω0. The atom starts in the excited state.
(a) Compute the decay rate for the atom, assuming the ‘‘bad-cavity’’ limit of large κ. Ignore decay
into non-cavity modes. Hint: what is the level structure of this problem?
(b) The enhancement of the atomic spontaneous emission rate by a cavity is called the Purcell effect.
What is now known as the Purcell factor was given by Purcell8 as

ηP =
3Qλ3

4π2V
, (15.185)

where Q is the quality factor of the cavity, λ is the emission wavelength, and V is the cavity volume.
Purcell’s result was that multiplying the atomic decay rate by this factor gives the cavity-modified decay
rate. Show that your result is consistent with Purcell’s for a cavity whose resonance matches that of
the atom, under the assumption that the atomic dipole is aligned with the cavity-mode polarization
(ε̂ · dge = dge, without the factor of

√
3).

Problem 15.7
Suppose the intensity of an optical cavity of resonant frequency ω decays exponentially at rate κ. The
cavity spectrum is bounded from below, and thus should decay nonexponentially at long times. For
example, given that the cavity begins with exactly one photon, the photon’s survival probability should
become nonexponential at long times.
(a) Treating the cavity decay rate as approximately independent of frequency, give an expression for
the asymptotic survival probability for long times.
(b) Estimate the scaled time κt of crossover to nonexponential decay for a linear, two-mirror cavity
of length 10 cm, assuming identical mirrors with 99% intensity reflection coefficients and a resonance
wavelength of 532 nm. Also, estimate the survival probability at this crossover time.

Problem 15.8
Consider the spontaneous-Raman problem, for which we derived the survival probability of |g〉 in
Section 15.6.

8E. M. Purcell, ‘‘Spontaneous Emission Probabilities at Radio Frequencies,’’ Physical Review 69, 681 (1946) (doi:
10.1103/PhysRev.69.674.2).

http://dx.doi.org/10.1103/PhysRev.69.674.2
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Under the condition of weak excitation (small Ω or large |∆|), derive an expression for the spectral
lineshape of the emitted light (assuming the long-time limit). Interpret your solution.





Chapter 16

Photodetection

In Chapter 2, we considered the coherence of classical light, and, for example, what this meant for the classical
Hanbury-Brown–Twiss experiment. We will now reconsider this experiment using the quantum description
of the fields, and examine the most dramatic departures from the classical-field predictions, which occur for
fields with one or two photons.

16.1 Counting Photons

Let’s start by developing a bit of formalism to handle detectors interacting with the quantum electromagnetic
field.1 Recall that the quantized electric field has the form [Eq. (8.61)]

E(r, t) = −
∑
k,ζ

√
h̄ωk

2ε0
fk,ζ(r)ak,ζ(t) + H.c., (16.1)

or identifying the two terms with E(+) and E(−), we can isolate the annihilation component of the field:

E(+)(r, t) = −
∑
k,ζ

√
h̄ωk

2ε0
fk,ζ(r)ak,ζ(t). (16.2)

We may regard a photodetection event, as a transition in the state of the field, |i〉 −→ |f〉, where |i〉 is the
initial state of the field before the detection event, and |f〉 is the final state of the system afterward, where
one photon in mode (k, ζ) was removed from the field at time t. The transition amplitude for this process
is proportional to

〈f|U(t+ 0+, t− 0+)|i〉 ∝ 〈f|ak,ζ(t)|i〉. (16.3)

Including the spatial profile of the field,

〈f|U(t+ 0+, t− 0+)|i〉 ∝ 〈f|ε̂ζ ·E(+)
k,ζ (r, t)|i〉, (16.4)

where the field here is the single, relevant term in the mode sum (16.2), and ε̂ζ is the unit polarization vector
of the mode at the location of the detector. Of course, we can include the entire field,

〈f|U(t+ 0+, t− 0+)|i〉 ∝ 〈f|ε̂ ·E(+)(r, t)|i〉, (16.5)

since in view of the definition of |f〉 only one of the field annihilation operators contributes to the matrix
element. We have also dropped the subscript on the polarization vector, so that ε̂ represents the field
polarization sensed by the detector. Now the probability for detecting a photon is given by summing the

1Here we are following Roy J. Glauber, ‘‘The Quantum Theory of Optical Coherence,’’ Physical Review 130, 2529 (1963)
(doi: 10.1103/PhysRev.130.2529).

http://dx.doi.org/10.1103/PhysRev.130.2529
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squares of the amplitudes (each amplitude corresponds to a final state where a photon is lost from a particular
mode; each mode is orthogonal and thus each final state is distinguishable):

P (t) ∝
∑

f

|〈f|ε̂ ·E(+)(r, t)|i〉|2

=
∑

f

〈i|ε̂∗ ·E(−)|f〉〈f|ε̂ ·E(+)|i〉

= 〈i|ε̂∗ ·E(−)ε̂ ·E(+)|i〉

(16.6)

The initial state |i〉 is arbitrary, and we can think of the expectation value even for a mixed state by
performing an ensemble average over initial states. We can also carry out a sum over polarizations, so that

P (t) ∝
〈
E(−)
α (r, t)E(+)

α (r, t)
〉
,

(16.7)
(photodetection probability)

with an implied sum over α.
This expression for the photodetection probability motivates the definition of a field correlation func-

tion, the degree of first-order coherence:

G(1)(r1, t1, r2, t2) :=
〈
E(−)
α (r1, t1)E(+)

α (r2, t2)
〉
,

(degree of first-order coherence) (16.8)
which is the quantum analog of the classical field correlation function, which we saw in normalized form in
Eq. (2.23), which gives the fringe visibility in an interference experiment. Note the particular ordering of
the field operators in the correlation function and the detection probability, which is of the general form〈

a†a
〉
. (16.9)

This ordering is called normal ordering, which refers to having all annihilation operators to the right
of all creation operators. This particular ordering is important, as in the vacuum state, the expectation
value 〈0|a†a|0〉 = 0 gives a zero detection probability or zero correlation, both of which are appropriate for
the vacuum. The other ordering here would correspond to detection of photons from the vacuum, which is
physically nonsensical.

Similarly, the joint probability amplitude to detect one photon at (r, t) and (r′, t′) is

〈f|U(t+ 0+, t− 0+)|i〉 ∝ 〈f|ε̂ζ ·E(+)
k,ζ (r

′, t′) ε̂ζ ·E(+)
k,ζ (r, t)|i〉. (16.10)

To compute the detection probability, we square this, sum over all final states, and consider any polarization
as before, with the result

P (t) ∝
〈
E(−)
α (r, t)E(−)

α (r′, t′)E(+)
α (r′, t′)E(+)

α (r, t)
〉
,

(joint photodetection probability) (16.11)
again with an implied sum over α. This joint detection probability motivates the definition of a higher-order
correlation function, the degree of second-order coherence:

G(2)(r1, t1, r2, t2) :=
〈
E(−)
α (r1, t1)E(−)

α (r2, t2)E(+)
α (r2, t2)E(+)

α (r1, t1)
〉
.

(degree of second-order coherence) (16.12)
This is the quantum analog of the classical intensity correlation function, e.g., 〈I(t)I(t+ τ)〉, which we saw
in normalized form in Eq. (2.68). Note that these joint expectation values are still in normal form with the
general form

〈
a†1a
†
2a2a1

〉
, so that either joint expectation value vanishes unless there are at least two photons

around somewhere to be detected. We are also ignoring some subtleties regarding the two field annihilation
operators; recall that E(+)

α (r1, t1) and E
(+)
α (r2, t2) commute only if the two respective spacetime points lie

on the same light cone. In practice this does not matter, since for example the two detectors will monitor
different outputs of a beam splitter, such that they cannot influence each other.
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16.2 Beam Splitters

For our purposes, a beam splitter is an optical element that transforms two input modes or ‘‘beams’’ into two
output modes. We have treated the beam splitter before in Section 12.1.2, but as it is central to our discussion
here, we will review the setup with a slightly different notation. Labeling the field at the first and second
inputs as E(+)

1 and E(+)
2 , respectively, the transformation properties are characterized by field reflection and

transmission coefficients r and t, representing reflection and transmission of E(+)
1 , and coefficients r′ and t′,

representing reflection and transmission of E(+)
2 , as shown here.

E1
(+) tE1

(+)

rE1
(+)

E2
(+)

roo'E2
(+)

too'E2
(+)

Assuming the beam splitter is lossless, it must induce a unitary transformation on the two input modes,
which we can represent by the matrix

U =

[
t r′

r t′

]
, (16.13)

in the sense that the output modes are related to the input modes by this operator:[
Eout,1
Eout,2

]
= U

[
E1

E2

]
. (16.14)

However, the fact that U is unitary constrains its form; in fact the general form for a 2× 2 unitary matrix is

U =

[
t −r∗
r t∗

]
, (16.15)

from which we conclude that
|r|2 + |t|2 = 1, (16.16)

which expresses the lossless property of the beam splitter, and

r′ = −r∗, t′ = t∗, (16.17)

so that the reflection and transmission coefficients from either direction only differ by phases (which we have
somewhat arbitrarily fixed here).

If we consider only monochromatic fields, with inputs and outputs at the same frequency, then from
Eq. (16.2) we see that the fields E(+) differs from a lowering operator a only by a constant factor, which is
the same for every mode here. Quantum mechanically, then, we may write Eq. (16.14) in terms of operators
as [

b1
b2

]
= U

[
a1
a2

]
=

[
t −r∗
r t∗

] [
a1
a2

]
,

(16.18)
(beam splitter transformation)

where a1,2 are the annihilation operators for the input modes, and b1,2 are the annihilation operators for the
output modes.

16.3 Collision of One Photon and a Beam Splitter

Consider a single photon incident on a beam splitter, where we monitor each output of the beam splitter
with a detector.
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detector 1

detector 2

To the extent that it makes sense to do so, we will consider the input and output fields to be monochromatic
as in Eq. (16.18). If we begin with a single photon in input 1, then the initial state is

|1, 0〉 = a†1|0, 0〉, (16.19)

where the states |n,m〉 are joint Fock states for the two inputs. If we solve Eq. (16.18) for the input operators
in terms of the output operators, we have[

a1
a2

]
= U†

[
b1
b2

]
=

[
t∗ r∗

−r t

] [
b1
b2

]
, (16.20)

so that
a1 = t∗b1 + r∗b2, (16.21)

or
a†1 = tb†1 + rb†2. (16.22)

To find the output state after the beam splitter, we can use this relation to eliminate the input-field operator
in Eq. (16.19)

|ψ〉out =
(
tb†1 + rb†2

)
|0, 0〉 = t|1, 0〉+ r|0, 1〉.

(output state for single-photon input) (16.23)
The output state is thus an entangled state, with a superposition of having a single photon in each mode.
The result is now fairly obvious, but from Eq. (16.11), the joint photodetection probability is

P (t) ∝
〈
b†1b
†
2b2b1

〉
= 0, (16.24)

which of course vanishes for the output state (16.23), since there is only one photon. Experimentally, it is
difficult to prepare an input state of exactly a single photon. In practice, a highly attenuated classical field
(coherent state) is used, which has the form |0〉+ ε|1〉, where ε� 1. If this field is an output of a nonlinear
crystal, where correlated pairs of photons are generated from a laser field via parametric downconversion,
then the detection of a photon in the other output can be used to ‘‘herald’’ the presence of a single photon
in the beam-splitter setup. Thus measurement is used to convert the coherent state into a one-photon state.
The real situation is more complicated due to ‘‘accidental’’ coincidences (since there is a small probability
of having two photon pairs present simultaneously), finite detection times, and ‘‘dark counts,’’ or spurious
photodetection events due to thermal fluctuations in the detectors. However, this can be done, and is one
of the simplest demonstrations of the manifestly quantum-mechanical nature of the electromagnetic field:2
a classical field can be divided arbitrarily, so a classical Hanbury-Brown–Twiss experiment always gives a
signal for arbitrarily weak fields. In terms of the normalized degree of second-order coherence, the quantum
version of this experiment violates the inequality (2.72), since g(2) can be much smaller than unity.

2P. Grangier , G. Roger and A. Aspect, ‘‘Experimental Evidence for a Photon Anticorrelation Effect on a Beam Splitter: A
New Light on Single-Photon Interferences,’’ Europhysics Letters 1, 173 (1986) (doi: 10.1209/0295-5075/1/4/004); J. J. Thorn,
M. S. Neel, V. W. Donato, G. S. Bergreen, R. E. Davies, and M. Beck, ‘‘Observing the quantum behavior of light in an
undergraduate laboratory,’’ American Journal of Physics 72, 1210 (2004) (doi: 10.1119/1.1737397).

http://dx.doi.org/10.1209/0295-5075/1/4/004
http://dx.doi.org/10.1119/1.1737397


16.4 Two-Photon Interference 685

16.4 Two-Photon Interference

16.4.1 Simple Theory

Suppose we now treat the case of two incident photons on a beam splitter. Again treating the fields as
monochromatic (and identical), we can model a photodetection experiment with this particular input. There
are two general cases we can consider. The first is when both photons are incident in the same input—here,
input 1.

detector 1

detector 2

Then the input state is

|2, 0〉 = (a†1)
2

√
2
|0, 0〉, (16.25)

and again using Eq. (16.22) to eliminate the input operator, we find the output state

|ψ〉out =

(
tb†1 + rb†2

)2
√
2

|0, 0〉. (16.26)

We can write this out to obtain

|ψ〉out = t2|2, 0〉+
√
2rt|1, 1〉+ r2|0, 2〉. (16.27)

This is not too surprising. Identifying the probabilities for two photon transmitted, one photon transmitted
and zero photons transmitted as |t|4, 2|rt|2, and |r|4, respectively, this is just the classical transmission prob-
ability of two independent particles according to the binomial distribution, where the ‘‘success probability’’
for a single particle is |t|2.

The other case, where one photon is incident in each input, is quite different, however.

detector 1

detector 2

Here, the input state is
|1, 1〉 = a†1a

†
2|0, 0〉. (16.28)

We can again use Eq. (16.22) to eliminate a†1, and to eliminate a†2, we can use Eq. (16.20) to write

a†2 = −r∗b†1 + t∗b†2. (16.29)

Thus, the output state is
|ψ〉out =

(
tb†1 + rb†2

)(
−r∗b†1 + t∗b†2

)
|0, 0〉. (16.30)
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Multiplying all this out,

|ψ〉out = −
√
2r∗t|2, 0〉+

(
|t|2 − |r|2

)
|1, 1〉+

√
2rt∗|0, 2〉

(output state, for one photon in each input) (16.31)
The difference here is that the |1, 1〉 term exhibits destructive interference. The classical probabilities for
two photons in output 1 is |rt|2, which is the same as the probability for two photons in output 2; the
remaining probability for one photon in each direction is 1− 2|rt|2 = |r|4 + |t|4. In both the classical and
quantum case, the probability for coincidence detection—corresponding to one photon in each output—is
minimized for an equal beam splitter with |r| = |t| = 1/

√
2. In this case, the classical probability is 1/2,

while the quantum probability is zero. This is thus a quantum interference effect between the two photons,
which rules out the photons leaving the beam splitter in different outputs.

This tendency of the photons to ‘‘stick’’ together is a nice demonstration of the bosonic nature of the quantum
electromagnetic field. Had the photons been fermions, the requirement of antisymmetry of the state would
have actually produced the opposite prediction: coincidences would happen with unit probabilities, since the
outcome must always have one photon in each output. The classical prediction is somewhere in between. In
this sense, the bosonic case can be regarded as constructive interference for the two non-coincidence outcomes,
increasing the probability of finding the photons to be together; this is consistent with our discussion of the
exchange interaction in Section 4.4.4.1. This effect is known as the Hong–Ou–Mandel effect, after the
first experimental demonstration.3

16.4.2 Coherence Effects

Though the Hong–Ou–Mandel effect is due to interference, it turns out that it does not sensitively depend
on the relative phase of the two input photons. That is, varying the relative phase by π does not necessarily
cause a large change in the interference effect, as it would in an interferometer. To see this, we must relax
the monochromatic idealization of the input light.4

16.4.2.1 Quantum Beam

Recall again from Eq. (16.2) that the annihilation part of the electromagnetic field has the form

E(+)(r, t) = −
∑
k,ζ

√
h̄ωk

2ε0
fk,ζ(r)ak,ζ(t). (16.32)

If we consider the light to be in the form of a ‘‘beam,’’ as in the output of a laser, then we should regard
the wave vector k to point along a particular direction, say the x-direction. Thus, ky = kz = 0 and we have
only a one-dimensional set of modes. Recall that in calculations with th e three-dimensional field, in the

3C. K. Hong, Z. Y. Ou, and L. Mandel, ‘‘Measurement of subpicosecond time intervals between two photons by interference,’’
Physical Review Letters 59, 2044 (1987) (doi: 10.1103/PhysRevLett.59.2044).

4Here, we are following H. Fearn and R. Loudon, ‘‘Theory of two-photon interference,’’ Journal of the Optical Society of
America B 6, 917 (1989) (doi: 10.1364/JOSAB.6.000917).

http://dx.doi.org/10.1103/PhysRevLett.59.2044
http://dx.doi.org/10.1364/JOSAB.6.000917
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continuum limit we made the replacement ∑
k

−→ V

(2π)3

∫
all space
d3k, (16.33)

since the spacing between modes in any direction in k-space was 2π/L, where L3 = V . Then the quantization
volume V canceled the corresponding factor from the squared mode functions |fk,ζ |2 ∝ 1/V for the free-sapce
modes

fk,ζ(r) = ε̂k,ζ
eik·r√
V
. (16.34)

In the one-dimensional case, we will similarly have∑
kx≥0

−→ L

2π

∫ ∞
0

dk, (16.35)

taking the beam to point along the positive x-axis. For calculations second order in the field, we can modify
the field by changing the sum to an integral, tacking on the square root of the discretization factor L/2π,
and assume a particular polarization along ε̂:

E(+)(r, t) = −ε̂
∫ ∞
0

dω

√
h̄ω

4πε0cA
a(ω) ei(kx−ωt).

(16.36)
(quantized beam)

Here, we have changed the integration variable to ω = ωk = ck, defined the mode area A = V /L, and
written out explicitly the time dependence of the mode annihilation operator. Recall that in the continuum
limit, we have [a(ω), a†(ω′)] = δ(ω − ω′). If a beam is narrowband, the excitations represented by a(ω) will
be tightly localized near some ‘‘laser frequency’’ ωL. Since the factor of

√
ω should vary slowly over this

spectrum, we can replace it by its value at the laser frequency, so that

E(+)(r, t) = −ε̂
√

h̄ω

4πε0cA

∫ ∞
0

dω a(ω) ei(kx−ωt).

(quantized, quasi-monochromatic beam) (16.37)
We thus have essentially a Fourier transform of the monochromatic mode operators a(ω).

16.4.2.2 Pulse-Annihilation Operators

Again, the above expression (16.37) shows that the time-dependent electric-field operator for a quasi-
monochromatic beam appears as a one-dimensional Fourier transform of the field operators a(ω). We can
take this as a motivation to define the creation operator

A†(α) :=

∫ ∞
0

dω α(ω) a†(ω),

(creation operator, pulsed excitation) (16.38)
where α(ω) represents the spectrum of the excitation, which is normalized according to∫ ∞

0

dω |α(ω)|2 = 1. (16.39)

Since we are assuming a quasi-monochromatic beam, whose spectral width is much smaller than ωL (as in a
laser field), we can extend the lower limit of the integral, so that∫ ∞

−∞
dω |α(ω)|2 ≈ 1. (16.40)
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Thus, this creation operator creates a photon similar to a†(ω) in the sense that A†(α)|0〉 represents a
normalized, one-photon state, but in a superposition of different frequencies. Thus, emulating the form of
the field operator (16.37), we can define a temporal envelope

α(t) :=
1√
2π

∫ ∞
−∞

dω α(ω) e−iωt,
(16.41)

(pulse envelope)

and it is not hard to show by direct substitution that∫ ∞
−∞

dt |α(t)|2 = 1, (16.42)

so that the envelope function created by A†(α) is also normalized.

16.4.2.3 Detection

We can now also replace the full field (16.37) with the normalized, time-dependent annihilation operator

a(t) :=
1√
2π

∫ ∞
−∞

dω a(ω) e−iωt,
(16.43)

(pulse-annihilation operator)

within the same narrowband approximation. This is proportional to the full field except that we have
dropped the dependence on the spatial coordinate x, since for propagation in vacuum it can be absorbed
into the temporal phase factor. We need not assume any particular frequency dependence for the annihilation
operator, and in fact we will need this operator for detection. For a wide-bandwidth detector, this operator
corresponds to annihilating a photon at the particular time t. (A finite detector bandwidth corresponds to
some uncertainty in the time of annihilation.) Then we can use this operator in place of the full field in
Eq. (16.7) for the detection probability, and integrate over the detection time interval T to find the total
(average) number of detected photons:

〈N〉 =
∫ T

0

dt
〈
a†(t) a(t)

〉
.

(16.44)
(mean number of detected photons)

We have replaced the proportionality by an equality here; this expression is scaled properly, as we can see
by considering the state of n excitations |n〉, assuming a sufficiently long detection time T (and assuming
the excitations are created after t = 0). Similarly, based on Eq. (16.11), we can write down the mean
cross-correlation for the photocounts for two detectors:

〈N1N2〉 =
∫ T

0

dt

∫ T

0

dt′
〈
a†1(t) a

†
2(t
′) a2(t

′) a1(t)
〉
.

(joint detection average) (16.45)
This expression is normalized properly as in the average number of detected photons, and for the two-
photon input states, that we will consider below, corresponds to the joint detection probability over the
(long) detection time.

16.4.2.4 Interference of Coherence

Now back to the problem of two-photon interference. The input mode, now with two (possibly different)
quasi-monochromatic photons, is

|1, 1〉 = A†1(α1)A
†
2(α2)|0, 0〉, (16.46)

where the subscripts A†β label the mode on which the creation operator acts. This expression generalizes
the monochromatic expression (16.28). The same beam-splitter-transformation relations (16.22) and (16.29)
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hold here (assuming the action of the beam splitter is frequency-independent and nondispersive), so that

A†1(α1) = tB†1(α1) + rB†2(α1)

A†2(α2) = −r∗B†1(α2) + t∗B†2(α2).
(16.47)

We have thus connected the input operators A†β to the output operators B†β , which are defined in exactly
the same way. We can obtain the output mode by using these relations in the input state (16.46):

|ψ〉out =
[
−r∗tB†1(α1)B

†
1(α2) + |t|2B†1(α1)B

†
2(α2)− |r|2B†2(α1)B

†
1(α2) + rt∗B†2(α1)B

†
2(α2)

]
|0, 0〉. (16.48)

Only the middle two terms correspond to one output photon in each mode, and thus these will give the only
contribution to 〈N1N2〉.

To compute the detector cross-correlation (16.45), we can simply consider the post-detection state,

b2(t
′) b1(t)|ψ〉out = b2(t

′) b1(t)
[
|t|2B†1(α1)B

†
2(α2)− |r|2B†2(α1)B

†
1(α2)

]
|0, 0〉, (16.49)

where again we need only the middle two terms of Eq. (16.48). In this state, we have parts that refer to
either mode; for example, the part of this state that refers to wave packet 1 in mode 1 is

b1(t)B
†
1(α1)|0〉 =

1√
2π

∫
dω

∫
dω′ b(ω) e−iωt α1(ω

′) b†(ω′)|0〉

=
1√
2π

∫
dω

∫
dω′ δ(ω − ω′)α1(ω

′) e−iωt |0〉

=
1√
2π

∫
dω α1(ω) e

−iωt |0〉

= α1(t)|0〉,

(16.50)

where in the first step we used Eq. (16.43) for b1(t) and Eq. (16.38) for B†1(α1); in the second step we used
the commutation relation b(ω)b†(ω′)|0〉 = [b(ω), b†(ω′)]|0〉 = δ(ω − ω′)|0〉; and we used Eq. (16.41) for the
pulse envelope α(t). The other parts of Eq. (16.49) follow from this result simply by relabeling the arbitrary
indices, and finally we may use the norm of the resulting post-detection state to write

〈N1N2〉 =
∫ T

0

dt

∫ T

0

dt′
〈
b†1(t) b

†
2(t
′) b2(t

′) b1(t)
〉

=

∫ T

0

dt

∫ T

0

dt′
∣∣∣|t|2α1(t)α2(t

′)− |r|2α2(t)α1(t
′)
∣∣∣2. (16.51)

Multiplying out the square, we obtain the squares of each of the terms in the absolute value, which have time
dependence of the form |α1(t)|2|α2(t

′)|2; due to the normalization of these pulse profiles, the integrals give
|t|4 and |4|4 for these two terms. The remaining two cross terms give −|r|2|t|2α1(t)α

∗
2(t)α

∗
1(t
′)α2(t

′) + c.c.,
which when integrated, combine to give

−2|r|2|t|2
∣∣∣∣∫ dt α∗2(t)α1(t)

∣∣∣∣2 . (16.52)

Combining terms, we finally find

〈N1N2〉 = |r|4 + |t|4 − 2|r|2|t|2
∣∣∣∣∫ dt α∗2(t)α1(t)

∣∣∣∣2 ,
(two-photon cross-correlation) (16.53)

where the overall result is automatically positive, since the modulus of the integral at at most unity, since
the pulse profiles are normalized.
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The last term in the cross correlation is the overlap integral of the two input pulses. For identical,
perfectly overlapping pulses, the integral reduces to unity, and thus

〈N1N2〉 = |r|4 + |t|4 − 2|r|2|t|2 =
(
|r|2 − |t|2

)2
, (16.54)

which recovers the simple result (16.31) from the monochromatic theory. If the pulses are widely separated,
then the overlap integral vanishes, and we recover the classical expectation

〈N1N2〉 = |r|4 + |t|4, (16.55)

as is appropriate for distinguishable pulses. Finally, if the two input pulses are identical, but one is delayed
by time τ with respect to the other, then α2(t) = α1(t− τ), and

〈N1N2〉 = |r|4 + |t|4 − 2|r|2|t|2
∣∣∣∣∫ dt α∗(t)α(t+ τ)

∣∣∣∣2 , (16.56)

and thus the interference term reduces to the degree of first-order coherence (normalized autocorrelation
function) for the input pulse. While this modulates the fringe visibility in an interferometer, it represents
the entire interference in the Hong–Ou–Mandel experiment. Thus as a function of the time delay of one
of the pulses, the coincidence probability exhibits a ‘‘dip,’’ konwn as the Hong–Ou–Mandel dip, whose
profile is the pulse-field autocorrelation function (something like the convolution of the pulse with itself).
This is illustrated below for the case of a symmetric beam splitter and a Gaussian pulse envelope.

t

0

 ·
N

1
N

2
‚

0

0.5

The width of the dip is of the order of the coherence length, which can be very long for narrow-line lasers,
or much shorter for pulsed lasers.
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Chapter 17

Stochastic Processes

Before tackling quantum measurements head-on, we will first examine some of the basic mathematics for
handling measurements, and in particular continuous quantum measurements. We will thus need to look at
some basics in the area of stochastic processes—that is, the mathematics for modeling systems as having
underlying randomness influencing the dynamics.1 Historically, the term ‘‘stochastic’’ has also been used
to refer to low-dimensional, chaotic dynamics of Hamiltonian systems, which is not what we mean here.
By stochastic we are referring to a truly random element that is not predictable even in principle. This
is sensible for modeling quantum measurements, which are considered to be sources of true randomness.
However, despite the inherent unpredictability, we can fruitfully model stochastic systems by building on
the basic formalism introduced here.

17.1 Finite RandomWalks, Diffusion, and the Central Limit Theorem

One central problem in statistical mechanics that is useful in quantum optics—and indeed underlies much
of the formalism of quantum measurement that we will develop—is the random-walk process. Suppose a
random walker takes a random step of size X with probability density f(x) between periodic intervals of
duration ∆t. Let’s assume that all the steps are statistically independent, and the probability distribution
is characterized by

〈X〉 = 0, Var[X] = σ2. (17.1)
After N steps (N large), where has the walker ended up? The central limit theorem says that the
probability density of the accumulated displacement

SN :=
N∑
j=1

Xj (17.2)

for N steps is Gaussian with zero mean and variance Nσ2. That is, the width (standard deviation) is σ
√
N .2

The probability distribution thus becomes asymptotically Gaussian with a time-dependent width of

σ(t) = σ

√
t

∆t
. (17.3)

This random-walk behavior is characteristic of a diffusion process, which is a transport process by which
the distribution grows as t1/2,

∆x ∼ D t1/2, (17.4)
1Note that we will be giving just an introductory overview, and will sacrifice rigor in favor of intuition; a good rigorous

introduction is W. Horsthemke and R. Lefever, Noise-Induced Transitions: Theory and Applications in Physics, Chemistry,
and Biology (Springer, 1984). Another good introduction is the classic C. W. Gardiner, Handbook of Stochastic Methods 1st
ed. (Springer, 1983).

2Recall that the variance of X is defined by Var[X] :=
〈
(X − 〈X〉)2

〉
=
〈
X2

〉
−〈X〉2, and the standard deviation is the square

root of the variance.
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where for the random walker the diffusion coefficient is D = σ/
√
∆t. Note that within certain restrictions,

the final distribution is Gaussian, independent of the one-step distribution.

17.1.1 Two-Step Distribution

Before proving the full central limit theorem, we will examine the probability density after exactly two steps.
The mathematical problem is as follows: let X1 and X2 be independent random variables with probability
density functions f1(x) and f2(x), respectively. That is, the probability that X1,2 is between x and x + dx
is f1,2(x) dx. Then we can ask, what is the probability density of X1 +X2?

To answer this, we can note that X1+X2 = x for any pair of values of X1 and X2 that happen to add
up to x. But then we must sum over all such pairs. The probability that both X1 and X2 will both have
particular probabilities is the product of the individual probabilities since the variables are independent.
Thus, expressing what we said in equation form,

Prob(X1 +X2 between x and x+ dx) =∑
x′,x′′

Prob(X1 between x′ and x′ + dx′)× Prob(X2 between x′′ and x′′ + dx′′ |x = x′ + x′′).

(17.5)
We can translate this statement in terms of the probability densities and implement the constraint as a
δ-function (with a factor of dx, so that the δ-function registers unity when the condition is met). Letting
f+(x) denote the probability density of X1 +X2,

f+(x) dx =

∫ ∞
−∞

dx′
∫ ∞
−∞

dx′′ f1(x
′) f2(x

′′) δ(x′ + x′′ − x) dx. (17.6)

Evaluating the x′′ integral, we see that the probability density of the sum is the convolution of the individual
densities,

f+(x) dx =

∫ ∞
−∞

dx′ f1(x
′) f2(x− x′) dx =: (f1 ∗ f2)(x) dx, (17.7)

where we use the ∗ symbol to denote convolution of two functions. Note that this result is general in that it
doesn’t assume any particular form for f1(x) or f2(x).

For the random walk, we assumed identical, indepedent steps, so that f1(x) = f2(x) = f(x). Thus,
the probability density for two steps is

fS2
(x) = (f ∗ f)(x), (17.8)

(two-step probability density)

i.e., the convolution of the one-step distribution with itself. Recall that the convolution ‘‘smears’’ one
function with another, and so as the effect of the second step is to smooth the one-step distribution. The
idea behind the central limit theorem is that this smoothing continues until the distribution is Gaussian
after many steps.

17.1.1.1 Example 1: Convolution with a Delta Function

As an example of the general idea of the convolution of two functions f and g,

(f ∗ g)(x) =
∫ ∞
−∞

dx′ f(x′) g(x− x′), (17.9)

consider the convolution of f(x) with the perfectly localized delta function g(x) = δ(x). The convolution is
then

(f ∗ δ)(x) =
∫ ∞
−∞

dx′ f(x′) δ(x− x′) = f(x). (17.10)

The effect of convolution with a delta function is thus simply to do nothing: convolution with a delta function
is just the identity operation.
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In terms of the random walk, δ(x) as a one-step probability function simply corresponds to a step of
zero length, or just taking no step at all. Thus, it makes intuitive sense that the distribution isn’t changed
by convolution with δ(x). In general, when g(x) is some other function, the convolution ‘‘smears’’ f(x) with
the convolution kernel g(x). Typically, we will use centered kernels; the effect of a displaced kernel is
simply to displace the convolution by the same amount. For example, if

g(x) = δ(x− x0), (17.11)

then
(f ∗ g)(x) =

∫ ∞
−∞

dx′ f(x′) δ(x− x0 − x′) = f(x− x0), (17.12)

which is just the displaced version of the original.

17.1.1.2 Example 2: Convolution of Box Functions

As a slightly more complicated example, consider the convolution of box functions, both given by

f(x) = g(x) =

{
1, |x| ≤ 1/2
0 elsewhere, (17.13)

which here are properly normalized to correspond to probability distributions. The convolution consists of
displacing g(x′) by x, multiplying the functions together, and integrating. For this simple case (box functions
of unit height), the convolution (product) just turns out to be the area where the two functions overlap.

xoo'
xoo'o=o0

1/2-1/2
x

fo(xoo')go(xo-oxoo')

(fo*og)o(x)

When the displacement is large, |x| > 1, the boxes don’t overlap at all, so the convolution is zero. Otherwise,
the overlap area varies linearly with the displacement, so the convolution is a triangle function.

x
xo=o0

1/2-1/2 1-1

fo(x)

(fo*ofo)o(x)

(Note that f ∗f in the figure is the same as f ∗g for this special case of f = g.) We see now the ‘‘smoothing’’
or ‘‘blurring’’ effect of the convolution. The original functions were discontinuous, but the convolution is
continuous. The convolution is also wider than the original functions. As we will see, continued, successive
convolutions will make the distribution look Gaussian.

17.1.2 Convolution Theorem

Now that we brought up the convolution, we may as well discuss how to compute it. The convolution
theorem gives an easy way to evaluate the convolution integral in Eq. (17.7), both in an intuitive and a
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computational sense. The convolution theorem states that the Fourier transform of the convolution is the
product of the Fourier transforms of the individual functions:

F [f ∗ g] = F [f ]F [g].
(17.14)

(convolution theorem)

To prove this, we’ll just compute the explicit form of F [f ∗ g]. This will be very much a physicist’s proof,
not a mathematician’s proof, in that we’ll just assume the functions are nice enough that all the integrals
simply exist.

First of all, in our notation here, the Fourier and inverse transforms have the form

f(x) =
1

2π

∫ ∞
−∞

dk f̃(k) eikx, f̃(k) =

∫ ∞
−∞

dx f(x) e−ikx, (17.15)

where f̃(k) ≡ F [f(x)]. It’s important to make this explicit, since the result depends on the normalization
convention we choose for the Fourier transform. Then computing the Fourier transform of f ∗ g,

F [f ∗ g] = F

[∫ ∞
−∞

dx′ f(x′) g(x− x′)
]

=

∫ ∞
−∞

dx

∫ ∞
−∞

dx′ f(x′) g(x− x′) e−ikx

=

∫ ∞
−∞

dx

∫ ∞
−∞

dx′ f(x′) e−ikx
′
g(x− x′) e−ik(x−x

′).

(17.16)

Letting x −→ x+ x′,

F [f ∗ g] =
∫ ∞
−∞

dx

∫ ∞
−∞

dx′f(x′) e−ikx
′
g(x) e−ikx

=

∫ ∞
−∞

dx′ f(x′) e−ikx
′
∫ ∞
−∞

dx g(x) e−ikx

= F [f ]F [g].

(17.17)

Thus, to convolve two functions, just follow this recipe: Fourier transform both functions, multiply them
together, then compute the inverse Fourier transform. Mathematically, we can write

f ∗ g = F−1 {F [f ]F [g]} . (17.18)

Since Fourier transforms of common function are usually already known, the convolution theorem provides
a shortcut for evaluating the full convolution integral.

17.1.2.1 Example: Convolution of Two Gaussians

Since it’s easy to compute the Fourier transform of Gaussian distributions, let’s use the convolution theorem
to convolve two Gaussians. Let’s write the two functions as

f(x) = Ae−x
2/α2

, g(x) = A′e−x
2/β2

. (17.19)

The Fourier transform of a Gaussian is also a Gaussian, and in particular

F [f ](k) = f̃(k) = Aα
√
πe−α

2k2/4, F [g](k) = g̃(k) = A′β
√
πe−β

2k2/4. (17.20)

Then the product of the Fourier transforms is

(F [f ]F [g]) (k) = AA′αβπe−(α
2+β2)k2/4. (17.21)
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Finally, we invert the Fourier transform to obtain the convolution:

(f ∗ g)(x) = F−1
[
AA′αβπe−(α

2+β2)k2/4
]
=
AA′αβ

√
π√

α2 + β2
exp

(
− x2

α2 + β2

)
. (17.22)

Recall that the standard (normalized) form of the Gaussian is

1√
2π σ

exp
(
− (x− µ)2

2σ2

)
, (17.23)

where the µ is the mean and σ is the standard deviation (σ2 is the variance). The standard deviation is a
common measure of the width of a Gaussian function. Note that f(x) has standard deviation α/

√
2, g(x)

has standard deviation β/
√
2, and (f ∗ g)(x) has standard deviation

√
(α2 + β2)/2, so that the standard

deviations add in quadrature as a result of the convolution. Thus, the convolution of Gaussians is still
Gaussian, but the blurring effect of the convolution makes the convolved Gaussian wider than the original
functions.

17.1.3 Proof of the Central Limit Theorem

Now we extend the two-step analysis above analysis to N steps. Let X1, . . . , XN be independent, identically
distributed random variables. Let f(x) be the probability density function of each of the Xj . Defining the
sum by

SN :=

N∑
j=1

Xj , (17.24)

we will now ask, what is the probability density fSN
(x) of SN? Evidently, we can iterate Eq. (17.8) to obtain

fSN
(x) = (f ∗ f ∗ · · · ∗ f)(x), (17.25)

where the result is the successive convolution of N copies of f (for N − 1 total convolution operations).
However, it turns out that this distribution becomes simple for large enough N .

The central limit theorem states that, provided that the mean and variance of the Xj exist, with
the mean µ = 〈Xj〉 and variance σ2 = Var[Xj ], the distribution fSN

(x) becomes asymptotically Gaussian
for large N with

〈SN 〉 = Nµ, Var[SN ] = Nσ2.
(17.26)

(central limit theorem)

(The mean and variance are in fact exact, whereas the form of the distribution is valid for large N .) This is
a rough statement, since ‘‘becomes asymptotically Gaussian’’ is an imprecise statement. So let’s clean this
up a bit.

The central limit theorem states that the probability density function fZN
(x) of the centered, scaled

statistic
ZN :=

SN −Nµ
σ
√
N

(17.27)

converges to the ‘‘standard normal’’ (Gaussian) distribution

fZN
(x) −→ 1√

2π
e−x

2/2, (17.28)

which is the special Gaussian with mean 0 and unit variance.
Let’s prove this now3. To evaluate the convolutions in Eq. (17.25), we need to employ the convolution

3This is the physicist’s proof; the rigorous version is in T. W. Körner, Fourier Analysis (Cambridge, 1988), starting on p.
349.
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theorem. Taking the Fourier transform of f(x),

f̃(k) =

∫ ∞
−∞

dx f(x) e−ikx

=
∞∑
j=0

∫ ∞
−∞

dx f(x)
(−ikx)j

j!

= 1− ikµ− k2(σ2 + µ2)

2
+O(k3).

(17.29)

Here, we Taylor-expanded e−ikx and then used the fact that the terms of the expansion were proportional
to expectation values 〈Xj〉. In particular, note that in probability theory the characteristic function of a
probability density, given by

f̃(−k) = 〈eikX〉, (17.30)

is an important tool for manipulating probabilities.
This is more cumbersome than necessary, so let’s recompute the expansion in Eq. (17.29) for the

centered, scaled variable
Zj =

Xj − µ
σ
√
N

, (17.31)

with corresponding probability density fZ(x). The centering effectively zeroes the mean, and the rescaling
changes the factor in front of the variance, with the result

f̃Z(k) = 1− k2

2N
+O

[(
k√
N

)3
]
. (17.32)

The convolution theorem says that to calculate the transform of the N -fold convolution, we just compute
f̃Z(k) to the Nth power:

f̃ZN
(k) =

[
f̃Z(k)

]N
=

(
1− k2

2N
+O

[(
k√
N

)3
])N

. (17.33)

As N becomes large, we can neglect the higher order terms beyond the first, and then use the formula

lim
n−→∞

(
1 +

x

n

)n
= ex (17.34)

to see that for large N , the transform becomes

f̃ZN
(k) = exp

(
− k2

2

)
. (17.35)

But now the inverse Fourier transform of exp(−k2/2) is exp(−x2/2)/
√
2π, so fZN

converges to a standard
normal distribution as N −→∞.

17.1.3.1 Example: Square Distribution

As a simple example of the central limit theorem, let’s try out the unit box function as the one-step distri-
bution, as we tried out in Section 17.1.1.2:

f(x) =

{
1, |x| ≤ 1/2
0 elsewhere. (17.36)

First note that the this function is normalized, so it represents a proper probability distribution. Thus, so
do all of its self-convolutions. Let f∗N (x) denote the convolution of f(x) with itself N − 1 times. This is the
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same as fSN
(x) for the random-walk interpretation of this distribution. The central limit theorem says that

asymptotically, the self-convolution becomes Gaussian,

f∗N (x) =
1√

2πσN
e−x

2/2σ 2
N , (17.37)

with zero mean, since f(x) is centered. The variance of f(x) is∫ ∞
−∞

dxx2 f(x) =

∫ 1/2

−1/2
x2 dx =

1

12
, (17.38)

so that the width of the asymptotic Gaussian is

σN =

√
N

12
. (17.39)

Here, f(x) is plotted with several self-convolutions f∗N (x), along with the asymptotic form, the Gaussian
of width σN =

√
N/12.
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As N increases, the widths of the distributions increase and the peak values decrease, but we have rescaled
the axes by appropriate factors of

√
N to keep the distributions comparable at each step. The box function

is very different from the asymptotic Gaussian. However, even the first self-convolution (a triangle function)
is already pretty close to the Gaussian, and the successive self-convolutions converge fairly rapidly to the
asymptotic form.

17.1.3.2 Application: Standard Deviation of the Mean

Returning again to error analysis, suppose we make independent measurements X1, . . . , XN of some quantity
in the laboratory. The sample mean is

µN :=
1

N

N∑
j=1

Xj . (17.40)

We can rewrite this as
µN =

SN
N

= µ+
σZN√
N
, (17.41)

where the first term represents the true mean, and the second is the experimental error (statistical fluctuation
in the sample mean). Applying the central limit theorem, ZN is approximately standard normal for large N ,
so µN is Gaussian with mean µ and standard deviation σ/

√
N , where σ is the standard deviation of a single

measurement. Thus, the standard deviation of the mean (also called the standard error) is σ/
√
N .

This is why, by making many measurements, it is possible to increase the accuracy of a measured quantity.
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17.1.4 Variances Add in Quadrature

In discussing random walks so far, we have been discussing the asymptotic, N -step probability distribution,
and its scaling with time. However, we can make a simpler statement that does not explicitly refer to the
distribution. Let X1, . . . , XN be independent random variables, but now we won’t even require them to be
identically distributed. For the moment, let’s also assume 〈Xn〉 = 0. Now consider the sum X1+X2. Clearly
the mean vanishes, and thus the variance becomes

Var[X1 +X2] =
〈
(X1 +X2)

2
〉

=
〈
X 2

1

〉
+
〈
X 2

2

〉
+ 2〈X1X2〉

=
〈
X 2

1

〉
+
〈
X 2

2

〉
+ 2〈X1〉〈X2〉

= Var[X1] + Var[X2],

(17.42)

where we used the fact that X1 and X2 are independent, and thus their correlation function〈X1X2〉 factorizes
into 〈X1〉〈X2〉 [the joint probability density f(x1, x2) for independent processes must have the factored form
f1(x1)f2(x2)]. Thus, the variances of independent random variables, and regarding the variance as the square
of the ‘‘width’’ of the corresponding probability distributions, we see that the widths add in quadrature when
we add together the random variables. By subtracting 〈X1 +X2〉2 =〈X1〉2 +〈X2〉2 + 2〈X1〉〈X2〉 from each
intermediate expression, it isn’t hard to see that the same result holds when 〈Xn〉 6= 0.

Iterating this process, we see that the variance of the sum defined as before,

SN :=

N∑
j=1

Xj , (17.43)

is simply

Var[SN ] =

N∑
j=1

Var[Xj ]. (17.44)

Again, if we take each Xn to be identical as for the random walk, and we take the variance as the square of
the width σ (i.e., Var[Xn] = σ2), then

Var[SN ] = Nσ2,
(17.45)

(variance of the sum)
or

σN :=
√

Var[SN ] =
√
N σ.

(17.46)
(standard deviation of the sum)

This is the same as one of the results of the central limit theorem (17.26), but this is not an asymptotic
statement, it is exact. Thus, we expect the width of the sum to be precisely

√
N σ. Nevertheless, we

often expect this scaling of the distribution width to hold only asymptotically, since in general the ensemble
of walkers will have an initial distribution that does not match the one-step distribution (or any N -step
distribution), and thus we also need to include the convolution with this initial state.

17.1.5 A Walk on the Cauchy Side

Consider independent, identically distributed random variables X1, . . . , XN with Cauchy (Lorentzian) prob-
ability density functions

f(x) =
1

π(1 + x2)
.

(17.47)
(Cauchy distribution)

The Fourier transform is given by
f̃(k) = e−|k|, (17.48)
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as we can see by computing the inverse Fourier transform of f̃(k):

f(x) =
1

2π

∫ ∞
−∞

dk e−|k|eikx

=
1

2π

[∫ ∞
0

dk e−k(1−ix) +

∫ ∞
0

dk e−k(1+ix)
]

=
1

2π

∫ ∞
0

dk e−k(1−ix) + c.c.

=
1

2π(1− ix)
+ c.c.

=
1 + ix

2π(1 + x2)
+ c.c.

=
1

π(1 + x2)
.

(17.49)

We have now shown that F−1[f̃(k)] = f(x). Both f(x) and f̃(k) are continuous and bounded, so the Fourier
transform is invertible; thus, F [f(x)] = f̃(k).

Now let’s compute the probability density of the mean

µN :=
1

N

N∑
j=1

Xj . (17.50)

The probability density function of the sum

SN :=

N∑
j=1

Xj (17.51)

is (f ∗ f ∗ . . . ∗ f)(x) (N copies of f or N − 1 convolutions), so using the convolution theorem,

f̃SN
(k) =

[
f̃(k)

]N
=
[
e−|k|

]N
= e−|Nk| = f̃(Nk). (17.52)

In general, if f(x) and f̃(k) are a Fourier transform pair, then so are αf(αx) and f̃(k/α). Thus, the inverse
transform of f̃(Nk) is f(x/N)/N . The variable µN is the same as SN except for a scaling factor of 1/N , so
the probability density must be the same, but N times wider. So to get the probability density of µN , we
make the replacement x −→ Nx in the expression fSN

(x) dx = f(x/N) dx/N for the probability density of
SN , which gives f(x) dx. Thus, f(x) is also the probability density of µN .

This is different than what we expect from the central limit theorem: there, we expect the mean to
have a width that is smaller than that of the one-step distribution by a factor of

√
N . Stated otherwise,

what we have shown is that the width of the sum distribution fSN
(x) = f(x/N) is N times larger than that

of the one-step distribution, which says that the widths add for the Cauchy random walk. But the central
limit theorem said that variances add, or the widths should add in quadrature. Is there a contradiction here?

Obviously there should be some simple resolution. The problem is that variance of Xj does not exist
for a Cauchy distribution. This is because the Cauchy distribution only falls off as 1/x2 for large |x|, and so
the variance integral ∫ ∞

−∞
dx f(x)x2 (17.53)

diverges. The central limit theorem implicitly assumes that the variance exists; thus, the central limit theorem
does not apply to this case. This is one case of anomalous diffusion, where the diffusion coefficient diverges,
because the width of the N -step distribution does not scale diffusively (i.e, it scales as t rather than

√
t).
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One important application of such ‘‘fat-tailed’’ distributions is in the area of financial modeling,4 where
Gaussian random walks do not adequately model the large jumps observed, for example, in the histories of
stock prices.

17.1.6 Arbitrary Combinations of Random Variables

In considering random walks, we have been considering the probability distribution corresponding to the sum
(17.2) of independent random variables, in terms of the probability distributions of the separate variables—it
turned out to be just the convolution of the individual distributions. But how far can we push this? Here
we will develop some concepts seemingly unrelated to probability, and use them to deduce the probability
density for an arbitrary (scalar) function of a set of independent random variables.

17.1.6.1 Divergence Theorem

The divergence theorem is fundamental in the study of electrostatics, and the standard form states that for
a vector field A, ∫

V

(∇ ·A) d3r =

∮
S

A · n̂ dS, (17.54)

where V is the volume of integration, S is the surface of the volume, n̂ is the (outward-pointing) normal
vector to the surface, and dS is the surface-area element for integration over the surface of S.

Let’s briefly derive this in d dimensions. Consider a box of infinitesimal volume, given by

dV = dx1 · · · dxd. (17.55)

The flux of A(x) through the surface of this volume is given by summing over the fluxes of the two sides
bounding each dimension; the ‘‘area’’ of the jth side is dx1 · · · dxj−1dxj+1 · · · dxd = dV /dxj , and thus we
have a total flux

A · n̂ dS =
∑
j

[
A(x + dxj x̂j) · x̂j

dV

dxj
−A(x) · x̂j

dV

dxj

]
=
∑
j

∂A(x)
∂xj

· x̂j dV

= (∇ ·A) dV,

(17.56)

where the divergence is interpreted in d dimensions. Now we integrate over the volume, adding up the
volume and surface contributions due to all the infinitesimal elements in the integration volume. Whenever
two elements contact, their fluxes on their common surface cancel, so the only contribution in the surface
integral is due to the flux on the outer surface of the integration volume, and thus we have∫

V

ddx (∇ ·A) =

∮
S

A · n̂ dS (17.57)
(divergence theorem, n dimensions)

as the generalized divergence theorem, converting a volume integral in n dimensions to an integral over the
bounding hypersurface, a manifold in n− 1 dimensions.

17.1.6.2 Transformation of Surface Delta Functions

This divergence theorem is useful in establishing a chain-rule formula for a delta function. Recall that given
a function f(x), the delta function obeys the chain rule

δ[f(x− a)] =
∑

x∈f−1(a)

δ(x− a)
|f ′(a)|

, (17.58)

4Rama Cont and Peter Tankov, Financial Modelling with Jump Processes (Chapman & Hall/CRC, 2004), Chapter 1.
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which follows from requiring that the delta function be normalized under integration over either y = f(x) or
x. For a coordinate change between coordinates x and y (both in d dimensions), this formula generalizes to

δd(y) = δd(x)
|∂y/∂x| , (17.59)

so that the scaling factor is now the Jacobian determinant of the coordinate transformation. But what if
we have a scalar function y = h(x) of a d-dimensional vector x? The appropriate generalization of the
determinant turns out to be the Euclidean norm of the vector of partial derivatives of h, as we will now
show.

We will start by considering arbitrary scalar functions h(x) and A(x), respectively, on Rd. Now
consider the step function Θ(h), which defines a volume (or possibly multiple, unconnected volumes). Then
consider the integral ∫

ddx∇ · {Θ[h(x)]A(x)} = 0, (17.60)

which follows from changing to a surface integral via the divergence theorem, and assuming that either the
surface at infinity is outside the volume defined by h (any physically relevant volume should be finite), or
that A vanishes when necessary at infinity. Then using

∇ · [Θ(h)A] = A · ∇Θ(h) + Θ(h)∇ ·A, (17.61)

we have ∫
ddxΘ(h)∇ ·A = −

∫
ddxA · ∇Θ(h)

= −
∫
ddx δ(h)A · ∇h.

(17.62)

Now put
f(x) = A · ∇h, (17.63)

and consider ∫
ddx δ[h(x)] f(x) = −

∫
ddxΘ[h(x)]∇ ·A(x)

= −
∫
V

ddx (∇ ·A)

= −
∮
S

A · n̂ dS

=

∮
h−1(0)

A · ∇h
|∇h|

dS

=

∮
h−1(0)

f(x)
|∇h|

dS,

(17.64)

where we have identified V as the volume defined by Θ(h); S as the surface, defined by the locus of points
where h vanishes; and the normal vector n̂ = −∇h/|∇h|, since the gradient is normal to the surface, but
points towards the interior of the volume (where h is increasing away from the surface). To summarize, we
have identified ∫

ddx δ[h(x)] f(x) =
∮
h−1(0)

f(x)
|∇h|

dS,

(δ-function constraint in integration) (17.65)
as the effect of a δ-function constraint in a volume integral, where |∇h| is the Euclidean norm of the gradient
vector:

|∇h| =
√∑

j

(∂xj
h)2. (17.66)
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Again, the constraint here changes the volume integral to an integral over the bounding hypersurface. In this
derivation, we have assumed that any function f(x) can be represented as A · ∇h, but since A is arbitrary,
this is always possible provided ∇h 6= 0 anywhere (and we are free to assume this while still representing
any surface manifold we like).

17.1.6.3 Direct Derivation

A more direct derivation of Eq. (17.65) proceeds as follows.5 Recall that h(x) = 0 defines the surface on
which the delta function ‘‘fires,’’ and we are considering vector coordinates x = (x1, . . . , xd). Consider
a neighborhood of a point x0 on the surface, in which one of the partial derivatives is nonvanishing, say
∂h/∂x1 6= 0. Then we can consider the action of the δ function along this coordinate, as∫

dx1 δ[h(x)] f(x) =
∫
dx1

δ(x1 − x01) f(x)∣∣∣∣ ∂h∂x1
∣∣∣∣
x=x0

=
f(x01, x2, . . . , xd)∣∣∣∣ ∂h∂x1

∣∣∣∣
x=x0

, (17.67)

where x10 = x10(x2, . . . , xd) is the x1-component of x0, and we have used the ordinary δ-function chain rule
(17.58). Then using

|∇h| =

√√√√ d∑
j=1

(
∂h

∂xj

)2
=

∣∣∣∣ ∂h∂x1
∣∣∣∣
√√√√1 +

d∑
j=2

(
∂x1
∂xj

)2
, (17.68)

and then identifying

dS =

√√√√1 +

d∑
j=2

(
∂x1
∂xj

)2
dx2 · · · dxd =

√√√√ d∑
j=1

(
∂x1
∂xj

)2
dx2 · · · dxd (17.69)

as the local surface element (this bears more explanation), and finally integrating over the remaining coor-
dinates [which now locally parameterize the surface h(x) = 0], Eq. (17.65) then results.

Now to return to the business of identifying the surface element (17.69). We can define the surface
element in terms of the volume element as

dV = dS d`, (17.70)

where d` is the line element normal to the surface. Then

dS =
dV

d`
=
dx1 · · · dxd

d`
. (17.71)

Now suppose that we express d` in terms of x1:

d` = (n̂ · x̂1) dx1, (17.72)

where n̂ is normal to the surface, so that d` represents only the component of dx1 normal to the surface.
Then dividing the volume by d`, we only remove the dimension normal to the surface. Using n̂ = ∇h/|∇h|,
we have

d` =
1

|∇h|
∂h

∂x1
dx1 =

dx1√√√√1 +

d∑
j=2

(
∂x1
∂xj

)2 , (17.73)

after using Eq. (17.68), and then putting this expression into Eq. (17.71), we obtain the surface element
(17.69).

5This derivation and the connection to the divergence theorem in the previous section are adapted from (the much more
terse treatment in) Lars Hörmander, The Analysis of Linear Partial Differential Operators I: Distribution Theory and Fourier
Analysis (Springer-Verlag, 1983), p. 136.
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17.1.6.4 Chain Rule for Coordinate Transformations

Using Eq. (17.65), we can also derive a chain rule for integrals of the form of the left-hand side, when we
compare equivalent constraints specified by different functions. First, by rescaling the function f(x), we can
write ∫

ddx δ[h(x)] |∇h| f(x) =
∮
h−1(0)

f(x) dS(x). (17.74)

Now consider the constraint h(x) and the alternate but equivalent constraint k(x):

h(x) = 0 ⇐⇒ k(x) = 0. (17.75)

Then the translation of Eq. (17.74) to the alternate constraint function is∫
ddx δ[k(x)] |∇k| f(x) =

∮
k−1(0)

f(x) dS(x). (17.76)

The right-hand side here is equivalent to that of Eq. (17.74), so eliminating the surface integral, we have∫
ddx δ[h(x)] |∇h| f(x) =

∫
ddx δ[k(x)] |∇k| f(x) (17.77)

This hold for any test function f(x), so

δ[h(x)] = δ[k(x)] |∇k|
|∇h|

.

(δ-function chain rule for scalar constraints) (17.78)
Therefore, the transformation just involves the ratio of Euclidean vector-gradient lengths for the two con-
straint functions, evaluated in each case at the boundaries. These should both exist for a sensible surface-
constraint function, since these act to define the normal vector.

17.1.6.5 Probability Density for Combinations of Random Variables

Now we can return to the main point. Suppose we have random variables X1, . . . , XN , with probability
density function fx(x1, . . . , xN ) = fx(x). Now suppose we define a combination of the random variables

Y = h(X1, . . . , XN ). (17.79)

Then in the same way as in the result (17.6) for the two-step random walk, we can compute the probability
density fy(y) for Y by integrating over all possible values of x, using a delta function to enforce the relation
between the variables:

fy(y) =

∫
dNx f(x) δ[y − h(x)]. (17.80)

Then using Eq. (17.65), we have

fy(y) =

∮
h(x)=y

f(x)
|∇h|

dS =

∮
h(x)=y

f(x1, . . . , xN )√√√√ N∑
j=1

(
∂h(x)
∂xj

)2
dS,

(transformation law, arbitrary function of random variables) (17.81)
where the integration is over all x such that y = h(x) [i.e., all possible sets of (X1, . . . , XN ) that give the
desired value Y ], a set that forms a hypersurface S of dimension N − 1.
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17.1.6.6 Example: Convolution

For example, taking
Y = X1 +X2, (17.82)

we have |∇h| =
√
2, taking x2 = y− x1, and parameterizing the ‘‘surface’’ integral with s = x1 + x2, so that

ds =
√
dx 2

1 + dx 2
2 =
√
2 dx1, (17.83)

Eq. (17.81) becomes

fy(y) =

∫
ds
f(x1, y − x1)√

2
=

∫
dx1 f1(x1) f2(y − x1), (17.84)

where in the last equality we have assumed independence of X1 and X2. This result recovers the convolution
(17.7).

17.1.6.7 Example: Quotient of Normal Deviates

As a slightly more complicated example, consider two standard-normal deviates X1 and X2, with (separable)
joint distribution

f(x1, x2) =
1

2π
e−(x

2
1 +x 2

2 )/2. (17.85)

Now consider the quotient Y = X1/X2 of the two variables, such that the transformation function is

h(x1, x2) =
x1
x2
. (17.86)

Then the gradient norm is

|∇h| =

√
1

x 2
2

+
x 2
1

x 4
2

=

√
x 2
1 + x 2

2

x 2
2

=

√
1 + y2

|x2|
, (17.87)

where we have set x1 = yx2, taking x2 as the independent variable. The line element for the ‘‘surface’’
integration is

ds =
√
dx 2

1 + dx 2
2 =

√
1 + y2 dx2, (17.88)

and thus
fy(y) =

∫
ds
|x2| f(yx2, x2)√

1 + y2

=
1

2π

∫
dx2 |x2| e−x

2
2 (1+y2)/2

=
1

2π

(
2

1 + y2

)
.

(17.89)

Then we see that the distribution function for the quotient is

fy(y) =
1

π(1 + y2)
, (17.90)

which is a standard Cauchy distribution.

17.2 Continuous Random Walks: Wiener Process

Let’s first define the Wiener process W (t) as a sort of ‘‘ideal’’ random walk with arbitrarily small, inde-
pendent steps taken arbitrarily often. That is, the usual random walk is usually taken to be a sequence of
random steps of finite average (rms) size, taken after every finite time interval ∆t. Recall from Section 17.1
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that under fairly reasonable assumptions (such as the existence and finiteness of the one-step variance, and
independence of the individual steps), that the central limit theorem guarantees that for long times, the prob-
ability density for the walker’s location is Gaussian, independent of the one-step distribution, and the width
(standard deviation) increases as

√
t. The Wiener process is essentially the idealized limit where ∆t −→ 0,

but where the size of each step decreases as appropriate to maintain the same asymptotic distribution. In
this sense, the Wiener process is scale-free, since it has random steps on arbitrarily small time scales, and in
fact is a fractal object: a Wiener process with appropriate but arbitrary rescaling (magnification) is still a
Wiener process. We choose the Wiener process to correspond to a symmetric random walk, and so W (t) is
a normally distributed random variable with zero mean. To fix the scale of the random walk, we choose the
variance of W (t) to be simply t. That is, the (rms) width of the distribution is

√
t, as is characteristic of a

diffusive process. In particular, W (t) has the dimensions of
√
t. We can thus write the probability density

for W (t) as
P (W, t) =

1√
2πt

e−W
2/2t. (17.91)

Note that we have taken the convention that W (0) = 0, so that P (W, 0) = δ(W ). Again, it is important to
emphasize that in view of the central-limit theorem, any simple random walk gives rise to a Wiener process
in the continuous limit, independent of the one-step probability distribution (so long as the one-step variance
is finite). To get an idea what these look like, 5 and 200 Wiener processes are respectively shown in the two
plots below. (Actually, these are finite realizations of ∆W (t), with ∆t = 0.01.)

t
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Intuitively, W (t) is a function that is continuous but everywhere nondifferentiable. (Of course, any such
statement necessarily includes the proviso that the statement is true except for possibly a set of realizations
of zero measure.) Naturally, the first thing we will want to do is to develop the analogue of the derivative
for the Wiener process. We can start by defining the Wiener increment

∆W (t) :=W (t+∆t)−W (t) (17.92)

corresponding to a time interval ∆t. Again, ∆W is a normally distributed random variable with zero mean
and variance ∆t. Note again that this implies that the rms amplitude of ∆W scales as

√
∆t. We can

understand this intuitively since it is the variances that add for successive steps in a random walk, not the
standard deviations. Mathematically, we can write the variance as〈〈

(∆W )2
〉〉
= ∆t, (17.93)

where the double angle brackets 〈〈 〉〉 denote an ensemble average over all possible realizations of the Wiener
process. This relation suggests the notion that second-order terms in ∆W contribute at the same level as
first-order terms in ∆t, thinking about both of these variables in a small-time expansion of the evolution.
In the infinitesimal limit of ∆t −→ 0, we will write ∆t −→ dt and ∆W −→ dW . Then dW (t) is the
Wiener differential, which is a fundamental object underlying stochastic calculus, and our analogue of the
derivative of the Wiener process. Thought of as a ‘‘signal,’’ it is everywhere discontinuous. Notice that it is
somewhat unusual: one sometimes writes a noise process as

ξ(t) :=
dW (t)

dt
, (17.94)

but this object is singular (i.e., has unbounded variance at any given time t), because as ∆t −→ 0,

∆W

∆t
∼
√
∆t

∆t
=

1√
∆t
−→∞. (17.95)

It is possible to work with this singular fraction so long as you are careful with it, in the same sense that
you can work with the singular delta function. We will tend to stick to the notation of differentials dt and
dW (t), but note that while dW is ‘‘zero,’’ it is not ‘‘quite as small as’’ dt.

There is, in fact, a deeper connection of dW with the delta function. If we think of dW as a temporal
‘‘noisy’’ signal, the reason dW/dt is singular is that it contains contributions from all frequencies with equal
weights—it’s white noise—and that’s the reason why the Wiener process contains random steps on all time
scales. However, the total power for such a system, if the power in any band is finite, must be infinite.
This is consistent with the fact that dW/dt diverges on average. On the other hand, if we do anything that
limits the bandwidth of this signal, such as convolution with a finite function, or using a bandpass filter, it
makes the resulting signal finite and well-behaved. Of course, any physical calculation or physical system
involves just such a procedure, say, via dissipation through friction. This is exactly analogous to the delta
function. The difference is that in the delta function, the frequency components have well-defined relative
phases, while for the Wiener process they have effectively random phases.

17.3 Itō Calculus

Now that we have introduced a white-noise process, we will explore the formalism for handling this, par-
ticularly for handling the evolution of systems that are driven by white noise. It turns out that adding a
white-noise stochastic process changes the basic structure of the calculus for treating the evolution equa-
tions. In particular, the usual Riemann integral is undefined for stochastic processes. There is more than
one formulation to treat stochastic processes, but we will start out with Itō calculus,6 which is the one
most commonly used in treating quantum systems. We will start by showing how to use this calculus, since
the rules are a bit different than what you’re probably used to, and then we will justify the rules of usage.

6The name Itō is also commonly transliterated as Ito or Itô.
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17.3.1 Usage

First, let’s review the usual calculus in a slightly different way. A differential equation

dy

dt
= α(y, t) (17.96)

can be instead written in terms of differentials as

dy = αdt. (17.97)

The basic rule in the familiar deterministic calculus is that (dt)2 = 0. To see what we mean by this, we can
try calculating the differential dz for the variable z = ey in terms of the differential for dy as follows:

dz = ey+dy − ey = z
(
eαdt − 1

)
. (17.98)

Expanding the exponential and applying the rule (dt)2 = 0, we find

dz = zα dt. (17.99)

This is, of course, the same result as that obtained by using the chain rule to calculate dz/dy and multiplying
through by dy. The point here is that calculus breaks up functions and considers their values within short
intervals ∆t. In the infinitesimal limit, the quadratic and higher order terms in ∆t end up being too small
to contribute.

In Itō calculus, we have an additional differential element dW representing white noise. The basic rule
of Itō calculus is that dW 2 = dt, while dt2 = dt dW = 0. We will justify this later, but to use this calculus,
we simply note that we ‘‘count’’ the increment dW as if it were equivalent to

√
dt in deciding what orders

to keep in series expansions of functions of dt and dW . As an example, consider the stochastic differential
equation (SDE)

dy = α(y, t) dt+ β(y, t) dW. (17.100)

We obtain the corresponding differential equation for z = ey by expanding to second order in dy:

dz = ey
(
edy − 1

)
= z

(
dy +

(dy)2

2

)
. (17.101)

Only the dW component contributes to the quadratic term; the result is

dz = z

(
α+

β2

2

)
dt+ zβ dW. (17.102)

The extra β2 term is crucial in understanding many phenomena that arise in continuous-measurement
processes.

17.3.2 Itō Rule: Justification

We now want to show that the Wiener differential dW satisfies the Itō rule dW 2 = dt. We already noted
above that by definition, the ensemble average of (∆W )2 is equal to ∆t. However, in the infinitesimal limit,
we will show that dW 2 = dt holds without the ensemble average. This is surprising, since dW is a stochastic
quantity, while dt obviously is not. To show this, consider the probability density function for (∆W )2, which
we can obtain by a transforming the Gaussian probability density for ∆W :

P (∆W ) =
1√
2π∆t

e−(∆W )2/2∆t. (17.103)

We accomplish this for the coordinate transformation y = f(x) by the transformation

Py(y) dy =
∑

x∈f−1(y)

Px(x) dx, (17.104)
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which is also equivalent to the Frobenius–Peron equation

Py(y) =

∫
dx′ Px(x

′)δ[y − f(x′)]. (17.105)

Then we may write

P
[
(∆W )2

]
=

e−(∆W )2/2∆t√
2π∆t (∆W )2

. (17.106)

In particular, the mean and variance of this distribution for (∆W )2 are〈〈
(∆W )2

〉〉
= ∆t (17.107)

and
Var

[
(∆W )2

]
= 2(∆t)2, (17.108)

respectively. To examine the continuum limit, we will sum the Wiener increments over N intervals of duration
∆tN = t/N between 0 and t. The corresponding Wiener increments are

∆Wn :=W [(n+ 1)∆tN ]−W (n∆tN ). (17.109)

Now consider the sum of the squared increments

N−1∑
n=0

(∆Wn)
2, (17.110)

which corresponds to a random walk of N steps, where a single step has average value t/N and variance
2t2/N2. According to the central limit theorem, for large N the sum (17.110) is a Gaussian random variable
with mean t and variance 2t2/N . In the limit N −→ ∞, the variance of the sum vanishes, and the sum
becomes t with certainty. Symbolically, we can write∫ t

0

[dW (t′)]2 := lim
N→∞

N−1∑
n=0

(∆Wn)
2 = t =

∫ t

0

dt′. (17.111)

For this to hold over any interval (0, t), we must make the formal identification

dt = dW 2.
(17.112)

(Itō rule)

This means that even though dW is a random variable, dW 2 is not, since it has no variance when integrated
over any finite interval. Incidentally, we can also write down a similar expression for dW with itself, but at
different times. The basis of this relation is the observation that 〈〈∆W (t)∆W (t′)〉〉 = 0 for time increments
∆t < |t − t′|, since the Wiener increments are independent. By a similar argument to the one above, the
variance vanishes in the continuum limit—the variance of ∆W (t)∆W (t′) is bounded above by the variance
of [∆W (t)]2—and thus it also follows that dW (t) dW (t′) = 0 with certainty for t 6= t′, and thus we need not
have an explicit ensemble average when replacing this product by zero.

17.3.3 Ensemble Averages

Finally, we need to justify a relation useful for averaging over noise realizations, namely that

〈〈
y dW

〉〉
= 0

(17.113)
(Itō ensemble average)

for a solution y(t) of Eq. (17.100). This makes it particularly easy to compute averages of functions of y(t)
over all possible realizations of a Wiener process, since we can simply set dW = 0, even when it is multiplied
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by y. We can see this as follows. Clearly, 〈〈dW 〉〉 = 0. Also, Eq. (17.100) is the continuum limit of the
discrete relation

y(t+∆t) = y(t) + α∆t+ β∆W (t). (17.114)

This discrete form here turns out to be the defining feature of Itō calculus, as we will see. Thus, y(t) depends
on ∆W (t −∆t), but is independent of dW (t), which gives the desired result, Eq. (17.113). This gives the
important feature of Itō calculus that makes it useful for computing ensemble averages: at a given time, the
state of the noise process and the state of the system are independent. In particular, it is simple to write
down an equation for the ensemble average of Eq. (17.100),

d
〈〈
y(t)

〉〉
=
〈〈
α(y, t)

〉〉
dt, (17.115)

which we obtain simply by setting dW −→ 0 in the SDE.
This leads us to some common terminology. Any process y(t) satisfying an SDE of the form of

Eq. (17.100) with no deterministic term (α = 0) satisfies

d
〈〈
y(t)

〉〉
=
〈〈
y(t+ dt)− y(t)

〉〉
= 0. (17.116)

Any process satisfying this average condition is called a martingale, and is special in that each step in time
is unbiased as a random walk.

17.3.4 Correlation Function

Now we are in a position to justify the ‘‘whiteness’’ of the noise. Recalling the singular noise signal

ξ(t) =
dW (t)

dt
, (17.117)

let’s compute the ensemble average 〈〈
ξ(t) ξ(t′)

〉〉
, (17.118)

which is just the correlation function of the noise signal. Note that the ensemble average here can just as
well be replaced by a time average, to get the correlation function in the time-averaged sense. If t 6= t′, we
can simply write

〈〈
ξ(t) ξ(t′)

〉〉
=

〈〈
dW (t) dW (t′)

dt dt′

〉〉
=

〈〈
dW (t)

〉〉〈〈
dW (t′)

〉〉
dt dt′

= 0 (t 6= t′), (17.119)

since in this case dW (t) and dW (t′) are statistically independent. However, if t = t′, then

〈〈
ξ(t) ξ(t)

〉〉
=

〈〈
(dW )2

〉〉
(dt)2

=
1

dt
−→∞. (17.120)

Thus we see the divergent behavior. In fact, we can get the normalization from∫
dt
〈〈
ξ(t) ξ(t′)

〉〉
= 1, (17.121)

since there is a contribution of dt · (1/dt) = 1 from the integration point t = t′, and no contributions from
any other point in the integration range. Thus, we can infer that ξ(t) is delta-correlated:

〈〈
ξ(t) ξ(t′)

〉〉
= δ(t− t′). (17.122)

(white-noise correlation function)

This justifies the notion of dW [equivalently, ξ(t)] as representing white noise, since the power spectrum is
the Fourier transform of the correlation function according to the Wiener–Khinchin theorem, which in this
case turns out to be a constant function over all frequencies. Note also the peculiarity that everything in
this derivation carries through without the ensemble average, so that in Itō calculus, ξ(t)ξ(t′) = δ(t− t′).
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17.3.5 Diffusion

The noise term in the Itō stochastic differential equation (SDE)

dy = α(y, t) dt+ β(y, t) dW (17.123)

causes, as you might expect, diffusion of the trajectories y(t). To see this, we need the evolution of the width
of the ensemble. Using the Itō rule

d(y2) = 2y dy + (dy)2 = (2αy + β2) dt+ 2βy dW, (17.124)

we find the mean-square trajectory

d
〈〈
y2
〉〉
=
〈〈
(2αy + β2) dt+ 2βy dW

〉〉
=
〈〈
2αy + β2

〉〉
dt. (17.125)

Then defining the ensemble variance by

Vy :=
〈〈
(y − 〈〈y〉〉)2

〉〉
= 〈〈y2〉〉 − 〈〈y〉〉2, (17.126)

we can use
d〈〈y〉〉 = 〈〈α〉〉dt

d
[
〈〈y〉〉2

]
= 2〈〈y〉〉d〈〈y〉〉 = 2〈〈y〉〉〈〈α〉〉dt,

(17.127)

to write the variance evolution as

dVy = d〈〈y2〉〉 − d
[
〈〈y〉〉2

]
=
[
2
(
〈〈αy〉〉 − 〈〈α〉〉〈〈y〉〉

)
+ 〈〈β2〉〉

]
dt.

(17.128)
(SDE variance evolution)

Thus, the variance is affected by gradients of α with y, or ‘‘spatial’’ dependence of the drift coefficient that
can stretch or compact the distribution. This is the deterministic component of the variance. The noise
part of the equation also contributes the β2 term, so that the noise always tends to increase the ensemble
variance, thus causing diffusion.

17.3.5.1 Fokker–Planck Equation

The evolution of the mean (17.127) and variance (17.128) are equivalent to the mean and variance according
to the deterministic Fokker–Planck equation for the probability density f(y, t) (Problem 5.18)

∂tf(y, t) = −∂yα(y, t)f(y, t) +
1

2
∂ 2
y β

2(y, t)f(y, t).

(equivalent Fokker–Planck equation) (17.129)
In fact, this Fokker–Planck equation turns out to be the correct one to evolve the ensemble density. Recall
that the standard form for the Fokker–Planck equation in one dimension is [from Section (5.8.6.1)]

∂tP (y, t) = −∂yA(y, t)P (y, t) +
1

2
∂ 2
yD(y, t)P (y, t),

(general Fokker–Planck equation) (17.130)
where A(y, t) is the drift coefficient, and D(y, t) is the diffusion coefficient. Thus, we identify the
stochastic drift coefficient α(y, t) with the Fokker–Planck drift A(y, t), while we identify the squared stochastic
coefficient β2(y, t) with the diffusion coefficient D(y, t). (For an alternate connection between stochastic
trajectories and diffusion-type equations, see Section 17.11.)

To prove this, let’s review a couple of concepts regarding probability theory. The conditional prob-
ability density P (y, t|y0, t0), is a probability density in y, with P (y, t|y0, t0) dy representing the probability
density for finding the particle between y and y + dy at time t, given the particle was at y0 at time t0.
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This is distinct from the joint density P (y, t; y0, t0), which is a probability density in both y and y0, where
P (y, t; y0, t0) dy dy0 is the probability for finding the particle between y and y+ dy at time t and between y0
and y0 + dy0 at time t0. The individual probability densities are given by integrating out the other variable,

P (y, t) =

∫
dy0 P (y, t; y0, t0), P (y0, t) =

∫
dy P (y, t; y0, t0). (17.131)

The joint and conditional densities are related by the conditional probability relation, which states that
the probability for A and B to occur is the product of the probability for A given that B occured and the
probability for B to occur:

P (y, t; y0, t0) = P (y, t|y0, t0)P (y0, t0). (17.132)
For Markovian evolution, that is, evolution where the entire state of the system for all future times is
determined by the state of the system at the present time, this means that P (y, t) is determined by P (y0, t0).
In this case, the conditional density satisfies the Chapman–Kolmogorov equation,

P (y, t|y0, t0) =
∫
dy′ P (y, t|y′, t′)P (y′, t′|y0, t0)

(Chapman–Kolmogorov equation) (17.133)
which certainly seems a reasonable property of the conditional density: two steps of the evolution of the
density may be composed into a single step by integrating over all possible intermediate values.

Now to derive the Fokker–Planck equation.7 To do this, consider the evolution of the ensemble average
of an arbitrary function g[y(t)], where y(t) is a solution to the SDE (17.123):

d
〈〈
g(y)

〉〉
=

〈〈
g′(y) dy +

1

2
g′′(y) (dy)2

〉〉
=

〈〈
α(y, t)g′(y) dt+

β2(y, t)

2
g′′(y) dt

〉〉
.

(17.134)

We can obviously rewrite this as

∂t
〈〈
g(y)

〉〉
=

〈〈
α(y, t) ∂yg(y) +

β2(y, t)

2
∂ 2
y g(y)

〉〉
. (17.135)

The operator acting on g(y) on the right-hand side,

G := α(y, t) ∂y +
β2(y, t)

2
∂ 2
y ,

(17.136)
(generator of the SDE)

is often called the generator or infinitesimal generator corresponding to the SDE (17.129), because it
‘‘generates’’ the average change in a function of y over an infinitesimal time step dt.

Now let us write out the ensemble average explicitly, using the conditional density P (y, t|y0, t0) for
y(t): ∫

dy g(y) ∂tP (y, t|y0, t0) =
∫
dy P (y, t|y0, t0)

[
α(y, t) ∂yg(y) +

β2(y, t)

2
∂ 2
y g(y)

]
. (17.137)

Integrating by parts and discarding boundary terms,∫
dy g(y) ∂tP (y, t|y0, t0) =

∫
dy g(y)

[
−∂yα(y, t)P (y, t|y0, t0) +

1

2
∂ 2
y β

2(y, t)P (y, t|y0, t0)
]
. (17.138)

Since g(y) is arbitrary, we may equate the integrands, and thus P (y, t|y0, t0) satisfies an equation with the
form of the Fokker–Planck equation:

∂tP (y, t|y0, t0) = −∂yα(y, t)P (y, t|y0, t0) +
1

2
∂ 2
y β

2(y, t)P (y, t|y0, t0).

(Kolmogorov forward equation) (17.139)
7As in C. Gardiner, Stochastic Methods: A Handbook for the Natural and Social Sciences, 4th ed. (Springer, 2004) (ISBN:

9783540707127), Section 4.3.5, p, 93.

http://www.amazon.com/gp/search/?field-isbn=9783540707127
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This equation is called the Kolmogorov forward equation, from which the Fokker–Planck equation
(17.130) follows by multiplying through by P (y0, t0) and integrating over y0.

The above argument may also be adapted to give an evolution equation in terms of the initial time
t0.8 Then writing

∂t0P (y, t|y0, t0) = lim
δt→0

P (y, t|y0, t0 + δt)− P (y, t|y0, t0)
δt

= lim
δt→0

1

δt

∫
dy′ P (y′, t0 + δt|y0, t0)

[
P (y, t|y0, t0 + δt)− P (y, t|y′, t0 + δt)

]
,

(17.140)

where the first term takes advantage of P (y′, t0 + δt|y0, t0) acting as a normalized distribution in y′, and the
second term uses the Chapman–Kolmogorov equation (17.133). Under the assumption that the distributions
P (y, t|y0, t0) are continuous functions, the two conditional densities in the difference above can be expanded
to lowest order in δt, with first- and higher-order terms not contributing in the limit δt −→ 0:

∂t0P (y, t|y0, t0) = lim
δt→0

1

δt

∫
dy′ P (y′, t0 + δt|y0, t0)

[
P (y, t|y0, t0)− P (y, t|y′, t0)

]
. (17.141)

Now using the forward equation (17.139) to replace the first conditional distribution,

∂t0P (y, t|y0, t0)

=

∫
dy′
(
−∂y′α(y′, t0)P (y′, t0|y0, t0) +

1

2
∂ 2
y′β

2(y′, t0)P (y
′, t0|y0, t0)

)[
P (y, t|y0, t0)− P (y, t|y′, t0)

]
.

(17.142)
Integrating by parts, we have (after discarding surface terms)

−∂t0P (y, t|y0, t0) =
∫
dy′ P (y′, t0|y0, t0)

(
α(y′, t) ∂y′P (y, t|y′, t0) +

1

2
β2(y′, t) ∂ 2

y′P (y, t|y′, t0)
)
. (17.143)

Finally using P (y′, t0|y0, t0) = δ(y′ − y0), we can carry out the remaining integral to obtain

−∂t0P (y, t|y0, t0) = α(y0, t0) ∂y0P (y, t|y0, t0) +
β2(y0, t0)

2
∂ 2
y0P (y, t|y0, t0).

(Kolmogorov backward equation) (17.144)
This peculiar partial differential equation for the initial values y0 and t0 is called the Kolmogorov backward
equation. It has a form similar to the Fokker–Planck equation, except for the order of the derivatives and
the coefficients, and the minus sign on the time derivative.

17.3.5.2 Multidimensional Fokker–Planck Equation

In multiple dimensions, it is fairly straightforward to generalize the equivalent Fokker–Planck equation
(17.129). We can start with a multidimensional generalization of the SDE (17.123),

dxi = αi(x, t) dt+ βij(x, t) dWj , (17.145)

where repeated indices are summed. In this case, the equivalent Fokker–Planck equation becomes (Prob-
lem 17.2)

∂tf(x, t) = −∂iαi(x, t)f(x, t) +
1

2
∂i∂jDij(x, t)f(x, t),

(equivalent Fokker–Planck equation) (17.146)
where the diffusion tensor is

Dij := βikβjk = βikβ
T
kj = (ββT)ij

(equivalent Fokker–Planck equation) (17.147)
in terms of the noise-coupling matrix β.

8The beginning of this argument is as in C. Gardiner, op. cit., Section 3.6, p. 55.
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17.3.6 Ornstein–Uhlenbeck Process

As an example of using Itō calculus, we will consider the Ornstein–Uhlenbeck process, which we can
define as the solution of the damped equation driven by a Wiener process:

dy = −γy dt+ dW.
(17.148)

(Ornstein–Uhlenbeck process)

This equation is the Langevin equation. To solve this, we write the equation in the form

d
(
yeγt

)
= eγtdW, (17.149)

which we can integrate to obtain

y(t)eγt − y0 =

∫ t

0

eγt
′
dW (t′), (17.150)

or simply

y(t) = y0e
−γt +

∫ t

0

e−γ(t−t
′)dW (t′). (17.151)

The first term is clearly a decaying transient due to the initial condition, while the second is a convolution
of the Wiener process with an exponential kernel, effectively smoothing the white noise. Note that since the
Wiener differentials are Gaussian random variables, we see from this that the Ornstein–Uhlenbeck process
is the sum over Gaussian random variables and is thus itself Gaussian. It is thus sufficient to completely
characterize it by computing the mean and autocorrelation function. The mean is simply given by a decaying
transient induced by the initial condition, 〈〈

y(t)
〉〉
= y0e

−γt, (17.152)

since in Itō calculus we compute ensemble averages by setting dW = 0. The correlation function is given by
(taking t′ > t)

〈〈
y(t) y(t′)

〉〉
= y 2

0 e
−γ(t+t′) +

∫ t

0

ds

∫ t′

0

ds′ e−γ(t−s)e−γ(t
′−s′)

〈〈
dW (s)

ds

dW (s′)

ds′

〉〉
= y 2

0 e
−γ(t+t′) +

∫ t

0

ds

∫ t′

0

ds′ e−γ(t−s)e−γ(t
′−s′)δ(s− s′)

= y 2
0 e
−γ(t+t′) +

∫ t

0

ds e−γ(t−s)e−γ(t
′−s)

= y 2
0 e
−γ(t+t′) + e−γ(t+t

′)

∫ t

0

ds e−2γs

=

(
y 2
0 −

1

2γ

)
e−γ(t+t

′) +
1

2γ
e−γ(t

′−t).

(17.153)

If we regard y0 as an belonging to an ensemble of variance 1/2γ, or if we consider the limit t −→ ∞ (with
t− t′ fixed), we can ignore the transient part and take the correlation function to be

〈〈
y(t) y(t′)

〉〉
=

1

2γ
e−γ|t−t

′|,
(17.154)

(Ornstein–Uhlenbeck correlation)

where we have use the fact that for the real correlation function, 〈〈y(t) y(t′)〉〉 = 〈〈y(t′) y(t)〉〉. The Ornstein–
Uhlenbeck process, although corresponding to Gaussian noise, does thus not have independent increments
at different times. We see that the damping introduces a ‘‘memory’’ in the dynamics. Further, since the
correlation function is exponential, we immediately see that the power spectral density for the Ornstein–
Uhlenbeck process is Lorentzian, and thus decays asymptotically as ω−2, and thus corresponds to ‘‘1/f2’’
noise. But also notice that the correlation function is finite for all times, and thus the damping, which has
cut off the high frequencies, has made the noise bounded and well-behaved.
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17.3.6.1 Brownian Motion

The Ornstein–Uhlenbeck process is a model for Brownian motion, if we use it to model the velocity of a
particle subject to friction and to frequent ‘‘kicks,’’ as from collisions with many background-gas atoms:

dv = −γv dt+ dW. (17.155)

We are assuming that we are dealing with a scaled velocity such that the units come out right. Again, we
can equivalently write this in the (possibly) more familiar form

∂tv = −γv + ξ(t), (17.156)

so that we have the usual equation of motion for the velocity, but driven by a white noise ‘‘force’’ ξ(t).
The Ornstein–Uhlenbeck process also corresponds to a white-noise voltage signal αξ(t) passing through

a low-pass filter, with no connection at the output V (t).

I

Vin = αξ(t)

R

C

V (t)

To see this, note that the current I flowing through the resistor is

I(t) =
αξ(t)− V (t)

R
, (17.157)

and the voltage across the capacitor is related to the current by

∂tV =
I

C
=
αξ(t)− V (t)

RC
, (17.158)

which we can write as
∂tV = −γV + αγξ(t), (17.159)

where γ = 1/RC, as we expect for the low-pass filter. Thus, the output of the low-pass filter corresponds to
a scaled Ornstein–Uhlenbeck process, and thus a physical signal despite the idealized input.

Note that from Eq. (17.154), an Ornstein–Uhlenbeck process of the form

dy = −γy dt+ dW (17.160)

has 〈〈y2〉〉 = 1/2γ, and thus an rms fluctuation

yrms =
1√
2γ
. (17.161)

If we write Eq. (17.159) in the form
dV = −γV dt+ αγ dW, (17.162)

and then we let t −→ t/(αγ)2 and W −→W/αγ, we have

dV = − 1

α2γ
V dt+ dW, (17.163)

which is in the form of (17.160). Thus, the rms output voltage of the low-pass filter is

Vrms = α

√
γ

2
,

(17.164)
(amplitude of filtered white noise)

for an input signal of αξ(t). Note that the rms output voltage increases as the square root of the filter
bandwidth (γ/2π = 1/2πRC is the corner frequency of the low-pass filter), and so this result shows that the
transmitted power is proportional to the width of frequency band passed by the filter. Evidently, α has the
dimensions of V/

√
Hz.
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17.4 Stratonovich Calculus

The main alternative to Itō calculus is Stratonovich calculus, which we will introduce primarily to gain
more insight into Itō calculus. Although Stratonovich calculus has some aesthetically nice features, it is
often easier to perform calculations in Itō form, and we will mainly stick to Itō equations in our discussion
of quantum measurement.

Consider the deterministic ODE
dy = α(y(t), t) dt. (17.165)

This is the continuous limit of the discrete relation

y(t+∆t) = y(t) + α(y(τ), τ)∆t, (17.166)

where τ is an arbitrary time in the range [t, t+∆t]. This is because the formal (implicit) solution of (17.165)
is given by the Riemann integral

y(t) = y0 +

∫ t

0

α(y(t′), t′) dt′. (17.167)

The Riemann integral is approximated by successively finer refinements of discrete ‘‘rectangle’’ areas of width
∆t, where the area of each rectangle is determined by the value of the integrand at any point within the
interval ∆t.

Returning to the SDE
dy = α(y(t), t) dt+ β(y(t), t) dW (t), (17.168)

we must also interpret the solution of this equation in terms of the implicit integral

y(t) = y0 +

∫ t

0

α(y(t′), t′) dt′ +

∫ t

0

β(y(t′), t′) dW (t′). (17.169)

The first integral is an ordinary Riemann integral, but the second is of the form∫ t

0

β(y(t′), t′) dW (t′) =

∫ t

0

β(y(t′), t′)
dW

dt′
dt′. (17.170)

Due to the highly singular nature of ξ(t) = dW/dt, the Riemann integral does not in general exist. The way
to save this is that in the successive finite approximations, if you consistently pick the same point within
each interval of equal length ∆t, the integral is defined. However, the result that you get by evaluating the
integral will depend on your choice. Of course, if β is constant or even a smooth function of time—in the
case of additive noise—then this won’t be a problem, since the result amounts to integrating dW to get
W (t). The problem arises in the case of multiplicative noise when β is a function of y. Thus, when we
regard the SDE (17.168) as the continuum limit of the finite-difference equation

y(t+∆t) = y(t) + α(y(t), t)∆t+ β(y(τ), τ)∆W (t), (17.171)

where τ ∈ [t, t+∆t], we obtain a different limit depending on where in the interval we choose τ . In view of
Eq. (17.114), Itō calculus takes the choice τ = t, while Stratonovich calculus takes the choice τ = t+∆t/2.
Since we expect different results according to what calculus we intend to use to solve the equation, we must
use a notation to distinguish the calculus that goes with the SDE. Thus, we will write as usual

dy = α(y(t), t) dt+ β(y(t), t) dW (t)
(17.172)

(notation: Itō SDE)

to denote an Itō SDE, while we will use the special notation

dy = α(y(t), t) dt+ β(y(t), t) ◦ dW (t)
(17.173)

(notation: Stratonovich SDE)

to refer to a Stratonovich equation.
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17.4.1 Example: Stochastic Integration

To illustrate the consequences of this choice, we will compute the sample Itō integral

I =

∫ t

t0

W (t′) dW (t′), (17.174)

and compare it to the Stratonovich integral

J =

∫ t

t0

W (t′) ◦ dW (t′), (17.175)

of the same form, to see that they indeed give different results. Note that if these were ordinary Riemann
integrals, we would simply have ∫ t

t0

f(t′) df(t′) =
1

2

[
f2(t)− f2(t0)

]
(17.176)

for a sufficiently well-behaved function f(t). The Itō integral follows from the continuum limit of the N -step
approximation (with tj := t0 + j(t− t0)/N)

I = lim
N→∞

N−1∑
j=0

W (tj)∆W (tj)

= lim
N→∞

N−1∑
j=0

W (tj) [W (tj+1)−W (tj)]

= lim
N→∞

1

2

N−1∑
j=0

[W (tj) +W (tj+1) +W (tj)−W (tj+1)] [W (tj+1)−W (tj)]

= lim
N→∞

1

2

N−1∑
j=0

[
W 2(tj+1)−W 2(tj)

]
− lim
N→∞

1

2

N−1∑
j=0

[W (tj+1)−W (tj)]
2

=
1

2

[
W 2(t)−W 2(t0)

]
− lim
N→∞

1

2

N−1∑
j=0

[∆W (tj)]
2

=
1

2

[
W 2(t)−W 2(t0)

]
− 1

2

∫ t

t0

[dW (t′)]2

=
1

2

[
W 2(t)−W 2(t0)

]
− 1

2
(t− t0).

(17.177)

The shortcut for this calculation is to notice that by the Itō rule, d(W 2) = 2W dW +(dW )2 = 2W dW + dt,
so that

I =

∫ t

t0

W (t′) dW (t′) =
1

2

∫ t

t0

[
d(W 2)− dt

]
=

1

2

[
W 2(t)−W 2(t0)

]
− 1

2
(t− t0). (17.178)

We thus see how the Itō rule enforces the choice of approximating integration intervals by the beginning
point of the interval.

In the Stratonovich case, the integrand is evaluated at the intermediate time tj+1/2 := (tj+1 + tj)/2.
However, let us evaluate the most general case tj+s := (1−s)tj+stj+1, with s ∈ [0, 1], where Itō corresponds
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to s = 0 and Stratonovich to s = 1/2:

Js := lim
N→∞

N−1∑
j=0

W (tj+s)∆W (tj)

= lim
N→∞

N−1∑
j=0

W (tj+s) [W (tj+1)−W (tj)]

= lim
N→∞

N−1∑
j=0

W (tj) [W (tj+1)−W (tj)] + lim
N→∞

N−1∑
j=0

[W (tj+s)−W (tj)] [W (tj+1)−W (tj)]

= I + lim
N→∞

N−1∑
j=0

[W (tj+s)−W (tj)] [W (tj+1)−W (tj)]

= I + lim
N→∞

N−1∑
j=0

[W (tj+s)−W (tj)] [W (tj+1)−W (tj+s)] + lim
N→∞

N−1∑
j=0

[W (tj+s)−W (tj)]
2

(17.179)

The second term corresponds to the continuum limit of a product of independent Wiener increments, which
vanishes according to the last argument of Section (17.3.2). The last term is the sum of squared, independent
Wiener increments corresponding to time intervals s∆t, and is thus given by s(t− t0). Thus,

Js = I + s(t− t0) =
1

2

[
W 2(t)−W 2(t0)

]
+

(
s− 1

2

)
(t− t0). (17.180)

In particular, the Stratonovich integral is

J = J1/2 =
1

2

[
W 2(t)−W 2(t0)

]
. (17.181)

Note that this is exactly the same result as if we had just used ordinary calculus, so that in Stratonovich
calculus it is appropriate to take d(W 2) = 2W dW . That is, the usual chain rule applies in Stratonovich
calculus, so that (dW )2 = 0. We will prove this after we see how to convert between Itō calculus and
Stratonovich calculus.

17.4.2 Itō–Stratonovich Conversion

Itō and Stratonovich SDEs in general give different results for the same coefficients, but in what sense are
they equivalent? That is, how do we convert between Itō and Stratonovich SDEs? Suppose we have the Itō
SDE

dy(t) = α(y, t) dt+ β(y, t) dW (t), (17.182)

and the Stratonovich SDE
dy(t) = ᾱ(y, t) dt+ β(y, t) ◦ dW (t). (17.183)

Then what we will show is that these two SDEs are equivalent if and only if

ᾱ = α− 1

2
β∂yβ.

(17.184)
(Itō–Stratonovich conversion)

Clearly, this distinction only matters in the case of multiplicative noise. To show this, recall that the Itō
SDE is the continuum limit of the discrete relation

y(t+∆t) = y(t) + α(y(t), t)∆t+ β(y(t), t)∆W (t), (17.185)

while the Stratonovich SDE is the continuum limit of

y(t+∆t) = y(t) + ᾱ(y(t), t)∆t+ β(y(t+∆/2), t+∆t/2)∆W (t). (17.186)
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Now noting that

β(y(t+∆t/2), t+∆t/2) = β(y(t), t) + ∂yβ(y(t), t)
[
β(y(t), t)∆W (1/2)(t)

]
+O(∆t), (17.187)

where the factor in square brackets is ∆y, ∆W (1/2)(t) :=W (t+∆t/2)−W (t) is a Wiener ‘‘half increment,’’
and we are dropping terms of order ∆t and higher since this expression will be multiplied by ∆W . We can
thus use this result to write

y(t+∆t) = y(t) + ᾱ(y(t), t)∆t+ β(y(t), t)∆W (t) + β(y(t), t) ∂yβ(y(t), t)∆W (t)∆W (1/2)(t). (17.188)

In the continuous limit, we can write

∆W (t)∆W (1/2)(t) −→ dt

2
, (17.189)

since [∆W (1/2)]2 −→ dt/2 with certainty, and the product of ∆W (1/2) from two different time intervals will
converge to zero with certainty. Thus, the continuum limit of (17.186) is the Itō-form SDE

dy =

[
ᾱ+

1

2
β∂yβ

]
dt+ β dW. (17.190)

Since this is the continuum limit of the same equation as the Stratonovich form (17.183), we can thus
conclude that the Itō and Stratonovich forms are equivalent in the case

ᾱ = α− 1

2
β∂yβ. (17.191)

Thus, when writing down an SDE, we again see that it is crucial to specify which calculus it assumes, since
the solution would otherwise be ambiguous.

17.4.3 Stratonovich Calculus and the Chain Rule

Recall that the Itō equation
dy = αdt+ β dW (17.192)

transforms under the coordinate change z = f(y) via an ‘‘extended chain rule’’

dz = df(y) = f ′(y) dy +
1

2
f ′′(y)(dy)2

=

[
f ′(y)α+

1

2
f ′′(y)β2

]
dt+ f ′(y)β dW.

(17.193)
(Itō chain rule, z = f(y))

We will now show that in Stratonovich calculus, the ‘‘extra’’ β2 term does not appear, and thus the usual
chain rule applies (and thus dW 2 = 0).

Thus, consider the Stratonovich equation

dy = αdt+ β ◦ dW (17.194)

under the same transformation z = f(y). The equivalent Itō equation is

dy =

[
α+

1

2
β∂yβ

]
dt+ β dW, (17.195)

and now we can use Itō rules to accomplish the transformation:

dz = f ′(y) dy +
1

2
f ′′(y)(dy)2

=

[
f ′(y)

(
α+

1

2
β∂yβ

)
+

1

2
f ′′(y)β2

]
dt+ f ′(y)β dW.

(17.196)
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Now transform this back into Stratonovich form:

dz =

[
f ′(y)

(
α+

1

2
β∂yβ

)
+

1

2
f ′′(y)β2 − 1

2
f ′(y)β∂z[f

′(y)β]

]
dt+ f ′(y)β ◦ dW. (17.197)

Noting that
∂z =

1

f ′(y)
∂y, (17.198)

we can write the last dt term as

−1

2
f ′(y)β∂z[f

′(y)β] = −1

2
β∂y[f

′(y)β]

= −1

2
f ′′(y)β2 − 1

2
f ′(y)β∂yβ.

(17.199)

Thus, this term, which we obtained from switching from Itō to Stratonovich form, cancels the other two dt
terms that involve β, leaving

dz = f ′(y)αdt+ f ′(y)β ◦ dW. (17.200)
(Stratonovich chain rule, z = f(y))

Thus, Stratonovich calculus obeys the usual chain rule, and we have no need for terms of order dW 2.

17.4.4 Comparison

We will now summarize the differences between Itō and Stratonovich SDEs, and then explain why we tend
to favor Itō calculus. For Itō calculus:

• The rules of stochastic integration are slightly more complicated than for ordinary integration, since
the ordinary chain rule does not apply (i.e., dW 2 = dt).

• The solution y(t) of an Itō SDE and the driving Wiener process dW (t) are statistically independent
at equal times, so that ensemble averages are simply computed by setting dW = 0.

• An Itō SDE is ‘‘natural’’ as the continuum limit of an evolution constructed by a discrete-step process,
since

dy = α(y) dt+ β(y) dW (17.201)

is the continuous limit of

y(t+∆t) = y(t) + α(y(t))∆t+ β(y(t))∆W (t). (17.202)

On the other hand, for Stratonovich calculus:

• The rules of stochastic integration are those of ordinary Riemann integration, since the usual chain
rule applies (i.e., dW 2 = 0).

• The solution y(t) of a Stratonovich SDE and the driving Wiener process dW (t) are not statistically
independent at equal times. This is clear from the above Itō–Stratonovich conversion, since setting
dW = 0 in a Stratonovich SDE does not give the same result as setting dW = 0 in the equivalent Itō
SDE. In fact, the easiest rule for computing an ensemble average is to convert the SDE to Itō form
and then set dW = 0.

• A Stratonovich SDE is ‘‘natural’’ as the idealization of a physical noise process in the following sense.
If one models a stochastic system as being driven by a physical noise of finite bandwidth and bounded
variance, then the normal rules of calculus apply. For example if dO represents an Ornstein–Uhlenbeck
process, then we could model a system by the SDE

dy = αdt+ β dO. (17.203)
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Then if you take the white-noise limit for the driving process (γ −→ 0), then dO goes over to dW , but
because the ODE always obeyed the rules of ordinary calculus, the white-noise limit

dy = αdt+ β ◦ dW. (17.204)

should be interpreted as a Stratonovich SDE.

Also note that most proofs, including the construction of Stratonovich calculus, are usually proved in Itō
calculus, so its advantages tend to outweigh its peculiarities. For handling quantum measurements, we will
often want to compute ensemble averages to obtain unconditioned master equations, and we will also in
general construct continuous measurements as limits of discrete processes of the form (17.202). Thus, we
will virtually always use Itō-form SDEs to handle continuous quantum measurements.

17.5 Poisson Process

Recall that the Poisson probability distribution of mean λ is

P (n) =
e−λλn

n!
,

(17.205)
(Poisson distribution)

where n is a nonnegative integer. The variance of the Poisson distribution is equal to the mean λ. The
Poisson distribution models the number of independent random events that occur in a given interval of time,
such as the number of cars that arrive at an intersection or the number of atoms that decay in a large
ensemble. Poisson random variation is also responsible for shot noise, which occurs as noise in electrical
current due to random fluctuations in the rate at which electrons flow through a device, or as noise in the
detected intensity of classical light due to the random detection times of individual photons. In general, we
can speak of a rate at which events occur by setting λ = Γ∆t for finite time interval ∆t, where Γ is the
mean rate of occurence (also called the intensity of the Poisson process). Then

P (n) =
e−Γ∆t(Γ∆t)n

n!
. (17.206)

Note that the Poisson distribution implies an exponential waiting time for the first event, because the
probability for the event to occur after waiting a time ∆t is given by setting n = 0 in the above probability
function:

P (0) = e−Γ∆t. (17.207)

Then according to our interpretation, this probability is related to the probability density P ′(t) for the time
of first occurence by

e−Γ∆t =

∫ ∞
∆t

P ′(t) dt, (17.208)

so that
P ′(t) = Γe−Γt. (17.209)

Thus, Poisson random variables are intimately connected with exponential-decay processes, such as sponta-
neous emission from an atom prepared in the excited state.

In the infinitesimal limit ∆t −→ dt, all the probabilities for n ≥ 2 becomes negligible (of order dt2 or
higher). The probability for a single event occuring during an interval of duration dt thus becomes Γ dt, with
no events occuring otherwise. We can denote this by the infinitesimal random variable dN(t)—the Poisson
process—which has an ensemble mean 〈〈

dN(t)
〉〉
= Γ dt.

(17.210)
(Poisson process: ensemble mean)

In the standard Poisson process N(t), the intensity Γ is a constant that characterizes the process. Thus,
in general, when writing down a Poisson process, you must always also specify the intensity, which is
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not specified in the notation dN in contrast to the Wiener process dW (where there is no freedom to
specify the moments). In generalizations of the Poisson process to time- or state-dependent intensities (see
Section 17.5.2), an explicit specification of the intensity is even more critical.

Again, as an integer-valued differential random variable, dN can take on only the values 0 and 1, where
the value of 1 occurs with probability equal to the mean. Because dN(t) ∈ {0, 1}, it immediately follows
that

dN2 = dN,
(17.211)

(Poisson-process property)

so that the ensemble-averaged variance is equal to the ensemble mean,〈〈
dN2

〉〉
=
〈〈
dN
〉〉
= Γ dt, (17.212)

as we expect for a Poisson-distributed random variable. Note that the infinitesimal variance here is just the
second moment, since the square of the mean is O(dt2).

In another view, note that dN(t)/dt is zero except in isolated intervals of length dt, where the value is
1/dt. Thus, we can write this form of the Poisson process as the sum of delta functions,

dN(t)

dt
=
∑
j

δ(t− tj), (17.213)

if the events occur at times tj . In view of our discussion above, ∆tj := tj+1 − tj is a random variable with
probability density

P (∆tj) = Γe−Γ∆tj , (17.214)

since the waiting time until the next event is given by the exponential distribution.

17.5.1 The Poisson Process Implies the Poisson Distribution

If we take the Poisson process dN(t) of intensity Γ (i.e., of mean Γ dt) as the fundamental object, we should
also be able to derive the Poisson distribution for the frequency of events in finite time intervals. That is,
we can show that the Poisson distribution arises if there is a constant probability per unit time of a single
event occuring during an arbitrarily short time interval. Specifically, defining the time integral of the Poisson
process,

∆N :=

∫ t+∆t

t

dN(t′) (17.215)

we can ask, what is the probability distribution for ∆N? For a given value n of ∆N , this means that during
exactly n infinitesimal intervals, dN(t) took on the value unity, while it took on the value of zero during the
remaining intervals. The probability of doing so is the product of three factors:

1. The probability for having exactly n such events, one in each of n particular time intervals: (Γ dt)n.

2. The number of ways to distribute the n events among all such intervals. In the time interval [t, t+∆t),
there are ∆t/dt such time intervals, and so there are (∆t/dt)n ways to distribute n events among all
possible time intervals. But we divide by n! since we take the n events to be indistinguishable, so we
don’t overcount, so the total factor is (∆t/dt)n/n!.

3. The probability of having zero events in all other time intervals. Again, there are (∆t/dt) total time
intervals, and the probability of zero events in a given time interval is (1−Γ dt), so the total probability
is

(1− Γ dt)∆t/dt = lim
M→∞

(
1− Γ∆t

M

)M
= e−Γ∆t. (17.216)

We are being cavalier in slinging around factors of dt, but our manipulations here are equivalent to the
‘‘correct’’ approach of using finite, small subintervals δt, where we neglect n compared to ∆t/δt, and we
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neglect the probability that two events end up in the same subinterval. Both of these approximations are
appropriate (and exact) in the continuum limit. The total probability is thus

P (∆N = n) = (Γ dt)n
(
∆t

dt

)n
1

n!
e−Γ∆t

=
e−Γ∆t(Γ∆t)n

n!

=
e−λλn

n!
,

(17.217)

which is the Poisson distribution, where again the mean is λ = Γ∆t. Thus, the Poisson distribution
results when there are many ‘‘trials’’ (short time intervals), where there is a vanishingly small probability of
‘‘success’’ (an event occurrence) in each trial.

More mathematically, the Poisson process N(t) is typically defined9 for t ≥ 0 in such a way that N(t)
is piecewise constant, taking on only constant, nonnegative integer values in intervals of the form [tj , tj+1),
and with ‘‘jumps’’ of unit size occurring at the times tj , so that N(t) is also nondecreasing. Further, N(t)
must follow a Poisson distribution (with mean Γt in the homogeneous case, where Γ is the intensity). A
more general process that relaxes the requirement of the Poisson distribution is called a counting process,
and a jump process additionally relaxes the requirement of unit jumps (and therefore of monotonicity, if
negative jumps are allowed).

17.5.2 Inhomogeneous Poisson Process and State Dependence

In general, the rate Γ of event occurence may depend on time, either explicitly or via dependence on the
state y(t) of the system. We can handle this by noting that according to our construction for the Poisson
distribution above, then if X1 and X2 are Poisson-distributed random variables with means λ1 and λ2, then
X1 + X2 is a Poisson random variable of mean λ1 + λ2. This statement amounts to agglomerating two
adjacent time intervals of different duration in the above derivation of the Poisson distribution. Then if
Γ is time-dependent, we can subdivide the interval [t, t + ∆t) into sufficiently fine increments such that Γ
is constant over each increment, and sum them to find that the number of events occuring in the interval
[t, t+∆t) is still a Poisson variable with mean

λ̄ =

∫ t+∆t

t

Γ(t′) dt′.
(17.218)

(inhomogeneous Poisson process: mean)

The variance is also of course just λ̄.
However, while we can define the inhomogeneous Poisson process as above, a generalization to a process

with state-dependent intensity Γ(y), where y(t) is some process driven by dN(t), is not a Poisson process:
the argument above for the inhomogeneous process does not apply, because dN(t) is no longer statistically
independent at different times.10 Since in this case N(t) is no longer Poisson-distributed, it is more proper
to refer to it as a counting process, as we defined in Section 17.5.1.

17.5.3 White-Noise Limit

Consider the scaled Poisson process
dy =

dN√
Γ
, (17.219)

where
〈〈dN〉〉 = Γ dt. (17.220)

9see, e.g., Rama Cont and Peter Tankov, Financial Modelling with Jump Processes (Chapman & Hall/CRC, 2004), Section
2.5.3, p. 48.

10Note, however, that this is still sometimes referred to as a ‘‘state-dependent Poisson process.’’ See, e.g., Edoardo Daly and
Amilcare Porporato, ‘‘Intertime jump statistics of state-dependent Poisson processes,’’ Physical Review E 75, 011119 (2007)
(doi: 10.1103/PhysRevE.75.011119).

http://dx.doi.org/10.1103/PhysRevE.75.011119
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It may be that in a given system, the rate Γ of Poisson events is much faster than the processes of physical
interest. In such a case, we can ignore the discreteness of the events, and coarse-grain the dynamics to
approximate the Poisson events by white noise. Note in particular that the mean of dy is

〈〈dy〉〉 = 〈〈dN〉〉√
Γ

=
√
Γ dt, (17.221)

while the variance is
〈〈(dy)2〉〉 = 〈〈dN

2〉〉
Γ

=
〈〈dN〉〉

Γ
= dt. (17.222)

Thus, if events occur rapidly on time scales of interest—that is, we only measure ∆y over time intervals
∆t � 1/Γ, by the central limit theorem, we may effectively regard dy as a Gaussian random variable of
mean

√
Γ dt and variance dt. In particular, the Poisson process corresponds to a random walk of steps of

length
√
Γ, in one direction only, taken at random times, as we can see by writing

y(t) =
1√
Γ

∫ t

0

dN(t′) =
1√
Γ

∫ t

0

dN(t′)

dt′
dt′, (17.223)

and recalling from Eq. (17.213) that dN/dt is a sum of delta functions. After many events, the result is
the same as a biased random walk, and the central limit theorem again guarantees an asymptotic Gaussian
probability density. In this limit, it thus is a good approximation to write

dy =
√
Γ dt+ dW. (17.224)

Thus, in the limit where Poisson events occur at a very large rate Γ, we can make the formal replacement

dN −→ Γ dt+
√
Γ dW,

(17.225)
(white-noise limit of Poisson process)

to approximate the Poisson process with a mean drift plus white noise.

17.5.3.1 Shot Noise

As an example, let’s consider shot noise of an electrical current. Let Q denote the total charge that has
crossed a certain point along a wire. The current is given by

I =
dQ

dt
, (17.226)

so that
dQ = I dt. (17.227)

We will model the current as a stream of independent electrons of charge −e with Poisson arrival times, so
that

dQ = −e dN, (17.228)
with 〈〈dN〉〉 = Γdt as usual. Then equating the two expression for dQ, we find

I dt = −e dN. (17.229)

The mean current is then given by taking the ensemble average of this relation, so that

〈〈I〉〉 = −eΓ. (17.230)

Frequencies of interest for measuring electrical currents generally range from ns to s, whereas Γ ∼ 1019 s−1.
Thus, the white-noise approximation is quite appropriate, and thus

dQ ≈ −eΓ dt− e
√
Γ dW

=
〈〈
I
〉〉
dt+

〈〈I〉〉√
Γ
dW

=
〈〈
I
〉〉
dt−

√
|e〈〈I〉〉| dW.

(17.231)
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Thus, we see that due simply to the discreteness of charge, a mean current 〈〈I〉〉 is accompanied by white
noise of amplitude

|〈〈I〉〉|√
Γ

=
√
|e〈〈I〉〉|. (17.232)

Note that the SI units of the current noise amplitude are in A/
√

Hz, since when multiplied by dW/dt, which
has dimensions 1/

√
s, the noise amplitude takes the dimensions of current. The alternate way to view this

is that physically, the noise is always bandwidth-limited (as in the RC model of the Ornstein–Uhlenbeck
process), and so the filtered noise amplitude is given by multiplying the above noise amplitude by the square
root of the circuit bandwidth. More explicitly, the above white noise corresponds to a uniform spectral
density of signal power. According to Eq. (17.164), an input signal αξ(t) corresponds to rms fluctutations
of α

√
γ/2 at the output of a low-pass filter. Thus, the rms current fluctuation through a low-pass filter due

to shot noise is given by

δIrms =
√
|e〈〈I〉〉|

√
γ

2
, (17.233)

where γ = 1/RC is the angular cutoff frequency for the low-pass filter. The equivalent-power bandwidth
∆ν is defined as the bandwidth of the ‘‘brick wall’’ filter (with flat response up to a sudden cutoff at
frequency ∆ν, where ∆ν is a frequency in Hz, not an angular frequency). The low-pass filter function for
power transmission is (up to a constant factor, set by requiring the dc transmission to unity) the Fourier
transform of the Ornstein–Uhlenbeck correlation function e−γτ , so that we may write the transmission
function as

T (ω) =
γ2

γ2 + ω2
. (17.234)

Obviously, γ is the (angular) ‘‘3 dB’’ frequency, or the frequency where the transmission drops to 1/2 the
dc value:

f3 dB =
γ

2π
. (17.235)

Since ∫ ∞
0

T (ω) dω =
π

2
γ = 2π∆ν, (17.236)

where the second result applies to the brick-wall filter, we can write

∆ν =
γ

4
=
π

2
f3 dB, (17.237)

and thus the shot-noise magnitude is

δIrms =
√
2∆ν|e〈〈I〉〉|. (17.238)

(shot-noise amplitude)

This expression applies to filters beyond the low-pass filter, so long as the appropriate equivalent-power
bandwidth is used in this relation. Thus, a 1 A average current detected in a 1 MHz bandwidth has an rms
noise current of 0.57 µA, a fluctuation at under the ppm level. Shot noise clearly gets much worse for smaller
currents: for the same bandwidth, an average current of 1 µA has fluctuations of 0.57 nA rms, or 0.057%
relative noise, and an average current of 1 pA has fluctuations of 0.57 pA rms, or 57% relative noise. Note that
this model assumes the independence of electrons, and gives an appropriate result, e.g., for semiconductor
junctions, but not in metallic-wire circuits, where long-range correlations between electrons suppress shot
noise.11 Essentially, this is just because of Coulomb interactions between electrons, which causes them to
antibunch: in a conducting, crystalline lattice, it is energetically favorable to have two electrons in different
lattice sites, as compared to having them occupy the same lattice site. Probabilities of seeing more than
one electron pass in a metallic wire in a short time interval are thus suppressed compared to the Poissonian
expectation.

Of course, we can adapt this result to the case of optical shot noise. Instead of an electrical current, we
have a detected optical power P . We can treat the photon arrival times as independent in the case of coherent

11Paul Horowitz and Winfield Hill, The Art of Electronics, 2nd ed. (Cambridge, 1989), pp. 431-2.
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light (recall that in a coherent state the photon-number occupation probabilities are Poisson-distributed).
The rms fluctuations for a mean optical power 〈〈P 〉〉 detected in an equivalent-power bandwidth ∆ν are then
given by

δPrms =
√

2∆ν h̄ω〈〈P 〉〉|, (17.239)
(optical shot-noise amplitude)

where the photon energy h̄ω plays the role of the electron charge. For 780 nm light in a 1 MHz detection
bandwidth, a 1 W power has fluctutations of 0.71 µW, less than the ppm level. For the same bandwidth,
a 1 µW mean power has fluctuations of 0.71 nW (0.071%), and a 1 pW mean power has fluctuations of
0.71 pW (71%). Of course, the relative fluctuations will be even larger for thermal (bunched) light, and
smaller for antibunched light (nonclassical light, as for resonance fluorenscence of a two-level atom).

17.6 Particle Subject to a Stochastic Force

As an important example to tie together the stochastic-process concepts that we have developed so far, we
will treat in some depth the dynamics of a particle subject to a stochastic force, together with damping and
other external forces. In particular consider the equations of motion

dx =
p

m
dt

dp =
[
F (x, p; t)− γp

]
dt+ σ dW,

(damped, stochastically forced particle) (17.240)
with F defining an external force, γ the damping coefficient, and σ defining the magnitude of the stochastic
force. This is for a particle in one spatial dimension, but the generalization to multiple degrees of freedom
is straightforward.

Also, note that γ could depend on x and p (and even t), as could σ. Note that if σ depends on p, then
the particle is coupled to multiplicative noise (Section 17.4), and it is important to specify which calculus
to use in treating the SDE system. As discussed in Section 17.4.4, if the noise arises as the continuum limit
of a physical noise process of finite bandwidth, then Eqs. (17.240) should be interpreted in the Stratonovich
sense. On the other hand, if the noise arises due to a process like spontaneous emission, where the emission
probability depends on the present state (or arises in terms of a discrete Poisson process, which goes over
to white noise in the limit of frequent emission events, as in Section 17.5.3), then the equations of motion
should be interpreted in the Itō sense. For concreteness we will treat this system in the Itō sense, although
it is useful to remember that as we make assumptions on σ in the discussion below, the importance of this
distinction drops away.

From Eqs. (17.145) and (17.146), we can write out the equivalent Fokker–Planck equation for the
probability density f(x, p; t) of the particle state as

∂tf(x, p; t) = −
p

m
∂xf + ∂p

[
F (x, p; t)− γp

]
f +

1

2
∂ 2
p σ

2f.

(equivalent Fokker–Planck equation) (17.241)
Note that any dependence of F , γ, and σ on p enforces the ordering of the derivative operators as shown;
in the case where there is no such momentum dependence, the derivative operators ∂p can commute with
these functions and operate only on the probability density. But again notice that dependence on x causes
no problem; for example, the diffusion term can have the form σ2(x) ∂ 2

p f in the case that σ depends only on
position.

17.6.1 Free-Particle Limit

One of the simplest limits of the above equations of motion is to assume vanishingly small damping (γ −→ 0)
and external force (F −→ 0). In this case we can integrate the momentum equation to obtain

p(t) = p(0) +

∫ t

0

dt′ σ(x, p; t′) dW (t′). (17.242)
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Then putting this into the position equation and integrating, we find

x(t) = x(0) +
p(0) t

m
+

1

m

∫ t

0

dt′
∫ t′

0

dt′′ σ(x, p; t′′) dW (t′′). (17.243)

It is difficult to carry this further in the general case. However, in the special case where σ is constant, we
can characterize the transport of x quite precisely. In this case, we obtain

x(t) =
σ

m

∫ t

0

dt′W (t′), (17.244)

where we are also ignoring transients by setting x(0) = p(0) = 0. The integral factor here is important, and
for obvious reasons it goes by the names integrated Brownian motion and Brownian area (this is also
the iterated integral I10 that we discuss in Section 27.3), and here we will write it as

I(t) :=

∫ t

0

dt′W (t′).
(17.245)

(integrated Brownian motion)

Since I(t) is a linear combination of Gaussian increments, it is itself Gaussian, so we can characterize it fully
by computing its mean and correlation. The mean is simple, since in Itō calculus we just set dW = 0:〈〈

I(t)
〉〉
= 0. (17.246)

To compute the variance (see also Problem 27.1), we can write

〈〈
I2(t)

〉〉
=

〈〈[∫ t

0

dt′
∫ t′

0

dW (t′′)

]2〉〉
. (17.247)

Then using the integral identity
∫ t
0
dt′
∫ t′
0
dt′′g(t′, t′′) =

∫ t
0
dt′′
∫ t
t′′
dt′g(t′, t′′) to interchange the order of

integration, we have 〈〈
I2(t)

〉〉
=

〈〈[∫ t

0

dW (t′′)

∫ t

t′′
dt′
]2〉〉

=

〈〈[∫ t

0

(t− t′′) dW (t′′)

]2〉〉
.

(17.248)

Then expanding out the product, using dW (t) dW (t′) = δ(t− t′) dt2,

〈〈
I2(t)

〉〉
=

〈〈∫ t

0

(t− t′′)2 dt′′
〉〉

=
t3

3
. (17.249)

This implies a covariance 〈〈
I(t)I(t′)

〉〉
=

1

3

[
min{t, t′}

]3
,

(covariance of integrated Brownian motion) (17.250)
because for example if t′ > t, then the Wiener increments associated with the time interval (t, t′) are
uncorrelated with any increments associated with the interval (0, t), so the time interval (t, t′) does not
contribute to the correlation function.

Thus, the stochastically driven, undamped particle (17.244) tends to a Gaussian distribution in x,
whose width grows as (σ/m)t3/2, which is one power of t higher than the t1/2 dependence we expect for
diffusive growth in momentum.
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17.6.2 Thermal Equilibrium

Now consider the particle equations (17.240) with damping at rate γ but no external force. This could
correspond, for example, to a particle moving (in one dimension) in a static fluid at some temperature T .
For simplicity we will assume constant temperature, noise coefficient σ, and damping rate γ.

First, note that the momentum equation in this case is basically a scaled Ornstein–Uhlenbeck process:

dp = −γp dt+ σ dW. (17.251)

In fact, rescaling time via t̃ = σ2t and dW̃ (t̃) = σ dW (t), so that dW̃ 2 = [σ dW (t)]2 = σ2 dt = dt̃, gives

dp = − γ

σ2
p dt̃+ dW̃ , (17.252)

which has the form of the Ornstein–Uhlenbeck process in Eq. (17.148). Then the results following from that
analysis carry through here with the replacements γ −→ γ/σ2 and t −→ σ2t. For example, the mean from
Eq. (17.152) is only transient, 〈〈

p(t)
〉〉
= p0e

−γt,
(17.253)

(momentum mean)

and the correlation function (17.153) becomes

〈〈
p(t) p(t′)

〉〉
=

(
p 2
0 −

σ2

2γ

)
e−γ(t+t

′) +
σ2

2γ
e−γ|t

′−t|,
(17.254)

(momentum correlation)

where the first term is again transient and the second persists in steady state, and t, t′ ≥ 0.
In thermal equilibrium, we have

1

2
m
〈〈
v2
〉〉
=

〈〈
p2
〉〉

2m
=

1

2
kBT. (17.255)

We can obtain 〈〈p2〉〉 = σ2/2γ in steady state from the last term in Eq. (17.254), which gives

σ =
√
2mγkBT ,

(17.256)
(temperature related to diffusion)

which fixes the noise coefficient in terms of the temperature and damping. Thus, for example, Eq. (17.254)
becomes 〈〈

p(t) p(t′)
〉〉
= mkBT e

−γ|t′−t| (17.257)

in terms of temperature, after ignoring any transients.
The position equation (17.240) then says that the position is the (scaled, shifted) integrated Ornstein–

Uhlenbeck process:

x(t) = x(0) +

∫ t

0

dt′ p(t′). (17.258)

For the ‘‘pure’’ Ornstein–Uhlenbeck process (17.148),

dy = −γy dt+ dW, (17.259)

we can define the integrated process by

G(t) :=

∫ t

0

dt′ y(t′). (17.260)

Then clearly G(t) is again a Gaussian process, with〈〈
G(t)

〉〉
= 0. (17.261)
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Computing the correlation function, we start with

〈〈
G(t)G(t′)

〉〉
=

∫ t

0

ds

∫ t′

0

ds′
〈〈
y(s) y(s′)

〉〉
=

1

2γ

∫ t

0

ds

∫ t′

0

ds′
(
e−γ|s−s

′| − e−γ(s+s
′)
)
. (17.262)

where we used Eq. (17.153) for the Ornstein–Uhlenbeck correlation function, setting y0 = 0 for simplicity
but keeping the transient term, which is important when integrating the correlation function. Then if t′ ≥ t
(so that t′ ≥ s), we can split the second integral to simplify the absolute value:

〈〈
G(t)G(t′)

〉〉
=

1

2γ

∫ t

0

ds

[∫ s

0

ds′ e−γ(s−s
′) +

∫ t′

s

ds′ eγ(s−s
′)

]
− 1

2γ

∫ t

0

ds

∫ t′

0

ds′ e−γ(s+s
′). (17.263)

Carrying out the integration and simplifying gives〈〈
G(t)G(t′)

〉〉
=

1

2γ3

[
2
(
e−γt + e−γt

′
− 1
)
− e−γ(t+t

′) − e−γ(t
′−t)
]
+

t

γ2
. (17.264)

Again, using the requirement that the correlation function should be symmetric in t and t′, we find

〈〈
G(t)G(t′)

〉〉
=

1

2γ3

[
2
(
e−γt + e−γt

′
− 1
)
− e−γ(t+t

′) − e−γ|t
′−t|
]
+

min{t, t′}
γ2

.

(integrated-Ornstein–Uhlenbeck correlation) (17.265)
Note that 〈〈G(0)G(0)〉〉 = 0, as expected. Note also that 〈〈G(t)G(t′)〉〉 ≥ 0, because we derived it as the
integral of 〈〈y(t) y(t′)〉〉 ≥ 0.

Returning to the transport of the particle in the fluid, we are interested in the asymptotic growth of
the variance of G(t). For large times, Eq. (17.265) gives an asymptotic growth〈〈

G2(t)
〉〉
∼ t

γ2
(17.266)

to leading order in t. The same procedure with x(t) =
∫ t
0
dt′ p(t′)/m and Eq. (17.254) for the momentum

correlation function gives 〈〈
x2(t)

〉〉
∼
(
σ

mγ

)2
t =

2kBT

mγ
t.

(17.267)
(position diffusion)

That is, x(t) grows diffusively with diffusion coefficient (σ/mγ)2. Thus, the damping ‘‘transfers’’ the diffusive
behavior from momentum (which is driven by the Wiener process) to position. We will see this more directly
in the following section.

17.6.3 Strong-Damping Limit: Brownian Motion Revisited

Back in Section 17.3.6.1, we commented that the Ornstein–Uhlenbeck process is a model for Brownian
motion—as we just showed, a damped and stochastically driven momentum leads to diffusion in position.
At the same time, the Wiener process W (t) itself is often referred to as ‘‘Brownian motion,’’ although in the
physical model it enters via the force, not directly in the particle’s position. Here we will make the connection
more directly of the stochastic force leading to diffusion in position, in the case of strong damping.

Starting again with the equations of motion (17.240),

dx =
p

m
dt

dp =
[
F (x, p; t)− γp

]
dt+ σ dW,

(17.268)

with the same comments about the (x, p)-dependence of γ and σ, we will begin by assuming a large damping
coefficient γ. In the limit of large damping, we will assume that the momentum is always approximately in
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equilibrium with respect to the position state, so that we may perform an adiabatic elimination of momentum
(see Section 5.8.3 for the adiabatic approximation in the two-level atom). Setting dp ≈ 0 then leads to the
adiabatic approximation

p ≈ 1

γ

[
F + σ

dW

dt

]
. (17.269)

In assuming large damping, we are essentially assuming that the damping term ‘‘absorbs’’ the entire effect
of the external and fluctuating forces, provided we coarse-grain on time scales much longer than γ−1. The
difficulty here is that dW/dt is divergent and fluctuates on all time scales. We will proceed for now, but we
will soon see that we need to be somewhat more careful with this approximation.

Putting Eq. (17.269) into the position equation ẋ = p/m, we find

dx ≈ F

mγ
dt+

σ

mγ
dW.

(particle motion, adiabatic approximation) (17.270)
In the absence of external forces (F = 0), then we see directly that x(t) ∝ W (t), which justifies the name
Brownian motion for W (t). And again appealing to Eqs. (17.145) and (17.146), the equivalent Fokker–Planck
equation for this approximate SDE is

∂tf(x; t) = −∂x
F

mγ
f +

1

2
∂ 2
x

σ2

m2γ2
f.

(Smoluchowski equation) (17.271)
Here, F , γ, and σ can still depend on position and momentum; however, the dependence on momentum
should be in the form of 〈〈p(x)〉〉 = F (x, p; t)/γ from the adiabatic relation (17.269), because the large
damping ‘‘concentrates’’ the momentum around the mean value. This diffusion equation is the counterpart
of the original Fokker–Planck equation (17.241) after momentum is adiabatically eliminated. In the case of
coupling to a uniform bath in thermal equilibrium, σ is constant and given by Eq. (17.256), such that

∂tf(x, t) = −
1

mγ
∂xFf +

kBT

mγ
∂ 2
x f,

(17.272)
(Smoluchowski equation)

after also assuming constant damping γ. This is called the Smoluchowski equation.12

Note that in the form (17.272), at any given temperature, the steady-state solution is independent of
m and γ. In particular, assuming that the force may be derived from a potential, F (x) = −V ′(x), we can
write

∂xV
′f + kBT∂

2
x f = 0 (17.273)

in steady state. Removing one derivative gives

∂xf = − V ′

kBT
f, (17.274)

where we can see that any constant of integration vanishes by comparing this equation with its x −→ −x
counterpart. Integrating this equation from 0 to x gives

f(x) = f(0) e−[V (x)−V (0)]/kBT ,
(17.275)

(Boltzmass distribution)

which is just the Boltzmann distribution.
12M. San Miguel and J. M. Sancho, ‘‘A Colored-Noise Approach to Brownian Motion in Position Space. Corrections to the

Smoluchowski Equation,’’ Journal of Statistical Physics 22, 605 (1980) (doi: 10.1007/BF01011341), Eq. (2.39).

http://dx.doi.org/10.1007/BF01011341
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17.6.3.1 Momentum Distribution

Given the reduced distribution f(x, t) to the Smoluchowski equation (17.272), it is useful to see how to
reconstruct the information about momentum that is implicit in the solution. First, as we already mentioned,
the adiabatic relation (17.269) yields directly the mean momentum at each position:〈〈

p(x)
〉〉
≈ F (x, 〈〈p(x)〉〉; t)

γ
. (17.276)

Here, to be precise, the ensemble average is over all dW , but at fixed position x. The mean position
corresponding to the entire ensemble of particles must be averaged over the distribution f(x, t):

〈〈
p(t)

〉〉
x
≈
∫ ∞
−∞

dx f(x, t)
F (x, 〈〈p(x)〉〉; t)

γ
.

(17.277)
(ensemble-mean momentum)

Here, the subscript on the ensemble average emphasizes the average over the spatial distribution.
However, the same approach applied to the second moment 〈〈p2〉〉 is problematic, because the square of

Eq. (17.269) contains a term with the divergent factor dW 2/dt2 = 1/dt. This is a result of the infinite power
associated with the white-noise force dW/dt. This is a sign that we need to treat the adiabatic approximation
with more care. To do this we return to the momentum equation of motion in Eqs. (17.240),

dp =
[
F (x, p; t)− γp

]
dt+ σ dW, (17.278)

and note that the same procedure that we used for the Ornstein–Uhlenbeck process in Section 17.3.6 applies
here. Thus, we may rewrite the solution to Eq. (17.278) as

p(t) = p(0) e−γt +

∫ t

0

dt′ e−γ(t−t
′)

[
F + σ

dW (t′)

dt′

]
. (17.279)

The essential point here is that the exponential convolution kernel here smooths the white-noise force,
endowing it with finite power and removing the divergence in the second momentum moment. What we did
before was to assume that the bracketed factor in the integrand changed slowly over the time scale γ−1, and
that t� γ−1, so that we could make the replacement

e−γ(t−t
′)Θ(t− t′) −→ 1

γ
δ(t− t′ − 0+). (17.280)

Making this replacement and carrying out the integral leads directly to the previous adiabatic relation
(17.269). However, we are only justified in doing this for the external-force term; the white-noise term is not
constant over any time scale. Thus, we may write Eq. (17.279) as

p(t) = p(0) e−γt +
F

γ
+ σ

∫ t

0

e−γ(t−t
′) dW (t′). (17.281)

Under the assumption that F , γ, and σ vary slowly over the damping time γ−1, we may regard these as
constants. Coarse graining over the damping time scale, we can take the long-time limit of the above equation
to remove transient behavior:

p(x) =
F

γ
+ σ

∫ t

0

e−γ(t−t
′) dW (t′). (17.282)

Now we regard the momentum as a function of the particle’s position, which is approximately constant.
Under these conditions, the first term is the same mean position that we found before in Eq. (17.276), while
the second represents (small) Gaussian fluctuations about the mean. Thus, the momentum distribution is a
Gaussian tightly localized about the mean, and all that remains is to characterize the second moment. For
this, note that p(x) − F/γ = p(x) − 〈〈p(x)〉〉 is proportional to an Ornstein–Uhlenbeck process. Thus, we
may adapt Eq. (17.154) to give the variance

Vp(x) =
〈〈(

p(x)− 〈〈p(x)〉〉
)2〉〉

=
σ2

2γ
= mkBT, (17.283)



17.7 Stochastic Boundary-Value Problems: Brownian Bridges 733

where the latter expression follows from Eq. (17.256), and in the adiabatic regime can be regarded as correct
even with spatial variation in temperature.

Now when measuring the momentum distribution of the entire ensemble, we should average the momen-
tum variance over the spatial distribution. However, it is more appropriate to average the second moment
of momentum rather than the variance, because local variations in the mean momentum are reflected as
variance in the global distribution. Thus, we require〈〈

p2(x)
〉〉
= Vp(x) + 〈〈p(x)〉〉2 =

σ2

2γ
+
F 2

γ2
. (17.284)

Then averaging this over the spatial distribution from the Smoluchowski equation (17.272), we find

〈〈
p2(t)

〉〉
x
=

∫ ∞
−∞

dx f(x, t)

[
σ2

2γ
+
F 2

γ2

]
.

(distribution-average of second momentum moment) (17.285)
At this point one can subtract the square of the distribution-averaged mean (17.277) to obtain the momentum
variance of the whole distribution. However, Eq. (17.284) is already sufficient to characterize the momentum
distribution in important cases such as the steady-state distribution in a potential well, where the mean
momentum vanishes.

17.7 Stochastic Boundary-Value Problems: Brownian Bridges

We have already studied the formalism to handle the simple stochastic differential equation

dB = dW, (17.286)

for which the solution is B(t) = W (t), up to an arbitrary additive constant. (Recall that this is the same
in either Itō or Stratonovich calculus, since the noise is additive.) However, suppose we add the additional
constraints B(0) = B(1) = 0, and we want the solution B(t) for t ∈ [0, 1]. The B(0) = 0 constraint is not a
problem, as it defines the initial condition of the problem. But the final condition B(1) = 0 is considerably
more difficult, as W (t) in general tends to wander away from zero. However, a (vanishingly) small subset
of solutions obey this final condition, so in principle we could simulate many possible realizations of W (t),
and discard them until we find one that returns sufficiently close to zero at t = 1. This kind of constrained
random walk, or ‘‘stochastic loop’’, comes up, for example, in quantum field theory.13 This problem is also a
nice example, showing alternate approaches to solving stochastic equations, and providing more insight into
regular diffusion W (t).

One simple guess at a solution is simply to force a regular Wiener path W (t) back to its initial point
by subtracting off its final value W (t = 1), where the subtraction is pro-rated over the path:

B(t) :=W (t)− tW (1).
(17.287)

(Brownian bridge)

This is called a Brownian bridge, and somewhat surprisingly, this solution satisfies the conditions above
for our constrained Wiener path (with some cautions). This is something like viewing a Wiener path W (t)
as composed of a linear drift to a final destinations plus fluctuations about zero, and then subtracting off
the drift.

To see that this is the case, first we note that B(t) is still a Gaussian random variable, since it is a
linear combination of W (t) and W (1), both of which are random variables. Because 〈W (t)〉 = 0, we must
also have 〈y(t)〉 = 0. Thus, we must only check the variance of the increments to establish that B(t) is a
proper Wiener process. Dividing the unit time interval into N increments, with time steps ∆t = 1/N , with
points Bn := y(n∆t) and increments ∆Bn := Bn+1 − Vn, then we will work with

∆Bn = ∆Wn −∆tW (1). (17.288)
13Holger Gies, Kurt Langfeld, and Laurent Moyaerts, ‘‘Casimir effect on the worldline,’’ Journal of High Energy Physics 06,

018 (2003) (doi: 10.1088/1126-6708/2003/06/018).

http://dx.doi.org/10.1088/1126-6708/2003/06/018
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Using
Var[X + Y ] =

〈
(X + Y )2

〉
−〈X + Y 〉2

=
〈
X2
〉
+
〈
X2
〉
+ 2〈XY 〉 −〈X〉2 +〈Y 〉2 + 2〈X〉〈Y 〉

= Var[X] + Var[Y ] + 2Cov[X,Y ],

(17.289)

we can compute the variance as

Var[∆Bn] = Var[∆Wn] + (∆t)2 Var[W (1)]− 2∆tCov[∆Wn,W (1)]

= ∆t+ (∆t)2 − 2(∆t)2

= ∆t− (∆t)2,

(17.290)

where Var[W (1)] = 1 and Var[∆Wn] = ∆t. This means that Var[dB] = dt, since dt2 = 0, and so we have the
statistics of Wiener noise. Notice that the subtraction of the drift did skew the statistics, but by a negligible
amount in the continuum limit because the fluctuations become comparatively large. Therefore one should
be careful with a naïve discretization of Eq. (17.287),

Bn =
n∑
j=1

∆Wj −
n

N

N∑
j=1

∆Wj =
1√
N

n∑
j=1

zj −
n

N3/2

N∑
j=1

zj , (17.291)

where zj are independent, unit-normal random deviates. This ‘‘algorithm’’ generates paths with increments
that have variance smaller than 1/N by a factor (N−1)/N , so really the entire path should then be rescaled
by N/(N −1). As a coordinate transformation, this discretization is also somewhat pathological in mapping
N independent coordinates zj to N − 1 independent coordinates yn (see Problem 17.6). Below we will
consider another algorithm that generates a Brownian bridge without these issues.

Note that by the above argument, we can add any finite, deterministic function to a Wiener process
and still obtain a Wiener process. Thus, for example, we can define

Ba→b(t) := a+ t(b− a) +W (t)− tW (1)
(17.292)

(Brownian bridge from a to b)

to be a Brownian bridge14 that connects a to b over the time interval from 0 to 1. (Other time intervals are
possible by shifting and scaling the time variable.) A closely related property is that the Brownian bridge
W (t)− tW (1) is independent of W (1), as we can see by computing the correlation function〈〈[

W (t)− tW (1)
]
W (1)

〉〉
=
〈〈
W (t)W (1)− tW 2(1)

〉〉
= t− t = 0. (17.293)

This is the continuous version of the coordinate-transform pathology in the discrete case that we noted above.
This independence—along with our ability to stretch Wiener paths to create other Wiener paths—has an
important meaning. A particular Wiener path W (t) that wanders to W (t = 1) is possible with a Gaussian
probability density in W (1), so that in particular, large excursions are unlikely. However, once a particular
value of W (1) is stipulated, the possible paths are essentially Brownian bridges B(t) that return to the initial
point at t = 1, but with a uniform-velocity drift to W (1). Even if a peculiarly large value of the overall drift
W (1) is stipulated, by far the most likely way to accomodate this is to distribute the drift uniformly over
the whole time interval.

14While the name ‘‘Brownian bridge’’ may more sensibly apply to Ba→b(t), which ‘‘bridges’’ a to b, B(t) = B0→0(t) is a
special case that bridges the origin to itself, and goes the name of a standard Brownian bridge. It is useful to think of B(t)
as a bridge in the sense of having a ‘‘pinned’’ solution at t = 1. Incidentally, other variations on conditioned Wiener paths
are commonly defined, such as the Brownian meander W+(t) (a Wiener path, or Brownian motion W (t), conditioned to be
everywhere positive), and the Brownian excursion, which is a Brownian meander conditioned on W+(1) = 0, or alternately
a standard Brownian bridge B(t) conditioned to be everywhere positive. See., e.g., Jim Pitman, ‘‘Brownian Motion, Bridge,
Excursion, and Meander Characterized by Sampling at Independent Uniform Times,’’ Electronic Journal of Probability 4, 11
(1999) (doi: 10.1214/EJP.v4-48).

http://dx.doi.org/10.1214/EJP.v4-48
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Finally, we can examine the fluctuations of the (loop-style) Brownian bridge,

Var[B(t)] = Var[W (t)− tW (1)]

= Var[W (t)] + t2Var[W (1)]− 2tCov[W (t),W (1)]

= t+ t2 − 2t2,

(17.294)

so that we find
Var[B(t)] = t(1− t). (17.295)

(variance of Brownian bridge)

Thus, the bridge fluctuates most when it is farthest away from either fixed endpoint, which is sensible.
Again, to get a better idea of what these look like, 5 and 200 Brownian bridges are respectively shown

in the two plots below. (Again, these are actually finite realizations of B(t), with ∆t = 0.001.)

t
0 1

B
o(t

)

1

-1

t
0 1

B
o(t

)

1

-1

Both the symmetry about t = 0.5 and the character of diffusing away and returning are readily apparent
here.
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17.7.1 Finite Bridge Generation: Homogeneous Case

Here we will consider generating a finite numerical approximation15 to a closed Wiener path in a more direct
way than before. If we again divide the path into N increments, then we have time steps

∆t =
1

N
, (17.296)

and the points Bn := B(n∆t), for consistency with Eq. (17.286), must be such that Bn+1−Bn is a normally
distributed random variable of zero mean and variance ∆t = 1/N . Thus we have the multidimensional
probability density

P (B1, . . . , BN−1) ∝ exp

−N
2

 N∑
j=1

(Bj −Bj−1)2
 , (17.297)

where by construction B0 = 0 and BN = 0 are not dependent variables. We will proceed by a coordinate
transformation, changing variables to obtain an standard normal Gaussian distribution in every dimension.

First, consider the sum in the exponent, which we may write as

N∑
j=1

(Bj −Bj−1)2 =
N−1∑
j=2

(Bj −Bj−1)2 +B 2
1 +B 2

N−1

= 2B 2
1 − 2B1B2 + 2B 2

2 − 2B2B3 + 2B 2
3 + · · ·+B 2

N−2 − 2BN−2BN−1 + 2B 2
N−1.

(17.298)
Now separating out the B1 dependence of the exponent,

N∑
j=1

(Bj −Bj−1)2 = 2

(
B1 −

1

2
B2

)2

+
3

2
B 2

2 − 2B2B3 + 2B 2
3 + · · ·+B 2

N−2 − 2BN−2BN−1 + 2B 2
N−1

= B′21 +
3

2
B 2

2 − 2B2B3 + 2B 2
3 + · · ·+B 2

N−2 − 2BN−2BN−1 + 2B 2
N−1.

(17.299)
where we completed the square of B1, and we defined the transformed coordinate

B′1 :=
√
2

(
B1 −

1

2
B2

)
, (17.300)

which encompasses all the dependence on B1, and enters in the exponent to give a normally distributed
random variable with zero mean and variance 1/N . We now continue to complete squares and factor out
the dependence on B2, B3, and so on. At the nth step, we have

N∑
j=1

(Bj −Bj−1)2 = B′21 + · · ·+B′2n−1 + cnB
2
n − 2BnBn+1 +B 2

n+1 + · · ·+B 2
N−2 − 2BN−2BN−1 + 2B 2

N−1

= B′21 + · · ·+B′2n−1

+ cn

(
Bn −

1

cn
Bn+1

)2

+

(
2− 1

cn

)
B 2
n+1 + · · ·+B 2

N−2 − 2BN−2BN−1 + 2B 2
N−1

= B′21 + · · ·+B′2n + cn+1B
2
n+1 + · · ·+B 2

N−2 − 2BN−2BN−1 + 2B 2
N−1

(17.301)
where in the basis step above we began with c1 = 2, and we have defined

cn+1 :=

(
2− 1

cn

)
(17.302)

15Gies et al., op. cit.
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and
B′n+1 :=

√
cn

(
Bn −

1

cn
Bn+1

)
. (17.303)

This has the same form as the (n + 1)th step, which inductively completes all the squares. With these
variables, the probability distribution is

P (B′1, . . . , B
′
N−1) ∝ exp

−N
2

N−1∑
j=1

B′2j

 , (17.304)

so that again the B′j are independent, Gaussian random numbers of zero mean and variance 1/N . These
can be chosen independently, and Eq. (17.303) can be solved to give Bn in terms of B′n and Bn+1:

Bn =
B′n√
cn

+
Bn+1

cn
. (17.305)

Thus, the bridge coordinates should be generated in a backwards recurrence, given the forward recurrence
for the coefficients cn. This is even more conveniently given in terms of standard-normal deviates zj , which
can replace the B′j :

Bn =
zn√
Ncn

+
Bn+1

cn
. (17.306)

Note also that the recurrence (17.302) has the solution

cn :=
n+ 1

n
. (17.307)

These relations give the bridge directly in terms of easily generated deviates zn.
Note that in principle we must also involve the Jacobian determinant of the coordinate transformation

from Bj to B′j . Effectively, we have taken the exponent (17.298), which we can write as a quadratic form as

N∑
j=1

(Bj −Bj−1)2 = BaAabBb, (17.308)

where (Aab) is a square, tridiagonal matrix of dimension N−1 with a twos along the diagonal and ones for ev-
ery other nonzero element. Since the matrix is symmetric, it is diagonalized by an orthogonal transformation
(Pab), so that BaAabBb = B′aDabB

′
b, where (Dab) is diagonal (and in fact has only one nonzero eigenvalue,

whose value is N − 1), and B′a := PabBb. We have effectively performed this diagonalization in constructing
the above recurrence relations. Notice then that the Jacobian determinant is just the determinant of (Pab),
which is just a constant factor that only affects the normalization of the probability density. Thus, we have
justified our coordinate transformation to a new Gaussian distribution.

To summarize, the algorithm to generate a Brownian bridge of N steps (i.e., N + 1 points B0, . . . BN ,
where B0 = BN = 0) is:

1. Generate standard normal random numbers (zero mean, unit variance) zn from n = 1, . . . , N − 1.

2. Generate the positions Bn for n = N, . . . , 1, according to the backwards recurrence

BN = 0

Bn = zn

√
n

N(n+ 1)
+

(
n

n+ 1

)
Bn+1, n = N − 1, . . . , 1

B0 = 0.

(17.309)
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We can similarly write a forward recurrence

B0 = 0

Bn = zn

√
cn
N

+ cnBn−1, n = 1, . . . , N − 1

BN = 0,

(17.310)

where to simplify the notation, we have defined the recurrence coefficient

cn :=
N − n

N − n+ 1
. (17.311)

This forward scheme gives finitely sampled Brownian bridges with the same statistics.

This algorithm gives a simulated (finite) realization of a closed, stochastic Wiener path in terms of easily
generated standard-normal random deviates. Note that this algorithm is easily generalized to generate
samples of a Brownian bridge Ba→b(t) running from a to b in unit time: the Bn in Eqs. (17.310) should be
thought of as Bn − b (i.e., measured in terms of their distance to the ‘‘target’’ b), so that

B0 = a

Bn = zn

√
cn
N

+ cn(Bn−1 − b) + b, n = 1, . . . , N − 1

BN = b,

(17.312)

will act as a recurrence for this ‘‘open’’ bridge, with the cn as before. In the case of a more general Brownian
bridge Bt(a→b)(t′) running from a to b in time t, this recurrence is further generalized by changing the first
term on the right-hand side of the second equation of Eqs. (17.312) from zn

√
cn/N to zn

√
cn∆t, where

∆t = t/N (the cn coefficients again stay the same).

17.7.2 Finite Bridge Generation: Inhomogeneous Case

A slightly more complicated variation on the above recurrences arises when we allow for time-dependent
drift and diffusion rates, according to

dy(t) = α(t) dt+ σ(t) dW (t), (17.313)

and again impose the boundary condition y(1) = y(0). We will treat this SDE as an Itō SDE for the purposes
of finite differences, but strictly speaking this shouldn’t matter since the noise is still additive. In finite form,
we have the multivariate probability density

P (y1, . . . , yN−1) ∝ exp

−N
2

 N∑
j=1

(yj − yj−1 − αj−1/N)2

σ 2
j−1

 , (17.314)

where again by construction y0 = 0 and yN = 0 are not dependent variables. We now thus have the exponent
sum

N∑
j=1

(yj − yj−1 − αj−1/N)2

σ 2
j−1

=
(y1 − α0/N)2

σ 2
0

+
(y2 − y1 − α1/N)2

σ 2
1

+

N∑
j=3

(yj − yj−1 − αj−1/N)2

σ 2
j−1

=
ȳ 2
1

σ 2
0

+
(y2 − ȳ1 − α1/N − α0/N)2

σ 2
1

+

N∑
j=3

(yj − yj−1 − αj−1/N)2

σ 2
j−1

,

(17.315)

where we have defined
ȳ1 := y1 −

α0

N
(17.316)
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in order to begin eliminating the mean drifts. Continuing in this process, we have
N∑
j=1

(yj − yj−1 − αj−1/N)2

σ 2
j−1

=
ȳ1
σ 2
0

+
(ȳ2 − ȳ1)2

σ 2
1

+ · · ·+ (ȳN − ȳN−1)2

σ 2
N−1

, (17.317)

where

ȳn := yn −
1

N

n−1∑
j=0

αj , n ∈ 1, . . . , N, (17.318)

again remembering yN = 0. Completing the first square as before,
N∑
j=1

(yj − yj−1 − αj−1/N)2

σ 2
j−1

=

(
1

σ 2
0

+
1

σ 2
1

)
ȳ 2
1 −

2ȳ1ȳ2
σ 2
1

+
ȳ 2
2

σ 2
1

+
(ȳ3 − ȳ2)2

σ 2
2

+ · · ·+ (ȳN − ȳN−1)2

σ 2
N−1

=

(
σ 2
0 + σ 2

1

σ 2
0 σ

2
1

)[
ȳ1 −

(
σ 2
0

σ 2
0 + σ 2

1

)
ȳ2

]2
+

[
1

σ 2
1

− σ 2
0

σ 2
1 (σ

2
0 + σ 2

1 )

]
ȳ 2
2

+
(ȳ3 − ȳ2)2

σ 2
2

+ · · ·+ (ȳN − ȳN−1)2

σ 2
N−1

= y′21 +

[
1

σ 2
1

− σ 2
0

σ 2
1 (σ

2
0 + σ 2

1 )

]
ȳ 2
2 +

(ȳ3 − ȳ2)2

σ 2
2

+ · · ·+ (ȳN − ȳN−1)2

σ 2
N−1

,

(17.319)

where we have defined

y′1 :=

√(
σ 2
0 + σ 2

1

σ 2
0 σ

2
1

)[
ȳ1 −

(
σ 2
0

σ 2
0 + σ 2

1

)
ȳ2

]
. (17.320)

At the nth stage of completing the square, we must handle terms of the form

cnȳ
2
n −

2ȳnȳn+1

σ 2
n

+

(
1

σ 2
n

+
1

σ 2
n+1

)
ȳ 2
n+1 = cn

(
ȳn −

1

cnσ 2
n

ȳn+1

)2

+

(
1

σ 2
n

+
1

σ 2
n+1

− 1

cnσ 4
n

)
ȳ 2
n+1

= y′2n + cn+1ȳ
2
n+1,

(17.321)

where we have defined the decoupled square

y′n :=
√
cn

(
ȳn −

1

cnσ 2
n

ȳn+1

)
(17.322)

and the recursion
cn+1 =

1

σ 2
n

+
1

σ 2
n+1

− 1

cnσ 4
n

, (17.323)

thus inductively completing all the squares. Again, the y′n are Gaussian numbers, such that we may solve
to find the shifted positions

ȳn =
y′n√
cn

+
1

cnσ 2
n

ȳn+1, (17.324)

or in terms of standard-normal deviates,

ȳn =
zn√
Ncn

+
1

cnσ 2
n

ȳn+1. (17.325)

Then solving Eq. (17.318),

yn = ȳn +
1

N

n−1∑
j=0

αj (17.326)

we find the actual bridge positions.
To summarize, the algorithm is, to generate a stochastic, constrained path of N points y1, . . . yN , where

y0 = yN = 0:
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1. Begin with means αn and standard-deviations σn for n ∈ 0, . . . , N = 1.

2. Generate the coefficients cn for n = 1, . . . , N − 1, according to the recurrence

c1 =
1

σ 2
0

+
1

σ 2
1

, cn+1 =
1

σ 2
n

+
1

σ 2
n+1

− 1

cnσ 4
n

. (17.327)

If many paths are to be generated, these coefficients only need to be generated once.

3. Generate standard normal random numbers (zero mean, unit variance) zn from n = 1, . . . , N − 1.

4. Generate the shifted positions ȳn for n = N, . . . , 1, according to the backwards recurrence

ȳN = −
N−1∑
j=0

αj

ȳn =
zn√
Ncn

+
ȳn+1

cnσ2
n

.

(17.328)

5. Generate the path positions yn for n = 1, . . . , N , using

yn = ȳn +
1

N

n−1∑
j=0

αj . (17.329)

This gives a simulated realization of a closed, stochastic path with nonuniform drift and diffusion. Note that
a path with constant α(t) 6= 0 and σ(t) = 1 is equivalent to the homogeneous path generated by Eqs. (17.310)
in the previous section, owing to the conditioning.

17.7.3 SDE and Integral Representations of the Brownian Bridge

The definition (17.287) of the Brownian bridge involves the pro-rated subtraction of the global drift of a
Wiener path. However, given the completed-square construction of Eq. (17.7.1), we can also derive a local
representation of the Brownian bridge as the solution of an SDE. Recall the backward recurrence, Eq. (17.309),
which we may solve for Bn+1:

Bn+1 =

(
n+ 1

n

)
Bn − zn

√
n+ 1

nN
. (17.330)

We can further rewrite this as

Bn+1 −Bn =

(
1

n

)
Bn −∆Wn

√
n+ 1

n
, (17.331)

where ∆Wn = zn/
√
N , and then

Bn+1 −Bn =

(
N

n

)
Bn∆t−∆Wn

√
n+ 1

n
, (17.332)

where ∆t = 1/N . Passing over to the continuous-time limit, we let ∆t −→ dt, n/N −→ t, ∆Wn −→ dW (t),
and we note that (n+1)/n is only different from unity in a vanishingly small interval of small t, a correction
we will ignore in the continuum limit:

dB =
B

t
dt− dW. (17.333)

Note that due to the backward recurrence, this SDE has the ‘‘initial’’ condition B(1) = 0, and should be
integrated backwards in time. We can fix this by letting t −→ 1− t, so that dt −→ −dt and dW −→ −dW ,
and thus

dB = −
(

B

1− t

)
dt+ dW.

(17.334)
(SDE form of Brownian bridge)
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Thus, we have a representation of a Brownian bridge as an SDE solution. Here, the SDE is similar to an
Ornstein–Uhlenbeck process, where the damping rate increases with time, diverging at t = 1 to ensure the
return of the bridge.

The solution to Eq. (17.334) is (see Problem 17.7)

B(t) = (1− t)
∫ t

0

dW (t′)

1− t′
,

(17.335)
(integral form of Brownian bridge)

which can be verified by differentiating this expression. According to this definition, the Brownian bridge is
clearly a Gaussian process, and the correlation function computed from this definition

〈〈B(t)B(t′)〉〉 = min(t, t′)− tt′

(correlation function of Brownian bridge) (17.336)
matches the same correlation function as computed from the first definition (17.287) (see Problem 17.8).
This is sufficient to characterize the Gaussian process, and thus the two definitions are equivalent (at least
in the sense of ensemble averages, not in the sense of individual paths).

17.7.4 State-Dependent Diffusion in Brownian Bridges

Suppose we consider an inhomogeneous bridge problem that is slightly different from the inhomogeneous
equation (17.313):

dy(t) = α(y, t) dt+ σ(y, t) dW (t).

(state-dependent boundary-value SDE) (17.337)
This is more complicated than our previous problem, since the drift and diffusion coefficients depend on the
state of the system. While this equation is straightforward to integrate numerically, it is not at all straight-
forward to do this integration subject to a bridge condition. This problem could be handled iteratively. For
example, start by generating a solution with zero drift and constant diffusion, use this fiducial trajectory to
generate the drift and diffusion coefficients, which then generates a new path; continue this process until con-
vergence is reached. That is, if convergence is reached. In principle, this is a many-dimensional root-finding
procedure, but a more stable method such as Newton iteration can be numerically cumbersome.

We will, however, treat in more detail the somewhat simpler problem of state-dependent Stratonovich
diffusion,

dy(t) = σ(y) ◦ dW (t),
(17.338)

(bridge with state-dependent diffusion)
subject to the closure condition y(T ) = y(0) = 0. We will show that the solution to this SDE is equivalent
to the initial-value SDE

dy(t) = σ(y) ◦ dB(t),
(17.339)

(solution for state-dependent diffusion)
where B(t) is a standard Brownian bridge, without imposing the boundary condition at t = T . Since dB(t)
has the same local statistics (i.e., statistics of increments) as the Wiener process dW (t), we need only verify
the closure of the path.

Now we turn to the closure of the solution to the SDE (17.339). First, we rewrite this SDE as
1

σ(y)
◦ dy(t) = dB(t), (17.340)

still emphasizing the Stratonovich nature of this SDE. Now for some function S(y), where y(t) is defined by
the SDE (17.339), the Stratonovich chain rule (17.200) gives

dS(y) = S′(y) ◦ dy(t), (17.341)

where we treat dB(t) equivalently to dW (t) as far as the chain rule is concerned [dB(t) being a particular
realization of dW (t)]. Suppose we take

S′(y) =
1

σ(y)
, (17.342)
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or that is, S(y) is the antiderivative of 1/σ(y). Then Eq. (17.340) becomes

S′(y) ◦ dy(t) = dB(t). (17.343)

Integrating both sides from t = 0 to 1 gives

S[y(1)]− S[y(0)] = B(1)−B(0) = 0, (17.344)

where we have again used the Stratonovich chain rule, so that the left-hand side was just the integral of
dS[y(t)]. Thus,

S[y(1)] = S[y(0)], (17.345)

which implies
y(1) = y(0) = 0 (17.346)

as desired, so long as S(y) is an invertible function. Since it is the antiderivative of 1/σ(y), this is guaranteed
if σ(y) is everywhere positive and finite, which is a reasonable restriction on the form of the SDE (17.338).
However, the Stratonovich nature of this SDE is crucial: an Itō equation naïvely of the same form has a drift
term when converted to a Stratonovich equation, and our solution here does not cover that case.

In fact, the integration procedure applied to arbitrary time t instead of t = 1 gives

S[y(t)] = B(t), (17.347)

where we have chosen S[y(0)] = 0. Explicitly, this means that we have chosen

S(y) =

∫ y

y(0)

dy′

σ(y′)
. (17.348)

Then the explicit solution in terms of a Brownian bridge is

y(t) = S−1[B(t)],

(explicit solution for state-dependent diffusion bridge) (17.349)
where as we have already stated, under reasonable assumptions S−1 exists. (For an example solution where
σ(y) is a step function, see Problem 17.12.)Note that the solutions here can be generalized to the case of a
return at time t = T instead of t = 1 by the replacements

B(t) −→
√
T B(t/T ), dB(t) −→

√
T dB(t/T ) (17.350)

in the above solutions.

17.7.4.1 Drift

Returning to the more general SDE (17.337), we see that the presence of a drift term α(y, t) dt is more difficult
because even when integrating with respect to a bridge, closure of the solution is no longer guaranteed:
the drift will in general make the solution ‘‘miss’’ the initial point, because in the formal bridge solution
(interpreting the SDE as a Stratonovich equation),

y(t) =

∫ t

0

α(y, t′) dt′ +

∫ t

0

σ(y, t′) ◦ dB(t′), (17.351)

the first term is not guaranteed to vanish, and in fact the second term is also no longer guaranteed to vanish
due to the influence of the first term on y(t). Additionally, any explicit time dependence in σ(y, t) in general
causes the solution (17.339) in the drift-free case to fail. As we already mentioned, an iterative procedure to
generate a closed solution may work for this, but in practice iteration tends not to converge well if the SDE
coefficients change rapidly with y.

An alternate approach is analogous to ‘‘shooting’’ methods for ODEs with boundary conditions. The
idea here is to note that while the solution (17.351) may not close when integrated with respect to a a bridge
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B(t), it will close for some bridge B0→c(t) connecting 0 to c, as defined by Eq. (17.292). The extra drift
compensates for any drift introduced by the SDE coefficients, and the existence of a value c that closes the
path is guaranteed provided that the SDE is ‘‘reasonable enough’’ to guarantee continuous solutions (and
solutions that vary continuously as the input noise varies). In general, this closing value c must be found
numerically, via a root-finding algorithm.

A concern with this method is the measure with which we generate the solutions. When we perform
the analogous procedure with additive noise by closing a Wiener path to form a bridge as in Eq. (17.287),
there is no problem: each Wiener path is associated with a unique bridge (with many paths associated with
a single bridge), and choosing Wiener paths with the usual measure results in bridges being chosen with
the correct measure (all Brownian bridges being equally likely). However, the nonlinear transformation in
solving Eq. (17.337), as well as the unique association of a bridge B0→c(t) with each solution y(t), where c
is different for each solution, makes things more complicated. In particular, when generating Wiener paths,
the relative probability of generating a bridge from 0 to c is the usual probability density for a Wiener path
to end up at c after time t = 1:

P [B0→c(t)] =
1√
2π

e−c
2/2. (17.352)

Therefore, if we require a bridge B0→cα(t) to generate a particular closed solution yα(t), the relative proba-
bility for this trajectory to occur is given by

wα =
1√
2π

e−c
2
α/2. (17.353)

Thus, to generate an ensemble of solutions of Eq. (17.337), each generated solution should only be kept with
a relative probability wα (e.g., by the rejection method). Alternately, when computing an ensemble average
with respect to the solutions yα(t), the average should be computed as a weighted average, where the weight
of each member of the ensemble is wα. This procedure is valid for Itō or Stratonovich equations, provided
that appropriate integration methods are used in each case. Finally, note that this measure business is not
a concern for the solutions (17.339), since c = 0 for every solution, and thus they all occur with the same
probability.

One final possibility for an algorithm in the case where the SDE coefficients are time-independent [i.e.,
α(y, t) = α(y) and σ(y, t) = σ(y)], and a solution bridging y(0) = a to y(T ) = b is as follows.16 Generate
numerical solutions ya(t) and yb(t), such that ya(0) = a and yb(0) = b. If there is a crossing of the two paths
at an appropriate time, i.e., ya(τ) = yb(T − τ) for some t, to within the resolution of the time discretization,
then the two paths can be spliced together to realize a bridge (i.e., the solution is ya(t) for t < τ , and yb(t)
thereafter). If there is no such crossing, the paths are rejected and the process is repeated until successful.

17.7.4.2 Lamperti Transform

The above considerations of rescaling stochastic processes can be elegantly viewed in the framework of the
Lamperti transform,17 which is a transformation that equalizes the variances within a stochastic process.
This idea applies to SDEs as follows. Consider the Itō SDE

dy = α(y) dt+ β(y) dW, (17.354)

and the transformation
z = S(y). (17.355)

Then the Itō chain rule (17.193) gives

dz =

[
S′(y)α+

1

2
S′′(y)β2

]
dt+ S′(y)β dW, (17.356)

16Stefano M. Iacus, Simulation and Inference for Stochastic Differential Equations (Springer, 2008), Section 2.13.
17after J. W. Lamperti, ‘‘Semi-stable stochastic processes,’’ Transactions of the American Mathematical Society 104, 62

(1962) (doi: 10.1090/S0002-9947-1962-0138128-7). See Stefano M. Iacus, op. cit., Section 1.11.4.

http://dx.doi.org/10.1090/S0002-9947-1962-0138128-7
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and the Lamperti transformation obtains by choosing

S′(y) =
1

β(y)
, (17.357)

or

z = S(y) =

∫ y

y0

dy′

β(y′)
.

(17.358)
(Lamperti transform)

Also using S′′(y) = −β′/β2, Eq. (17.356) then becomes

dz =

(
α

β
− β′

2

)
dt+ dW,

(17.359)
(Lamperti-transformed process)

which now is driven by additive noise. The complexity of the multiplicative noise in the dy SDE is thus
moved from the stochastic to the deterministic term, and reconstructing the dynamics in z requires inverting
z = S(y) in Eq. (17.358), assuming that it is indeed invertible (which happens, for example, if β has the
same sign over the domain of y).

Recall from the Itō–Stratonovich conversion (17.184) that a Stratonovich diffusion equation

dy = β(y) ◦ dW (17.360)

is equivalent to the Itō equation (17.354) provided α = β′β/2. In Eq. (17.359) this leads to a vanishing drift
term, and dW = dz, or z(t) =W (t), so that this SDE can be solved in terms of the inversion of the function
S—something not in general possible if the drift term remains in Eq. (17.354).

17.7.4.3 Temporal Rescaling

A similar transformation, closer to the original transformation introduced by Lamperti to study self-similar
processes18 is a trajectory-dependent temporal rescaling, with a transformation from time t to t′, such that

dt = dt′ β2[y(t)].
(17.361)

(temporal rescaling)

In the Itō SDE (17.354), this transformation leads to the equivalent SDE

dy(t′) =
α(y)

β2(y)
dt′ + dW (t′).

(17.362)
(rescaled Itō SDE)

Note that, as in Eq. (17.359), the variable diffusion rate disappears, and we are left with additive noise.
However, the drift term is different, and in particular there is not a second-order Itō correction term.

On the other hand, the Stratonovich SDE (17.360) transforms simply to

dy(t′) = dW (t′),
(17.363)

(rescaled Stratonovich SDE)

with no drift, just as in the case of the Lamperti transform. As in our discussion in Section 17.7.4, the
interpretation here is simple if we consider Brownian bridges. In the Itō case, if the noise dW (t) is a
standard Brownian bridge, then the closure of the bridge is preserved under the temporal rescaling if and
only if α = 0. On the other hand, the Stratonovich SDE always preserves the closure of the path for any
temporal rescaling. Note, however, that in the Itō case, even an Itō equation that is equivalent to the
Stratonovich equation (α = β′β/2) does not in general preserve path closure under temporal rescaling.

18J. W. Lamperti, op. cit.; see also Krzysztof Burnecki, Makoto Maejima, and Aleksander Weron ‘‘The Lamperti transfor-
mation for self-similar processes,’’ Yokohama Mathematical Journal 44, 25 (1997).
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17.8 Boundary Crossings

Now we treat the boundary-crossing problem: given a continuous random walk W (t) with W (0) = 0,
what is the probability that W (t) will cross a ‘‘boundary’’ at d after some time t? This is a useful analysis,
for example, in financial mathematics, and a wide range of other areas.19

17.8.1 Wiener Process

Consider a Wiener path W (t), where as usual W (0) = 0. What is the probability that W (t) will cross a
threshold d > 0 over this time interval from 0 to t? One approach to this problem is via the Reflection
Principle.20 The basic idea is illustrated in the plot below of a Wiener path. Once the path hits the
threshold at d, it continues to diffuse on. However, note that we can construct an equally likely path by
mirroring the path after the crossing about d, as shown in the light, mirrored trace. This is true when the
probability distribution for the increments is symmetric, which is of course the case for standard Brownian
motion. Note that we are also implicitly assuming that there is a well-defined crossing, that is, given that
W (t) > d, there is some time t′ < t such that W (t′) = d, which is guaranteed by the continuity of the Wiener
process.

t
0

W
o(t

)

0

d

T

Now let’s apply this to the crossing probability, which we will write

Pcross(d, t) = P (τd ≤ t), (17.364)

where τd is the time of the first crossing of W (t) through d:

τd := inf{t :W (t) ≥ d}. (17.365)

Then we can partition the probability according to whether W (t) ends up below or above the boundary:

Pcross(d, t) = P [τd ≤ t ∧W (t) < d] + P [τd ≤ t ∧W (t) ≥ d]. (17.366)

We can write out the first term via conditional probabilities according to P (A ∧ B) = P (A|B)P (B) =
P (B|A)P (A), and in the second term, τd ≤ t is automatically satisfied if W (t) ≥ d by path continuity:

Pcross(d, t) = P [W (t) < d | τd ≤ t]P [τd ≤ t] + P [W (t) ≥ d]. (17.367)
19David Siegmund, ‘‘Boundary crossing probabilities and statistical applications,’’ The Annals of Statistics 14, 361 (1986)

(doi: 10.1214/aos/1176349928).
20A particularly readable reference for the Reflection Principle appears in Joseph T. Chang, Stochastic Processes, available at

http://www.stat.yale.edu/~jtc5/251/stochastic-processes.pdf. We follow his arguments here for single-boundary crossing
probabilities for Wiener paths and bridges. For the Reflection Principle for Wiener paths, see also Kurt Jacobs, Stochastic
Processes for Physicists: Understanding Noisy Systems (Cambridge, 2010).

http://dx.doi.org/10.1214/aos/1176349928
http://www.stat.yale.edu/~jtc5/251/stochastic-processes.pdf
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According to the Reflection Principle,

P [W (t) < d | τd ≤ t] =
1

2
. (17.368)

By construction in the figure, for each path that has crossed through t and ends up with W (t) < d, there
is an equally likely (mirrored) path with W (t) > d. So the probability of ending up above or below d is the
same, given that the boundary is crossed. Then we have

Pcross(d, t) =
1

2
Pcross(d, t) + P [W (t) ≥ d], (17.369)

and solving for Pcross(d, t),
Pcross(d, t) = 2P [W (t) ≥ d]. (17.370)

Now W (t) is normally distributed with variance t, so we have

Pcross(d, t) = 2

∫ ∞
d

dW
1√
2πt

e−W
2/2t, (17.371)

or finally21

Pcross(d, t) = erfc
(

d√
2t

)
(crossing probability of W (t) through d in time t) (17.372)

for the crossing probability past d in time t. Note that this probability converges to unity as t −→∞; even
though sample paths can start off in the negative direction, given enough time, they will tend to return to
the origin and go far enough into the positive direction to cross the boundary anyway. For small t, this
probability reduces to

Pcross(d, t) ≈ e−d
2/2t

√
2t

πd2
, (17.373)

so that the crossing probability is exponentially suppressed as t −→ 0.
The result (17.372) can also be interpreted as a cumulative probability distribution for the crossing to

occur before time t. Then the probability density for the first-passage time τd is given by22

fτd(x) = ∂terfc
(

d√
2t

)∣∣∣∣
t=x

=
d√
2πx3

e−d
2/2x,

(probability density for first-passage time) (17.374)
where we have simply differentiated the probability (17.372). Note that the probability density is suppressed
exponentially at short times, as e−d2/2τd , but decays only as τ−3/2d at large times. Thus, this distribution has
no mean or variance, meaning that may well take a long time to cross a boundary, although it will almost
surely happen. However, the most likely value of τd (i.e., that maximizes the probability density) is d2/3.

17.8.2 Standard Brownian Bridge

A similar argument works to compute boundary-crossing probabilities for the standard Brownian bridge
B(t). Here, however, the Reflection Principle is slightly different. The path crossing the boundary at d must
return to zero. The equivalent path that is mirrored after the crossing then must return to 2d instead of 0,
as shown below.

21cf. Andrei N. Borodin and Paavo Salminen, Handbook of Brownian Motion—Facts and Formulae, 2nd ed. (Birkhäuser,
2002), p. 153, formula 1.1.4.

22cf. Andrei N. Borodin and Paavo Salminen, op. cit., p. 198, formula 2.0.2.
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t
0 1

B
o(t

)

0

d

2d

Here we will represent the bridge B(t) as an ordinary Wiener path W (t), but subject to the condition
W (1) = 0. Thus, our crossing probability is the conditional probability

Pcross(d) = P [τd ≤ 1 |W (1) = 0]. (17.375)

Using again the conditional probability relation in the form to P (A ∧B)/P (B) = P (A|B), we have

Pcross(d) =
P [τd ≤ 1 ∧W (1) = 0]

P [W (1) = 0]
. (17.376)

To compute the numerator,

P [τd ≤ 1 ∧W (1) = 0] = P [W (1) = 0 | τd ≤ 1]P [τd ≤ 1], (17.377)

and using the Reflection Principle,

P [τd ≤ t ∧W (1) = 0] = P [W (1) = 2d | τd ≤ 1]P [τd ≤ 1]

= P [W (1) = 2d ∧ τd ≤ 1]

= P [W (1) = 2d].

(17.378)

Thus, the crossing probability becomes

Pcross(d) =
P [W (1) = 2d]

P [W (1) = 0]
. (17.379)

To interpret these probabilities carefully, the probability P [W (1) = x] refers to the probability of W (1) being
between x and x+ dx; that is, we are referring to probability densities here, so that we are taking the ratios
of two zero probabilities. Since P [W (1) = x] = exp(−x2/2) dx/

√
2π, then we have23

Pcross(d) = e−2d
2 (17.380)

(crossing probability of B(t) through d)

for the crossing probability of the bridge.
Note that the crossing probability is the same as the probability for the peak of the bridge to cross d:

Pcross(d) = P{sup[B(t)] ≥ d} = 1− P{sup[B(t)] < d}. (17.381)
23cf. Andrei N. Borodin and Paavo Salminen, op. cit., p. 154, formula 1.2.8.
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Thus, the probability density function for the maximum of B(t) is

fsup{B(t)}(x) = ∂xP{sup[B(t)] < x} = −∂xPcross(x), (17.382)

or24

fsup{B(t)}(x) = 4xe−2x
2

(x ≥ 0)

(probability density for Brownian-bridge maximum) (17.383)
We can also compute the moments of this distribution, via〈〈

[sup{B(t)}]n
〉〉

=

∫ ∞
0

xnfsup{B(t)}(x) =

∫ ∞
0

4xn+1e−2x
2

, (17.384)

with the result 〈〈
[sup{B(t)}]n

〉〉
= 2−n/2Γ

(
1 +

n

2

)
,

(moments for Brownian-bridge maximum) (17.385)
which gives (1/4)

√
π/2, 1/2, (3/8)

√
π/2, and 1/2, for n = 1, 2, 3, and 4, respectively. Note that the results

here are easy to generalize for a Brownian bridge that is pinned such that B(T ) = 0 instead of B(1) = 0,
since the pinning essentially rescales the size of the bridge by

√
T , which is equivalent to scaling any distances

by 1/
√
T . Thus, for example, the crossing probability (17.380) is given by letting d2 −→ d2/T , and the peak

density (17.383) is given by letting x2 −→ x2/T and x dx −→ x dx/T in fsup{B(t)}(x) dx.

17.8.3 Brownian Bridge

The treatment above for the standard Brownian bridge is easy to generalize to a bridge B0→c(t) that connects
B0→c(0) = 0 to final point B0→c(1) = c, where we obtain

Pcross(d) =
P [W (1) = 2d− c]
P [W (1) = c]

= e−(2d−c)
2/2+c2/2 (17.386)

such that Eq. (17.380) generalizes to

Pcross(d, c) = e−2d(d−c) (d ≥ 0, c).

(crossing probability of B0→c(t) through d) (17.387)
Then Eq. (17.383) similarly becomes

fsup{B0→c(t)}(x) = 2(2x− c)e−2x(x−c) (x ≥ 0, c).

(probability density for Brownian-bridge maximum) (17.388)
These results can be generalized to a bridge pinned to c at time t by scaling d −→ d/

√
t and c −→ c/

√
t.

17.8.4 First-Passage Time of the Brownian Bridge

In analyzing the crossing probability for the Wiener path, we were able to simply derive the result (17.374)
for the density of the first-passage time τd. It is only slightly more complicated to do this for a Brownian
bridge, so we will carry out the derivation here. For the Brownian bridge, we can define the first-passage
time as

τd := inf{τ ≤ t : B0→c(τ) ≥ d}, (17.389)

where d ≥ 0 and the running time of the bridge is t, such that B0→c(t) = c. Then the crossing probability
up to time τ (before the final time t) is

Pcross(d, τ ≤ t) = P [τd ≤ τ ≤ t|W (t) = c], (17.390)
24cf. Eq. (2) in Jim Pitman and Marc Yor, ‘‘On the distribution of ranked heights of excursions of a Brownian bridge,’’ Annals

of Probability 29, 361 (2001) (doi: 10.1214/aop/1008956334).

http://dx.doi.org/10.1214/aop/1008956334
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when written in terms of a Wiener path. We don’t know this crossing probability, but from Eq. (17.387) we
do know the crossing time of the bridge up to the final running time t. To rewrite Eq. (17.390) in terms of
this crossing probability, we can proceed as follows:

Pcross(d, τ ≤ t) =
√
2πt ec

2/2t P [τd ≤ τ ≤ t ∧W (t) = c]

=
√
2πt ec

2/2t

∫ ∞
−∞

dz P [τd ≤ τ ≤ t ∧W (τ) = z]P [W (t) = c|W (τ) = z].
(17.391)

The second factor in the integrand is just a Gaussian probability density,

P [W (t) = c|W (τ) = z] =
1√

2π(t− τ)
e−(c−z)

2/2(t−τ), (17.392)

and the first factor is given by Eq. (17.387) as

P [τd ≤ τ ≤ t ∧W (τ) = z] =
1√
2πτ

e−z
2/2τP [τd ≤ τ ≤ t|W (τ) = z]

=
1√
2πτ

e−z
2/2τe−2d(d−z)/τ

=
1√
2πτ

e−(2d−z)
2/2τ (z ≤ d)

(17.393)

for the case where the intermediate point z is not past the boundary d, and

P [τd ≤ τ ≤ t ∧W (τ) = z] =
1√
2πτ

e−z
2/2τP [τd ≤ τ ≤ t|W (τ) = z]

=
1√
2πτ

e−z
2/2τ (z ≥ d)

(17.394)

for the case where the path has already crossed the boundary by time τ . Putting these expressions into
Eq. (17.391) and carrying out the resulting two integrals for the cases z ≤ d and z ≥ d, we obtain the
crossing probability

Pcross(d, τ ≤ t) =
1

2
erfc

(
τ(d− c) + d(t− τ)√

2tτ(t− τ)

)
+

1

2
e−2d(d−c)/t erfc

(
τ(c− d) + d(t− τ)√

2tτ(t− τ)

)
.

(first-passage cumulative probability, Brownian bridge) (17.395)
To check the normalization of this probability note that erfc(x) −→ 0 as x −→ ∞ and erfc(x) −→ 2 as
x −→ −∞. Then as τ −→ t, Eq. (17.395) becomes

Pcross(d, t) = Θ(c− d) + e−2d(d−c)/tΘ(d− c). (17.396)

which gives the correct crossing probability from Eq. (17.387). The probability density for the first-passage
time is then simply given by differentiating with respect to τ :25

fτd(x) =

√
t√

2πx3(t− x)
d e−(d t−cx)

2/2tx(t−x).

(probability density for Brownian-bridge first-passage time) (17.397)
Note that in the limit of large t, this reduces to the Wiener-process result (17.374), as it should. This
expression is also unnormalized if c < d: in this case the normalization is given by Eq. (17.396), since the
first-passage time is undefined in the event that a path does not cross the boundary.

25L. Beghin and E. Orsingher, ‘‘On the maximum of the generalized Brownian bridge,’’ Lithuanian Mathematical Journal
39, 157 (1999) (doi: 10.1007/BF02469280), Eq. (2.15).

http://dx.doi.org/10.1007/BF02469280


750 Chapter 17. Stochastic Processes

The moments of the first-passage time can be written in terms of the density (17.397) as

〈〈
τ nd
〉〉
=

√
t

2π
d

∫ t

0

dx
xn−3/2√
t− x

e−(d t−cx)
2/2tx(t−x). (17.398)

Changing variables to y = t/x− 1 gives the alternate expression

〈〈
τ nd
〉〉
=
tn−1/2d√

2π

∫ ∞
0

dy
(1 + y)−n
√
y

e−[(1+y)d−c]
2/2ty. (17.399)

For n = 0, this expression gives the correct normalization〈〈
τ 0
d

〉〉
= e−d(d−c+|d−c|)/t. (17.400)

The integral is easier to evaluate for n < 0 than n > 0. For example〈〈
τ−1d

〉〉
=
d|d− c|+ t+ d2

td2
e−d(d−c+|d−c|)/t (17.401)

gives the first inverse moment—the well-defined value here and of the other inverse moments is an indication
of how heavily the value τd = 0 is suppressed.

The quantity (t−τd) is the time after the first passage time. In the case c = 0, for a closed bridge, this
is also the statistic for the last passage time, because of the time-reversal symmetry of the bridge. Moments
of the last passage time can be calculated in the same way as the regular moments. Adapting the same
variable change leading to Eq. (17.399), the post-first-passage-time moments are

〈〈
(t− τd)n

〉〉
=
tn−1/2d√

2π

∫ ∞
0

dy yn−1/2(1 + y)−n e−[(1+y)d−c]
2/2ty. (17.402)

Then, for example, the first inverse moment is given by

〈〈
(t− τd)−1

〉〉
=
d+ |d− c|
|d− c|t

e−d(d−c+|d−c|)/t. (17.403)

Note that, in the case of c = 0, that the mean of the inverse fractional last-passage time t/(t− τd) happens
to have the same form as the boundary-crossing probability e−2d

2/t from Eq. (17.380), but with an extra
factor of 2 (recall that this applies to the case where paths that do not cross the boundary count as zero in
this ensemble average).

17.9 Escape Probability

Similar to the boundary-crossing problem is the escape problem, which is concerned whether a stochastic
process leaves an interval. There are implicitly two boundaries involved, and the idea is to see whether the
process touches either boundary. [This is closely related to whether the process touches both boundaries,
and we can also calculate this via P (A ∧B) = P (A) + P (B)− P (A ∨B), where the individual probabilities
P (A) and P (B) are given by the appropriate single-boundary-crossing probabilities.]

17.9.1 Wiener Process

We will set up the problem as follows: a Wiener process W (t) begins between two barriers separated by
distance L, and the starting point is a distance a from one of the barriers. For concreteness, we take the
Wiener process’ starting point to be distance a from the lower barrier, and with W (0) = 0, the barriers
define the interval [−a, L− a].
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L

a

Of course, we would obtain the same answers by instead using the interval [a− L, a]. The question is, what
is the probability to touch either boundary, and thus to escape the interval, in time t?

We will approach this problem in the same way as the boundary-crossing, making use of the boundary-
crossing probability (17.372) in the process.26 Actually we will first consider a slightly different problem,
which is, what is the probability that W (t) touches the upper boundary first? That is, we only count the
escapes where the first escape is through the upper boundary. To compute this, we will define some events
(sets of outcomes). First, we define event U1 to be set of all outcomes where the process touches the upper
boundary:

U1 :

We are illustrating the trajectory schematically here; the trajectory may be much more complicated and
touch either boundary many more times than we have indicated. The conical ‘‘spray’’ of trajectories to the
right indicates that we don’t particularly care what happens to the trajectory afterwards. Now we are only
interested in the cases where the process touches the upper boundary first, but we have included cases where
the process touches the lower boundary and then the upper boundary, since U1 includes any outcome that
touches the upper boundary. We will denote this set L1:

L1 :

To properly count the events we want, we should delete events in L1. But not all of them! In L1 we included
paths that touch the upper boundary before touching the lower boundary, and we want to count these. We
will denote this set U2:

U2 :

But again, in this set, we are counting paths that touch the lower boundary before the indicated touchings,
and we don’t want to count these. We will denote this set L2.

L2 :

Continuing in this way, we should define the set Uj to be the set of all paths that touch the upper boundary
j times, with j − 1 touchings of the lower boundary ‘‘interleaved,’’ and Lj to be the set of all paths that
touch the lower boundary and then alternating between the upper boundary and lower boundary, with j
touchings of each boundary. (Once a boundary touches a boundary, it is okay for it to touch it again before
touching the other boundary in these definitions.)

Thus, we have argued that the set of all paths that touch the upper boundary first is

Aupper first = U1 − L1 + U2 − L2 + . . . (17.404)

The probabilities of the events on the right-hand side are easy to compute, using the Reflection Principle.
(Indeed, notice how the ‘‘reflections’’ pop up here, in a way analogous to the infinity of reflections in a Fabry–
Perot cavity.) The idea as before is to ‘‘unwrap’’ trajectories via reflections, and the resulting probability

26The method here was applied to the Wiener process in J. L. Doob, ‘‘Heuristic Approach to the Kolmogorov–Smirnov
Theorems,’’ The Annals of Mathematical Statistics 20, 393 (1949) (doi: 10.1214/aoms/1177729991); and T. W. Anderson, ‘‘A
Modification of the Sequential Probability Ratio Test to Reduce the Sample Size,’’ The Annals of Mathematical Statistics 31,
165 (1960) (doi: 10.1214/aoms/1177705996).

http://dx.doi.org/10.1214/aoms/1177729991
http://dx.doi.org/10.1214/aoms/1177705996
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is just the single-boundary crossing probability (17.372), where the distance d is the total vertical distance
traversed in each diagram (noting that the distances to the boundaries are L− a and a above and below the
dashed line, respectively. Thus, for example,

P (U1) = erfc
(
L− a√

2t

)
P (L1) = erfc

(
L+ a√

2t

)
P (U2) = erfc

(
3L− a√

2t

)
P (L2) = erfc

(
3L+ a√

2t

)
,

(17.405)

and so on. The probability to touch the upper boundary before the lower boundary is then

Pupper first(t) = erfc
(
L− a√

2t

)
− erfc

(
L+ a√

2t

)
+ erfc

(
3L− a√

2t

)
− erfc

(
3L+ a√

2t

)
+ . . .

=

∞∑
j=1

[
erfc

(
(2j − 1)L− a√

2t

)
− erfc

(
(2j − 1)L+ a√

2t

)]
.

(17.406)

The probability to touch the lower boundary before the upper boundary is simply given by the replacement
a −→ L− a in the above expression:

Plower first(t) =

∞∑
j=1

[
erfc

(
(2j − 2)L+ a√

2t

)
− erfc

(
(2j)L− a√

2t

)]
= erfc

(
a√
2t

)
+

∞∑
j=1

[
erfc

(
2jL+ a√

2t

)
− erfc

(
2jL− a√

2t

)]
.

(17.407)

The escape probability is the sum of the above two probabilities,

Pescape(t) = Pupper first(t) + Plower first(t), (17.408)

since they represent two disjoint sets of outcomes:27

Pescape(t) = erfc
(

a√
2t

)
+

∞∑
j=1

(−1)j
[
erfc

(
jL+ a√

2t

)
− erfc

(
jL− a√

2t

)]
=

∞∑
j=−∞

(−1)j sgn(j + 0+) erfc
(
|a+ jL|√

2t

)
.

(escape probability for Wiener process) (17.409)
Note that the 0+ is included in the sgn function so that the j = 0 term is positive.

17.9.2 Standard Brownian Bridge

The calculation for the Brownian bridge goes in essentially the same was as for the Wiener path.28 We set
up the problem with the same dimensions as before, the only difference being the constraint B(1) = 0 on
the Wiener path B(t).

27cf. Andrei N. Borodin and Paavo Salminen, op. cit., p. 167, formula 1.7.4(2), and see p. 641 for the function definition.
28Bruno Casella and Gareth O. Roberts, ‘‘Exact Monte Carlo Simulation of Killed Diffusions,’’ Advances in Applied Probability

40, 273 (2008) (doi: 10.1239/aap/1208358896). (Note the typo in the expression for qj .) Also Alexandros Beskos, Stefano
Peluchetti, and Gareth Roberts, ‘‘ε-Strong Simulation of the Brownian Path,’’ arXiv.org preprint (arXiv: 1110.0110v1).

http://dx.doi.org/10.1239/aap/1208358896
http://arxiv.org/abs/1110.0110v1
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L

a

Again, we consider the altered problem of: what is the probability that W (t) touches the upper boundary
first? Again, we define events Uj and Lj as in the Wiener-path case, except that now the final points of the
paths are pinned down:

U1 :

L1 :

U2 :

L2 :

and so on. Continuing in this way, we again define the set Uj to be the set of all paths that touch the upper
boundary j times, with j−1 touchings of the lower boundary ‘‘interleaved,’’ and Lj to be the set of all paths
that touch the lower boundary and then alternating between the upper boundary and lower boundary, with
j touchings of each boundary.

Thus, the set of all paths that touch the upper boundary first is again

Aupper first = U1 − L1 + U2 − L2 + . . . (17.410)

The probabilities of the events on the right-hand side are easy to compute, using the Reflection Principle.
The probability in each diagram is just the single-boundary (bridge) crossing probability (17.380), where the
distance d is half the total vertical distance traversed in each diagram. Thus, for example,

P (U1) = e−2(L−a)
2

P (L1) = e−2L
2

P (U2) = e−2(2L−a)
2

P (L2) = e−2(2L)
2

,

(17.411)

and so on. The probability to touch the upper boundary before the lower boundary is then

Pupper first = e−2(L−a)
2

− e−2L
2

+ e−2(2L−a)
2

− e−2L
2

+ . . .

=

∞∑
j=1

[
e−2(jL−a)

2

− e−2(jL)
2
]
.

(17.412)

The probability to touch the lower boundary before the upper boundary is again simply given by the
replacement a −→ L− a in the above expression:

Plower first =

∞∑
j=1

[
e−2[(j−1)L+a)

2

− e−2(jL)
2
]

= e−2a
2

+

∞∑
j=1

[
e−2(jL+a)

2

− e−2(jL)
2
] (17.413)

The escape probability is once again the sum of the above two probabilities,

Pescape = Pupper first + Plower first. (17.414)
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The resulting expression is

Pescape = e−2a
2

+

∞∑
j=1

[
e−2(jL−a)

2

+ e−2(jL+a)
2

− 2e−2(jL)
2
]

(0 < a < L)

= 1 +

∞∑
j=−∞

[
e−2(a+jL)

2

− e−2(jL)
2
]
.

(escape probability, standard Brownian bridge) (17.415)
Notice that besides the obvious difference in the functions appearing here compared to the Wiener case, the
structure is different: an a-independent term (the last term here) does not appear in the Wiener case.

17.9.3 Brownian Bridge

It is not difficult to generalize the above escape probability to a more general Brownian bridge B0→c(t),
pinned to c at t = 1. In the derivation, we summed over terms of the form exp(−2d2) from Eq. (17.380) for
various distances d. According to (17.387) we just need to change these to terms of the form exp[−2d(d−c)],
with

Pescape = e−2a(a−c) +

∞∑
j=1

[
e−2(jL−a)(jL−a−c) + e−2(jL+a)(jL+a−c) − 2e−2(jL)(jL−c)

]
(0 < a < L; −a < c < L− a)

(escape probability, Brownian bridge) (17.416)
as the result.

17.10 Dirichlet Problem and Connection to Electrostatics

17.10.1 Laplace Equation

Another interesting context in which boundary crossing and escape arises is in the Laplace equation, subject
to Dirichlet boundary conditions. That is, suppose we want the solution to the Laplace equation

∇2φ(r) = 0, φ(r) = φ∂(r) ∀r∈∂D.
(17.417)

(Dirichlet problem)

on some bounded domain D, where φ∂(r) fixes the solution on the domain boundary ∂D. (That is, find the
electrostatic potential in a charge-free region, given the potential/voltage on a bounding surface.)

We will now show that the solution can be written as the path average

φ(r) =
〈〈
φ[r + W(τ∂)]

〉〉
W(τ∂)

,
(17.418)

(stochastic solution)

where W(t) is a vector Wiener process, and τ∂ is the first passage time of W(t) through ∂D. That is, we
start a bunch of Wiener paths from r, let them go until they hit the boundary, and then take the average of
the boundary values where the paths hit. Actually, this solution requires that the boundary be sufficiently
nice, which is certainly true for physical boundaries in electrostatic problems. (More technically, the surface
should satisfy the ‘‘Poincaré cone condition,’’ which basically says that at each point on the surface, you can
attach a code of finite angle and length that doesn’t intersect the boundary except at the attachment point.
This rules out, for example, interior boundaries of arbitrarily small area, or a sufficiently severe ‘‘kink’’ in
the surface.29)

That the stochastic solution (17.418) has the correct boundary values is reasonably obvious, because
as the point r moves close to a point on the boundary, the paths starting from that point will hit the

29Kiyosi Itô and Henry P. McKean, Jr., Diffusion Processes and their Sample Paths (Springer, 1974), pp. 257, 261-4 (doi:
10.1007/978-3-642-62025-6).

http://dx.doi.org/10.1007/978-3-642-62025-6
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nearest surface with probability approaching unity. This can be seen, for example, from the first-passage-
time density for the Wiener path in Eq. (17.374), where the peak of the density shifts to zero as d −→ 0,
or that the crossing probability (17.372) in any finite time converges to unity as d −→ 0. However, the
boundary function φ∂ should be continuous, as the paths from r will always average over a small region of
the boundary, even as the source point approaches the boundary.

Now to show that the expression (17.418) satisfies the Laplace equation. Suppose we draw a sphere of
radius R, centered at r, such that the sphere lies entirely within D, as shown below.

R
r

W(t)D
∂D

τR

τ∂

The idea is that the Wiener path must cross the sphere before it crosses the boundary. Then suppose we
rewrite Eq. (17.418) as

φ(r) =
〈〈〈〈

φ[r + W(τR) + ∆W(τ∂)]
〉〉

∆W(τ∂)

〉〉
W(τR)

, (17.419)

where τR is the first crossing time of the sphere, and

∆W(τ∂) := W(τ∂)−W(τR). (17.420)

We haven’t really done much here, except to split (pathwise) the time interval into pre- and post-τR, and
we are explicitly taking the ensemble average after τR separately from the ensemble average over all possible
first crossings of the sphere represented by τR. However, since the path ∆W(τ∂) after touching the sphere
acts itself like a Wiener path, we can use the solution (17.418) to replace the inner ensemble average:

φ(r) =
〈〈
φ[r + W(τR)]

〉〉
W(τR)

. (17.421)

Now since the Wiener path is equally likely to have its first touching point W(τR) at any point on the sphere,
we can simplify the notation a bit to write

φ(r) =
〈〈
φ(r + R)

〉〉
|R|=R

, (17.422)

where R determines some point on the sphere, and the ensemble average is simply a uniform average over
the surface of the sphere. That φ(r) is the average value of φ on a sphere centered on r is a necessary and
sufficient condition for φ to be a harmonic function (i.e., a solution to the Laplace equation).30

17.10.2 Laplacian as Spherical Average

We can make the above argument about the averaging property of harmonic functions more precise by
working it out somewhat more explicitly, and in the process arrive at a useful representation of the Laplacian.
First, consider the Taylor expansion

φ(r + R) = φ(r) +
[
∂αφ(r)

]
Rα +

1

2

[
∂α∂βφ(r)

]
RαRβ +O(R3), (17.423)

30See David J. Griffiths, Introduction to Electrodynamics, 4th ed. (Prentice Hall, 2013), Section 3.1.4, p. 117. The idea is
to consider a point charge outside the sphere, and show that the averaging statement is true for this case. Then the same
statement must be true for any collection of charges, and conversely for any solution of the Laplace equation, since any physical
solution may be regarded as being produced by some charge distribution.
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where repeated indices are summed. Averaging over all orientations of R at fixed distance R gives〈〈
φ(r + R)

〉〉
|R|=R

= φ(r) + 1

2

〈〈[
∂ 2
αφ(r)

]
R 2
α

〉〉
|R|=R

+O(R3), (17.424)

where all first derivatives have vanished under the symmetric average. Now we can rewrite the last term
using 〈〈 d∑

α=1

[
∂ 2
αφ(r)

]
R 2
α

〉〉
|R|=R

=

d∑
α=1

[
∂ 2
αφ(r)

]〈〈
R 2
α

〉〉
|R|=R

=

d∑
α=1

[
∂ 2
αφ(r)

]R2

d

=
R2

d ∇
2φ(r),

(17.425)

where we are writing out the sum explicitly now over d dimensions, and we used the fact that R 2
α is

independent of α once averaged over all orientations. Then putting this result into Eq. (17.424) and taking
the limit R −→ 0

∇2φ(r) = lim
R→0+

2d
R2

[〈〈
φ(r + R)

〉〉
|R|=R

− φ(r)
]
,

(Laplacian as spherical average) (17.426)
which is a representation of the Laplacian operator in terms of an average over a small sphere around r. This
equation immediately implies that Eq. (17.422) is equivalent to the Laplace equation (17.417), completing
our proof of the Wiener-path solution.

17.10.3 Poisson Equation

The same basic approach31 works for the Poisson equation

∇2φ(r) = ρ(r), φ(r) = φ∂(r) ∀r∈∂D,
(17.427)

(Dirichlet Poisson problem)

which is the same as the original problem (17.417), but with the addition of a source ρ(r) (a factor of 1/ε0
is absorbed into the source for simplicity). The solution is the same as before, but with the addition of a
source-averaging term:

φ(r) =
〈〈
φ[r + W(τ∂)]−

1

2

∫ τ∂

0

dt ρ[r + W(t)]

〉〉
W(τ∂)

.

(stochastic Poisson solution) (17.428)
The same argument leading to Eq. (17.419) applies, but the second term splits into two parts, before and
after τR. The result is then

φ(r) =
〈〈
φ(r + R)

〉〉
|R|=R

−

〈〈
1

2

∫ τR

0

dt ρ[r + W(t)]

〉〉
W(τR)

. (17.429)

The portion of the integral from τR to τ∂ was already absorbed into the solution in the first term here.
Rearranging and multiplying by 2d/R2,

2d
R2

[〈〈
φ(r + R)

〉〉
|R|=R

− φ(r)
]
=

d
R2

〈〈∫ τR

0

dt ρ[r + W(t)]

〉〉
W(τR)

. (17.430)

31For a rigorous version of the argument here, see Sidney C. Port and Charles J. Stone, Brownian Motion and Classical
Potential Theory (Academic Press, 1978) (ISBN: 0124335942), Proposition 5.2 on p. 14 and Section 4.6 on p. 114.

http://www.amazon.com/gp/search/?field-isbn=0124335942
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Taking the limit R −→ 0, we can use Eq. (17.426) on the left-hand side, and on the right-hand side, we can
treat ρ as being a constant with respect to the integral. Thus

∇2φ(r) = ρ(r) d
R2

〈〈
τR
〉〉

W(τR)
. (17.431)

At this point, we have dropped the limit R −→ 0 on the right-hand side, as it is not necessary. The statistic
involved here is the mean of the first-passage time through a sphere of radius R in d dimensions.

Now to calculate the remaining expectation value. First, recall that for a vector Wiener process in d
dimensions, the Euclidean norm is given on average by〈〈

‖W(t)‖2
〉〉
= td, (17.432)

since there are d independent directions of displacement, each contributing t to the variance. Now what we
would like to show is that this is still true if t is replaced by the stopping time τR, in the sense that〈〈

‖W(τR)‖2
〉〉
= 〈〈τR〉〉d, (17.433)

or indeed any other stopping time. First, let’s take t to be some very large time, such that almost certainly
τR < t (i.e., 0 < τR < t). For some paths this will not be true, such that the argument below will miss
them; in these cases we can take τR to be equal to t, which will produce an error that vanishes in the limit
t −→∞. Then starting with Eq. (17.432),

td =
〈〈
‖W(t)‖2

〉〉
=
〈〈
‖W(t)−W(τR) + W(τR)‖2

〉〉
=
〈〈
‖W(t)−W(τR)‖2

〉〉
+
〈〈
‖W(τR)‖2

〉〉
−
〈〈
[W(t)−W(τR)] ·W(τR)

〉〉
,

(17.434)

where the last term is zero, because the parts of the path W(t) before and after τR are independent, and at
least the first factor has zero mean. Then taking on the first term on the right-hand side, we can think of all
paths that start at a particular stopping point W(τR), such that the ensemble average of ‖W(t)−W(τR)‖
is just (t− τR)d. Then continue the ensemble average over all stopping times τR, so that〈〈

‖W(t)−W(τR)‖2
〉〉
=
〈〈
(t− τR)d

〉〉
= td− 〈〈τR〉〉d. (17.435)

Putting this together with Eq. (17.434), we find the desired result〈〈
‖W(τR)‖2

〉〉
= 〈〈τR〉〉d, (17.436)

of course taking the limit t −→ ∞ (which only appears in the sense that we forced τR ≤ t) so that the
ensemble averages involving τR are correct. By definition of τR, the left-hand side is R2, so

〈〈τR〉〉 =
R2

d . (17.437)

Putting this into Eq. (17.430), we see that it reduces to the Poisson equation (17.427) as desired.

17.11 Feynman–Kac Formula

To introduce a very powerful method of computing expectation values for SDEs, we will introduce the
Feynman–Kac formula,32 which solves diffusion problems in terms of integrals over solutions to SDEs.

32R. P. Feynman, ‘‘Space-Time Approach to Non-Relativistic Quantum Mechanics,’’ Reviews of Modern Physics 20, 367
(1948) (doi: 10.1103/RevModPhys.20.367); M. Kac, ‘‘On Distributions of Certain Wiener Functionals,’’ Transactions of the
American Mathematical Society 65, 1 (1949) (doi: 10.1090/S0002-9947-1949-0027960-X); M. Kac, ‘‘On Some Connections
between Probability Theory and Differential and Integral Equations,’’ in Proceedings of the Second Berkeley Symposium on
Mathematical Statistics and Probability (University of California Press, 1951), p. 189 (http://projecteuclid.org/euclid.
bsmsp/1200500229).

http://dx.doi.org/10.1103/RevModPhys.20.367
http://dx.doi.org/10.1090/S0002-9947-1949-0027960-X
http://projecteuclid.org/euclid.bsmsp/1200500229
http://projecteuclid.org/euclid.bsmsp/1200500229
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There are numerous forms of this formula, and we will develop a relatively simple form33 that considers a
forced diffusion equation for the distribution f(x, t),

∂tf =
1

2
∂ 2
x f − V (x, t)f + g(x, t),

(17.438)
(PDE for Feynman–Kac formula)

subject to the initial condition

f0(x) = f(x, 0).
(17.439)

(initial condition for Feynman–Kac formula)
The Feynman–Kac formula gives the solution of (17.438) for t > 0 as

f(x, t) =

〈〈
f0[x+W (t)] exp

(
−
∫ t

0

dt′ V [x+W (t′), t− t′]
)

+

∫ t

0

dt′ g[x+W (t′), t− t′] exp

(
−
∫ t′

0

dt′′ V [x+W (t′′), t− t′′]

)〉〉
,

(Feynman–Kac formula) (17.440)
where the ensemble average is over all realizations of W (t). Before continuing to prove this formula, notice
that it reduces correctly to f0(x) as t −→ 0. Also, for a simple, undriven diffusion,

∂tf =
1

2
∂ 2
x f, (17.441)

the formula reduces to

f(x, t) =
〈〈
f0[x+W (t)]

〉〉
=

∫ ∞
−∞

dW f0(W )
1√
2πt

e−(W−x)
2/2t,

(17.442)

which is the convolution of f0(x) with a Gaussian of variance t, as we expect. The extra terms V and g
introduce damping (or ‘‘killing’’ of diffusing particles) and particle sources, respectively, that clearly make
the solution more complicated.

17.11.1 Proof: Simple Diffusion

But now to prove the Feynman–Kac formula (17.440), which we will do in increasingly complex stages. First,
take again the simple case where V = g = 0, so that we have the simple diffusion equation,

∂tf =
1

2
∂ 2
x f, (17.443)

with solution

f(x, t) =
〈〈
f0[x+W (t)]

〉〉
. (17.444)

We will show explicitly that this is the solution by simply differentiating it with respect to time. Technically,
we will just compute the differential df(t), regarding x as a fixed parameter,

∂tf dt =
〈〈
∂xf0[x+W (t)] dW

〉〉
+

1

2

〈〈
∂ 2
x f0[x+W (t)] dt

〉〉
, (17.445)

where we have differentiated according to the Itō rule. The dW term vanishes in the ensemble average,

∂tf dt =
1

2

〈〈
f ′′0 [x+W (t)]

〉〉
dt, (17.446)

and differentiating (17.444) with respect to x to evaluate the averages on the right-hand side, we see that
the first derivatives cancel, and the second-derivative term gives the remaining term we need in Eq. (17.443),
after canceling factors of dt.

33cf. Andrei N. Borodin and Paavo Salminen, op. cit., p. 103.
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17.11.2 Proof: Diffusion with Damping

Now consider the case where we have the damping term V (x, t), but g = 0. Then the PDE we wish to
generate is

∂tf =
1

2
∂ 2
x f − V (x, t)f, (17.447)

and we want to show that this PDE is solved by

f(x, t) =

〈〈
f0[x+W (t)] exp

(
−
∫ t

0

dt′ V [x+W (t′), t− t′]
)〉〉

. (17.448)

The procedure here is somewhat more complicated than for the simple diffusion in Eqs. (17.443) and (17.444).
To keep the calculation organized, consider the quantity34

M(t) = f [x+W (t), t′′ − t] exp
(
−
∫ t

0

dt′ V [x+W (t′), t′′ − t′]
)
, (17.449)

where we assume f(x, t) to satisfy the PDE (17.447), with x and t′′ effectively fixed parameters. This is
something like the solution (17.448) with the initial condition replaced by the time-dependent solution. We
will now compute the differential of M :

dM(t) =

(
− ∂tf [x+W (t), t′′ − t] dt+ ∂xf [x+W (t), t′′ − t] dW

+
1

2
∂ 2
x f [x+W (t), t′′ − t] dt

)
e−

∫ t
0
dt′ V [x+W (t′),t′′−t]

+ f [x+W (t), t′′ − t]V [x+W (t), t′′ − t] e−
∫ t
0
dt′ V [x+W (t′),t′′−t] dt.

(17.450)

The first, third, and fourth terms here vanish together since we assumed f(x, t) to satisfy (17.447). Thus,

dM(t) = ∂xf [x+W (t), t′′ − t] exp
(
−
∫ t

0

dt′ V [x+W (t′), t′′ − t′]
)
dW. (17.451)

In particular, 〈〈dM(t)〉〉 = 0, so M(t) is a martingale, which says that M(t) tracks (at least locally) the
average behavior of our solution. We will make use of this as follows. Note that evaluating 〈〈M(t)〉〉 at
t = t′′, we have

〈〈
M(t′′)

〉〉
=

〈〈
f [x+W (t′′), 0] exp

(
−
∫ t′′

0

dt′ V [x+W (t′), t′′ − t′]

)〉〉
, (17.452)

which is just the desired solution (17.448) with the replacement t −→ t′′, while evaluating 〈〈M(t)〉〉 at t = 0
gives the general solution 〈〈

M(0)
〉〉

= f(x, t′′). (17.453)

It follows from integrating 〈〈dM(t)〉〉 = 0 from t = 0 to t′′ that we have a constant of the motion,〈〈
M(0)

〉〉
=
〈〈
M(t′′)

〉〉
, (17.454)

which directly leads to Eq. (17.448).
34The proof here follows the basic idea of Richard Durrett, Stochastic Calculus: A Practical Introduction (CRC Press, 1996),

pp. 137-41.
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17.11.3 Proof: Diffusion with Source

Next, we proceed to the case where we have the source term g(x, t), but V = 0. Then the PDE we wish to
generate is

∂tf =
1

2
∂ 2
x f + g(x, t), (17.455)

and we want to show that this PDE is solved by

f(x, t) =

〈〈
f0[x+W (t)] +

∫ t

0

dt′ g[x+W (t′), t− t′]

〉〉
. (17.456)

Again, consider the quantity35

M(t) = f [x+W (t), t′′ − t] +
∫ t

0

dt′ g[x+W (t′), t′′ − t′], (17.457)

with f(x, t) satisfying Eq. (17.455). The differential is

dM(t) = −∂tf [x+W (t), t′′ − t] dt+ ∂xf [x+W (t), t′′ − t] dW +
1

2
∂ 2
x f [x+W (t), t′′ − t] dt

+ g[x+W (t), t′′ − t]
= ∂xf [x+W (t), t′′ − t] dW.

(17.458)

Again, we have that M(t) is a martingale,

d
〈〈
M(t)

〉〉
= 0, (17.459)

which upon integration gives 〈〈
M(0)

〉〉
=
〈〈
M(t′′)

〉〉
, (17.460)

where 〈〈
M(0)

〉〉
= f(x, t′′), (17.461)

and 〈〈
M(t′′)

〉〉
=

〈〈
f [x+W (t), 0] +

∫ t′′

0

dt′ g[x+W (t′), t′′ − t′]

〉〉
, (17.462)

thus establishing the desired solution (17.456).

17.11.4 Proof: Diffusion with Damping and Source

Now we return to the general case, Eqs. (17.438) and (17.440). In analogy with the simpler cases, we consider
the candidate quantity

M(t) = f [x+W (t), t′′ − t] exp
(
−
∫ t

0

dt′ V [x+W (t′), t′′ − t′]
)

+

∫ t

0

dt′ g[x+W (t′), t′′ − t′] exp

(
−
∫ t′

0

dt′′′ V [x+W (t′′′), t′′ − t′′′]

)
.

(17.463)

35Richard Durrett, op. cit., pp. 130-6.
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The differential is

dM(t) =

(
−∂tf [x+W (t), t′′ − t] dt+ ∂xf [x+W (t), t′′ − t] dW

+
1

2
∂ 2
x f [x+W (t), t′′ − t] dt

)
exp
(
−
∫ t

0

dt′ V [x+W (t′), t′′ − t′]
)

− f [x+W (t), t′′ − t]V [x+W (t), t′′ − t] exp
(
−
∫ t

0

dt′ V [x+W (t′), t′′ − t′]
)
dt

+ g[x+W (t), t′′ − t] exp
(
−
∫ t

0

dt′′′ V [x+W (t′′′), t′′ − t′′′]
)
dt

= ∂xf [x+W (t), t′′ − t] dW,

(17.464)

after using the PDE (17.438) as usual to eliminate terms. Once again, M(t) is a martingale,

d
〈〈
M(t)

〉〉
= 0, (17.465)

so that 〈〈
M(0)

〉〉
=
〈〈
M(t′′)

〉〉
, (17.466)

where 〈〈
M(0)

〉〉
= f(x, t′′), (17.467)

and〈〈
M(t′′)

〉〉
=

〈〈
f [x+W (t), 0] exp

(
−
∫ t′′

0

dt′ V [x+W (t′), t′′ − t′]

)

+

∫ t′′

0

dt′ g[x+W (t′), t′′ − t′] exp

(
−
∫ t′

0

dt′′′ V [x+W (t′′′), t′′ − t′′′]

)〉〉
,

(17.468)

which establishes the solution (17.440).

17.11.5 Other Forms

Other forms of the Feynman–Kac theorem are common, for example, that specify final conditions for the
diffusion equation, or that employ more complicated diffusions. As a simple example of the latter, consider

∂tf = α(x) ∂xf +
1

2
β2(x) ∂ 2

x f,
(17.469)

(generalized diffusion equation)

which is solved by

f(x, t) =
〈〈
f0[y(t)]

〉〉
y(0)=x

,

(Feynman–Kac path average) (17.470)
where again f0(x) = f(x, 0), and we assume state-dependent drift and diffusion,

dy = α(y) dt+ β(y) dW, y(0) = x,

(trajectories for Feynman–Kac equation) (17.471)
with no explicit time dependence in the SDE. Defining

M(t) = f [y(t), t′ − t], (17.472)
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the differential is

dM(t) = −∂tf [y(t), t′ − t] dt+ ∂xf [y(t), t
′ − t] dy + 1

2
∂ 2
x f [y(t), t

′ − t] (dy)2

= −∂tf [y(t), t′ − t] dt+ α(y, t′ − t) ∂xf [y(t), t′ − t] dt+ β(y, t′ − t) ∂xf [y(t), t′ − t] dW

+
1

2
β2(y, t′ − t) ∂ 2

x f [y(t), t
′ − t] dt

= β(y, t′ − t) ∂xf [y(t), t′ − t] dW.

(17.473)

As usual, M(t) is a martingale, meaning d〈〈M(t)〉〉 = 0, so that 〈〈M(0)〉〉 = 〈〈M(t′)〉〉, where〈〈
M(0)

〉〉
= f [y(0), t′] = f(x, t′), (17.474)

and 〈〈
M(t′)

〉〉
=
〈〈
f [y(t′), 0]

〉〉
, (17.475)

establishing (17.470).

17.11.5.1 General form for State-Dependent Diffusion

For the same state-dependent drift and diffusion represented by the SDE (17.470), but adding decay and
source terms to the SDE as in

∂tf = α(x) ∂xf +
1

2
β2(x) ∂ 2

x f − V (x, t)f + g(x, t),

(PDE for generalized Feynman–Kac formula) (17.476)
the corresponding Feynman–Kac formula becomes

f(x, t) =

〈〈
f0[y(t)] exp

(
−
∫ t

0

dt′ V [y(t′), t− t′]
)

+

∫ t

0

dt′ g[y(t′), t− t′] exp

(
−
∫ t′

0

dt′′ V [y(t′′), t− t′′]

)〉〉
y(0)=x

.

(generalized Feynman–Kac formula) (17.477)
The proof for this goes in the same way by considering the martingale function

M(t) = f [y(t), t′′ − t] exp
(
−
∫ t

0

dt′ V [y(t′), t′′ − t′]
)

+

∫ t

0

dt′ g[y(t′), t′′ − t′] exp

(
−
∫ t′

0

dt′′′ V [y(t′′′), t′′ − t′′′]

)
,

(17.478)
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where the differential is

dM(t) =

(
−∂tf [y(t), t′′ − t] dt+ ∂xf [y(t), t

′′ − t] dy + 1

2
∂ 2
x f [y(t), t

′′ − t] dy2
)

× exp
(
−
∫ t

0

dt′ V [y(t′), t′′ − t′]
)

− f [y(t), t′′ − t]V [y(t), t′′ − t] exp
(
−
∫ t

0

dt′ V [y(t′), t′′ − t′]
)
dt

+ g[y(t), t′′ − t] exp
(
−
∫ t

0

dt′′′ V [y(t′′′), t′′ − t′′′]
)
dt

=

(
−∂tf [y(t), t′′ − t] dt+

[
α[y(t)] dt+ β[y(t)] dW

]
∂xf [y(t), t

′′ − t]

+
1

2
β2(y, t) ∂ 2

x f [y(t), t
′′ − t] dt

)
exp
(
−
∫ t

0

dt′ V [y(t′), t′′ − t′]
)

− f [y(t), t′′ − t]V [y(t), t′′ − t] exp
(
−
∫ t

0

dt′ V [y(t′), t′′ − t′]
)
dt

+ g[y(t), t′′ − t] exp
(
−
∫ t

0

dt′′′ V [y(t′′′), t′′ − t′′′]
)
dt

= β[y(t)] ∂xf [y(t), t
′′ − t] dW.

(17.479)

We have already implemented the diffusion equation (17.476) as usual to show that this is a martingale,
〈〈dM(t)〉〉 = 0. It is important to notice here that this argument does not carry through if α and β depend
explicitly on time, because then the time dependences do not match in the correct way to permit the diffusion
equation to cancel all the deterministic terms of dM(t).

Then setting 〈〈
M(0)

〉〉
=
〈〈
M(t′′)

〉〉
, (17.480)

where 〈〈
M(0)

〉〉
= f [y(0), t′′], (17.481)

and 〈〈
M(t′′)

〉〉
=

〈〈
f [y(t′′), 0] exp

(
−
∫ t′′

0

dt′ V [y(t′), t′′ − t′]

)

+

∫ t′′

0

dt′ g[y(t′), t′′ − t′] exp

(
−
∫ t′

0

dt′′′ V [y(t′′′), t′′ − t′′′]

)〉〉
,

(17.482)

and dropping the primes on t′′, we arrive at the result (17.478).

17.11.5.2 Time-Dependent Drift and Diffusion: First Form

Again, for
dy = α(y, t) dt+ β(y, t) dW,

(trajectories for Feynman–Kac equation) (17.483)
the approach from the previous section does not carry through because the explicit time dependence of α
and β runs forward in time, but the time dependence of f runs backwards in time. However, both should
be the same, as they appear in the PDE. Thus consider the alternate martingale function

M(t) = f [y(t′′ − t), t′′ − t] exp
(
−
∫ t

0

dt′ V [y(t′′ − t′), t′′ − t′]
)

+

∫ t

0

dt′ g[y(t′′ − t′), t′′ − t′] exp

(
−
∫ t′

0

dt′′′ V [y(t′′ − t′′′), t′′ − t′′′]

)
,

(17.484)
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with differential

dM(t) =

(
−∂tf [y(t′′ − t), t′′ − t] dt+ ∂xf [y(t

′′ − t), t′′ − t] dy + 1

2
∂ 2
x f [y(t

′′ − t), t′′ − t] dy2
)

× exp
(
−
∫ t

0

dt′ V [y(t′′ − t′), t′′ − t′]
)

− f [y(t′′ − t), t′′ − t]V [y(t′′ − t), t′′ − t] exp
(
−
∫ t

0

dt′ V [y(t′′ − t′), t′′ − t′]
)
dt

+ g[y(t′′ − t), t′′ − t] exp
(
−
∫ t

0

dt′′′ V [y(t′′ − t′′′), t′′ − t′′′]
)
dt

=

(
−∂tf [y(t′′ − t), t′′ − t] dt−

[
α(y, t′′ − t) dt+ β[y(t), t′′ − t] dW (t′′ − t)

]
∂xf [y(t), t

′′ − t]

+
1

2
β2(y, t′′ − t) ∂ 2

x f [y(t), t
′′ − t] dt

)
exp
(
−
∫ t

0

dt′ V [y(t′′ − t′), t′′ − t′]
)

− f [y(t′′ − t), t′′ − t]V [y(t′′ − t), t′′ − t] exp
(
−
∫ t

0

dt′ V [y(t′′ − t′), t′′ − t′]
)
dt

+ g[y(t′′ − t), t′′ − t] exp
(
−
∫ t

0

dt′′′ V [y(t′′ − t′′′), t′′ − t′′′]
)
dt

= −β(y, t′′ − t) ∂xf [y(t′′ − t), t′′ − t] dW (t′′ − t).

(17.485)

Note that all the evolution now is explicitly backwards, including the time dependence of the trajectories
y(t′′ − t). In the last step, we used the PDE

∂tf = −α(x, t) ∂xf +
1

2
β2(x, t) ∂ 2

x f − V (x, t)f + g(x, t),

(PDE for generalized Feynman–Kac formula) (17.486)
which gives the relevant diffusion equation. As usual, setting〈〈

M(0)
〉〉

=
〈〈
M(t′′)

〉〉
, (17.487)

where 〈〈
M(0)

〉〉
= f [y(t′′), t′′], (17.488)

and〈〈
M(t′′)

〉〉
=

〈〈
f [y(0), 0] exp

(
−
∫ t′′

0

dt′ V [y(t′′ − t′), t′′ − t′]

)

+

∫ t′′

0

dt′ g[y(t′′ − t′), t′′ − t′] exp

(
−
∫ t′

0

dt′′′ V [y(t′′ − t′′′), t′′ − t′′′]

)〉〉
,

(17.489)

gives the generalized Feynman–Kac formula

f(x, t) =

〈〈
f0[y(0)] exp

(
−
∫ t

0

dt′ V [y(t− t′), t− t′]
)

+

∫ t

0

dt′ g[y(t− t′), t− t′] exp

(
−
∫ t′

0

dt′′ V [y(t− t′′), t− t′′]

)〉〉
y(t)=x

.

(generalized Feynman–Kac formula) (17.490)
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The time dependence can be simplified somewhat by writing

f(x, t) =

〈〈
f0[y(0)] exp

(
−
∫ t

0

dt′ V [y(t′), t′]

)
+

∫ t

0

dt′ g[y(t′), t′] exp
(
−
∫ t

t−t′
dt′′ V [y(t′′), t′′]

)〉〉
y(t)=x

.

(generalized Feynman–Kac formula) (17.491)
However, the form (17.490) is somewhat better for interpreting the formula, because it explicitly traces each
trajectory y(t), ‘‘beginning’’ at y(t) = x, backwards in time to the initial condition y(0). The formula then
weights the average in the first term by the initial distribution f0 at the corresponding state y(0). The second
term corresponds to the creating of a trajectory by the source g(x, t) at time t′ (summed over all possible
t′), propagating backwards to t = 0. In both terms, the trajectory amplitudes were damped by V (x, t),
integrated over the temporal extent of each path. The backwards-propagating nature of the solutions is
reflected in the above PDE, where the drift coefficient has a minus sign compared to the earlier, ‘‘forward-
propagating’’ PDE (17.476). (The sign change does not apply to the diffusion term, since the backward
propagation is conditioned on a final condition, not an initial condition.) Note also that while more general
than Eq. (17.477) in accounting for explicit time dependence in the SDE coefficients, Eq. (17.477) is much
more convenient, from the point of view of simulation—the trajectories here have to be propagated backwards
from a particular final point (in which case the SDE acts as an anticipating SDE), and weighted according
to the corresponding zero-time point.

17.11.5.3 Time-Dependent Drift and Diffusion: Second Form

An alternative, ‘‘forward-time’’ version of the generalized Feynman–Kac formula arises by considering the
forward-propagating martingale function

M(t) = f [y(t), t] exp
(
−
∫ t

0

dt′ V [y(t′), t′]

)
+

∫ t

0

dt′ g[y(t′), t′] exp

(
−
∫ t′

0

dt′′ V [y(t′′), t′′]

)
. (17.492)

The differential is

dM(t) =

(
∂tf [y(t), t] dt+ ∂xf [y(t), t] dy +

1

2
∂ 2
x f [y(t), t] dy

2

)
exp
(
−
∫ t

0

dt′ V [y(t′), t′]

)
− f [y(t), t]V [y(t), t] exp

(
−
∫ t

0

dt′ V [y(t′), t′]

)
dt

+ g[y(t), t] exp
(
−
∫ t

0

dt′′ V [y(t′′), t′′]

)
dt

=

(
∂tf [y(t), t] dt+

[
α(y, t) dt+ β(y, t) dW

]
∂xf [y(t), t]

+
1

2
β2(y, t) ∂ 2

x f [y(t), t] dt

)
exp
(
−
∫ t

0

dt′ V [y(t′), t′]

)
− f [y(t), t]V [y(t), t] exp

(
−
∫ t

0

dt′ V [y(t′), t′]

)
dt

+ g[y(t), t] exp
(
−
∫ t

0

dt′′ V [y(t′′), t′′]

)
dt

= β(y, t) ∂xf [y(t), t] dW (t),

(17.493)

where in the last step we used the PDE

−∂tf = α(x, t) ∂xf +
1

2
β2(x, t) ∂ 2

x f − V (x, t)f + g(x, t).

(PDE for generalized Feynman–Kac formula) (17.494)
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Then as we have done so many times, we set〈〈
M(0)

〉〉
=
〈〈
M(t)

〉〉
, (17.495)

where 〈〈
M(0)

〉〉
= f [y(0), 0], (17.496)

and 〈〈
M(t)

〉〉
=

〈〈
f [y(t), t] exp

(
−
∫ t

0

dt′ V [y(t′), t′]

)
+

∫ t

0

dt′ g[y(t′), t′] exp

(
−
∫ t′

0

dt′′ V [y(t′′), t′′]

)〉〉
,

(17.497)

leading to the alternate generalized formula

f0(x) =

〈〈
f [y(t), t] exp

(
−
∫ t

0

dt′ V [y(t′), t′]

)
+

∫ t

0

dt′ g[y(t′), t′] exp

(
−
∫ t′

0

dt′′ V [y(t′′), t′′]

)〉〉
y(0)=x

.

(generalized Feynman–Kac formula) (17.498)
Like Eq. (17.491), this form is in a sense less convenient for simulation than Eq. (17.477), because it obtains
the initial distribution from the final distribution. The reverse-time nature of this formula is reflected in the
negative time derivative in the PDE (17.494).

Note also that the diffusion equation (17.494) has the form of the Kolmogorov backward equation
(17.144). Thus, the derivation of the above is effectively an alternate derivation of the Kolmogorov backward
equation, for the evolution of P (x, t|x0, t0) with t0, given a final distribution at t. This is implicit in the
form of the solution (17.498), which gives the initial distribution at t0, given the final distribution at t, such
that the time derivative in the PDE (17.494) can be regarded here as a derivative with respect to t0, and
the distribution f(x, t) should be regarded as equivalent to P (x, t|x0, t0).

17.12 Sojourn Times

17.12.1 Wiener Process

As an example application of the Feynman–Kac formula, we wish to consider the sojourn time of a Wiener
path W (t) past a boundary at d, which is defined as the functional

Ts[W (t); d] :=

∫ t

0

dt′Θ[W (t′)− d] (0 ≤ Ts[W (t); d] ≤ t), (17.499)
(sojourn time)

or the total time that W (t) spends across the boundary. In the plot below, this counts the portion of time
that the path is highlighted in green.
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t
0

W
o(t

)

0

d

We will only consider the case d ≥ 0, since we can get the d < 0 probabilities as complements to the
probabilities we calculate.

Let fTs(x) for 0 ≤ x ≤ t denote the probability density for the sojourn time Ts[W (t); d] of W (t) above
d, with cumulative probability P (Ts ≤ x), satisfying

fTs(x) = ∂xP (Ts ≤ x). (17.500)

Then the Laplace transform of fTs(x) is∫ t

0

dx e−sx fTs(x) =

〈〈
exp {−sTs[W (t); d]}

〉〉
=

〈〈
exp

[
−s
∫ t

0

dt′Θ[W (t′)− d]
]〉〉

. (17.501)

Our goal will be to compute the expectation value on the right via the Feynman–Kac formula, and then to
obtain fTs(x) by inverting the Laplace transform.36

Consider now the driven diffusion equation

∂tf =
1

2
∂ 2
x f − V (x)f − λf + g(x), (17.502)

where V (x) is the occupation function we seek here (i.e., the step function)—we will take it to be the constant
s past the barrier, and 0 before it:

V (x) = sΘ(x− d). (17.503)
The Feynman–Kac formula (17.440) gives the solution of this equation as

f(x, t) =

〈〈
f0[x+W (t)] exp

(
−λt−

∫ t

0

dt′ V [x+W (t′)]

)
+

∫ t

0

dt′ g[x+W (t′)] exp

(
−λt′ −

∫ t′

0

dt′′ V [x+W (t′′)]

)〉〉
.

(17.504)

We will seek the steady-state solution f(x) := f(x, t −→ ∞). In particular, f(x) must be independent of
f0(x), so we will take this initial condition to be zero. Thus, we have the steady state

f(x) =

〈〈∫ ∞
0

dt exp
(
−λt−

∫ t

0

dt′ V [x+W (t′)]

)〉〉

=

∫ ∞
0

dt e−λt

〈〈
exp

(
−s
∫ t

0

dt′Θ[x+W (t′)− d]
)〉〉

,

(17.505)

36here we are adapting the method of Gerard Hooghiemstra, ‘‘On explicit occupation time distributions for Brownian pro-
cesses,’’ Statistics & Probability Letters 56, 405 (2002) (doi: 10.1016/S0167-7152(02)00037-8).

http://dx.doi.org/10.1016/S0167-7152(02)00037-8
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after dropping some primes and setting g(x) = 1. This contains our desired expectation value from
Eq. (17.501) upon setting x = 0, except that we still here have another Laplace transform of the desired
expectation value. This is then the solution of the steady-state version of Eq. (17.502):

λf(x) =
1

2
∂ 2
x f(x)− sΘ(x− d)f(x) + 1. (17.506)

For x > d, the ODE is
f ′′ = 2(λ+ s)f − 2, (17.507)

with the case of x < d given by setting s = 0. Then setting h = f − 1/(λ+ s), we have h′′ = 2(λ+ s)h, so
that for x > d,

h(x) = Ae−
√

2(λ+s) x, (17.508)

or

f(x) =


Ae−

√
2(λ+s) x +

1

λ+ s
(x > d)

Be
√
2λx +

1

λ
(x < d)

(17.509)

for some undetermined constants A and B, where we have chosen the bounded solution on either side of d.
Demanding continuity of f(x) at x = d gives

Ae−
√

2(λ+s) d +
1

λ+ s
= Be

√
2λ d +

1

λ
, (17.510)

and continuity of f ′(x) at x = d gives

−
√
2(λ+ s)Ae−

√
2(λ+s) d =

√
2λBe

√
2λ d. (17.511)

The solution of these two equations fixes the coefficients as

A =
se

√
2(λ+s) d

(λ+ s)[λ+
√
λ(λ+ s)]

, B = − se−
√
2λ d

λ[λ+ s+
√
λ(λ+ s)]

. (17.512)

Now, we can equate Eqs. (17.505) and (17.509) and set x = 0 to obtain∫ ∞
0

dt e−λt

〈〈
exp

(
−s
∫ t

0

dt′Θ[W (t′)− d]
)〉〉

= B +
1

λ
=

1

λ
− se−

√
2λ d

λ[λ+ s+
√
λ(λ+ s)]

. (17.513)

Then using Eq. (17.501) on the left-hand side,∫ ∞
0

dt e−λt
〈〈

exp {−sTs[W (t)]}
〉〉

=
1

λ
− se−

√
2λ d

λ[λ+ s+
√
λ(λ+ s)]

. (17.514)

Now we can use the formula for the inverse Laplace transform [Problem 15.4]

y(t) =
1

2πi

∫ 0++i∞

0+−i∞
ds esτ L [y](s), (17.515)

where L [y](s) is the Laplace transform of y(t):

L [y](s) :=

∫ ∞
0

dt e−st y(t). (17.516)

Then we have 〈〈
exp {−sTs[W (t)]}

〉〉
=

1

2πi

∫ 0++i∞

0+−i∞
dλ eλt

[
1

λ
− se−

√
2λ d

λ[λ+ s+
√
λ(λ+ s)]

]
. (17.517)
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Evaluating the first term is simple by rotating the integration direction and then completing the contour
integral around the great half-plane:

1

2πi

∫ 0++i∞

0+−i∞
dλ

eλt

λ
=

1

2πi

∫ ∞−i0+
−∞−i0+

dλ
eiλt

λ
= 1, (t > 0). (17.518)

The second term is more involved, and to evaluate it we will stick to ‘‘recipes’’ for known Laplace transforms.
We will need37

L

[
e−st/2√

s
I1/2(st/2)

]
(λ) =

1
√
λ
(
λ+ s+

√
λ(λ+ s)

) , (17.519)

where Iν(x) is a modified Bessel function, and38

L

[
1√
πt
e−k

2/4t

]
(λ) =

1√
λ
e−k
√
λ, (17.520)

along with the convolution theorem for Laplace transforms,39

L

[∫ t

0

dτ f(t− τ)g(τ)
]
= L [f ]L [g] , (17.521)

which combine to give the Laplace transform appropriate to the second term in Eq. (17.514),

L

[∫ t

0

dτ
e−k

2/4(t−τ)√
π(t− τ)

e−sτ/2√
s

I1/2(sτ/2)

]
(λ) =

e−k
√
λ

λ
(
λ+ s+

√
λ(λ+ s)

) , (17.522)

provided we take k = −
√
2 d and insert an overall factor of −s. Thus, Eq. (17.514) becomes∫ t

0

dx e−sx fTs(x) = 1−
√
s

π

∫ t

0

dτ
e−d

2/2(t−τ)−sτ/2
√
t− τ

I1/2(sτ/2) (17.523)

after using Eq. (17.501) to replace the ensemble average on the left-hand side. Now we will use an integral
representation of the Bessel function,40

I1/2(x) =

√
x

2π

∫ 1

−1
du e−ux =

√
2x

π
ex
∫ 1

0

dv e−2vx =

√
2x

π

ex

t

∫ t

0

dv e−2vx/t, (17.524)

where we have changed variables by setting 1 + u = 2v and then letting v −→ v/t. Then Eq. (17.523)
becomes ∫ t

0

dx e−sx fTs(x) = 1− s

πt

∫ t

0

dτ

∫ t

0

dv e−vsτ/te−d
2/2(t−τ)

√
τ

t− τ

= 1 +
1

π

∫ t

0

dτ
(
e−sτ − 1

) e−d2/2(t−τ)√
τ(t− τ)

= 1− I(d, t) + 1

π

∫ t

0

dτ e−sτ
e−d

2/2(t−τ)√
τ(t− τ)

=

∫ t

0

dx e−sx δ(x− 0+) [1− I(d, t)] + 1

π

∫ t

0

dx e−sx
e−d

2/2(t−x)√
x(t− x)

,

(17.525)

37Milton Abramowitz and Irene A. Stegun, Handbook of Mathematical Functions (Dover, 1965), p. 1024, Eq. (29.3.54).
38Milton Abramowitz and Irene A. Stegun, op. cit., p. 1026, Eq. (29.3.84).
39Milton Abramowitz and Irene A. Stegun, op. cit., p. 1020, Eq. (29.2.8).
40Milton Abramowitz and Irene A. Stegun, op. cit., p. 376, Eq. (9.6.18).
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where in the last step we set τ = x, and we have also named the integral

I(d, t) :=
1

π

∫ t

0

dx
e−d

2/2(t−x)√
x(t− x)

, (17.526)

which we will evaluate shortly. Eq. (17.525) now equates (finite-time) Laplace transforms. Differentiating
with respect to time undoes them, which then yields

fTs(x) = [1− I(d, t)] δ(x− 0+) +
1

π

e−d
2/2(t−x)√
x(t− x)

. (17.527)

Clearly, this result is normalized, since integration over x produces canceling terms of I(d, τ) from the δ
function and the integral. The δ function indicates that there is a (possibly) finite probability for having zero
sojourn time, whereas positive sojourn times have infinitesimal probability, as we expect for a distribution.
In particular, the probability for having zero sojourn time is just

P (Ts = 0) = lim
ε→0

∫ ε

0

dx fTs(x)

= 1− I(d, t).
(17.528)

However, we have already calculated this: the probability to not sojourn across the boundary at d is equivalent
to the non-crossing probability for a boundary at d. This is the complement of the crossing probability from
Eq. (17.372), and thus

P (Ts = 0) = 1− Pcross(d, t) = 1− erfc
(

d√
2t

)
= erf

(
d√
2t

)
. (17.529)

Thus, in computing the boundary-crossing probability before, we have essentially used a path-integral method
to evaluate the integral (17.526), with the result

I(d, t) = erfc
(

d√
2t

)
. (17.530)

Putting this result into Eq. (17.525), we finally have the probability density for the sojourn time of W (t)
beyond d:41

fTs(x) = erf
(

d√
2t

)
δ(x− 0+) +

e−d
2/2(t−x)

π
√
x(t− x)

(0 ≤ x ≤ t, d ≥ 0).

(probability density for sojourn time of W (t) past d) (17.531)
The probability density for the time the particle stays under the barrier at d is given by the replacement
x −→ t− x. The cumulative probability is given by simply integrating this from 0 to x:

P (Ts ≤ x) = erf
(

d√
2t

)
+

1

π

∫ x

0

dx′
e−d

2/2(t−x′)√
x′(t− x′)

(0 ≤ x ≤ t, d ≥ 0).

(cumulative probability for sojourn time of W (t) past d) (17.532)
For the case d ≤ 0, we simply have P (Ts ≤ x,−|d|) = 1 − P (Ts ≤ x, |d|), since there are only two,
nonintersecting regions in which to sojourn.

41cf. Andrei N. Borodin and Paavo Salminen, op. cit., p. 156, formula 1.4.4, though note the absence of the first (δ-function)
term; Paul Lévy, ‘‘Sur certains processus stochastiques homogènes,’’ Compositio Mathematica 7, 283 (1940), p. 327, Eq. (58)
(http://www.numdam.org/item?id=CM_1940__7__283_0); Marc Yor, ‘‘The Distribution of Brownian Quantiles,’’ Journal of
Applied Probability 32, 405 (1995), Eq. (3.a) (doi: 10.2307/3215296); Lajos Takács, ‘‘Sojourn Times,’’ Journal of Applied
Mathematics and Stochastic Analysis 9, 415 (1996), Eq. (3) (doi: 10.1155/S1048953396000366).

http://www.numdam.org/item?id=CM_1940__7__283_0
http://dx.doi.org/10.2307/3215296
http://dx.doi.org/10.1155/S1048953396000366
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The moments are given simply by integrating the density (17.531) as〈〈
T n

s

〉〉
=

∫ t

0

dxxnfTs(x)

=

∫ t

0

dxxn
e−d

2/2(t−x)

π
√
x(t− x)

(d ≥ 0).
(17.533)

A somewhat nicer integral expression comes from changing variables via x = t(1−σ2), such that the moments
becomes 〈〈

T n
s

〉〉
=

2tn

π

∫ 1

0

dσ
(
1− σ2

)n−1/2
e−d

2/2tσ2

(d ≥ 0). (17.534)

Thus, for example, the mean sojourn time is〈〈
Ts

〉〉
=

1

2
(d2 + t) erfc

[
d√
2t

]
−
√
td2

2π
e−d

2/2t (d ≥ 0). (17.535)

Again, for d < 0, this expression for d ≥ 0 can be adapted by subtracting it from t.

17.12.1.1 Arcsine Laws

One well-known special case of the probability distribution (17.532) is the case of d = 0

P (Ts ≤ x) =
1

π

∫ x

0

dx′
1√

x′(t− x′)
. (17.536)

Evaluating this integral gives

P (Ts ≤ x) =
2

π
sin−1

√
x

t
(0 ≤ x ≤ t, d = 0),

(Levy’s arcsine law) (17.537)
which is known as Lévy’s arcsine law.42 This gives the probability distribution of the time a Wiener path
spends on a particular side of its starting point. The density following from Eq. (17.536) is

f(x) =
1

π
√
x(t− x)

.
(17.538)

(density for Levy arcsine law)

Since this density diverges at x = 0 and x = t, it says that the path is most likely to spend essentially all its
time on one side or the other of the origin.

17.12.1.2 Alternate Arcsine Law: Last Crossing time

The same arcsine law also applies to other statistics related to Wiener processes. To explore the first statistic,
suppose we fix a time t, and ask what was the most recent time before t when W (t) crossed the origin?43

That is, consider the statistic

τL0(t) := sup{t′ : t′ ∈ [0, t] ∧W (t′) = 0}. (17.539)

Then let’s compute the cumulative probability P (τL0(t) ≤ τ). For τL0(t) ≤ τ to occur, the Wiener path
must not touch W = 0 for all t′ > τ (up to t). We could have W (τ) = 0 or not. Then let’s integrate over all
possible values x of W (τ), using the Gaussian probability density for W (τ):

P
[
τL0(t) ≤ τ

]
=

∫ ∞
−∞

dx fW (τ)(x)P [W (τ < t′ ≤ t) 6= 0|W (τ) = x], (17.540)

42Paul Lévy, ‘‘Sur un problème de M. Marcinkiewicz,’’ Comptes rendus hebdomadaires des séances de l’Académie des sci-
ences 208, 318 (1939) (http://gallica.bnf.fr/ark:/12148/bpt6k3160g/f300.image); Paul Lévy, ‘‘Sur certains processus
stochastiques homogènes,’’ op. cit.

43The proof here is from Jim Pitman’s course notes, http://www.stat.berkeley.edu/~pitman/s205s03/lecture18.pdf,
Theorem 18.4.

http://gallica.bnf.fr/ark:/12148/bpt6k3160g/f300.image
http://www.stat.berkeley.edu/~pitman/s205s03/lecture18.pdf
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where of course the condition ‘‘W (τ) = x’’ means W (τ) is between x and x + dx. Since the Gaussian
probability density is even, we can change to evaluating only half of the integral x ≥ 0:

P
[
τL0(t) ≤ τ

]
= 2

∫ ∞
0

dx fW (τ)(x)P
[
W (t′) < x ∀t′∈[0,t−τ)

]
. (17.541)

Note we have also changed the second probability statement: it was that a Wiener process, starting at x,
should not touch the origin for a time interval of length t − τ . This is the same as the probability that a
Wiener process, starting at 0, should not touch x over an interval of the same duration. The latter probability
is just the complement of a crossing probability, which we can obtain from the complement of Eq. (17.372).
Putting in this probability as an error function, and also putting in the Gaussian density, we have

P
[
τL0(t) ≤ τ

]
= 2

∫ ∞
0

dx
1√
2πτ

e−x
2/2τ erf

(
x√

2(t− τ)

)
. (17.542)

Evaluating this integral, we have

P
[
τL0(t) ≤ τ

]
=

2

π
sin−1

√
τ

t
.

(second arcsine law for last crossing time) (17.543)
Note that this implies the density (17.538) for τL0(t), which is someone odd in that it is a symmetric function
over [0, t]. This means that the most recent crossing most likely occurred close to t′ = t or close to t′ = 0,
and the symmetry is peculiar, given that W (t′) itself does not share the symmetry. Note that while the
last crossing is well-defined, asking something like when was the next-to-last crossing occur is much more
complicated: the crossings of W (t′) form a set of measure zero, but are nevertheless uncountable, much like
the Cantor set. Thus, the last crossing is not isolated, but rather has other, arbitrarily close crossings.

17.12.1.3 Alternate Arcsine Law: Maximum-Value Time

The remaining statistic governed by the arcsine law is the time τmax at which a Wiener path attains its
maximum value over the time interval [0, t]. To see this, it is first necessary to make some comments about
the maxima of a Wiener process.44 First, note that over any time interval [a, b], the maximum of W (t) over
the interval does not occur at either endpoint (with unit probability). This follows at the lower endpoint a
from noting the equivalence (via some shifting) of W (t) over this interval to a Wiener path starting at t = 0,
and the crossing probability (17.372): over an interval of any finite duration, the probability of crossing a
barrier just above the starting point is arbitrarily close to 1. The maximum does not occur at the upper
endpoint b for the same reason (i.e., the same argument under a time-reversal). By subdividing the [a, b] into
smaller and smaller intervals, each of which has its own local maximum, we can see that the local maxima
are dense (but countable). Also by subdividing [a, b] into two intervals (which do not overlap except at the
boundary point), each subinterval will have a local maximum. But because the Wiener process progresses
independently in each interval, the local maximum can take on any value, and in particular the probability
for attaining the same local maximum in each interval is zero. The point is that the maximum over [a, b] is
unique, so that τmax is well-defined.

Now consider a Wiener process W (t), with the maximum-value process

M(t) := max
0≤t′≤t

W (t′), (17.544)

representing the running maximum value attained by W (t) up to time t. Defining the difference process

R(t) :=M(t)−W (t), (17.545)

we will aim to show that R(t) is statistically equivalent45 to the absolute-value process or reflection
Brownian motion |W (t)| (about which we will have more to explore in Section 17.13.4.1). To do this,

44Peter Mörters and Yuval Peres, Brownian Motion (Cambridge, 2010) (ISBN: 0521760186).
45This argument follows that of Peter Mörters and Yuval Peres, op. cit., at least until near the end.

http://www.amazon.com/gp/search/?field-isbn=0521760186
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consider a fixed time t0 > 0, and an evolution over a time interval ∆t. The Wiener process changes in this
interval by

∆W0(∆t) :=W (t0 +∆t)−W (t0), (17.546)

and the maximum changes by
∆M0(∆t) := max

0≤δt≤∆t
∆W0(δt). (17.547)

The idea will be to show that R(t0 +∆t) is statistically equivalent to |R(t0) + ∆W0(∆t)|. First, note that
the maximum at t0 +∆t is

M(t0 +∆t) = max
{
M(t0),W (t0) + ∆M0(∆t)

}
. (17.548)

That is, the final maximum is either the initial maximum, or the initial value of W (t) plus the maximum
added over the interval ∆t, whichever is larger. Now writing

R(t0 +∆t) =M(t0 +∆t)−W (t0 +∆t)

= max
{
M(t0),W (t0) + ∆M0(∆t)

}
−
[
W (t0) + ∆W0(∆t)

]
= max

{
R(t0),∆M0(∆t)

}
−∆W0(∆t).

(17.549)

Now to analyze the two cases here. If R(t0) is the larger value in the maximum, then this reduces to
R(t0 + ∆t) = R(t0) − ∆W0(∆t). Since ∆W0(∆t) and −∆W0(∆t) are statistically equivalent, R(t0 + ∆t)
is equivalent to R(t0) + ∆W0(∆t) in this case, and furthermore the resulting R(t0 + ∆t) ≥ 0 because the
maximum value that we are subtracting from R(t0) is less than R(t0), by the definition of the maximum and
∆M0(∆t). In the other case, ∆M0(∆t) > R(t0), which means that R(t0)−∆W0(∆t) crosses through zero,
and so this case requires more careful treatment. In fact it is useful to identify the time δtmax at which the
maximum value of ∆W0(∆t) occurs, so that ∆W0(δtmax) = ∆M0(∆t). This is the time when R reaches zero,
R(t0+δtmax) = 0, according to Eqs. (17.549). This is intuitive, as R(t) should hit zero anytime W (t) attains
a local maximum, according to its definition. Then continuing the evolution, R(t0 + ∆t) is the magnitude
of the difference between W (t0 + δtmax) and W (t0 +∆t). So R(t0 +∆t) is still positive as required, and if
we apply the reflection principle to ∆W0(∆t) at this time t0 + δtmax, the reflected version of R(t0 +∆t) is
exactly equivalent to a Wiener process that happened to cross through zero at time t0 + δtmax.

Returning to the main point, since M(t)−W (t) behaves like |W (t)|, the last zero of which correspond
to the time τmax when W (t) achieves its maximum value. Since |W (t)| has the same set of zeros as W (t), and
the last zero has the arcsine distribution, the time τmax of the maximum likewise has the arcsine distribution
(17.543). Somewhat counterintuitively, then, the Wiener process tends to achieve its maximum value near
the beginning or near the end of the time interval in question.

17.12.2 Standard Brownian Bridge

Now we will repeat the above analysis to compute the probability distributions for the sojourn time of a
Brownian bridge above a boundary at d.46 As before, in the plot here, this counts the portion of time that
the path is highlighted in green; the only difference is the pinning of the path at t = 0 to B(t) = 0.

46this is the first calculation in Gerard Hooghiemstra, op. cit.
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t
0 1

B
o(t

)

0

d

We will again take d ≥ 0 in the analysis here. As before, we define the sojourn time for a bridge B(t) as the
functional

Ts[B(t); d] :=

∫ 1

0

dtΘ[B(t)− d],

(sojourn time for standard Brownian bridge) (17.550)
or the total time that B(t) spends across the boundary. The calculation here is similar to the calculation for
the Wiener path, and we will refer to that calculation frequently to save effort. The main difference is that
we will take g(x) = eikx in the diffusion equation (17.502) instead of g(x) = 1, and then we will integrate
with respect to k to introduce a δ function that will pin the endpoint of the Wiener path to make a bridge.
This will lead to somewhat more complicated algebra, but nothing conceptually different.

The procedure is the same as for the Wiener path up to Eq. (17.505), which we will leave as

f(x) =

∫ ∞
0

dt e−λt

〈〈
g[x+W (t)] exp

(
−s
∫ t

0

dt′Θ[x+W (t′)− d]
)〉〉

. (17.551)

Now for the steady-state PDE (17.506); this time, taking g(x) = eikx leads to

λf(x) =
1

2
∂ 2
x f(x)− sΘ(x− d)f(x) + eikx, (17.552)

which for x > d is
f ′′ = 2(λ+ s)f − 2eikx, (17.553)

again with the case of x < d given by setting s = 0. Then setting h = f − 2eikx/[2(λ+ s) + k2], we have

h′′ = f ′′ +
2k2eikx

2(λ+ s) + k2

= 2(λ+ s)f − 2eikx +
2k2eikx

2(λ+ s) + k2

= 2(λ+ s)h+
4(λ+ s)eikx

2(λ+ s) + k2
− 2eikx +

2k2eikx

2(λ+ s) + k2

= 2(λ+ s)h.

(17.554)

so that for x > d,
h(x) = Ae−

√
2(λ+s) x, (17.555)
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or

f(x) =


Ae−

√
2(λ+s) x +

2eikx

2(λ+ s) + k2
(x > d)

Be
√
2λx +

2eikx

2λ+ k2
(x < d),

(17.556)

where A and B must be determined by requiring continuity of f and f ′ at x = d. Solving the two resulting
equations gives

A =
2
√
2 s
(√

2λ− ik
)
e
√

2(λ+s) d+ikd

(2λ+ k2)[2(λ+ s) + k2]
(√

λ+
√
λ+ s

) , B = −
2
√
2 s
(√

2(λ+ s) + ik
)
e−
√
2λ d+ikd

(2λ+ k2)[2(λ+ s) + k2]
(√

λ+
√
λ+ s

) .
(17.557)

Now, we can equate Eqs. (17.551) and (17.556) and set x = 0 to obtain∫ ∞
0

dt e−λt

〈〈
eikW (t) exp

(
−s
∫ t

0

dt′Θ[W (t′)− d]
)〉〉

= B +
2

2λ+ k2
. (17.558)

Integrating with respect to k and then dividing through by 2π,∫ ∞
0

dt e−λt

〈〈
δ[W (t)] exp

(
−s
∫ t

0

dt′Θ[W (t′)− d]
)〉〉

=
1

2π

∫ ∞
−∞

dk

(
B +

2

2λ+ k2

)
. (17.559)

The δ function here picks out only the Wiener paths that return to W (t) = 0 (i.e., standard Brownian
bridges).

We will treat this carefully to obtain the correct normalization for the ensemble average. In the
following, we will use t′ as a dummy variable and t as the temporal endpoint, so that 0 ≤ t′ ≤ t. We have
an ensemble average of a functional F [W (t′)] (note that δ[W (t)] only operates on the final value W (t), and
so is not itself a functional),〈〈

δ[W (t)]F [W (t′)]

〉〉
=
∑
W (t′)

P [W (t′)] δ[W (t)]F [W (t′)]

=
∑

{W (t′)|W (t)=0}

P [W (t′) ∧W (t) = 0]

dW
F [W (t′)],

(17.560)

where we have expanded into a sum over all possible paths, weighted by the probability P [W (t′)] of W (t′)
to occur, and then implemented the δ function in selecting the probabilities for Wiener paths satisfying
0 ≤ W (t) < dW , which we write as W (t) = 0 for short. The factor of 1/dW comes from thinking of
δ(W = 0) = 1/dW , with δ(W 6= 0) = 0 for proper normalization of the δ function. Then we change to a
conditional probability via P (A ∧B) = P (A|B)P (B):〈〈

δ[W (t)]F [W (t′)]

〉〉
=

∑
{W (t′)}

P [W (t′)|W (t) = 0]P [W (t) = 0]

dW
F [W (t′)]

=
∑

{W (t′)|W (t)=0}

P [W (t′)|W (t) = 0] dW/
√
2πt

dW
F [W (t′)]

=
∑

{W (t′)|W (t)=0}

P [W (t′)|W (t) = 0]√
2πt

F [W (t′)]

=
∑
{Bt(t′)}

P [Bt(t
′)]√

2πt
F [Bt(t

′)]

=
1√
2πt

〈〈
F [Bt(t

′)]

〉〉
,

(17.561)
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where we have switched to Brownian bridges, which are equivalent to pinned Wiener paths, and we are using
the notation BT (t) =

√
T B(t/T ) for a bridge that is pinned at time t = T .

Changing the ensemble average in Eq. (17.559) to Brownian bridges, we have∫ ∞
0

dt√
t
e−λt

〈〈
exp

(
−s
∫ t

0

dt′Θ[Bt(t
′)− d]

)〉〉
=

1√
2π

∫ ∞
−∞

dk

(
B +

2

2λ+ k2

)
, (17.562)

where we are using the notation BT (t) =
√
T B(t/T ) for a bridge that closes at time T . Then using

Eq. (17.501) on the left-hand side, adapted for the bridge, and (17.557) on the right-hand side,

∫ ∞
0

dt√
t
e−λt

〈〈
exp {−sTs[Bt]}

〉〉
=

1√
2π

∫ ∞
−∞

dk

 2

2λ+ k2
−

2
√
2 s
(√

2(λ+ s) + ik
)
e−
√
2λ d+ikd

(2λ+ k2)[2(λ+ s) + k2]
(√

λ+
√
λ+ s

)


=

√
π

λ
−
√
π
e−2
√
2λ d

√
λ

(√
λ+ s−

√
λ

√
λ+ s+

√
λ

)
.

(17.563)
To invert the Laplace transform here, we will use the formula47

L

[
1

t
e−st/2I1(st/2)

]
(λ) =

√
λ+ s−

√
λ

√
λ+ s+

√
λ

(17.564)

along with formula (17.520) (with k = 2
√
2 d) and the Laplace convolution rule (17.521) to write

L

[∫ t

0

dτ
1√

πτ(t− τ)
e−2d

2/(t−τ)e−sτ/2I1(sτ/2)

]
=
e−2
√
2λ d

√
λ

(√
λ+ s−

√
λ

√
λ+ s+

√
λ

)
, (17.565)

which takes care of the second term. The first term on the right-hand side of (17.563) is also covered by the
formula (17.520) with k = 0. Thus, undoing the Laplace transform in Eq. (17.563) gives〈〈

exp {−sTs[Bt]}
〉〉

= 1−
∫ t

0

dτ
1

τ

√
t

t− τ
e−2d

2/(t−τ)e−sτ/2I1(sτ/2). (17.566)

We can simplify things by considering only a standard Brownian bridge B(t) by setting t = 1. Doing this
and using Eq. (17.501) on the left-hand side,∫ 1

0

dx e−sx fTs(x) = 1−
∫ 1

0

dτ
1

τ
√
1− τ

e−2d
2/(1−τ)e−sτ/2I1(sτ/2). (17.567)

We will proceed as before by using the integral representation of the Bessel function,48

I1(x) =
x

π

∫ 1

−1
du
√
1− u2 e−ux =

4x

π
ex
∫ 1

0

dv
√
v(1− v) e−2vx, (17.568)

where we have changed variables by setting 1 + u = 2v. Using this in Eq. (17.567), we find∫ 1

0

dx e−sx fTs(x) = 1− 2s

π

∫ 1

0

dτ

∫ 1

0

dv

√
v(1− v)
1− τ

e−2d
2/(1−τ) e−sτv, (17.569)

and letting v = x/τ ,∫ 1

0

dx e−sx fTs(x) = 1− 2s

π

∫ 1

0

dτ

∫ τ

0

dx
1

τ2

√
x(τ − x)
1− τ

e−2d
2/(1−τ) e−sx

=

∫ 1

0

dx e−sx δ(x− 0+)− 2s

π

∫ 1

0

dx e−sx
∫ 1

x

dτ
1

τ2

√
x(τ − x)
1− τ

e−2d
2/(1−τ).

(17.570)

47Milton Abramowitz and Irene A. Stegun, op. cit., p. 1024, Eq. (29.3.52).
48Milton Abramowitz and Irene A. Stegun, op. cit., p. 376, Eq. (9.6.18).
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Note how we changed the integration limits when interchanging the order of integration in the last step, in
order to integrate over the same triangular area in the (x, τ)-plane. We can regard fTs(x) here as vanishing
for x > 1, since it is nonsensical to consider the standard bridge past t = 1. If we regard the last term in
the same way, we can extend the upper integration limits to ∞ and write out the Laplace transforms as

L [fTs(x)] = L
[
δ(x− 0+)

]
− sL

[
2

π

∫ 1

x

dτ
1

τ2

√
x(τ − x)
1− τ

e−2d
2/(1−τ)

]
. (17.571)

Recall [Eq. (5.144)] that the Laplace transform of a derivative satisfies

sL [f(x)](s) = L [f ′(x)](s) + f(0), (17.572)

so that

L [fTs(x)] = L
[
δ(x− 0+)

]
−L

[
∂x

2
√
x

π

∫ 1

x

dτ

√
τ − x
1− τ

e−2d
2/(1−τ)

τ2

]
− I(d)

= L
{
[1− I(d)] δ(x− 0+)

}
−L

[
∂x

2
√
x

π

∫ 1

x

dτ

√
τ − x
1− τ

e−2d
2/(1−τ)

τ2

]
,

(17.573)

where

I(d) := lim
x→0

2
√
x

π

∫ 1

x

dτ

√
τ − x
1− τ

e−2d
2/(1−τ)

τ2
. (17.574)

Thus, we can write the sojourn-time density as

fTs(x) = [1− I(d)] δ(x− 0+)− ∂x

[
2
√
x

π

∫ 1

x

dτ

√
τ − x
1− τ

e−2d
2/(1−τ)

τ2

]
. (17.575)

Again, the [1− I(d)] coefficient of the δ function is associated with the probability of having a zero sojourn
time. This is the probability of a bridge to not touch the boundary. We have already calculated the touching
probability in Eq. (17.380), so

I(d) = e−2d
2

, (17.576)
Thus, our first complete expression for the sojourn-time density is

fTs(x) =
[
1− e−2d

2
]
δ(x− 0+)− ∂x

[
2
√
x

π

∫ 1

x

dτ

√
τ − x
1− τ

e−2d
2/(1−τ)

τ2

]
(0 ≤ x ≤ 1; d > 0),

(probability density for bridge sojourn time) (17.577)
with cumulative probability49

P (Ts ≤ x) = 1− 2
√
x

π

∫ 1

x

dτ

√
τ − x
1− τ

e−2d
2/(1−τ)

τ2
(0 ≤ x ≤ 1; d > 0),

(cumulative probability distribution for bridge sojourn time) (17.578)
though we will continue a bit more in massaging the expression here into nicer forms.

Next, we change variables via

τ =
x(1 + σ2)

1 + xσ2
, (17.579)

with the result

fTs(x) =
[
1− e−2d

2
]
δ(x− 0+)− ∂x

[
4(1− x)

π
e−2d

2/(1−x)
∫ ∞
0

dσ
σ2

(1 + σ2)2
e−2σ

2d2x/(1−x)
]
.

(probability density for bridge sojourn time) (17.580)
49Gerard Hooghiemstra, op. cit., Eq. (6).
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Note that here we can identify

I(d) = − lim
x→0

4(1− x)
π

e−2d
2/(1−x)

∫ ∞
0

dσ
σ2

(1 + σ2)2
e−2(1+s

2x)d2

=
4

π
e−2d

2

∫ ∞
0

dσ
σ2

(1 + σ2)2

=
4

π
e−2d

2

∫ ∞
0

dσ
σ2

(1 + σ2)2

= e−2d
2

,

(17.581)

which serves as a separate verification of the boundary-crossing result (17.380). Additionally, we can now
integrate Eq. (17.580) from 0 to x to obtain the cumulative distribution for the sojourn time. In doing so,
the integral of the last term, evaluated at the lower integration limit, will cancel the e−2d2 from the first
term, and the result is50

P (Ts ≤ x) = 1− 4(1− x)
π

e−2d
2/(1−x)

∫ ∞
0

dσ
σ2

(1 + σ2)2
e−2σ

2d2x/(1−x) (0 ≤ x ≤ 1; d ≥ 0).

(cumulative probability distribution for bridge sojourn time) (17.582)
Finally, we can evaluate the σ integral, with the result51

P (Ts ≤ x) = 1 + 4d

√
x(1− x)

2π
e−2d

2/(1−x) − (1− x+ 4d2x) e−2d
2

erfc

(√
2d2x

1− x

)
(0 ≤ x ≤ 1; d ≥ 0).

(cumulative probability distribution for bridge sojourn time) (17.583)
The same integration applied to (17.580) gives the explicit probability density52

fTs(x) =
[
1− e−2d

2
]
δ(x− 0+) +

√
8d2(1− x)

πx
e−2d

2/(1−x) + (1− 4d2) e−2d
2

erfc

(√
2d2x

1− x

)
.

(probability density for bridge sojourn time) (17.584)
As usual, these formulae can be extended to a bridge BT (t) =

√
TB(t/T ) pinned to zero at t = T by the

replacements d −→ d/
√
T and x −→ x/T . Also, recall that we explicitly assumed d ≥ 0; for d < 0, this

formula for fTs(x) can be regarded as the density for 1− Ts.
We can then compute the moments for the sojourn time as

〈〈
(Ts)

n
〉〉

=

∫ 1

0

dxxnfTs(x)

= 1− n
∫ 1

0

dxxn−1P (Ts ≤ x)

= n

∫ 1

0

dxxn−1[1− P (Ts ≤ x)]

=
2n

π

∫ 1

0

dxxn−1/2
∫ 1

x

dτ

√
τ − x
1− τ

e−2d
2/(1−τ)

τ2

=
2n

π

∫ 1

0

dτ
e−2d

2/(1−τ)

τ2
√
1− τ

∫ τ

0

dxxn−1/2
√
τ − x,

(17.585)

where we integrated by parts to integrate with respect to the cumulative distribution, for which we used the
50Gerard Hooghiemstra, op. cit., before Eq. (10).
51Lajos Takács, ‘‘The Distribution of the Sojourn Time for the Brownian Excursion,’’ Methodology and Computing in Applied

Probability 1, 7 (1999), Eq. (6) (doi: 10.1023/A:1010060107265).
52cf. Andrei N. Borodin and Paavo Salminen, op. cit., p. 158, formula 1.4.8.

http://dx.doi.org/10.1023/A:1010060107265
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form (17.578). After performing the x integration, the result is53

〈〈
(Ts)

n
〉〉

=
nΓ[n+ 1/2]√
π(n+ 1)!

∫ 1

0

dτ
τn−1e−2d

2/(1−τ)
√
1− τ

. (17.586)

Notice that this moment formula also arises from the moment-generating function in the form (17.566),
where the power-series expansion of e−sτ/2I1(sτ/2) in s yields the individual moments here. A somewhat
easier form to handle arises by changing variables via τ = 1− σ2, with the result

〈〈
(Ts)

n
〉〉

=
2nΓ[n+ 1/2]√
π(n+ 1)!

∫ 1

0

dσ (1− σ2)n−1e−2d
2/σ2

.
(17.587)

(sojourn-time moments)

The integral here does not have a simple general form, but it can be readily evaluated for particular n. For
example, we have

〈〈
Ts

〉〉
=
e−2d

2

2
−
√
π

2
d erfc

[√
2 d
]

〈〈
(Ts)

2
〉〉

=
(1 + 2d2) e−2d

2

3
−
√
2πd

(
1 +

4d2

3

)
erfc

[√
2 d
]

〈〈
(Ts)

4
〉〉

=
(12 + 87d2 + 80d4 + 16d6) e−2d

2

60
−
√
2πd

(
105 + 420d2 + 336d4 + 64d6

)
240

erfc
[√

2 d
] (17.588)

for the first, second, and fourth moments of the sojourn time, remembering that d ≥ 0 in these expressions.

17.12.3 Brownian Bridge

We can now generalize the above treatment to a more general Brownian bridge B0→c(t), pinned to c at t = 1,
so that in this section we will consider the sojourn-time functional

Ts[B0→c(t); d] :=

∫ 1

0

dtΘ[B0→c(t)− d].

(sojourn time for Brownian bridge) (17.589)
To modify the above derivation, after Eq. (17.551), we will choose g(x) = eik(x−c). The solution of the PDE
is then essentially the same, with the result with exp(ikx) −→ exp[ik(x− c)] in (17.556), and exp(ikd) −→
exp[ik(d− c)] in the expression for B in Eqs. (17.557). Then after setting x = 0 as before, we have∫ ∞

0

dt e−λt

〈〈
eik[W (t)−c] exp

(
−s
∫ t

0

dt′Θ[W (t′)− d]
)〉〉

= B +
2e−ikc

2λ+ k2
. (17.590)

in place of (17.590), where we should keep in mind that the form of B is modified here. Then integrating
with respect to k and dividing through by 2π gives∫ ∞

0

dt e−λt

〈〈
δ[W (t)− c] exp

(
−s
∫ t

0

dt′Θ[W (t′)− d]
)〉〉

=
1

2π

∫ ∞
−∞

dk

(
B +

2e−ikc

2λ+ k2

)
. (17.591)

in place of Eq. (17.559). Thus we have introduced the correct modification to force the δ function to pin the
Wiener paths that return to W (t) = c.

53Gerard Hooghiemstra, op. cit., Eq. (10).
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Next, we should generalize the result (17.561) to the case of pinning W (t) to c:〈〈
δ[W (t)− c]F [W (t′)]

〉〉
=
∑
W (t′)

P [W (t′)] δ[W (t)− c]F [W (t′)]

=
∑

{W (t′)|W (t)=c}

P [W (t′) ∧W (t) = c]

dW
F [W (t′)]

=
∑

{W (t′)|W (t)=c}

P [W (t′)|W (t) = c]P [W (t) = c]

dW
F [W (t′)]

=
∑

{W (t′)|W (t)=c}

P [W (t′)|W (t) = c] e−c
2/2t dW/

√
2πt

dW
F [W (t′)]

=
∑

{W (t′)|W (t)=c}

P [W (t′)|W (t) = c]
e−c

2/2t

√
2πt

F [W (t′)]

=
∑
{Bt(t′)}

P [Bt(0→c)(t
′)]
e−c

2/2t

√
2πt

F [Bt(0→c)(t
′)]

=
e−c

2/2t

√
2πt

〈〈
F [Bt(0→c)(t

′)]

〉〉
.

(17.592)

The change here is straightforward, and involves evaluating the Gaussian probability density for W (t) at c
instead of 0.

Then changing the average in Eq. (17.591) to encompass the appropriate Brownian bridges, we have∫ ∞
0

dt
e−c

2/2t

√
t

e−λt

〈〈
exp

(
−s
∫ t

0

dt′Θ[Bt(0→c)(t
′)− d]

)〉〉
=

1√
2π

∫ ∞
−∞

dk

(
B +

2e−ikc

2λ+ k2

)
, (17.593)

in place of Eq. (17.562). Carrying out the following integration gives

∫ ∞
0

dt
e−c

2/2t

√
t

e−λt
〈〈

exp
{
−sTs[Bt(0→c)]

}〉〉
=

1√
2π

∫ ∞
−∞

dk

 2e−ikc

2λ+ k2
−

2
√
2 s
(√

2(λ+ s) + ik
)
e−
√
2λ d+ik(d−c)

(2λ+ k2)[2(λ+ s) + k2]
(√

λ+
√
λ+ s

)


=

[√
π

λ
e−
√
2λ |c| −

√
π
e−
√
2λ (2d−c)
√
λ

(√
λ+ s−

√
λ

√
λ+ s+

√
λ

)]
(c ≤ d, d ≥ 0)

(17.594)

in place of Eqs. (17.563) in the case c ≤ d. If c ≥ d this is instead

∫ ∞
0

dt
e−c

2/2t

√
t

e−λt
〈〈

exp
{
−sTs[Bt(0→c)]

}〉〉
=
√
4π

e−
√
2λ d−

√
2(λ+s) (c−d)

√
λ+ s+

√
λ

(c ≥ d ≥ 0). (17.595)

The first expression (17.594) is the same result as in Eq. (17.563), except for a factor exp(−c2/2t) on the
left-hand side, the factor of exp(−

√
2λ c) in the first term on the right-hand side, and the replacement

2d −→ 2d− c in the second term on the right-hand side. To invert the Laplace transform, the second term
on the right-hand side inverts in the same way with the replacement 2d −→ 2d−c, while Eq. (17.520) applies
to the first term with k =

√
2 |c|, such that Eq. (17.566) becomes

〈〈
exp

{
−sTs[Bt(0→c)]

}〉〉
= 1− ec

2/2t

∫ t

0

dτ
1

τ

√
t

t− τ
e−(2d−c)

2/2(t−τ)e−sτ/2I1(sτ/2) (c ≤ d, d ≥ 0),

(17.596)
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or that is, the last term on the right-hand side is multiplied by exp(c2/2t), and subject to the replacement
2d −→ 2d− c. The same modifications (with t = 1 for the Brownian bridge we want here) carry through the
rest of the treatment in the previous section. In particular, Eq. (17.574) becomes

I(d) := lim
x→0

2
√
x

π
ec

2/2

∫ 1

x

dτ

√
τ − x
1− τ

e−(2d−c)
2/2(1−τ)

τ2

= ec
2/2e−(2d−c)

2/2

= e−2d(d−c),

(17.597)

which is the correct boundary-crossing probability (17.387) for the same bridge pinned to c. Then we can
adapt the probability-density expressions with these modifications, with the result54

fTs(x) =
[
1− e−2d(d−c)

]
δ(x− 0+)− ∂x

[
2
√
x

π
ec

2/2

∫ 1

x

dτ

√
τ − x
1− τ

e−(2d−c)
2/2(1−τ)

τ2

]

=
[
1− e−2d(d−c)

]
δ(x− 0+)

− ∂x
[
4(1− x)

π
ec

2/2−(2d−c)2/2(1−x)
∫ ∞
0

dσ
σ2

(1 + σ2)
e−σ

2(2d−c)2x/2(1−x)
]

=
[
1− e−2d(d−c)

]
δ(x− 0+) + (2d− c)

√
2(1− x)
πx

ec
2/2−(2d−c)2/2(1−x)

+
[
1− (2d− c)2

]
e−2d(d−c) erfc

(√
(2d− c)2x
2(1− x)

)
(0 ≤ x ≤ 1; c ≤ d; d ≥ 0).

(probability density for bridge sojourn time) (17.598)
Similarly, the cumulative-probability expressions become

P (Ts ≤ x) = 1− 2
√
x

π
ec

2/2

∫ 1

x

dτ

√
τ − x
1− τ

e−(2d−c)
2/2(1−τ)

τ2
(0 ≤ x ≤ 1; c ≤ d; d ≥ 0)

= 1− 4(1− x)
π

ec
2/2−(2d−c)2/2(1−x)

∫ ∞
0

dσ
σ2

(1 + σ2)2
e−σ

2(2d−c)2x/2(1−x)

= 1 + (2d− c)
√

2x(1− x)
π

ec
2/2−(2d−c)2/2(1−x)

−
[
1− x+ (2d− c)2x

]
e−2d(d−c) erfc

(√
(2d− c)2x
2(1− x)

)
,

(cumulative probability distribution for bridge sojourn time) (17.599)
and the moment formula (17.587) becomes

〈〈
(Ts)

n
〉〉

=
2nΓ[n+ 1/2]√
π(n+ 1)!

∫ 1

0

dσ (1− σ2)n−1ec
2/2−(2d−c)2/2σ2

(c ≤ d; d ≥ 0)

(sojourn-time moments) (17.600)
under the same replacements. For example, the explicit expression for the mean is〈〈

Ts

〉〉
=
e−2d(d−c)

2
−
√
π

8
(2d− c) ec

2/2 erfc
[
2d− c√

2

]
(c ≤ d; d ≥ 0), (17.601)

which reduces to the standard-bridge mean in Eqs. (17.588).
54cf. Andrei N. Borodin and Paavo Salminen, op. cit., p. 158, formula 1.4.8.
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In the case c ≥ d, the inversion of the Laplace transform (17.595) is somewhat different. First using55

L

[
e−st/2

2
√
s t
I1/2(st/2)

]
(λ) = L

[
1− e−st

2s
√
πt3

]
(λ) =

1
√
λ+ s+

√
λ
, (17.602)

where Iν(x) is a modified Bessel function, along with56

L

[
k

2
√
πt3

e−k
2/4t

]
(λ) = e−k

√
λ, (17.603)

these transforms can be combined via the convolution formula (17.521) to give

L

[∫ t

0

dτ
k

4πs
√
τ3(t− τ)3

e−k
2/4(t−τ) (1− e−sτ)](λ) = e−k

√
λ

√
λ+ s+

√
λ
. (17.604)

Then using the shifted-argument version of Eq. (17.603),

L

[
k′

2
√
πt3

e−st e−k
′2/4t

]
(λ) = e−k

′√λ+s, (17.605)

we can again employ convolution to combine this with Eq. (17.604) to give

L

[∫ t

0

dσ

∫ t−σ

0

dτ
kk′

8π3/2s
√
τ3(t− σ − τ)3σ3

e−k
2/4(t−σ−τ) e−k

′2/4σ
(
1− e−sτ

)
e−sσ

]
(λ) =

e−k
√
λ−k′

√
λ+s

√
λ+ s+

√
λ
.

(17.606)
Thus, setting k =

√
2 d and k′ =

√
2 (c− d), we may invert the Laplace transform in Eq. (17.595) to give〈〈

exp
{
−sTs[Bt(0→c)]

}〉〉
= ec

2/2t d(c− d)
√
t

2πs

∫ t

0

dσ

∫ t−σ

0

dτ
e−d

2/2(t−σ−τ) e−(c−d)
2/2σ√

τ3(t− σ − τ)3σ3

(
1− e−sτ

)
e−sσ

(c ≥ d ≥ 0).

(17.607)
We can simplify this to t = 1 for a Brownian bridge that runs over a unit time interval:〈〈

exp
{
−sTs[B(0→c)]

}〉〉
= ec

2/2 d(c− d)
2πs

∫ 1

0

dσ

∫ 1−σ

0

dτ
e−d

2/2(1−σ−τ) e−(c−d)
2/2σ√

τ3(1− σ − τ)3σ3

(
1− e−sτ

)
e−sσ

(c ≥ d ≥ 0).

(17.608)
Now using

e−sσ − e−s(σ+τ)

s
=

∫ σ+τ

σ

dx e−sx (17.609)

to remove the difference in the final factor, while introducing a new integral, we can shift the order of
integration according to∫ 1

0

dσ

∫ 1−σ

0

dτ

∫ σ+τ

σ

dx =

∫ 1

0

dσ

∫ 1

σ

dx

∫ 1−σ

x−σ
dτ =

∫ 1

0

dx

∫ x

0

dσ

∫ 1−σ

x−σ
dτ, (17.610)

and shifting τ −→ τ − σ, Eq. (17.608) becomes〈〈
exp

{
−sTs[B(0→c)]

}〉〉
= ec

2/2 d(c− d)
2π

∫ 1

0

dx e−sx
∫ x

0

dσ

∫ 1

x

dτ
e−d

2/2(1−τ)−(c−d)2/2σ√
(τ − σ)3(1− τ)3σ3

(c ≥ d ≥ 0).

(17.611)
55Milton Abramowitz and Irene A. Stegun, op. cit., p. 1024, Eq. (29.3.53).
56Milton Abramowitz and Irene A. Stegun, op. cit., p. 1026, Eq. (29.3.82).
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Now the Laplace transform in s may be inverted to give the probability density:

fTs(x) = ec
2/2 d(c− d)

2π

∫ x

0

dσ

∫ 1

x

dτ
e−d

2/2(1−τ)−(c−d)2/2σ√
(τ − σ)3(1− τ)3σ3

(0 ≤ x ≤ 1; c ≥ d ≥ 0). (17.612)

Changing variables via τ −→ 1− τ gives

fTs(x) = ec
2/2 d(c− d)

2π

∫ x

0

dσ

∫ 1−x

0

dτ
e−d

2/2τ−(c−d)2/2σ√
(1− σ − τ)3σ3τ3

(0 ≤ x ≤ 1; c ≥ d ≥ 0), (17.613)

and then letting u = x/σ and v = (1− x)/τ leads to the alternate integral expression

fTs(x) = ec
2/2 d(c− d)

2π
√
x(1− x)

∫ ∞
1

du

∫ ∞
1

dv
uv e−d

2v/2(1−x)−(c−d)2u/2x

[uv − (1− x)u− xv]3/2
(0 ≤ x ≤ 1; c ≥ d ≥ 0), (17.614)

from where it is difficult to proceed with the integration.
There is a second approach to inverting the Laplace transforms here that will lead to expression with

only a single integral, in both the density and the Laplace transform of the density.57 As an alternate form
of the right-hand side in Eq. (17.606), we can consider

e−k
√
λ−k′

√
λ+s

√
λ+ s+

√
λ

=
1

s

(√
λ+ s−

√
λ
)
e−k
√
λ−k′

√
λ+s

=
1

s
e−k
√
λ
(√

λ+ s e−k
′√λ+s

)
− 1

s
e−k

′√λ+s
(√

λ e−k
√
λ
)
.

(17.615)

Using again the Laplace transform (17.603) and its shifted version (17.605), along with58

L

[
k2 − 2t

4
√
πt5

e−k
2/4t

]
(λ) =

√
λ e−k

√
λ, (17.616)

and the shifted version
L

[
k′2 − 2t

4
√
πt5

e−st e−k
′2/4t

]
(λ) =

√
λ+ s e−k

′√λ+s, (17.617)

the convolution theorem allows us to combine these transforms to form the right-hand side of Eq. (17.615),
with the result

L

[∫ t

0

dτ
k(t− τ)(k′2 − 2τ)− k′τ [k2 − 2(t− τ)]

8πs
√
τ5(t− τ)5

e−k
2/4(t−τ) e−k

′2/4τ e−sτ

]
(λ) =

e−k
√
λ−k′

√
λ+s

√
λ+ s+

√
λ
. (17.618)

Then again setting k =
√
2 d and k′ =

√
2 (c − d), we may invert the Laplace transform in Eq. (17.595) to

give 〈〈
exp

{
−sTs[Bt(0→c)]

}〉〉
= ec

2/2t

√
t√

2πs

∫ t

0

dτ
d(t− τ)[(c− d)2 − τ ]− (c− d)τ [d2 − (t− τ)]√

τ5(t− τ)5

× e−d
2/2(t−τ) e−(c−d)

2/2τ e−sτ (c ≥ d ≥ 0),

(17.619)
or for t = 1,〈〈

exp
{
−sTs[Bt(0→c)]

}〉〉
=

ec
2/2

√
2πs

∫ 1

0

dτ
d(1− τ)[(c− d)2 − τ ]− (c− d)τ [d2 − (1− τ)]√

τ5(1− τ)5

× e−d
2/2(1−τ) e−(c−d)

2/2τ e−sτ (c ≥ d ≥ 0).

(17.620)
57Vadim Linetsky, ‘‘Step Options,’’ Mathematical Finance 9, 55 (2001) (doi: 10.1111/1467-9965.00063). See in particular

Eq. (C.9) and the discussion just before Eq. (A.9).
58Milton Abramowitz and Irene A. Stegun, op. cit., p. 1026, Eq. (29.3.87) for n = 2, which H2(x) = 2(2x2 − 1).

http://dx.doi.org/10.1111/1467-9965.00063
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Then writing the s-dependence as

e−sτ

s
=

∫ ∞
τ

dx e−sx =

∫ ∞
0

dx e−sx −
∫ τ

0

dx e−sx, (17.621)

and then massaging the two resulting integrals (with the rest of the integrand suppressed for brevity) via∫ 1

0

dτ

∫ ∞
0

dx e−sx −
∫ 1

0

dτ

∫ τ

0

dx e−sx =

∫ ∞
0

dx e−sx
∫ 1

0

dτ −
∫ 1

0

dx e−sx
∫ 1

x

dτ =

∫ 1

0

dx e−sx
∫ x

0

dτ,

(17.622)
where we have made use of the fact that the sojourn-time density has its support on [0, 1]. Thus we can now
invert the Laplace transform (17.620) of the sojourn-time density to obtain

fTs(x) =
ec

2/2

√
2π

∫ x

0

dτ
d(1− τ)[(c− d)2 − τ ]− (c− d)τ [d2 − (1− τ)]√

τ5(1− τ)5
e−d

2/2(1−τ)−(c−d)2/2τ

(0 ≤ x ≤ 1; c ≥ d ≥ 0).

(17.623)
This integral can be performed analytically, with result59

fTs(x) =

√
2

π

(c− d)x+ d(1− x)√
x(1− x)

exp
(
c2

2
− (c− d)2

2x
− d2

2(1− x)

)
(0 ≤ x ≤ 1; c ≥ d ≥ 0)

+
[
1− (2d− c)2

]
e−2d(d−c) erfc

(
(c− d)(1− x) + d x√

2x(1− x)

)
,

(probability density for bridge sojourn time) (17.624)
as can be verified by differentiating this expression to obtain the integrand of Eq. (17.623). This then gives
the density for the boundary-crossing case of the bridge sojourn time.

The cases with d < 0 can be generated from the cases with d ≥ 0 by replacing x −→ 1 − x. And
again, all of these expressions can be generalized to a bridge Bt(0→c)(t) that is pinned to c at time T via
the replacements c −→ c/

√
t, d −→ d/

√
t, and x −→ x/t. Overall factors of t must be restored to make

the density come out with ‘‘units’’ of 1/t [including, e.g., an overall factor of
√
t that came from the path-

pinning factor ec2/2 in Eq. (17.593)]. Also, a bridge starting at a different location a than 0 can be obtained
by shifting c and d by −a. Writing these out explicitly from Eqs. (17.598) and (17.624),

fTs(x) =
[
1− e−2(d−a)(d−c)/t

]
δ(x− 0+) + (2d− a− c)

√
2(t− x)
πt3x

e(c−a)
2/2t−(2d−a−c)2/2(t−x)

+
1

t

[
1− (2d− a− c)2

t

]
e−2(d−a)(d−c)/t erfc

(√
(2d− a− c)2x

2t(t− x)

)
(0 ≤ x ≤ t; a ≤ d; c ≤ d)

fTs(x) =

√
2

π

(c− d)x+ (d− a)(t− x)√
t3x(t− x)

e(c−a)
2/2t−(c−d)2/2x−(d−a)2/2(t−x) (0 ≤ x ≤ t; a ≤ d ≤ c)

+
1

t

[
1− (2d− a− c)2

t

]
e−2(d−a)(d−c)/t erfc

(
(c− d)(t− x) + (d− a)x√

2tx(t− x)

)
,

(probability density for bridge sojourn time) (17.625)
59cf. Andrei N. Borodin and Paavo Salminen, op. cit., p. 158, formula 1.4.8.
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while to obtain the other cases, we can change the signs of a, c, and d, while replacing x with t− x,

fTs(x) =
[
1− e−2(a−d)(c−d)/t

]
δ(t− x− 0+) + (a+ c− 2d)

√
2x

πt3(t− x)
e(a−c)

2/2t−(a+c−2d)2/2x

+
1

t

[
1− (a+ c− 2d)2

t

]
e−2(a−d)(c−d)/t erfc

(√
(a+ c− 2d)2(t− x)

2tx

)
(0 ≤ x ≤ t; d ≤ c; d ≤ a)

fTs(x) =

√
2

π

(a− d)x+ (d− c)(t− x)√
t3x(t− x)

e(a−c)
2/2t−(a−d)2/2x−(d−c)2/2(t−x) (0 ≤ x ≤ t; c ≤ d ≤ a)

+
1

t

[
1− (a+ c− 2d)2

t

]
e−2(a−d)(c−d)/t erfc

(
(a− d)(t− x) + (d− c)x√

2tx(t− x)

)
,

(probability density for bridge sojourn time, reflected cases) (17.626)
which takes advantage of the fact that the problem is reflection symmetric if the occupation time is taken
to be the non-occupation time.

It is also useful to write out the moment-generating functions corresponding to these probability
densities. We have the explicit expression for (c ≥ d ≥ 0) in Eq. (17.619), but we bypassed the solution
for (c ≤ d, d ≥ 0) by generalizing the treatment from the standard Brownian bridge. In fact, it is best to
replace that treatment with one that avoids obtaining a Bessel function, as we will do here. First, to set up
the Laplace transforms, we will need to arrive at something of the form

e−k
√
λ

√
λ

(√
λ+ s−

√
λ

√
λ+ s+

√
λ

)
=
e−k
√
λ

s
√
λ

(
2λ+ s− 2

√
λ(λ+ s)

)
=

2

s

(√
λ−
√
λ+ s

)
e−k
√
λ +

e−k
√
λ

√
λ

.

(17.627)

Then using the Laplace-transform formula60

L

[
1

2
√
πt3

(
e−st − 1

)]
(λ) =

√
λ−
√
λ+ s, (17.628)

we can combine this with the transform formula (17.603) using the convolution theorem to obtain the formula

L

[∫ t

0

dτ
k

4π
√
τ3(t− τ)3

e−k
2/4τ

(
e−s(t−τ) − 1

)]
(λ) =

(√
λ−
√
λ+ s

)
e−k
√
λ. (17.629)

Then adding this to the transform formula (17.520) to hit the last term on the right-hand side of Eq. (17.627),

L

[
1√
πt
e−k

2/4t +

∫ t

0

dτ
k

2πs
√
τ3(t− τ)3

e−k
2/4τ

(
e−s(t−τ) − 1

)]
(λ) =

e−k
√
λ

√
λ

(√
λ+ s−

√
λ

√
λ+ s+

√
λ

)
.

(17.630)
Changing k to k′ and combining this again with Eq. (17.520) gives

L

[
1√
πt

(
e−k

2/4t − e−k
′2/4t

)
−
∫ t

0

dτ
k′

2πs
√
τ3(t− τ)3

e−k
′2/4τ

(
e−s(t−τ) − 1

)]
(λ)

=
e−k
√
λ

√
λ
− e−k

′√λ
√
λ

(√
λ+ s−

√
λ

√
λ+ s+

√
λ

)
.

(17.631)

60Milton Abramowitz and Irene A. Stegun, op. cit., p. 1023, Eq. (29.3.36) for n = 2, which H2(x) = 2(2x2 − 1).
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Then using this to invert Eq. (17.594) with k =
√
2 |c| and k′ =

√
2(2d− c), we find61〈〈

exp
{
−sTs[Bt(0→c)]

}〉〉
= 1− e−2d(d−c)/t (c ≤ d, d ≥ 0)

+ ec
2/2t

√
t(2d− c)√

2π s

∫ t

0

dτ
1√

τ3(t− τ)3
e−(2d−c)

2/2τ
(
1− e−s(t−τ)

)
,

(17.632)
The non-integral part of the expression here is related to the boundary-touching probability of the bridge.
Note that the normalization can be verified by taking the limit s −→ 0 and carrying out the resulting
integral, recovering the unit-normalization result. Now putting this together with Eq. (17.619) and putting
in a starting point of a,

〈〈
e−sTs

〉〉
= 1− e−2(d−a)(d−c)/t (a ≤ d; c ≤ d)

+ e(c−a)
2/2t

√
t(2d− a− c)√

2π s

∫ t

0

dτ
1√

τ3(t− τ)3
e−(2d−a−c)

2/2τ
(
1− e−s(t−τ)

)
〈〈
e−sTs

〉〉
= e(c−a)

2/2t

√
t√

2πs

∫ t

0

dτ
(d− a)(t− τ)[(c− d)2 − τ ]− (c− d)τ [(d− a)2 − (t− τ)]√

τ5(t− τ)5

× e−(d−a)
2/2(t−τ)−(c−d)2/2τ−sτ (a ≤ d ≤ c)〈〈

e−sTs
〉〉

=
[
1− e−2(a−d)(c−d)/t

]
e−st (d ≤ c; d ≤ a)

+ e(a−c)
2/2t

√
t(a+ c− 2d)√

2π s

∫ t

0

dτ
1√

τ3(t− τ)3
e−(a+c−2d)

2/2τ
(
e−sτ − e−st

)
〈〈
e−sTs

〉〉
= e(a−c)

2/2t

√
t√

2πs

∫ t

0

dτ
(d− c)(t− τ)[(a− d)2 − τ ]− (a− d)τ [(d− c)2 − (t− τ)]√

τ5(t− τ)5

× e−(d−c)
2/2(t−τ)−(a−d)2/2τ−sτ (c ≤ d ≤ a).

(sojourn-time moment generating function) (17.633)
The last two cases here follow from the first two via the symmetry of the problem. Specifically, ‘‘flipping’’
the geometry by reversing the signs of a, c, and d allows us to calculate the ‘‘complimentary’’ generating
function 〈〈e−s(t−Ts)〉〉. Thus in addition to reversing these signs, we also need to reverse the sign of s in
the first two expressions and then multiply through by e−st to obtain the desired generating function. In
the fourth expression, we also changed integration variables, letting τ −→ t − τ , to bring it into a form
more similar to the second expression. In this case it turns out to have the same form, but with a and c
interchanged.

The singularity of the integrand in Eqs. (17.633) can be problematic, and merits some further discus-
sion. For example, in the case of the second expression with d = a, the integral naïvely becomes〈〈

e−sTs
〉〉

= e(c−a)
2/2t

√
t√

2πs

∫ t

0

dτ
(c− a)√
τ3(t− τ)3

e−(c−a)
2/2τ−sτ (a ≤ c; d = a). (17.634)

However, this integral is ill-defined because the integrand diverges at t = τ (note that it is okay at τ = 0
provided c 6= a). Similarly, the expression is problematic if instead d = c, because the integrand diverges at
τ = 0. Thus, some cases above may require some caution in their evaluation. One solution to regularize this
example62 is to multiply through by s in Eq. (17.619), and then take the limit s −→ 0 to obtain

ec
2/2t

√
t√
2π

∫ t

0

dτ
d(t− τ)[(c− d)2 − τ ]− (c− d)τ [d2 − (t− τ)]√

τ5(t− τ)5
e−d

2/2(t−τ) e−(c−d)
2/2τ = 0 (c ≥ d ≥ 0).

(17.635)
61cf. Andrei N. Borodin and Paavo Salminen, op. cit., p. 158, formula 1.4.7.
62Vadim Linetsky, op. cit., in the discussion after Eq. (C.9).
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[That the result vanishes may be somewhat more obvious from performing the same maneuver in Eq. (17.618).]
After restoring the initial point a, this is a useful counterpart to the second and fourth expressions in
Eqs. (17.633). For example, multiplying Eq. (17.635) by e−st/s and subtracting from the second equation
in Eqs. (17.633) leads to a similar expression, but with the replacement e−sτ −→ e−sτ − e−st. This cures
the problematic case (17.634), which becomes〈〈

e−sTs
〉〉

=

√
t√

2πs

∫ t

0

dτ
(c− a)√
τ3(t− τ)3

e−(c−a)
2(τ−1−t−1)/2

[
e−sτ − e−st

]
(a ≤ c; d = a) (17.636)

after this regularization; this cures the divergence at t = τ , which is now cut off by the difference in
exponentials. Note that this is the same expression that follows from the third expression in Eqs. (17.633).
To cure the divergence in the case d = c, it is better to multiply Eq. (17.635) by 1/s and subtract from
the second equation in Eqs. (17.633); this again leads to a similar expression, but with the replacement
e−sτ −→ e−sτ − 1, cutting off the divergence at τ = 0. However, the integrals are still pathological when
a = d = c, in which case it is easiest to setting d = 0 in Eq. (17.566), in which case the result is〈〈

e−sTs
〉〉

=
1− e−st

st
(a = c = d). (17.637)

To see how this limit follows directly from Eq. (17.636), note that as c −→ a, the factor of (c− a) makes the
integrand small everywhere except for the range of small τ—the divergent factor τ−3/2 is important here,
and although it is cut off by the Gaussian factor e−(c−a)2/2τ , it is still important for τ ∼

√
c− a. Thus, since

the significant part of the integrand moves towards vanishingly small τ , we can expand the integrand in τ
to obtain〈〈

e−sTs
〉〉

=
1√
2πst

∫ t

0

dτ

[
(c− a)
τ3/2

e−(c−a)
2(τ−1−t−1)/2

(
1− e−st

)
+O

(
τ−1/2

)]
(a ≤ c; d = a). (17.638)

This integral may then be carried out, with result〈〈
e−sTs

〉〉
≈ e(c−a)

2/2t

(
1− e−st

st

)
erfc

[
c− a√

2t

]
(a ≤ c; d = a). (17.639)

At this point, the limit c −→ a yields Eq. (17.637).
In general, the moments must then be computed by integrating the probability density or differentiating

the moment-generating functions listed above. Although we wrote out an integral for c ≤ d and d ≥ 0 in
Eq. (17.600), the case for 0 ≤ d ≤ c is not as simple. For the mean sojourn time, however, it is possible to
work out a relatively nice expression by integrating the local time. The result is given in Eq. (17.724) as

〈〈
Ts[Ba→c(t); d]

〉〉
=
t

2
+ sgn(2d− a− c) t

2

[
e−2[(d−a)(d−c)Θ(d−a)Θ(d−c)+(a−d)(c−d)Θ(a−d)Θ(c−d)]/t − 1

]
−
√
πt

8
(2d− a− c) e(c−a)

2/2t erfc
(
|d− a|+ |d− c|√

2t

)
,

(mean sojourn time) (17.640)
after restoring the initial point a of the Brownian bridge. While it may not be obvious from this expression,
when d is in the interval (a, c), the second term does not contribute, and the last term leads to a decreasing,
straight-line dependence on d.

17.12.4 Path-Pinning Normalization as a Constrained Integration

In deriving sojourn-time statistics, we made use of the relation (17.592) to remove the delta function that
pinned the endpoint of a Wiener path such that W (T ) = c:〈〈

δ[W (T )− c]F [W (t)]

〉〉
=
e−c

2/2T

√
2πT

〈〈
F
[
BT (0→c)(t)

]〉〉
. (17.641)
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We also used this in restricted form in Eqs. (17.561). In both cases we used probabilistic arguments to
justify this relation. However, it is also useful to see how this arises as a constrained integration problem,
by considering the explicit probability measure of the path. To begin, suppose that we consider N discrete
steps (∆W0, . . . ,∆WN−1) of the Wiener path, each of time step ∆T = T/N , and write out the explicit
integration over the multidimensional Gaussian probability density:〈〈

δ[W (T )− c]F [W (t)]

〉〉
=

∫
d∆W0 . . . d∆WN−1

1

(2π∆T )N/2
exp

− 1

2∆T

N−1∑
j=0

(
∆Wj

)2 δ
N−1∑
j=0

∆Wj − c

 F [W (t)].

(17.642)
Note that the path functional F [W (t)] is still written in continuous notation, since its details are not
important to this calculation. Now we will define shifted increments that move linearly towards the ‘‘target’’
c,

∆Bj := ∆Wj +
c

N
, (17.643)

which will become the increments of the Brownian bridge. Changing variables, the integral becomes

〈〈
δ[W (T )− c]F [W (t)]

〉〉
=

∫
d∆B0 . . . d∆BN−1

1

(2π∆T )N/2
exp

− 1

2∆T

N−1∑
j=0

(
∆Bj −

c

N

)2 δ
N−1∑
j=0

∆Bj

 F [BT (0→c)(t)
]

=

∫
d∆B0 . . . d∆BN−1

e−c
2/2T

(2π∆T )N/2
exp

− 1

2∆T

N−1∑
j=0

(
∆Bj

)2
+
c

T

N−1∑
j=0

∆Bj


× δ

N−1∑
j=0

∆Bj

 F [BT (0→c)(t)
]
.

(17.644)
Now carrying out the integration over ∆BN−1 will remove the delta function and enforce the replacement

∆BN−1 = −
N−2∑
j=0

∆Bj . (17.645)

However, some care must be taken in the resulting integral. The delta-function integration formula (17.65)
reads ∫

ddq δ[h(q)] f(q) =
∮
h−1(0)

f(q)
|∇h|

dS, (17.646)

where the reduced integral involves the Euclidean norm |∇h| of the gradient of the constraint function h(q).
In Eq. (17.644), the constraint function is a simple sum over all the ∆Bj , and the derivatives are taken with
respect to each ∆Bj (i.e., each of the N derivatives in the gradient has unit magnitude). The corresponding
norm |∇h| is then simply

√
N . Thus, the result of carrying out the ∆BN−1 integral in Eq. (17.644) gives
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the desired result:〈〈
δ[W (T )− c]F [W (t)]

〉〉

=

∫
d∆B0 . . . d∆BN−2

e−c
2/2T

√
N(2π∆T )N/2

exp

− 1

2∆T

N−2∑
j=0

(
∆Bj

)2 − 1

2∆T

N−2∑
j=0

∆Bj

2


×F
[
BT (0→c)(t)

]
=
e−c

2/2T

√
2πT

∫
d∆B0 . . . d∆BN−2

1

(2π∆T )(N−1)/2
exp

− 1

2∆T

N−2∑
j=0

(
∆Bj

)2 − 1

2∆T

(
BN−1

)2
×F

[
BT (0→c)(t)

]
.

=
e−c

2/2T

√
2πT

〈〈
F
[
BT (0→c)(t)

]〉〉
.

(17.647)
In the second-to-last expression here, there are N − 1 steps of variance ∆T , in addition to a constraint
that the variance of BN−1 is ∆T (BN−1 is close to zero rather than c because we defined the Bj to be
‘‘drifting’’ towards c; thus, BN = 0 in these coordinates). Again, the coefficient on the final path average
is the probability density for W (T ) evaluated at W (T ) = c, but in this calculation part of this factor came
from the path measure, and part came from the integration over a delta function.

17.13 Local Time

We will define the local time of a stochastic process y(t) at displacement d as

`[y(t); d] :=

∫ t

0

dt′ δ[y(t′)− d]. (17.648)
(local time)

The integrand here only ‘‘activates’’ when y(t) passes through d, and the local time is a measure of how much
time y(t) spends at the displacement d, but normalized so that the answer is not merely zero. Recalling that
we defined the sojourn time for y(t) as

Ts[y(t); d] :=

∫ t

0

dt′Θ[y(t′)− d], (17.649)

we can immediately deduce that

`[y(t); d] = −∂dTs[y(t); d],
(17.650)

(local time)
so that we may simply adapt our sojourn-time results to obtain local-time statistics.

One useful aspect of the local time arises in calculating functionals of stochastic processes of the form∫ t

0

dt′ F [y(t′)] =

∫ t

0

dt′
∫
daF (a) δ[y(t′)− a] =

∫
daF (a)

∫ t

0

dt′ δ[y(t′)− a]. (17.651)

The definition of the local time then implies∫ t

0

dt′ F [y(t′)] =

∫ ∞
−∞

daF (a) `[y(t); a],
(17.652)

(local-time density formula)

so that the local time acts as an occupation density for y(t). The local time is also commonly thought of as
a time-dependent process, here through the time dependence of the process itself. Intuitively, the local time
‘‘accumulates’’ as the stochastic process continues, so `[y(t); a] is a nondecreasing function of time.
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As an alternate representation of the local time, recall the property of the δ function

δ[f(x)] =
∑

x0∈f−1(0)

δ(x− x0)
|f ′(x0)|

, (17.653)

where the sum is over all real roots x0 of f(x). Then the definition (17.648) becomes

`[y(t); d] =

∫ t

0

dt′
∑

{td:y(td)=d}

δ(t′ − td)
|y′(td)|

, (17.654)

or carrying out the integral,

`[y(t); d] =
∑

{td:y(td)=d}

1

|y′(td)|
.

(intersection representation of local time) (17.655)
Thus, the local time is given by summing over the intersections of the process y(t) with the boundary at
d, where at each intersection the contribution is the reciprocal of the ‘‘speed’’ |y′| during the intersection.
Intuitively, this makes sense, since the greater the speed, the less the time spent at the level d during the
intersection. To get a better feeling for this, consider the case of a Wiener process, y(t) = W (t), in discrete
form:

`[W (t); d] = lim
∆t→0

∑
{j:(Wj+1−d)(Wj−d)<0}

∆t

|∆Wj |
. (17.656)

Note that as ∆t −→ 0, the contribution from each intersection in the sum decreases as ∆t1/2. As we
will show, the local time can converge to a nonzero value; evidently, this means that the smaller step size
‘‘reveals’’ extra intersections in the neighborhood of each intersection to compensate for this decrease.

It is also interesting to consider possible generalizations of the local time. For example, consider the
functional

`′[y(t); d] :=

∫ t

0

dt′ δ′[y(t′)− d], (17.657)

which we can see is related to the local time via a −∂d derivative, as the local time is related to the sojourn
time. Using the composition rule (Problem 17.13)

δ′[f(x)] =
∑

x0∈f−1(0)

[
δ′(x− x0)

f ′(x0)|f ′(x0)|
+
f ′′(x0) δ(x− x0)
|f ′(x0)|3

]
, (17.658)

the local-time derivative becomes

`′[y(t); d] =

∫ t

0

dt′
∑

{td:y(td)=d}

[
δ′(t′ − td)
y′(td)|y′(td)|

+
y′′(td) δ(t

′ − td)
|y′(td)|3

]
. (17.659)

The first term under the integral vanishes so long as the velocity in the denominator does not vanish
(something that occurs with zero probability, and which we also ignored in the local-time analysis), and we
have

`′[y(t); d] =
∑

{td:y(td)=d}

y′′(td)

|y′(td)|3
.

(17.660)
(local-time derivative)

For a Wiener process, y(t) = W (t), in discrete time increments ∆t we can count y′(t) as O(∆t−1/2) and
y′′(t) as O(∆t−3/2), so the summand here is of order unity. However, recall from our discussion of local-time
intersections in Eq. (17.655) that the number of intersection times td grows as ∆t−1/2. Thus, while we can
assign an ensemble average to this statistic,〈〈

`′[y(t); d]
〉〉

= −∂d
〈〈
`[y(t); d]

〉〉
= ∂ 2

d

〈〈
Ts[y(t); d]

〉〉
, (17.661)

evidently the variance of the derivative statistic is arbitrarily large (see Problem 17.18).
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17.13.1 Wiener Process

To compute the probability distribution for the local time of the Wiener process, we will follow closely the
procedure of Section 17.12.1 for the sojourn time of the Wiener process. Let f`(x) denote the probability
density for the local time `[W (t); d] of W (t) at d, with cumulative probability P (` ≤ x), satisfying

f`(x) = ∂xP (` ≤ x). (17.662)

Then the Laplace transform of f`(x) is∫ ∞
0

dx e−sx f`(x) =

〈〈
exp {−s`[W (t); d]}

〉〉
=

〈〈
exp

[
−s
∫ t

0

dt′ δ[W (t′)− d]
]〉〉

. (17.663)

Note that f`(x) is not limited in domain to x < t as was the case for the sojourn time, but the domain is
limited to x > 0. Consider then the driven diffusion equation

∂tf =
1

2
∂ 2
x f − V (x)f − λf + g(x), (17.664)

where V (x) is the occupation function, which here is a delta function:

V (x) = sδ(x− d). (17.665)

We will also take g(x) = 1. The steady-state solution is given by the Feynman–Kac formula (17.440) as

f(x) =

〈〈∫ ∞
0

dt exp
(
−λt−

∫ t

0

dt′ V [x+W (t′)]

)〉〉

=

∫ ∞
0

dt e−λt

〈〈
exp

(
−s
∫ t

0

dt′ δ[x+W (t′)− d]
)〉〉

.

(17.666)

This is then the solution of the steady-state version of Eq. (17.664):

λf(x) =
1

2
∂ 2
x f(x)− sδ(x− d)f(x) + 1. (17.667)

For x 6= d, the ODE is
f ′′ = 2λf − 2. (17.668)

Setting h = f − 1/λ, we have h′′ = 2λh, so that for x 6= d,

h(x) ∝ e±
√
2λx, (17.669)

or choosing the bounded solutions,

f(x) =


Ae−

√
2λx +

1

λ
(x > d)

Be
√
2λx +

1

λ
(x < d)

(17.670)

for some undetermined constants A and B. Demanding continuity of f(x) at x = d gives

B = Ae−2
√
2λ d. (17.671)

The δ function in the ODE says that the derivative f ′(x) should jump by 2sf(d) at x = d, so that

−
√
2λAe−

√
2λ d − 2s

(
Ae−

√
2λ d +

1

λ

)
=
√
2λBe

√
2λ d =

√
2λAe−

√
2λ d, (17.672)
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or that is, f ′(d− 0+) = f ′(d+ 0+)− 2sf(d+ 0+). The solution of these two equations fixes the coefficients
as

A = − se
√
2λ d

λ
(√

2λ+ s
) , B = − se−

√
2λ d

λ
(√

2λ+ s
) . (17.673)

Now, we can equate Eqs. (17.666) and (17.670) and set x = 0 to obtain∫ ∞
0

dt e−λt

〈〈
exp
(
−s
∫ t

0

dt′ δ[W (t′)− d]
)〉〉

= B +
1

λ
=

1

λ
− se−

√
2λ d

λ
(√

2λ+ s
) , (17.674)

where we have assumed d > 0. Then using Eq. (17.663) on the left-hand side,∫ ∞
0

dt e−λt
〈〈

exp {−s`[W (t); d]}
〉〉

=
1

λ
− se−

√
2λ d

λ
(√

2λ+ s
) . (17.675)

Now using the Laplace-transform formulae

L [1] (λ) =
1

λ
(17.676)

and63

L

[
−eakea

2t erfc
(
a
√
t+

k

2
√
t

)
+ erfc

(
k

2
√
t

)]
(λ) =

ae−k
√
λ

λ
(√

λ+ a
) , (17.677)

which becomes with k = d
√
2, a = s/

√
2,

L

[
−esdes

2t/2 erfc
(
s
√
t/2 +

d√
2t

)
+ erfc

(
d√
2t

)]
(λ) =

se−d
√
2λ

λ
(√

2λ+ s
) . (17.678)

Thus, Eq. (17.675) becomes∫ ∞
0

dx e−sx f`(x) = 1− erfc
(

d√
2t

)
+ esdes

2t/2 erfc
(
s
√
t/2 +

d√
2t

)
(17.679)

after using Eq. (17.663) to replace the ensemble average on the left-hand side. Now using∫ ∞
0

dx e−sx
1√
2πt

e−(x+d)
2/2t =

1

2
esd es

2t/2 erfc

[√
t

2

(
s+

d

t

)]
, (17.680)

we can invert the Laplace transforms on both sides, with the result64

f`(x) = erf
(
|d|√
2t

)
δ(x− 0+) +

√
2

πt
e−(x+|d|)

2/2t,

(local-time probability density) (17.681)
which is normalized in view of√

2

πt
e−(x+d)

2/2t = erfc
(

d√
2t

)
= 1− erf

(
d√
2t

)
. (17.682)

63Milton Abramowitz and Irene A. Stegun, op. cit., p. 1027, Eq. (29.3.89).
64cf. Andrei N. Borodin and Paavo Salminen, op. cit., p. 155, formula 1.3.4; A. N. Borodin, ‘‘Brownian local time,’’ Russian

Mathematical Surveys 44, 1 (1989), p. 5 (doi: 10.1070/RM1989v044n02ABEH002050); Jim Pitman, ‘‘The distribution of local
times of a Brownian bridge,’’ in Séminaire de Probabilités XXXIII, Jacques Azéma, Michel Émery, Michel Ledoux, and Marc
Yor, Eds. (Springer, 1999), p. 388, Eq. (1) (doi: 10.1007/BFb0096528).

http://dx.doi.org/10.1070/RM1989v044n02ABEH002050
http://dx.doi.org/10.1007/BFb0096528
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Again, the δ-function term here gives the boundary-noncrossing probability, with the crossing probability
(17.372) appearing, which is the same as the probability to have zero local time at d:

P (` = 0) = 1− Pcross(d, t) = 1− erfc
(

d√
2t

)
= erf

(
d√
2t

)
. (17.683)

We have also inserted absolute-value symbols for d: while we assumed d > 0 for this derivation, the result
should be exactly symmetric in d owing to the same symmetry in W (t). The cumulative probability is again
given by integrating 0 to x:65

P (` ≤ x) =
∫ x

0

dx′ f`(x
′) = erf

(
|d|√
2t

)
+

[
erf
(
x+ |d|√

2t

)
− erf

(
|d|√
2t

)]
, (17.684)

or

P (` ≤ x) = erf
(
x+ |d|√

2t

) (17.685)
(local-time cumulative density)

after cancelling terms.

17.13.2 Standard Brownian Bridge

The local-time distributions for the standard Brownian bridge B(t) are special cases of the results in the
following section, so we just quote them here.

f`(x) =
[
1− e−2|d|

2
]
δ(x− 0+) +

(
x+ 2|d|

)
e−(x+2|d|)2/2

(local-time probability density for B(t)) (17.686)
is the probability density for the standard bridge, while

P (` ≤ x) = 1− e−(x+2|d|)2/2

(local-time cumulative density for B(t)) (17.687)
is the cumulative density.

Note that as in Eq. (17.585), it is not difficult to compute moments of the local time using〈〈
`n
〉〉

= n

∫ ∞
0

dxxn−1[1− P (` ≤ x)]

= n

∫ ∞
0

dxxn−1e−(x+2|d|)2/2.

(17.688)

Thus, for example, 〈〈
`
〉〉

=

√
π

2
erfc

(√
2 |d|

)
(17.689)

for the mean local time of a standard Brownian bridge.

17.13.3 Brownian Bridge

For the local time of the Brownian bridge B0→c(t) from 0 to c as t = 0 to 1, we will merge the procedures of
Sections 17.12.2, 17.12.3, and 17.13.1. Here f`(x) for 0 ≤ x ≤ ∞ will denote the probability density for the
local time `[B0→c(t); d] of B0→c(t) at d, with cumulative probability P (` ≤ x). The procedure is the same
as in Section 17.13.1 up to Eq. (17.666), where we will leave g(x) in the Feynman–Kac formula:

f(x) =

∫ ∞
0

dt e−λt

〈〈
g[x+W (t)] exp

(
−s
∫ t

0

dt′ δ[x+W (t′)− d]
)〉〉

. (17.690)

65cf. Lajos Takács, ‘‘On the Local Time of the Brownian Motion,’’ The Annals of Applied Probability 5, 741 (1995), Eq. (3)
(doi: 10.1214/aoap/1177004703).

http://dx.doi.org/10.1214/aoap/1177004703
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In this case, we will take g(x) = eik(x−c), as we did in Section 17.12.3. This is then the solution of the
steady-state diffusion equation

λf(x) =
1

2
∂ 2
x f(x)− sδ(x− d)f(x) + eik(x−c). (17.691)

For x 6= d, the ODE is
f ′′ = 2λf − 2eik(x−c). (17.692)

Then setting h = f − 2eik(x−c)/(2λ+ k2), we have

h′′ = f ′′ +
2k2eik(x−c)

2λ+ k2

= 2λf − 2eik(x−c) +
2k2eik(x−c)

2λ+ k2

= 2λh+
4λeik(x−c)

2λ+ k2
− 2eik(x−c) +

2k2eik(x−c)

2λ+ k2

= 2λh,

(17.693)

so that for x 6= d,
h(x) ∝ e±

√
2λx, (17.694)

or picking the bounded solutions in each domain,

f(x) =


Ae−

√
2λx +

eik(x−c)

λ+ k2/2
(x > d)

Be
√
2λx +

eik(x−c)

λ+ k2/2
(x < d),

(17.695)

for undetermined constants A and B. Demanding continuity of f(x) at x = d again gives

B = Ae−2
√
2λ d. (17.696)

The δ function in the ODE causes the derivative f ′(x) to jump by 2sf(d) at x = d, so that

−
√
2λAe−

√
2λ d − 2s

(
Ae−

√
2λ d +

eik(d−c)

λ+ k2/2

)
=
√
2λBe

√
2λ d =

√
2λAe−

√
2λ d, (17.697)

or that is, f ′(d− 0+) = f ′(d+ 0+)− 2sf(d). The solution of these two equations fixes the coefficients as

A = − se
√
2λ d eik(d−c)

(λ+ k2/2)
(√

2λ+ s
) , B = − se−

√
2λ d eik(d−c)

(λ+ k2/2)
(√

2λ+ s
) . (17.698)

Now we can equate Eqs. (17.666) and (17.695) and set x = 0 to obtain∫ ∞
0

dt e−λt

〈〈
eik[W (t)−c] exp

(
−s
∫ t

0

dt′ δ[W (t′)− d]
)〉〉

= B +
e−ikc

λ+ k2/2
, (17.699)

where we have again assumed d > 0 [but note that if we assume d < 0, the following treatment is the same,
but with d −→ −d, so we will simply replace d by |d| in the factor exp(−

√
2λ d)]. Integrating with respect

to k and dividing through by 2π introduces the δ function that pins the Wiener path to c at time t:∫ ∞
0

dt e−λt

〈〈
δ[W (t)− c] exp

(
−s
∫ t

0

dt′ δ[W (t′)− d]
)〉〉

=
1

2π

∫ ∞
−∞

dk

(
B +

e−ikc

λ+ k2/2

)
. (17.700)
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Using Eq. (17.592) to change the Wiener-path average into a bridge average,∫ ∞
0

dt
e−c

2/2t

√
t

e−λt

〈〈
exp

(
−s
∫ t

0

dt′ δ[Bt(0→c)(t
′)− d]

)〉〉
=

1√
2π

∫ ∞
−∞

dk

(
B +

e−ikc

λ+ k2/2

)
. (17.701)

Then using Eq. (17.663) on the left-hand side and carrying out the k integration,∫ ∞
0

dt
e−c

2/2t

√
t

e−λt
〈〈

exp
{
−s`[Bt(0→c); d]

}〉〉
=

1√
2π

∫ ∞
−∞

dk

 e−ikc

λ+ k2/2
− s e−

√
2λ|d| eik(d−c)

(λ+ k2/2)
(√

2λ+ s
)


=

√
π

λ
e−
√
2λ|c| −

√
π s e−

√
2λ (|d|+|c−d|)

√
λ
(√

2λ+ s
) .

(17.702)
Now using the Laplace-transform formulae66

L

[
1√
πt
e−k

2/4t

]
(λ) =

1√
λ
e−k
√
λ, (17.703)

and67

L

[
eakea

2t erfc
(
a
√
t+

k

2
√
t

)]
(λ) =

e−k
√
λ

√
λ
(√

λ+ a
) , (17.704)

which becomes with k = (|d|+ |c− d|)
√
2, a = s/

√
2,

L

[
es(d+|c−d|)es

2t/2 erfc
(
s
√
t/2 +

(d+ |c− d|)√
2t

)]
(λ) =

e−(d+|c−d|)
√
2λ

√
λ
(√

λ+ s/
√
2
) =

√
2 e−(d+|c−d|)

√
2λ

√
λ
(√

2λ+ s
) . (17.705)

Thus, Eq. (17.701) becomes∫ ∞
0

dx e−sx f`(x) = 1−
√
πt

2
s ec

2/2tes(|d|+|c−d|)es
2t/2 erfc

(
s

√
t

2
+

(|d|+ |c− d|)√
2t

)
(17.706)

after using Eq. (17.663) to replace the ensemble average on the left-hand side. Now again using∫ ∞
0

dx e−sx
1√
2πt

e−(x+d)
2/2t =

1

2
esd es

2t/2 erfc

[√
t

2

(
s+

d

t

)]
, (17.707)

with the derivative rule
sL [f(x)](s) = L [f ′(x)](s) + f(0), (17.708)

so that

−
∫ ∞
0

dx e−sx
(x+ d)√

2πt3
e−(x+d)

2/2t +
1√
2πt

e−d
2/2t =

s

2
esd es

2t/2 erfc

[√
t

2

(
s+

d

t

)]
, (17.709)

we can invert the Laplace transforms on both sides, with the result68

f`(x) =
[
1− e[c

2−(|d|+|c−d|)2]/2t
]
δ(x− 0+) +

1

t

(
x+ |d|+ |c− d|

)
e[c

2−(x+|d|+|c−d|)2]/2t,

(local-time probability density for Bt(0→c)(t′)) (17.710)
66Milton Abramowitz and Irene A. Stegun, op. cit., p. 1026, Eq. (29.3.84).
67Milton Abramowitz and Irene A. Stegun, op. cit., p. 1027, Eq. (29.3.90).
68cf. Andrei N. Borodin and Paavo Salminen, op. cit., p. 155, formula 1.3.8; A. N. Borodin, ‘‘Brownian local time,’’ Russian

Mathematical Surveys 44, 1 (1989), p. 6 (doi: 10.1070/RM1989v044n02ABEH002050).

http://dx.doi.org/10.1070/RM1989v044n02ABEH002050
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The δ-function term here gives the boundary-noncrossing probability in the case of c < d, where the expo-
nential part reduces to exp[−2d(d− c)], in agreement with Eq. (17.387).

The corresponding cumulative probability is

P (` ≤ x) =
∫ x

0

dx′ f`(x
′) = 1− e[c

2−(|d|+|c−d|)2]/2t −
[
e[c

2−(x+|d|+|c−d|)2]/2t
]x
0
, (17.711)

or

P (` ≤ x) = 1− e[c
2−(x+|d|+|c−d|)2]/2t

(local-time cumulative density for Bt(0→c)) (17.712)
after cancelling terms.

17.13.3.1 Moments

Note that as in Eqs. (17.585) and (17.688), we can compute moments of the local time via the cumulative
as probability function 〈〈

`n
〉〉

= n

∫ ∞
0

dxxn−1[1− P (` ≤ x)]

= n

∫ ∞
0

dxxn−1 e[c
2−(x+|d|+|c−d|)2]/2t

(17.713)

for n > 0. For example, the mean is

〈〈
`
〉〉
=

√
πt

2
ec

2/2t erfc
(
|d|+ |c− d|√

2t

)
. (17.714)

Note that in the case where the endpoints of the bridge straddle the interval (i.e., 0 ≤ d ≤ c or c ≤ d ≤ 0)
the argument |d|+ |c− d| reduces to |c|, in which case the mean local time is independent of the boundary
location, which seems peculiar.69 Since the probability (17.712) and density (17.710) depend on c and d in
exactly the same way, these probabilities are also invariant to shifts of the interface, provided the shift keeps
the interface d between 0 and c.70

17.13.3.2 Moment-Generating Function

Since the moments are fairly straightforward to calculate, it shouldn’t come as much surprise that the
moment-generating function is easy to obtain. Writing this out,

〈〈
e−s`

〉〉
=

∫ ∞
0

dx e−sx f`(x)

= s

∫ ∞
0

dx e−sxP (` ≤ x)

= 1− s
∫ ∞
0

dx e−sx
[
1− P (` ≤ x)

]
= 1− s

∫ ∞
0

dx e−sxe[c
2−(x+|d|+|c−d|)2]/2t,

(17.715)

where we used Eq. (17.712) for the cumulative density. Note that in the first step, we discarded the boundary
terms from integrating by parts; the term at x = 0 vanishes if we regard the delta function in Eq. (17.712) to

69Zhiyi Chi, Vladimir Pozdnyakov, and Jun Yan, ‘‘On expected occupation time of Brownian bridge,’’ Statistics and Probability
Letters 97, 83 (2015) (doi: 10.1016/j.spl.2014.11.009).

70Peter Howard and Kevin Zumbrun, ‘‘Shift invariance of the occupation time of the Brownian bridge process,’’ Statistics
and Probability Letters 45, 379 (1999) (doi: 10.1016/S0167-7152(99)00080-2).

http://dx.doi.org/10.1016/j.spl.2014.11.009
http://dx.doi.org/10.1016/S0167-7152(99)00080-2
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be displaced above x = 0 until the end of the calculation (which is a shortcut for treating the delta-function
component separately). Carrying out the final integral, we find71

〈〈
e−s`

〉〉
= 1− s

√
πt

2
ec

2/2t+s2t/2+s(|d|+|c−d|) erfc
(
|d|+ |c− d|+ st√

2t

)
(local-time moment-generating function for Bt(0→c)) (17.716)

for the moment-generating function.

17.13.3.3 Application to the Sojourn Time

The local-time mean can also be used to obtain an expression for the mean of the sojourn time for a general
Brownian bridge. By taking the expectation value of Eq. (17.650), we can simply write the mean sojourn
time as the integral 〈〈

Ts[y(t); d]
〉〉
=

∫ ∞
d

dx
〈〈
`[y(t);x]

〉〉
. (17.717)

To handle this integral, we can use the integral formula∫
dx erfc(ax− b) = b

a
− 1

a
√
π
+

(
x− b

a

)
erfc(ax− b), (17.718)

and handle the integral in several cases. First, if d ≥ 0 and d ≥ c, then we have from Eq. (17.714)

〈〈
Ts[y(t); d]

〉〉
=

√
πt

2
ec

2/2t

∫ ∞
d

dx erfc
(
2x− c√

2t

)
=
t

2
e−2d(d−c)/t −

√
πt

8
ec

2/2t(2d− c) erfc
(
2d− c√

2t

)
.

(17.719)

In the case d ≥ 0 and c ≥ d, we can divide the integrand into the parts with x ≤ c and x ≥ c, the latter of
which we just did:

〈〈
Ts[y(t); d]

〉〉
=

√
πt

2
ec

2/2t

∫ c

d

dx erfc
(
|x|√
2t

)
+
〈〈
Ts[y(t); c]

〉〉
=

√
πt

2
ec

2/2t(c− d) erfc
(

c√
2t

)
+
t

2
−
√
πt

8
ec

2/2tc erfc
(

c√
2t

)
=
t

2
−
√
πt

8
ec

2/2t(2d− c) erfc
(

c√
2t

)
.

(17.720)

Combining Eqs. (17.719) and (17.720) into a single case valid for d ≥ 0,

〈〈
Ts[y(t); d]

〉〉
=
t

2
e−2[d(d−c)Θ(d)Θ(d−c)]/t −

√
πt

8
(2d− c) ec

2/2t erfc
(
|d|+ |c− d|√

2t

)
. (17.721)

For the case d ≤ 0, we can change the signs of both c and d to obtain the mirror image, and replace the
sojourn time by the sojourn time subtracted from t. The net result for d ≤ 0 is

〈〈
Ts[y(t);−d]

〉〉
= t− t

2
e−2[d(d−c)Θ(−d)Θ(c−d)]/t −

√
πt

8
(2d− c) ec

2/2t erfc
(
|d|+ |c− d|√

2t

)
. (17.722)

Equations (17.721) and (17.722) can then be combined into a single case as

〈〈
Ts[y(t); d]

〉〉
=
t

2
+ sgn(d) t

2

[
e−2[d(d−c)Θ(d)Θ(d−c)+d(d−c)Θ(−d)Θ(c−d)]/t − 1

]
−
√
πt

8
(2d− c) ec

2/2t erfc
(
|d|+ |c− d|√

2t

)
.

(17.723)

71cf. Andrei N. Borodin and Paavo Salminen, op. cit., p. 155, formula 1.3.7.
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Actually, since the second term vanishes as long as 0 ≤ d ≤ c, the sgn(d) can be shifted, with the result

〈〈
Ts[y(t); d]

〉〉
=
t

2
+ sgn(2d− c) t

2

[
e−2[d(d−c)Θ(d)Θ(d−c)+d(d−c)Θ(−d)Θ(c−d)]/t − 1

]
−
√
πt

8
(2d− c) ec

2/2t erfc
(
|d|+ |c− d|√

2t

)
,

(17.724)

which makes the expression symmetric about c/2.

17.13.4 Local Time and Discontinuities in Stochastic Processes

Because of the relation of the local time to the delta function, the local time tends to show up in the theory
of stochastic processes especially when discontinuities are involved. We will consider two examples of this
here: the absolute-value process, and a diffusion process with a discontinuity in the diffusion rate.

17.13.4.1 Reflected Brownian Motion

Consider the absolute-value diffusion process |W (t)| = sgn[W (t)]W (t). This is an example of reflected
Brownian motion, in the sense that this is Brownian motion on (0,∞), but when the process encounters
the origin and attempts to cross it, it is ‘‘reflected’’ back into the positive real axis.

The Itō differential for this process is, expanding to second order using the Itō chain rule (17.193),

d|W (t)| = d|W |
dW

dW +
1

2

d2|W |
dW 2

dW 2

= sgn(W ) dW + δ(W ) dt,
(17.725)

where we have used
d|x|
dx

= sgn(x), d|x|2

dx2
= 2δ(x), (17.726)

thinking of the signum function as twice the Heaviside function plus a constant offset. Then integrating this
transformed SDE from 0 to t,

|W (t)| =
∫ t

0

sgn[W (t′)] dW (t′) + `[W (t); 0],
(17.727)

(Tanaka formula)

where we used the local-time definition (17.648). This is the Tanaka formula.72 This can also be written
as

|W (t)− d| − |d| =
∫ t

0

sgn[W (t′)− d] dW (t′) + `[W (t); d],
(17.728)

(Tanaka formula)

if W (t) is shifted by d at the start of the derivation. This says that in Itō calculus, the reflecting effect of
the absolute value is reflected in a deterministic ‘‘pushing’’ term that activates whenever the process hits
the origin.

17.13.4.2 Discontinuous Diffusion Rate

Consider the Itō-form SDE
dy = β(y) dW, (17.729)

representing state-dependent diffusion without an explicit drift term. We want to consider the case where
β(y) has a discontinuity (or a number of isolated discontinuities). As a particular model, consider

β(y) =

{
β>, y > 0
β<, y < 0,

(17.730)

72Andrei N. Borodin and Paavo Salminen, op. cit., p. 43.
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with the point β(0) being, say, the average of the left- and right-hand values. As we argued before in
Section 17.3.5.1, the probability density of particles governed by this SDE evolves by the Fokker–Planck
equation

∂tP (y, t) =
1

2
∂ 2
y β

2(y)P (y, t), (17.731)

so that the diffusion coefficient D(y) = β2(y) has a discontinuity at the origin. Making the Lamperti
transform (Section 17.7.4.2), we construct the function

z = S(y) =

∫ y

0

dy′

β(y′)
=

{
y/β>, y > 0
−y/β<, y < 0

(17.732)

(which is invertible provided β≷ have the same sign), we can transform our SDE to the form of Eq. (17.359),

dz = −1

2
β′(y) dt+ dW. (17.733)

Evaluating the derivative of β as the derivative of a step function,

dz = −1

2
(β> − β<) δ(y) dt+ dW. (17.734)

Now we have
δ(z) = δ[S(y)] =

δ(y)

|S′(y)|
=

2δ(y)

β> + β<
, (17.735)

where we think of the delta function as a limit of centered distributions, so that the derivative of S(y) is the
average of the derivatives on either side of the discontinuity. Thus, we have the fully transformed SDE

dz =

(
β< − β>
β< + β>

)
δ(z) dt+ dW. (17.736)

In this form, where we have scaled away the variance, the discontinuity arises as a deterministic ‘‘kick’’ term
that acts only at the discontinuity’s location. Using the local-time definition (17.648), we can integrate this
to find

z(t)− z0 =W (t) +

(
β< − β>
β< + β>

)
`[W (t); 0],

(17.737)
(skew Brownian motion)

so that z(t) has the form of a regular Wiener path, with a shift that depends on the time the particle spent at
the discontinuity (and thus being kicked by the local gradient). The motion of z(t) is called skew Brownian
motion.

17.13.4.3 Skew Brownian Motion

Skew Brownian motion73 is equivalent to ordinary Brownian motion, except that the probability is skewed
towards one direction at the origin. Suppose we take a random walk of steps taken every ∆t, and probability
density

f(x) = p δ
(
x−
√
∆t
)
+ (1− p) δ

(
x+
√
∆t
)
, (17.738)

so that the probability of a step of size x = +
√
∆t is p, and the probability is 1−p of stepping in the opposite

direction. The second moment of each step is∫ ∞
−∞

dxx2f(x) = ∆t, (17.739)

73Skew Brownian motion was introduced by Kiyosi Itô and Henry P. McKean, Jr., Diffusion Processes and their Sample Paths
(Springer-Verlag, 1974). See also J. M. Harrison and L. A. Shepp, ‘‘On Skew Brownian Motion,’’ The Annals of Probability 9,
309 (1981) (doi: 10.1214/aop/1176994472); and Antoine Lejay, ‘‘On the constructions of the skew Brownian motion,’’ Probability
Surveys 3 413 (2006) (doi: 10.1214/154957807000000013).

http://dx.doi.org/10.1214/aop/1176994472
http://dx.doi.org/10.1214/154957807000000013
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so that the unbiased case p = 1/2 leads to the usual Wiener path W (t) as ∆t −→ 0. The more general case
gives a bias of ∫ ∞

−∞
dxxf(x) = p

√
∆t− (1− p)

√
∆t = (2p− 1)

√
∆t (17.740)

in each step (and thus a step variance of ∆t−(2p−1)2∆t = 4p(1−p)∆t ≤ ∆t for p ∈ [0, 1]). If we then consider
an inhomogeneous walk where we take a biased stepping probability p in the region x ∈ [−

√
∆t/2,

√
∆t/2),

and an unbiased probability p = 1/2 outside this region, then we have the discrete-step equation

∆x = ∆W + rect
(

x√
∆t

)
(2p− 1)

√
∆t, (17.741)

where rect(t) is a square pulse of unit height and unit width, centered at t = 0, and we have replaced the
stochastic component of the random walk by an equivalent Gaussian process in view of the limit ∆t −→ 0.
Note that this process has the correct mean

〈〈∆x〉〉 = 1[−
√
∆t/2,

√
∆t/2)(x), (17.742)

where 1A(x) is the indicator function for x ∈ A, and the process has the correct second moment,〈〈
∆x2

〉〉
=
〈〈
∆W 2

〉〉
= ∆t, (17.743)

provided we ignore terms of order ∆W ∆t and ∆t2. Then as ∆t −→ 0, we can also note that

1√
∆t

rect
(

x√
∆t

)
−→ δ(x), (17.744)

so that in this limit we obtain the SDE

dx = dW + (2p− 1) δ(x) dt,
(17.745)

(skew Brownian motion)

with solution
x(t)− x0 =W (t) + (2p− 1) `[W (t); 0].

(17.746)
(skew Brownian motion)

These equations are equivalent to Eqs. (17.736) and (17.737) if we identify

p =
β<

β< + β>
, 1− p = β>

β< + β>
. (17.747)

As an example at the extreme end of this range of probabilities, note that the reflected Brownian motion in
Eq. (17.725) has a similar form to skew Brownian motion with p = 1 (if we modify the process by absorbing
the sgn into dW , which is possible due to the symmetry of dW ). In this limit, the process is always reflected
upward at the origin. In terms of the inhomogeneous diffusion, this corresponds to the limit where β< � β>,
though the diffusion picture does not necessarily show the same repulsion from the y < 0 region; this is more
an artifact of the transformation (17.732), which ‘‘smooshes’’ the y < 0 region up against the origin if β <
is large.

17.13.4.4 Reflections, Images, and Transition Densities for Skew Brownian Motion

The original construction of skew Brownian motion74 began with reflected Brownian motion, and then
introduced probabilities p and 1−p of reflecting |W (t)| upwards or downwards, respectively, on each encounter
with the origin.

In this sense,

r = 2p− 1 =
β< − β>
β< + β>

(17.748)
(‘‘reflection coefficient’’ for diffusion)

74Kiyosi Itô and Henry P. McKean, Jr., op. cit.
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acts as a ‘‘reflection coefficient’’ from above the interface for the Wiener path. The reflection occurs always
up or down for p = 1 or 0, respectively (corresponding to r = +1 or −1), and has no reflection (bias) for
p = 1/2 (r = 0). Indeed, identifying the β≶ with the inverse ‘‘refractive indices’’ 1/n≶ on either side of
a refractive interface, the reflection coefficient r has the form of the Fresnel coefficient for the electric field
at normal incidence from above a dielectric interface [and t = 1 + r = 2β</(β> + β<) has the form of the
Fresnel transmission coefficient from above].

Indeed, the reflection principle can give the transition density for the trajectories,75 making the con-
nection to a reflection coefficient more explicit. To compute the transition densities for skew Brownian
motion, we will use a procedure similar to the calculation for boundary crossings of Brownian bridges in
Section 17.8.2. To begin, let’s compute the probability density for a skew-Brownian-motion process z(t)
starting at x0 > 0 and ending at x > 0. Let τ0 denote the first-crossing time through the boundary x = 0.
Then we start with

P [z(t) = x] = P [z(t) = x ∧ τ0 ≤ t] + P [z(t) = x ∧ τ0 > t]. (17.749)

That is, the path either hits the origin or it doesn’t before time t. We can compute the first term using the
Reflection Principle, similar to the calculation in Section 17.8:

P [z(t) = x ∧ τ0 ≤ t] = P [z(t) = x | τ0 ≤ t]P [τ0 ≤ t]
= P [z(t) = x | τ0 ≤ t]P [τ0 ≤ t]
= 2pP [W (t) + x0 = x | τ0 ≤ t]P [τ0 ≤ t]
= 2pP [W (t) + x0 = −x | τ0 ≤ t]P [τ0 ≤ t]
= 2pP [W (t) + x0 = −x ∧ τ0 ≤ t]
= 2pP [W (t) + x0 = −x]
= 2pφ(x+ x0) dx,

(17.750)

where φ(x) is the transition density for W (t) from 0,

φ(x) =
1√
2πt

e−x
2/2t. (17.751)

In changing from skew Brownian to regular Brownian motion, we used the ratio of probabilities for taking
an upward step at the point of crossing z(τ) = 0:

P [z(0) = 0 ∧ z(t) = x]

P [W (t) = x]
=

p

1/2
= 2p. (17.752)

(This ratio is unity for the unbiased case p = 1/2.) We then used the Reflection Principle for W (t), given
that it crossed W (τ) + z0 = 0.

We can evaluate second term in Eq. (17.749) using the method of images, which works in the same
way as the method of images for potentials due to charges in the presence of boundary conditions. Here,
we have P [z(t) = x ∧ τ0 > t], which is the same as P [z(t) = x], but subject to the boundary condition
P [z(t) = x = 0] = 0, since no crossings happen here. We can achieve this by considering the density

75J. B. Walsh, ‘‘A diffusion with a discontinuous local time,’’ Société Mathématique de France Astérisque 52-53, 37 (1978); J.
F. Le Gall, ‘‘One-dimensional stochastic differential equations involving the local times of the unknown process,’’ in Stochastic
Analysis and Applications: Proceedings of the International Conference held in Swansea, April 11-15, 1983, A. Truman and D.
Williams, Eds. (Springer-Verlag, 1984), p. 51; G. J. M. Uffink, ‘‘A random walk method for the simulation of macrodispersion in
a stratified aquifer,’’ in Relation of Groundwater Quantity and Quality (Proceedings of the Hamburg Symposium, August 1983)
(IAHS Publ. no. 146, 1985), p. 103; Antoine Lejay, op. cit., around Eq. (42); Thilanka Appuhamillage, Vrushali Bokil, Enrique
Thomann, Edward Waymire, and Brian Wood, ‘‘Occupation and local times for skew Brownian motion with applications to
dispersion across an interface,’’ Annals of Applied Probability 21, 183 (2011), Eq. (2.2) (doi: 10.1214/10-AAP691); Eric M.
LaBolle and Graham E. Fogg, ‘‘Reply [to ‘‘Comment on ‘Diffusion theory for transport in porous media: Transition-probability
densities of diffusion processes corresponding to advection-dispersion equations’ by Eric M. LaBolle et al.’’],’’ Water Resources
Research 36, 823 (2012) (doi: 10.1029/1999WR900325).

http://dx.doi.org/10.1214/10-AAP691
http://dx.doi.org/10.1029/1999WR900325
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diffusing from a distribution initially localized at x0, balanced by a distribution of negative density at −x0,
such that perfect cancellation occurs at x = 0:

P [z(t) = x ∧ τ0 > t] = φ(x− x0) dx− φ(x+ x0) dx. (17.753)

Putting this all together in Eq. (17.749), we then have

P [z(t) = x] = φ(x− x0) + (2p− 1)φ(x+ x0) dx, (17.754)

again for x > 0 and x0 > 0.
For x0 > 0 and x < 0, the second term in Eq. (17.749) corresponds to an impossible event, and by a

similar Reflection-Principle argument, the second term is 2(1− p)φ(x+ x0):

P [z(t) = x] = 2(1− p)φ(x+ x0) dx. (17.755)

Collecting both cases together, we have for z(0) = z0, the probability density

P [z(t)] =

{
φ(z − z0) dz + rφ(z + z0) dz, z > 0, z0 > 0
(1− r)φ(z + z0) dz, z < 0, z0 > 0,

(transition density for skew Brownian motion) (17.756)
with φ(x) defined in Eq. (17.751), and the reflection coefficient r given by Eq. (17.748). The same formula
applies for z0 < 0 with minor changes,

P [z(t)] =

{
φ(z − z0) dz − rφ(z + z0) dz, z < 0, z0 < 0
(1 + r)φ(z + z0) dz, z > 0, z0 < 0,

(transition density for skew Brownian motion) (17.757)
where both r and z change sign.

If we translate these results back into the language of the discontinuous-diffusion SDE (17.729), we
can invert the Lamperti transform (17.732) to obtain

y = S−1(z) =

{
zβ>, z > 0
−zβ<, z < 0.

(17.758)

Then transforming the probability density, Eq. (17.756) becomes

P [y(t)] =


φ

(
y − y0
β>

)
dy

β>
+ rφ(x+ x0)

dy

β>
, y > 0, y0 > 0

(1− r)φ
(
y − (β</β>)y0

β<

)
dy

β<
, y < 0, y0 > 0,

(transition density for discontinuous diffusion) (17.759)
where note that in the y < 0 case, the y0 was determined by x0 in the Reflection-Principle argument for
x > 0, and should correspond to the same distance from the origin as y0/β> to properly match the boundary
condition at y = 0 (that is, ‘‘equivalent’’ trajectories from the effective sources on either side will hit y = 0
at the same time only with this rescaling). Again, the y0 < 0 case can be obtained by exchanging β≷
everywhere, including in the reflection coefficient r.

17.13.4.5 Stratonovich Discontinuous Diffusion

We began the discussion of a discontinuous diffusion rate with the Itō-form diffusion (17.729), and the choice
of Itō calculus was important in generating the ‘‘pumping’’ effect at the discontinuity. If we instead consider
a Stratonovich-form diffusion SDE

dy = β(y) ◦ dW, (17.760)

corresponding to the Itō SDE
dy =

1

2
β′(y)β(y) dt+ β(y) dW, (17.761)
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then things are different; in fact, the Lamperti-transformed version of this SDE is simply

dz = dW, (17.762)

as we discussed in Section 17.7.4.2. The equivalent Fokker–Planck equation from Eq. (17.130) is

∂tP (y, t) = −
1

2
∂yβ

′(y)β(y)P (y, t) +
1

2
∂ 2
y β

2(y)P (y, t), (17.763)

or commuting a derivative,

∂tP (y, t) =
1

2
∂yβ(y)∂yβ(y)P (y, t).

(equivalent Fokker–Planck equation) (17.764)
Note that by changing variables to z according to

dz

dy
=

1

β
, (17.765)

which is the same as the transformation (17.732), we can rewrite the Fokker–Planck equation as a standard
diffusion equation,

∂tρ =
1

2
∂ 2
z ρ,

(17.766)
(equivalent Fokker–Planck equation)

where
ρ(y, t) = β(y)P (y, t). (17.767)

This simplification is the same as the result dz = dW from the Lamperti transformation of the Stratonovich-
diffusion SDE.

17.14 Bessel Processes

A Bessel process in d dimensions is simply the ‘‘radius’’ or Euclidian norm of a vector Wiener process in
d dimensions:

Rd :=
∥∥W(t)

∥∥
d =

√√√√ d∑
α=1

[Wα(t)]2 .
(17.768)

(Bessel process)

As we will see, this process is useful for characterizing the motion of a vector Wiener process, particularly
in the sense of whether or not it returns to its starting point. Also, note that this is the multidimensional
generalization of the reflecting Wiener process of Section 17.13.4.1, to which this reduces for d = 1.

To begin, we can try to work out an SDE for Rd. First, writing out the differential for Rd,

dRd =
1

2Rd

d∑
α=1

(
2Wα dWα + dW 2

α

)
=

d
2Rd

dt+
1

Rd

d∑
α=1

Wα dWα. (17.769)

Unfortunately, it is difficult to proceed directly from this point. However, we can also work more simply
with the square of the Bessel process, and write out the differential:

dR 2
d =

d∑
α=1

(
2Wα dWα + dW 2

α

)
= d dt+ 2

d∑
α=1

Wα dWα. (17.770)

On the other hand, we can write out the differential as

dR 2
d = 2Rd dRd + (dRd)

2. (17.771)
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From Eq. (17.769), we can find

(dRd)
2 =

1

R 2
d

d∑
α=1

W 2
α (dWα)

2 = dt, (17.772)

where we used dWα dWβ = 0 if α 6= β for independent Wiener processes. Then using this result and (17.770)
in Eq. (17.771), we find

dRd =
d− 1

2Rd
dt+

1

Rd

d∑
α=1

Wα dWα. (17.773)

What remains is to analyze the last term, which turns out to be equivalent to a Wiener process. Defining

dW̃ (t) :=
1

Rd

d∑
α=1

Wα dWα, (17.774)

it is easy to see that 〈〈dW̃ 〉〉 = 0 (since 〈〈f(W ) dW 〉〉 = 0 in Itō calculus), and also that

〈〈
dW̃ 2

〉〉
=

1

R 2
d

d∑
α=1

W 2
α (dWα)

2 = dt. (17.775)

The higher-order moments of dW̃ vanish also, so we can see that W̃ is another representation of a Wiener
process. Then dropping the tilde, we have the SDE

dRd =
d− 1

2Rd
dt+ dW

(17.776)
(Bessel-process SDE)

to directly generate the dynamics of the Bessel process. Note that because of the divergence at Rd = 0, we
should be careful to specify that the transformation to this equation is only valid provided Rd 6= 0. That is,
if the Bessel process hits the origin, then this equation becomes invalid afterwards. [For example, in d = 1,
we are missing the delta-function term that arises in Eq. (17.725).] We will soon return to the question of
whether or not this actually happens.

17.14.1 Generator

The term ‘‘Bessel process’’ comes specifically for the generator. Recall that an SDE of the form dx =
αdt+ β dW implies a diffusion-type equation, which can be summarized by the generator [see Eq. (17.136)]

G := α(x, t) ∂x +
β2(x, t)

2
∂ 2
x . (17.777)

For the Bessel-process SDE (17.776), the generator is

G =
d− 1

2x
∂x +

1

2
∂ 2
x , (17.778)

and the generator-eigenvalue equation Gu(x) = γu(x) has the form

d− 1

2x
u′ +

1

2
u′′ = γu. (17.779)

[Note that this can be viewed as a Laplace transform of the backward Kolmogorov equation (17.144).] The
idea is that this differential equation is equivalent to a Bessel equation, as we will now see.

First, changing variables according to
v = xmu, (17.780)
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so that v′ = mxm−1u+xmu′ and v′′ = m(m− 1)xm−2u+2mxm−1u′+xmu′′, we will need to solve these for
the derivatives of u to give u′ = x−mv′ −mx−1u = x−mv′ −mx−m−1v and u′′ = x−mv′′ −m(m− 1)x−2u−
2mx−1u′ = x−mv′′ −m(m− 1)x−m−2v − 2mx−m−1v′ + 2m2x−m−2v. Thus, Eq. (17.779) becomes

1

2
x−mv′′ +

d− 2m− 1

2
x−m−1v′ − m(d−m− 2)

2
x−m−2v = γx−mv. (17.781)

Then multiplying through by 2xm+2,

x2v′′ + (d− 2m− 1)xv′ −
[
2γx2 +m(d−m− 2)

]
v = 0. (17.782)

Now we can scale out the eigenvalue by letting x̃ :=
√
2γ x, and choosing m such that (d − 2m − 1) = 1,

leading to m = (d− 2)/2 and m(d−m− 2) = [(d− 2)/2]2, we have

x̃2v′′ + x̃v′ −
[
x̃2 +m2

]
v = 0. (17.783)

This is the modified Bessel equation, and the solutions are the modified Bessel functions Im(x̃) and Km(x̃).
Note that for small z, Im(z)z̃m = z(d/2)−1, while Km(z)z̃−m = z1−(d/2). Also, for large z, Im(z) −→ ∞ as
ez/
√
z, while Km(z) −→ 0. So the Km(z) represent physical solutions in this problem.

17.14.2 Brownian Recurrence

One useful question we can address with Bessel processes is, given a Wiener path in d dimensions starting at
the origin and running for arbitrarily large times, how far away does it go, and does it return to the origin?

17.14.2.1 One Dimension

In d = 1, we have already answered this question by analyzing boundary-crossing probabilities. That is,
from Eq. (17.372) we know that as t −→ ∞, the probability for crossing a boundary at distance d away
converges to unity for any value of d. This means that the path wanders arbitrarily far away from the origin,
and once it has wandered any given distance away, it is guaranteed to return to the origin. Thus Brownian
motion in d = 1 dimension is said to be recurrent.

17.14.2.2 Two Dimensions

The d = 2 case turns out to be marginally recurrent, as we will see. We already know that R2 will wander
arbitrarily far from the origin, because the projection onto one dimension already does this, as we know from
the d = 1 case. However, the question of returning to the origin is somewhat different.

To analyze this case, it is convenient to define

L := logR2. (17.784)

Then the SDE (17.776) for this case,
dR2 =

1

2R2
dt+ dW, (17.785)

will simplify as follows. Expanding the logarithm to second order gives

dL =
dR2

R2
− (dR2)

2

2R 2
2

, (17.786)

which with Eq. (17.785) becomes

dL =
1

2R 2
2

dt+
1

R2
dW − dW 2

2R 2
2

=
dW

R2
. (17.787)

Then since R2 = eL,
dL = e−L dW. (17.788)
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This transformation simplifies things by removing the drift, at the expense of multiplicative noise. However,
we will use the martingale property of this noise, which means that the ensemble average vanishes:

d〈〈L〉〉 = 0. (17.789)

This means that 〈〈L〉〉 = 〈〈logR2〉〉 is a constant of the motion. Since we know that L will take on arbitrarily
large values, this essentially means that L will also have to take on arbitrarily negative values to keep the
mean constant. This means that R2 will come arbitrarily close to 0.

To make this argument more formal,76 consider two positive radii R< and R> that bound the initial
value R0 of R2: R< ≤ R0 ≤ R>. Since 〈〈L〉〉 is constant,

logR0 =
〈〈

logR2(t)
〉〉
. (17.790)

The reasoning that led to Eq. (17.433) applies in a similar way here. Let τ be the first time at which R2(t)
achieves either R< or R>. Then we can consider a paths up to its stopping time τ , at which point L takes
the value logR2(τ); when averaging over all continuations of the path up to time t > τ , the value logR(τ)
is unchanged. Now extending the average over all paths up to the stopping time, we see that it is equivalent
to write Eq. (17.790) in terms of the hitting time as

logR0 =
〈〈

logR2(τ)
〉〉

(17.791)

after taking the limit t −→ ∞. Now writing the expectation value in terms of probabilities for first hitting
R< or R>,

logR0 = (logR<)P [R2(τ) = R<] + (logR>)P [R2(τ) = R>]. (17.792)

Solving for P [R(τ) = R>] gives

P [R2(τ) = R>] =
logR0 − (logR<)P [R2(τ) = R<]

logR>
. (17.793)

Now fixing R0 and R< ≤ R0, we can let R> −→∞ to obtain

P [R2(τ) =∞] = 0. (17.794)

That is, the probability for R2(t) to ‘‘hit infinity before hitting R<’’ (which means never hitting R<) is zero.
Thus, for any inner bound R> > 0, R2(t) is guaranteed to hit it in finite time. However, the same argument
with fixed R> and R< −→ 0 gives that R2(t) will never hit the origin in finite time. Thus, so to speak, the
origin is nonrecurrent, but any disc surrounding the origin is recurrent.

17.14.2.3 Three and More Dimensions

In three and more dimensions, it turns out that Brownian motion is nonrecurrent, and in fact the path
wanders ‘‘far away’’ in the sense that Rd(t) −→ ∞. It is sufficient to show this in three dimensions,
again because any projection of a d-dimensional motion onto three dimensions will satisfy these conditions.
However, it isn’t much more difficult to treat any d ≥ 3 directly.

In this case, the simplifying transformation for the SDE (17.776) has the form

P := aR b
d , (17.795)

for constants a and b to be determined. Computing the differential of P (and expanding to second order),

dP = abR b−1
d dRd +

ab(b− 1)

2
R b−2

d (dRd)
2, (17.796)

76See Ioannis Karatzas and Steven E. Shreve, Brownian Motion and Stochastic Calculus (Springer, 1988), pp. 161-3 (doi:
10.1007/978-1-4612-0949-2).

http://dx.doi.org/10.1007/978-1-4612-0949-2


17.14 Bessel Processes 807

and then using Eq. (17.776) for dRd,

dP =
ab(b+ d− 2)

2
R b−2

d dt+ abR b−1
d dW. (17.797)

We can then force the drift term to vanish by setting

b = 2− d, (17.798)

in which case
dP = a(2− d)R 1−d

d dW. (17.799)

Now since P = aR2−d
d , we have Rd = (P/a)1/(2−d), and thus

dP = a1−c(2− d)P c dW, (17.800)

where
c :=

1− d
2− d =

d− 1

d− 2
. (17.801)

Finally, if we choose
a = (d− 2)1/(1−c), (17.802)

we end up with the SDE
dP = −P c dW, (17.803)

which again has the martingale property 〈〈dP 〉〉 = 0. In what follows, it is useful to remember that for d > 2,
P goes as an inverse power of Rd.

As in the previous section, we may take Rd(0) = R0 to be the initial condition, and define inner and
outer boundaries satisfying R< ≤ R0 ≤ R>, with τ the first passage time through either boundary. Then
since

P0 =
〈〈
P (τ)

〉〉
, (17.804)

this becomes
R2−d

0 =
〈〈
R2−d

d (τ)
〉〉

(17.805)

directly in terms of the radial coordinate. We can rewrite the expectation value as before in terms of the
probabilities for first crossing the inner and outer boundaries as

R2−d
0 = R2−d

< P [Rd(τ) = R<] +R2−d
> P [Rd(τ) = R>]. (17.806)

Now if R> −→∞, the last term vanishes, and

P [Rd(τ) = R<] =

(
R<
R0

)d−2
.

(probability for achieving inner bound R<) (17.807)
This gives the probability for the path, starting from R0 > 0, to hit R< ≤ R0. Note that this probability
converges to zero as R< −→ 0. Thus, the probability for a path starting at R0 > 0 to hit the origin is zero
(and thus the origin is nonrecurrent, since once a path moves away from the origin, it will not return). Each
path starting at R0 has a (pathwise) minimum radius, and the probability density for this minimum is given
by differentiating (17.807), with the result

f(r) =
(d− 2) rd−3

R d−2
0

.

(probability density for minimum radius) (17.808)
Now to show that Rd −→∞ for d ≥ 3, first fix some upper limit R>. We want to show that after some time
t>, Rd(t) > R> for all t > t> with probability 1. To demonstrate this, pick a larger boundary R� > R>. We
know that Rd will hit R� in finite time t>. From Eq. (17.807), the probability that the path crosses below
R> is (R>/R�)d−2. But this probability converges to zero as R� −→ ∞, in which case we are guaranteed
that the path does not return below R>.
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17.15 Differentiation of Stochastic Quantities

We have so far studied stochastic processes and ensemble averages over stochastic problems. In cases where
we compute quantities like the sojourn time or the local time, analytic expressions are available for the
ensemble average, generating function, and so on. But for more complicated statistics, analytic expressions
may not be available, and numerical simulations are needed to compute such averages.

Another important class of ensemble-average problems that we have not yet discussed is the differen-
tiation of ensemble-averaged statistics. Since Wiener processes are nondifferentiable, the differentation of
numeric quantities with underlying Wiener processes can be tricky. Recall, for example, that the sojourn
time can be differentiated to yield the local time [see Eq. (17.650)]; this differentiation then carries over to
the mean sojourn and local times, but differentiation of the underlying Wiener process causes larger fluctu-
ations in the ensemble-average computation on a pathwise basis [see Eq. (17.656), due to the variation in
the number of intersections and the possibility of small values of ∆Wj ]. In a further differentiation of the
local-time process, the derivative of the ensemble average is well-defined, but the pathwise derivative has
arbitrarily large fluctuations in the continuum limit [see Eq. (17.660) and the following discussion].

Thus, it is useful to consider some general approaches to handling derivatives of stochastic processes,
which can be handled efficiently in certain cases with a variety of tricks. As a byproduct, we will also briefly
study the derivative of a stochastic process with respect to a stochastic quantity, which gives the generalizes
variational calculus to stochastic processes. Such derivatives are useful in, for example, computing Casimir
forces from energy path integrals (Chapter 21). These techniques are also widely employed in financial
mathematics, where ensemble averages over stochastic trajectories are used to price financial derivatives
(e.g., financial options). In such pricing, derivatives of the price with respect to parameters such as the
volatility or starting price yields the ‘‘sensitivity’’ of the price with respect to parameter variations. These
techniques also apply in optimization problems, where the ‘‘payoff’’ to optimize is estimated via Monte-Carlo
simulations.

17.15.1 Parameter Differentiation and Likelihood Estimation

Consider an ensemble average of the form

A(λ) :=
〈〈
Φ(Z)

〉〉
Z
,

(17.809)
(model ensemble average)

where Z = (Z1, . . . , Zn) is a set of stochastic variables, Φ(Z) is some scalar ‘‘payoff’’ function of the stochastic
quantities that we wish to average, and the λ on the left-hand side indicates a parameter dependence of the
ensemble average. In some important cases we can arrange things such that the only dependence on the
right-hand side on the parameter λ is in the probability distribution for Z. That is, we can write the ensemble
average as

A(λ) =

∫
dzΦ(z) fλ(z), (17.810)

where fλ(z) is the probability density for Z, and the λ subscript emphasizes the dependence on λ. This
approach can work even in some cases where it seems that the payoff function should represent the parameter
dependence. For example, suppose we differentiate the sojourn time of Wiener paths with respect to the
boundary distance d, which is a part of the functional rather than the paths. However, this quantity can be
computed equivalently by differentiating with respect to the starting point of the paths.

Now the derivative can be written simply as

∂λA(λ) =

∫
dzΦ(z) ∂λfλ(z), (17.811)

and by multiplying and dividing the integrand by fλ(z), we can rewrite this as an ensemble average:

∂λA(λ) =

〈〈
Φ(Z)

∂λfλ(Z)

fλ(Z)

〉〉
Z
=

〈〈
Φ(Z) ∂λ log fλ(Z)

〉〉
Z
.

(likelihood-ratio derivative estimator) (17.812)
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Of course, this generalizes readily to higher derivatives,

∂mλ A(λ) =

〈〈
Φ(Z)

∂mλ fλ(Z)

fλ(Z)

〉〉
Z
,

(likelihood ratio mth derivative estimator) (17.813)
although of course without the logarithmic form. Thus, the derivative here appears simply as a reweighted
version of the original ensemble average (17.809). Of course, ‘‘good’’ behavior of this ensemble average is
not guaranteed, but the hope is that the logarithmic weight will not cause much in the way of fluctuations.
In particular, this approach should give an advantage when the probability density is smooth, whereas the
payoff function is not (e.g., it may have a discontinuity or singularity as in the sojourn or local time, such that
a small change in the boundary location d can produce a large change in the payoff value). One particularly
nice property of this expression is that the weight is universal for any payoff function Φ(Z), because the
parameter dependence lies entirely with the probability distribution.

17.15.1.1 Likelihood

Now for a brief digression to explain some terminology. The likelihood of a parameter λ, given some
observed outcome Z, is defined as the probability of the outcome given the particular parameter value:

L(λ|Z) := P (Z|λ). (17.814)

In our ensemble average, the likelihood is just the probability density fλ(Z). Then the ratio of two like-
lihoods fλ′(Z)/fλ(Z) is a common quantity in statistics to evaluate the relative plausibility of two models
given observed data. Then the likelihood-ratio derivative ∂λ′ [fλ′(Z)/fλ(Z)] appears in the ensemble average
(17.812), so a Monte-Carlo evaluation of Eq. (17.812) is known as a likelihood-ratio estimator for the
derivative.77

17.15.1.2 Application: Differentiation of Brownian-Bridge Path Averages

When computing statistics related to sojourn or local times, or also boundary-crossing and escape probabil-
ities, typically path-averages functional of the form

A(x0) :=
〈〈
Φ[V (x)]

〉〉
x(t)

,
(17.815)

(model ensemble average)

where x(t) are stochastic paths over an evolution time t. In this form, for example, V (x) = Θ(x − d) for
the sojourn time, and Φ(x) = e−sx computes a moment-generating function or Φ(x) = x computes a simple
average. As noted before, derivatives with respect to a boundary position d can be regarded as derivatives
with respect to the initial point x0 of the path. Thus, we will specifically consider Brownian-bridge paths

x(t′) = x0 +Bt(t
′), (17.816)

such that x0 represents both the source point, Bt(0) = x0, and the path terminus, Bt(t) = x0. In this case,
if we consider the time-sliced path in N steps of duration ∆t = t/N , the probability density of the paths in
the average (17.815) have the x0-dependent factor

f [x(t)] ∝ e−(x1−x0)
2/2∆t e−(x0−xN−1)

2/2∆t, (17.817)
77Martin I. Reiman and Alan Weiss, ‘‘Sensitivity analysis via likelihood ratios,’’ Proceedings of the 1986 Winter Simulation

Conference, J. Wilson, J. Henriksen, and S. Roberts, Eds., p. 285 (1986) (doi: 10.1145/318242.318450). P. W. Glynn, ‘‘Stochastic
approximation for Monte Carlo optimization,’’ Proceedings of the 1986 Winter Simulation Conference, J. Wilson, J. Henriksen,
and S. Roberts, Eds., p. 356 (1986) (doi: 10.1145/318242.318459). Reuven Y. Rubinstein, ‘‘Sensitivity Analysis and Performance
Extrapolation for Computer Simulation Models,’’ Operations Research, 37, 72 (1989) (doi: 10.1287/opre.37.1.72). P. W. Glynn,
‘‘Likelihood Ratio Derivative Estimators for Stochastic Systems,’’ Proceedings of the 1989 Winter Simulation Conference, E.
A. MacNair, K. J. Musselman, and P. Heidelberger, Eds., p. 374 (1989) (doi: 10.1109/WSC.1989.718702).

http://dx.doi.org/10.1145/318242.318450
http://dx.doi.org/10.1145/318242.318459
http://dx.doi.org/10.1287/opre.37.1.72
http://dx.doi.org/10.1109/WSC.1989.718702
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where recall that by convention we are identifying xN = x0. Then the derivative (17.812) becomes

∂x0
f [x(t)]

f [x(t)]
=

(x1 − x0)
∆t

− (x0 − xN−1)
∆t

=
2(x̄1 − x0)

∆t
, (17.818)

where we are defining the shorthand
x̄1 :=

x1 + xN−1
2

. (17.819)

Thus, the first derivative of the functional (17.815) becomes

∂x0
A(x0) =

〈〈
Φ[V (x)]

2(x̄1 − x0)
∆t

〉〉
x(t)

.

(differentiated ensemble average) (17.820)
Note that (x̄1 − x0) = (∆x1 − ∆xN−1)/2 = O(∆t1/2), so overall the average (17.820) includes an overall
weight of magnitude O(∆t−1/2) = O(N1/2) compared to the undifferentiated expression (17.815).

It is also straightforward to derive an expression for high-order derivatives. First, rewriting Eq. (17.817)
as

f [x(t)] ∝ e−(x0−x̄1)
2/∆t e−(xN−1−x1)

2/4∆t (17.821)

by completing the square, we can define y := (x0 − x̄1)/
√
∆t, and use the Hermite-polynomial definition

Hm(y) := (−1)mey
2

∂my e−y
2

(17.822)

we can write out the derivative

∂mx0
f [x(t)]

f [x(t)]
= (∆t)−m/2

∂my f(y)

f(y)
= (−1)m (∆t)−m/2Hm

(
x0 − x̄1√

∆t

)
= (∆t)−m/2Hm

(
x̄1 − x0√

∆t

)
. (17.823)

Then the derivative of the functional (17.815) becomes

∂mx0
A(x0) = (∆t)−m/2

〈〈
Φ[V (x)]Hm

(
x̄1 − x0√

∆t

)〉〉
x(t)

.

(differentiated ensemble average) (17.824)
Of course, since H1(y) = 2y, this expression reduces to Eq. (17.820) for m = 1. But remarkably, high-order
derivatives may be computed merely by reweighting via x1 and xN−1. Of course, each derivative supplies
an additional factor ∆t−1/2 ∝ N1/2, making the fluctuations larger for each successively higher derivative.
Note that the expression (17.824) also applies to ordinary Wiener processes if ∆t is replaced by 2∆t, and x̄1
is replaced by x1.

Although in principle the expression (17.824) applies to arbitrarily high derivatives, it may only prac-
tical for relatively small m, depending on the nature of the solution to the path average. The factor of
(∆t)−m/2 is something we can put aside for the moment, since this problem can at least be tamed. Recall
that the harmonic-oscillator eigenfunctions have the (normalized) form

ψm(x) =
1√

2mm!
√
π
Hm(x) e−x

2/2, (17.825)

which grow in width as
√
m. Roughly, this means that the weighting factor in Eq. (17.824) favors increasingly

large mean steps |x̄1| with increasing m. This width can match the original probability density quite poorly
for large m, in which case it could be advantageous to absorb the Hermite polynomial into the probability
measure for the paths—this avoids rare events in the Gaussian tails from making large contributions. How-
ever, doing so introduces a normalization factor that grows exponentially with m. It is only in cases where
the ensemble-average derivative grows similarly that the relative accuracy in a Monte-Carlo calculation does
not suffer (an average that depends on x−s0 for s > 0 is one case where this is okay).
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17.15.1.3 Variance Reduction

Now to deal with the factor of (∆t)−m/2 that causes Eq. (17.824) to become numerically inefficient for larger
derivatives. Again, this is because, generally speaking, simulations of path integrals and path averages are
accurate in the limit N −→ ∞, but the fluctuations of the path average grow as Nm/2. This obviously
complicates accurate simulation of the path averages difficult.

The key idea is that under certain conditions, the ‘‘payoff’’ functional Φ[V (x)] is approximately inde-
pendent of the path samples near the beginning (x1, x2, . . .) and end (xN−1, xN−2, . . .) of the path. This
can happen, for example, if Φ[V (x)] represents the sojourn-time functional, where the path at times t′ � d2

(and t − t′ � d2, where t is the total running time of the bridge) has a very small probability of crossing
the boundary. These parts of the path thus contributes very little to the mean sojourn time. Under these
conditions, we can successively integrate over the early coordinates (x1, x2, . . .) and the late coordinates
(xN−1, xN−2, . . .) to perform a ‘‘partial average’’ over paths. More specifically, we can hold x0 and x2 fixed,
while averaging over all possible values of x1. Then while holding x3 fixed, average over all possible values
of x2, and so on until the error associated with the averaging is no longer negligible.

To arrive at the appropriate, partially averaged version of Eq. (17.824), consider the integral

I :=

∫
dxj Hm

(
x0 − x̄jk√

2jk∆t/(j + k)

)
e−(x0−xN−k)

2/2k∆t

√
2πk∆t

e−(xj−x0)
2/2j∆t

√
2πj∆t

e−(xj+1−xj)
2/2∆t

√
2π∆t

, (17.826)

which consists of the Gaussian and Hermite-polynomial weights for a step of size j∆t at the beginning of
the path (from x0 to xj), and of size k∆t (from xN−k to xN = x0) at the end of the path; a Gaussian weight
for the Gaussian step of size ∆t from xj to xj+1; and the partial-averaging integral over xj . The mean
displacement of the first and last steps here is

x̄jk :=
kxj + jxN−k

j + k
. (17.827)

Then completing the squares on the first product of Gaussian factors and then the second product, we can
rewrite this as

I =

∫
dxj Hm

(
x0 − x̄jk√

2jk∆t/(j + k)

)
e−(x0−x̄jk)

2(j+k)/2jk∆t√
2πjk∆t/(j + k)

e−(xN−k−xj)
2/2(j+k)∆t√

2π(j + k)∆t

e−(xj+1−xj)
2/2∆t

√
2π∆t

=

∫
dxj Hm

(
x0 − x̄jk√

2jk∆t/(j + k)

)
e−(x0−x̄jk)

2(j+k)/2jk∆t√
2πjk∆t/(j + k)

e−(xj−x̌jk)
2(j+k+1)/2(j+k)∆t√

2π(j + k)∆t/(j + k + 1)

× e−(xN−k−xj+1)
2/2(j+k+1)∆t√

2π(j + k + 1)∆t

=
e−(xN−k−xj+1)

2/2(j+k+1)∆t√
8π3jk3∆t3/(j + k)2

∫
dx̄jkHm

(
x0 − x̄jk√

2jk∆t/(j + k)

)
e−(x0−x̄jk)

2(j+k)/2jk∆t

× e−(xj−x̌jk)
2(j+k+1)/2(j+k)∆t

=
e−(xN−k−xj+1)

2/2(j+k+1)∆t√
8π3jk3∆t3/(j + k)2

∫
dx̄jkHm

(
x0 − x̄jk√

2jk∆t/(j + k)

)
e−(x0−x̄jk)

2(j+k)/2jk∆t

× e−(x̄jk−x̄(j+1)k)
2(j+k)(j+k+1)/2k2∆t,

(17.828)
where we have defined the offset

x̌jk :=
(j + k)xj+1 + xN−k

j + k + 1
, (17.829)
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and we used
xj − x̌jk =

(j + k)x̄jk − jxN−k
k

− (j + k)xj+1 + xN−k
j + k + 1

=
(j + k)

k

(
x̄jk −

(j + 1)

(j + k + 1)
xN−k −

kxj+1

j + k + 1

)
=

(j + k)

k

(
x̄jk − x̄(j+1)k

)
,

(17.830)

where now
x̄(j+1)k :=

kxj+1 + (j + 1)xN−k
j + 1 + k

. (17.831)

Then using the convolution formula78

e−x
2/α2

∗
[
Hn

(
x

β

)
e−x

2/β2

]
=

√
π αβn+1

(α2 + β2)(n+1)/2
Hn

(
x√

α2 + β2

)
e−x

2/(α2+β2), (17.832)

with

α =

√
2k2∆t

(j + k)(j + k + 1)
, β =

√
2jk∆t

(j + k)
(17.833)

such that

α2 + β2 =
2k(j + 1)

(j + k + 1)
∆t,

β√
α2 + β2

=

√
j(j + k + 1)

(j + 1)(j + k)
, (17.834)

we find

I =
e−(xN−k−xj+1)

2/2(j+k+1)∆t√
4π2(j + 1)k∆t2

[
j(j + k + 1)

(j + 1)(j + k)

]m/2

×Hm

(
x0 − x̄(j+1)k√

2(j + 1)k∆t/(j + 1 + k)

)
e−(x0−x̄(j+1)k)

2(j+1+k)/2(j+1)k∆t.

(17.835)
Rearranging to make the recursion more clear, we have[

j + k

jk

]m/2

I =

[
j + k + 1

(j + 1)k

]m/2

Hm

(
x0 − x̄(j+1)k√

2(j + 1)k∆t/(j + 1 + k)

)

× e−(x0−x̄(j+1)k)
2(j+1+k)/2(j+1)k∆t√

2π(j + 1)k∆t/(j + 1 + k)

e−(xN−k−xj+1)
2/2(j+k+1)∆t√

2π(j + 1 + k)∆t

=

[
j + k + 1

(j + 1)k

]m/2

Hm

(
x0 − x̄(j+1)k√

2(j + 1)k∆t/(j + 1 + k)

)

× e−(x0−xN−k)
2/2k∆t

√
2πk∆t

e−(xj+1−x0)
2/2(j+1)∆t√

2π(j + 1)∆t
(17.836)

where we are basically ‘‘unravelling’’ the first square that we completed in Eq. (17.828). The same argument
may be made for integrating over xN−k by the time-symmetry of the Brownian bridge. Thus the expression
that satisfies this recursion and reduces to Eq. (17.824) for j = k = 1 is

∂mx0
A(x0) ≈

[
j + k

2jk∆t

]m/2
〈〈

Φ[V (x)]Hm

(
x̄jk − x0√

2jk∆t/(j + k)

)〉〉
x(t)

=

[
t1 + t− t2
2t1(t− t2)

]m/2
〈〈

Φ[V (x)]Hm

(
x̄jk − x0√

2t1(t− t2)/(t1 + t− t2)

)〉〉
x(t)

,

(differentiated ensemble average, with partial average) (17.837)
78Daniel A. Steck, Classical and Modern Optics (2006), available online at http://steck.us/teaching.

http://steck.us/teaching
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as we have just proven by induction, where again

x̄jk :=
kxj + jxN−k

j + k
=

(t− t2)x(t1) + t1x(t− t2)
t1 + t− t2

(17.838)

in both discrete and continuous notation, where t1 = j∆t and t−t2 = k∆t, with a total running time t of the
Brownian bridge. Again, the expression here is approximate because we are assuming that ∂xi

Φ[V (x)] ≈ 0
for all 0 < i < j and N − k < j < N . In the simpler, symmetric case where j = k, we have

∂mx0
A(x0) ≈ (j∆t)−m/2

〈〈
Φ[V (x)]Hm

(
x̄jj − x0√

j∆t

)〉〉
x(t)

= (t1/t)
−m/2

〈〈
Φ[V (x)]Hm

(
x̄jj − x0√

t1/t

)〉〉
x(t)

,

(differentiated ensemble average, with symmetric partial average) (17.839)
where

x̄jj =
xj + xN−j

2
=
x(t1) + x(t− t1)

2
. (17.840)

The advantage here is clear, especially in the last expression. In Eq. (17.824), the statistical fluctuations in
the path average grew as Nm/2. But since typically j and k are chosen for some fixed times j and k (e.g.,
as in the sojourn-time example), the fluctuations here are independent of N . Of course, since t1 < t/2, the
fluctuations still increase by a factor of (t/t1)1/2 for each derivative, but this is a huge improvement when
working with large N .

One remaining detail is to examine the statistics of x̄jk in the Hermite polynomial, to make sure it
does not cause any problem. For a discrete Brownian bridge Bn of unit running time, the covariance is given
by [Problem 17.10] 〈〈

BnBm
〉〉
=

[N −max(m,n)]min(m,n)
N2

, (17.841)

which gives

Var(xj) = Var(xN−j) =
j(N − j)∆t

N
(17.842)

and
Cov(xj , xN−j) =

j2∆t

N
(17.843)

for the symmetric case. Then setting x0 = 0, we thus have

Var[x̄jj ] =
1

4

[
Var(xj) + Var(xN−j) + 2Cov(xj , xN−j)

]
=

∆t

2N

[
j(N − j) + j2

]
=
j∆t

2
.

(17.844)

Thus the typical x̄jj is of the order
√
j∆t, which is precisely what we see in the denominator of the Hermite

polynomial.
Again, to use this partially averaged path integral as a numerical technique, it can be helpful to

incorporate the Hermite polynomial into the sampling distribution for the path itself. To simplify the math
somewhat, we will stick to the symmetric expression (17.839) for the path integral. We know from our
discussion of the Brownian bridge above that we may choose the path coordinates at times j∆t = t1 and
(N−j)∆t = t−t1, since the path at either time is Gaussian with variance j(N−j)∆t2 = t1(t−t1). However,
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they are correlated because they are part of a bridge, with covariance j2∆t2 = t 21 . We can decouple this
correlation by working with x̄jj and

δxjj :=
xj − xN−j

2
=
x(t1)− x(t− t1)

2
, (17.845)

such that xj = x̄jj + δxjj and xN−j = x̄jj − δxjj . We already computed Var[x̄jj ], and we also need

Var[δxjj ] =
1

4

[
Var(xj) + Var(xN−j)− 2Cov(xj , xN−j)

]
=

∆t

2N

[
j(N − j)− j2

]
=
j(N − 2j)∆t

2N
.

(17.846)

Of course, the simplification comes because of the vanishing covariance:

Cov(x̄jj , δxjj) =
1

4

[
Var(xj)−Var(xN−j)

]
= 0. (17.847)

Thus the ensemble average in the path integral (17.839) implies a probability measure

P [x(t)] =

[
e−(x̄jj−x0)

2/j∆t

√
πj∆t

e−(δxjj)
2/j(1−2j/N)∆t√

πj(1− 2j/N)∆t

]
e−(xj+1−xj)

2/2∆t

√
2π∆t

· · · e
−(xN−j−xN−j−1)

2/2∆t

√
2π∆t

, (17.848)

where the bracketed factor gives the partially averaged first and last steps, and the rest of the factors give
the small, in-between steps. Note that there is a factor of 1/2 that is now omitted from the bracketed
factor, owing to the choice of x̄jj and δxjj as path variables (before transforming to these variables the
corresponding normalization factors had a factor of 2 associated with each π); this factor of 1/2 is absorbed
into the integration measure via the Jacobian derivative in the variable transformation. Then the Hermite
polynomial may be grouped with the first Gaussian factor

PHm
[x(t)] =

{[
ηm√
πj∆t

∣∣∣∣Hm

(
x̄jj − x0√

j∆t

)∣∣∣∣ e−(x̄jj−x0)
2/j∆t

]
e−(δxjj)

2/j(1−2j/N)∆t√
πj(1− 2j/N)∆t

}

× e−(xj+1−xj)
2/2∆t

√
2π∆t

· · · e
−(xN−j−xN−j−1)

2/2∆t

√
2π∆t

,

(17.849)

where the factor

η−1m :=
1√
πj∆t

∫ ∞
−∞

dx

∣∣∣∣Hm

(
x√
j∆t

)∣∣∣∣ e−x2/j∆t =
2√
π

∫ ∞
0

dx |Hm(x)| e−x
2

(17.850)

normalizes the Hermite–Gaussian probability density for x̄jj . Then to summarize, we should take

x̄jj = x0 +
√
j∆t z̄, δxjj =

√
j(1− 2j/N)∆t

2
z, (17.851)

where z is standard normal, and z̄ is chosen from the density

f(z̄) =
ηm√
π
|Hm(x)| e−x

2

. (17.852)

Then with the path measure (17.849), the path average (17.839) becomes

∂mx0
A(x0) ≈ η−1m (j∆t)−m/2

〈〈
Φ[V (x)] sgn

[
Hm(z̄)

]〉〉
Hm

,

(differentiated ensemble average, with Hermite–Gauss path) (17.853)
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where note that we kept the sign of the Hermite polynomial in the path-average argument rather than the
measure, and we have included the factor of 1/2 that we discussed after Eq. (17.848). Then with the new
path measure, xj and xN−j can be calculated via xj = x̄jj + δxjj and xN−j = x̄jj − δxjj , while the rest of
the path can be constructed as a Brownian bridge connecting xj to xN−j in time t− 2t1.

17.15.2 Stochastic Differentiation

For a stochastic process y(t) satisfying the SDE

dy = α[y(t)] dt+ β[y(t)] dW (t), (17.854)

the notion of a stochastic derivative arises by considering the effect on y(t) of a perturbation to dW (t0)
at some earlier time t0, where 0 ≤ t0 ≤ t. The corresponding derivative is typically written Dt0y(t), which
for our purposes can be written as the partial derivative79

Dt0y(t) =
∂y(t)

∂[dW (t0)]
.

(17.855)
(stochastic derivative)

Another common, related notation is Dy, which is essentially the collection of all stochastic derivatives
Dt0y(t). That is, considering t to be fixed, Dy is a function of t0, with 0 ≤ t0 ≤ t.

This derivative generalizes the notion of a functional derivative to stochastic processes. Thus, Dy is
essentially the functional derivative δy/δ(dW ), regarding δ(dW )(t) as a perturbation to dW (t). And while
Dy acts as a gradient, Dt0y acts as a directional derivative in the ‘‘direction’’ δ(t− t0), in the same sense as
the functional derivative via a perturbation only at time t0: δy/δ(dW )(t0).

17.15.2.1 Example: Stochastic Derivative of the Wiener Process

As a first example of stochastic differentiation, we will begin by computing Dt0W (t). Since

W (t) =

∫ t

0

dW (t′), (17.856)

the function to differentiate is a simple sum of increments dW (t′) and we are differentiating with respect to
one of them. Then we can use

∂[dW (t)]

∂[dW (t′)]
= dt δ(t− t′), (17.857)

as a consequence of the independence of dW (t) at different times: that is, the derivative is unity if t = t′,
and zero otherwise. Thus,

Dt0W (t) =

∫ t

0

Dt0dW (t′) =

∫ t

0

dt′ δ(t0 − t′), (17.858)

or simply
Dt0W (t) = 1, (17.859)

provided, of course, 0 ≤ t0 ≤ t. Otherwise this derivative vanishes.

17.15.2.2 Example: Stochastic Derivative of Additive Diffusion

As a slightly more sophisticated example, let’s now compute Dy, where

dy(t) = β(t) dW (t). (17.860)
79See Arturo Kohatsu–Higa and Miquel Montero, ‘‘Malliavin Calculus in Finance,’’ in Handbook of Computational and

Numerical Methods in Finance Svetlozar T. Rachev, Ed. (Springer, 2004), pp. 111-74, especially p. 130. This derivative is more
generally known as the Malliavin derivative. For a more rigorous and sophisticated development, see David Nualart, The
Malliavin Calculus and Related Topics, 2nd ed. (Springer, 2006), Section 1.2, p. 24.
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We can do this by generalizing the solution from the previous section, which leads straightforwardly to

Dt0y(t) = β(t0). (17.861)

Thus, a simple relabeling gives the result80 Dy = β.

17.15.2.3 Variation Process

Going back to the stochastic derivative Dt0y(t), where y(t) satisfies the prototype SDE (17.854), we can
think of the derivative itself as a stochastic process (considering t to be the time variable, with fixed t0). We
can refer to this as the derivative process or the variation process. This describes the modified evolution
of y(t) as a linearized displacement, given a perturbation to dW (t0). That is, the perturbed evolution is
given as y(t) = y0(t) + [Dt0y0(t)] δ(dW )(t0), where y0(t) is the unperturbed solution, and δ(dW )(t0) is the
perturbation to dW (t0).

Taking the stochastic derivative of Eq. (17.854) by applying the Dt0 operator, we find

d[Dt0y(t)] = α′[y(t)] [Dt0y(t)] dt+ β′[y(t)] [Dt0y(t)] dW (t) + β[y(t)]Dt0dW (t). (17.862)

Using Eq. (17.857) again in the last term, and dividing through by Dt0y(t), we arrive at the SDE

d[Dt0y(t)]

Dt0y(t)
= α′[y(t)] dt+ β′[y(t)] dW (t) +

β[y(t0)]

Dt0y(t)
δ(t− t0) dt,

(SDE for variation process) (17.863)
which yields the evolution of the variation processs.

To write down an integral solution for this SDE, the idea is now to integrate Eq. (17.863) from t′ = 0
to t, which gives the perturbation to y(t) due to the perturbation to dW (t0) (where 0 ≤ t0 ≤ t). Of course,
there is no effect for t′ ≤ t0, so we may take Dt0y(t

′) = 0 for all t′ < t0. The delta function induces a
jump discontinuity in Dt0y(t

′) at t′ = t0 of height β[y(t0)]. Thus, the task is to integrate the homogeneous
differential equation

d[Dt0y(t)]

Dt0y(t)
= α′[y(t)] dt+ β′[y(t)] dW (t) (17.864)

from t′ = t0 to t, with initial condition Dt0y(t
′ = t0) = β[y(t0)]. Rewriting the left-hand side of the

homogeneous SDE,

d log[Dt0y(t)] +

{
d[Dt0y(t)]

}2
2[Dt0y(t)]

2
= α′[y(t)] dt+ β′[y(t)] dW (t), (17.865)

where from the second-order expansion d logx = log(x + dx) − logx = dx/x − (dx)2/2x2, it follows that
dx/x = d logx+ (dx)2/2x2. Using the SDE (17.864) to evaluate the second-order term, we find

d log[Dt0y(t)] = α′[y(t)] dt− β′2[y(t)]

2
dt+ β′[y(t)] dW (t). (17.866)

Integrating from t0 to t,

log[Dt0y(t)]− logβ[y(t0)] =
∫ t

t0

(
α′[y(t′)]− β′2[y(t′)]

2

)
dt′ +

∫ t

t0

β′[y(t′)] dW (t′). (17.867)

Exponentiating this equation leads to the expression

Dt0y(t) = β[y(t0)] exp
[∫ t

t0

(
α′[y(t′)]− β′2[y(t′)]

2

)
dt′ +

∫ t

t0

β′[y(t′)] dW (t′)

]
,

(solution for variation process) (17.868)
which solves the SDE (17.863).

80Compare to the equivalent statement DW (h) = h in the cryptic notation of Nualart, op. cit., p. 25, just after Eq. (1.29),
where it is not obvious that W (h) can be interpreted as the integral of h dW , but see Example 1.1 on p. 3 in the corresponding
lecture notes at http://www.math.wisc.edu/~kurtz/NualartLectureNotes.pdf; for a more direct comparison, see Giulia Di
Nunno, Bernt Øksendal, and Frank Proske, Malliavin Calculus for Lévy Processes with Applications to Finance (Springer,
2009), p. 29, Eq. (3.8).

http://www.math.wisc.edu/~kurtz/NualartLectureNotes.pdf
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17.15.3 Integration by Parts

The notion of a stochastic derivative also gives a kind of integration by parts, which can be helpful in
transforming certain path averages. As an example, consider the model path average

A(c) =
〈〈
δ[W (t)− c]

〉〉
W (t)

.
(17.869)

(model ensemble average)

That is, we are averaging over Wiener paths W (t), which only ‘‘score’’ when the endpoint W (t) matches
the desired ending point c. Since we know the explicit probability density for W (t), we can compute this
explicitly as

A(c) =

∫ ∞
−∞

dx
e−x

2/2t

√
2πt

δ(x− c) = e−c
2/2t

√
2πt

. (17.870)

However, as we will see, the general idea here will apply to more general stochastic processes, where we may
not have an analytic expression for the density of paths.

From the standpoint of numerical simulation, Eq. (17.869) is very difficult, because only a subset
of paths of zero measure contribute at all to the average, each with an infinite ‘‘score.’’ In a numerical
simulation, the delts function could, for example, be changed into a function of finite height and width, but
the variance of a sample path average would still be very large for any function narrow enough to give an
accurate result. Of course, one can also change explicitly to Brownian bridges that run to W (t) = c as in
Eq. (17.592), but this presumes that we know the distribution of W (t). In this case we do, but we would
like to explore more general methods for cases where the distribution is not known.

The approach we will try here is to rewrite the path functional as

A(c) = −1

2
∂c

〈〈
sgn[W (t)− c]

〉〉
W (t)

, (17.871)

which removes the delta function at the expense of introducing a derivative. Now switching to shifted
Brownian bridges

x(t) = x0 +W (t) (17.872)

with source point x0, we can write the path functional as

A(c) = −1

2
∂c

〈〈
sgn[x(t)− c]

〉〉
x(t)

∣∣∣∣
x0=0

=
1

2
∂x0

〈〈
sgn[x(t)− c]

〉〉
x(t)

∣∣∣∣
x0=0

, (17.873)

Then using the likelihood-ratio estimator (17.812),

A(c) =
1

2

〈〈
sgn[x(t)− c] ∂x0

log f [x(t)]
〉〉
x(t)

∣∣∣∣
x0=0

, (17.874)

where f [x(t)] is the probability density of the paths x(t), which we regard as containing all the dependence
on x0. For Wiener paths,

log f [x(t)] = − [x(t)− x0]2

2t
− log

√
2πt, (17.875)

and thus
∂x0

log f [x(t)] = −x(t)− x0
t

= −W (t)

t
. (17.876)

Then Eq. (17.874) becomes

A(c) =
1

2t

〈〈
sgn[W (t)− c]W (t)

〉〉
W (t)

.
(17.877)

(alternative path average)

We can verify by direct integration with respect to the probability desnity that this gives the correct answer.
However, unlike the original path functional (17.869), every path W (t) contributes value to the average. The
‘‘cost’’ is a weight of W (t)/2t in addition to the integral of the delta function, but everything is well-behaved
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here from a numerical standpoint. Note that other antiderivatives of the delta function are possible: the
Heaviside function is an obvious choice, but then half of the paths contribution no ‘‘information’’ to the path
average.

However, in deriving Eq. (17.877), we again used the explicit probability density for W (t), as an
illustration of the method. To perform a more general calculation, we cannot do this. Consider now the
model path integral with more general stochastic processes:

A(c) =
〈〈
δ[y(t)− c]

〉〉
y(t)

dy = α[y(t)] dt+ β[y(t)] dW (t).

(17.878)
(model ensemble average)

To replace the delta function here, first we will compute the chain-rule derivative of the step function:
1

2
Dt0sgn[y(t)− c] = δ[y(t)− c]Dt0y(t). (17.879)

Solving for the delta function and integrating over time gives

δ[y(t)− c] = 1

2t

∫ t

0

dt0
Dt0sgn[y(t)− c]

Dt0y(t)
. (17.880)

Now if we include an explicit probability measure for dW (t0), we can integrate by parts with respect to
dW (t0) to write∫

dW (t0)
e−dW

2(t0)/2dt

√
2πdt

Dt0sgn[y(t)− c] =
∫
dW (t0)

e−dW
2(t0)/2dt

√
2πdt

dW (t0)

dt
sgn[y(t)− c]. (17.881)

Thus, under an ensemble average integration by parts amounts to writing

Dt0sgn[y(t)− c] = dW (t0)

dt
sgn[y(t)− c]. (17.882)

If we then introduce an expectation value in Eq. (17.880) and perform this integration by parts, we find〈〈
δ[y(t)− c]

〉〉
=

1

2t

∫ t

0

dt0

〈〈
Dt0sgn[y(t)− c]

Dt0y(t)

〉〉
=

1

2t

∫ t

0

dt0

〈〈
dW (t0)

dt

sgn[y(t)− c]
Dt0y(t)

〉〉
, (17.883)

noting that Dt0y(t) is independent of dW (t0). Simplifying, we have81

A(c) =
1

2t

〈〈
sgn[y(t)− c]

∫ t

0

dW (t0)

Dt0y(t)

〉〉
,

(17.884)
(alternate path functional)

where the derivative in the denominator is given by Eq. (17.868). Note that in the limit α = 0 and β = 1,
the derivative reduces to Dt0y(t) = Dt0W (t) = 1, and the path integral here reduces to the simpler one in
Eq. (17.877). This expression also simplifies somewhat for the case of constant diffusion (β = 1), in the sense
that the derivative (17.868) in the denominator of the integral reduces to the simpler form

Dt0y(t) = exp
[∫ t

t0

dt′ α′[y(t′)]

]
, (17.885)

so that Eq. (17.884) becomes

A(c) =
1

2t

〈〈
sgn[y(t)− c]

∫ t

0

dW (t0) exp
[
−
∫ t

t0

dt′ α′[y(t′)]

]〉〉
, (17.886)

such that a drifting path still introduces a nontrivial weighting function that measures the drift-induced
focusing or divergence of paths.

81A more general version of this argument is given in Peter K. Friz, ‘‘Malliavin Calculus in Finance,’’ Section 7.1, available
at http://www.math.nyu.edu/phd_students/frizpete/finance/my_case_lecture/malliavin_lecture.pdf. See also Eric
Fournié, Jean-Michel Lasry, Jérôme Lebuchoux, and Pierre-Louis Lions, ‘‘Applications of Malliavin calculus to Monte-Carlo
methods in finance. II,’’ Finance and Stochastics 5, 201 (2001), Section 4.1 (doi: 10.1007/PL00013529).

http://www.math.nyu.edu/phd_students/frizpete/finance/my_case_lecture/malliavin_lecture.pdf
http://dx.doi.org/10.1007/PL00013529
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17.15.3.1 Digression: Faddeev–Popov Approach to Conditional Averages

An alternative approach, based on the method of Faddeev and Popov, can work to give regularized expressions
for the conditional path averages in the previous section. To start with the simpler case of Eq. (17.869),

A(c) =
〈〈
δ[W (t)− c]

〉〉
W (t)

,
(17.887)

(model ensemble average)

as a first step, let’s write out the probability measure explicitly in discrete form with N path steps:

A(c) =

(
N

2πt

)N/2 ∫
d∆W0 · · · d∆WN−1 exp

−N
2t

N−1∑
j=0

(
∆Wj

)2 δ[W (t)− c
]
. (17.888)

Note that we can regard W (t) here as an explicit sum:

W (t) =

N−1∑
j=0

∆Wj . (17.889)

Now the key is to note that because we are integrating over all possible values of ∆Wj , the integral A(c)
is invariant if we shift the variable ∆Wj . In particular, suppose that we introduce a scalar quantity ω, and
shift each coordinate according to

∆Wj −→ ∆Wj −
ω

N
. (17.890)

Then A(c) is independent of ω, and we can regard this shift as a kind of gauge transformation with gauge
parameter ω. Implementing this gauge transformation, Eq. (17.888) becomes

A(c) =

(
N

2πt

)N/2 ∫
d∆W0 · · · d∆WN−1 exp

−N
2t

N−1∑
j=0

(
∆Wj −

ω

N

)2 δ[W (t)− c− ω
]
. (17.891)

Now suppose that we introduce some function g(ω), with the only requirement that it be normalized such
that ∫

dω g(ω) = 1. (17.892)

Then we don’t change the value of Eq. (17.891) by multiplying by g(ω) and integrating, thus taking a linear
combination of the same value. The delta function disappears in the result:

A(c) =

(
N

2πt

)N/2 ∫
d∆W0 · · · d∆WN−1 exp

−N
2t

N−1∑
j=0

(
∆Wj −

W (t)− c
N

)2 g[W (t)− c
]
. (17.893)

In the exponentiated summand, we can multiply out the quadratic factor to obtain(
∆Wj −

W (t)− c
N

)2
=
(
∆Wj

)2 − 2∆Wj

[
W (t)− c

]
N

+

[
W (t)− c

]2
N2

, (17.894)

and thus when summed over j, we find

N−1∑
j=0

(
∆Wj −

W (t)− c
N

)2
=

N−1∑
j=0

(
∆Wj

)2
+
c2

N
−
[
W (t)

]2
N

. (17.895)

In this case the path integral (17.893) becomes

A(c) =

〈〈
exp

[[
W (t)

]2 − c2
2t

]
g
[
W (t)− c

]〉〉
W (t)

(17.896)
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after again hiding the path measure in the ensemble average. At this point we are free to choose g(ω) in
order to simplify or improve the statistical behavior of this ensemble average. For example, if we choose
g(ω) to be a Gaussian of variance t,

g(ω) =
1√
2πt

e−ω
2/2t, (17.897)

then the path average (17.896) becomes

A(c) =
e−c

2/t

√
2πt

〈〈
ecW (t)/t

〉〉
W (t)

,
(17.898)

(alternate path integral)

which attains the correct value of e−c2/2t/
√
2πt. On the other hand, if we take g(ω) to be centered at −c

instead of at 0,
g(ω) =

1√
2πt

e−(ω+c)
2/2t, (17.899)

the path integral (17.896) takes on the average value directly, with zero variance. This illustrates the
advantage of adapting g(ω) to the problem as well as can possibly be done.

Of course, this approach becomes more complicated for the more general diffusion problem (17.878):

A(c) =
〈〈
δ[y(t)− c]

〉〉
y(t)

dy = α[y(t)] dt+ β[y(t)] dW (t).

(17.900)
(model ensemble average)

The general approach, however, will be the same. Writing out the details of the path integral, we have

A(c) =

(
N

2πt

)N/2 ∫
d∆W0 · · · d∆WN−1 exp

−N
2t

N−1∑
j=0

(
∆Wj

)2 δ[y(t)− c] (17.901)

when integrating in terms of the unshifted path variables, where

y(t) =

∫ t

0

dt′ α
[
y(t′)

]
+

∫ t

0

dW (t′)β
[
y(t′)

]
. (17.902)

Implementing the same gauge transformation (17.890), the result is

A(c) =

(
N

2πt

)N/2 ∫
d∆W0 · · · d∆WN−1 exp

−N
2t

N−1∑
j=0

(
∆Wj −

ω

N

)2 δ
y(t)− c− ω

N

N−1∑
j=0

∂y(t)

∂∆Wj

 ,
(17.903)

where in the delta function we have expanded to O(N−1). Then we can define the shorthand for the last
term in the argument of the delta function,

A :=
1

N

N−1∑
j=0

∂y(t)

∂∆Wj
=

1

t

∫ t

0

dt0Dt0y(t), (17.904)

in both discrete and continuous notation. This quantity is written more explicitly using the expression
(17.868) for the Malliavin derivative, which in the case of constant diffusion (β = 1), for example, simplifies
via Eq. (17.885) to give

A =
1

t

∫ t

0

dt0 exp
[∫ t

t0

dt′ α′[y(t′)]

]
. (17.905)

Then we can proceed by introducing the function g(ω) and integrating over all ω, with the result

A(c) =

(
N

2πt

)N/2 ∫
d∆W0 · · · d∆WN−1 exp

−N
2t

N−1∑
j=0

(
∆Wj −

y(t)− c
N |A|

)2 1

|A|
g

[
y(t)− c
|A|

]
, (17.906)
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where we have used δ(ax) = δ(x)/|a|. Multiplying out the exponentiated factor and hiding the path measure
again gives

A(c) =

〈〈
1

|A|
exp

[[
y(t)− c

]
2t|A|

(
2W (t)−

[
y(t)− c

]
|A|

)]
g

[
y(t)− c
|A|

]〉〉
y(t)

. (17.907)

Again, we can choose the form of g(ω) to simplify the problem, but for a general drift function α[y], we
cannot choose it to arrive directly at the answer. Choosing the gaussian form (17.897) again gives the result

A(c) =
1√
2πt

〈〈
1

|A|
exp

[[
y(t)− c

]
t|A|

(
W (t)−

[
y(t)− c

]
|A|

)]〉〉
y(t)

, (17.908)

which does not make the path integral particularly simple, but at least it casts the path contribution in
terms of a direct difference between W (t) and path y(t)/|A| in the case c = 0. Note that in the case α = 0,
then y(t) reduces to W (t) and A = 1, so that Eq. (17.908) reduces to Eq. (17.898). Of course, we can also
make the probably better choice (17.899), which leads to

A(c) =
e−c

2/2t

√
2πt

〈〈
1

|A|
exp

[[
y(t)− c

]
t|A|

([
W (t)− c

]
−
[
y(t)− c

]
|A|

)]〉〉
y(t)

,

(alternate path integral) (17.909)
which again reduces directly to the mean value (with no variance among the paths) in the case α = 0.
Note in the path integrals how y(t) is accompanied by a factor of A; intuitively, from the discussion in
Section 17.15.2.3, this factor gives a time-averaged measure of the divergence of trajectories in the vicinity
of y(t), and thus accounts for any focusing or defocusing effects due to gradients in α(y).
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17.16 Exercises

Problem 17.1
Geometric Brownian motion describes the time-dependence price S of a stock according to the

SDE
dS = S

(
µ+

σ2

2

)
dt+ Sσ dW, (17.910)

where µ represents the steady growth of the stock value, and σ represents the stock volatility (which
is assumed to be constant within this model). Show that

S(t) = S0e
µt+σW (t) (17.911)

satisfies the above SDE.

Problem 17.2
Show that the vector SDE (17.145)

dxi = αi(x, t) dt+ βij(x, t) dWj (17.912)

is equivalent to the Fokker–Planck equation (17.146),

∂tf(x, t) = −∂iαi(x, t)f(x, t) +
1

2
∂i∂jDij(x, t)f(x, t), (17.913)

where
Dij := βikβjk = βikβ

T
kj = (ββT)ij . (17.914)

Problem 17.3
By formally resumming the Taylor series expansion, compute exp(dN).

Problem 17.4
Recall the Poisson distribution in terms of the single parameter λ has the form

P (n) =
e−λλn

n!
, (17.915)

where n is a nonnegative integer. Also, suppose that N is a Poisson-distributed random variable.
(a) Show that P (n) is normalized.
(b) Show that 〈N〉 = λ.
(c) Show that Var[N ] = λ.

Problem 17.5
Consider a monochromatic field with added, white (Gaussian) frequency noise,

E(+)(t) = E
(+)
0 e−iωLt−iφ(t), (17.916)

so that the instantaneous frequency is

dφtotal

dt
= ωL +

dφ

dt
, (17.917)
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where φtotal = ωLt+φ(t) is the total temporal phase, and the noisy phase is given in terms of a Wiener
process by

dφ(t) =
√
γ dW (t). (17.918)

Use the Wiener–Khinchin theorem to show that the spectrum is Lorentzian with full width at half
maximum γ.

Problem 17.6
Let y(t) denote a Brownian bridge (i.e., y(0) = y(1) = 0), and let y0, y1, . . . , yN denote samples of y(t),
taken at times tj = j∆t = j/N . (Note that y0 = yN = 0.) Consider the Gaussian path integral

I :=

∫
dy1 . . . dyN−1 exp

−N
2

 N∑
j=1

(yj − yj−1)2
 . (17.919)

(a) Evaluate this integral by using the recurrence (17.305)

yn =
y′n√
cn

+
yn+1

cn
. (17.920)

to decouple the integral into a product of Gaussian integrals.
(b) Use the y(t) =W (t)− tW (1) construction of the Brownian bridge, along with the independence of
y(t) and W (1), to evaluate this integral, to show the consistency of these approaches.

Problem 17.7
Show that the integral expression (17.335)

B(t) = (1− t)
∫ t

0

dW (t′)

1− t′
(17.921)

solves the SDE (17.334)

dB = −
(

B

1− t

)
dt+ dW. (17.922)

Problem 17.8
Derive the correlation function 〈〈

B(t)B(t′)
〉〉
= min(t, t′)− tt′ (17.923)

(a) using the definition (17.287)
B(t) :=W (t)− tW (1). (17.924)

(b) using the definition (17.335)

B(t) := (1− t)
∫ t

0

dW (t′)

1− t′
. (17.925)

Problem 17.9
Show that if B(t) is a standard Brownian bridge, the covariance of two Brownian-bridge increments
Cov[dB(t), dB(t′)] = 0 provided t 6= t′.
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Problem 17.10
(a) Using the recurrence for the finite Brownian bridge [Eq. (17.310)],

B0 = 0

Bn = zn

√
N − n

N(N − n+ 1)
+

(
N − n

N − n+ 1

)
Bn−1, n = 1, . . . , N − 1

BN = 0,

(17.926)

derive an explicit formula for the Brownian-bridge samples Bn in terms of (only) the standard-normal
deviates zn.
(b) Show that 〈〈

BnBm
〉〉
=

[N −max(m,n)]min(m,n)
N2

, (17.927)

and show that this is consistent with what you know for the continuous-time limit.
(c) Show that

〈〈
∆Bn∆Bm

〉〉
= δnm

(N − n− 1)

N(N − n)
+

min(n,m)

N2[N −min(n,m)]
+

(δnm − 1)√
N(N − n)(N −m)

. (17.928)

and show that this is consistent with what you know for the continuous-time limit, if we take

∆Bn := Bn+1 −Bn. (17.929)

Problem 17.11
For the standard Brownian bridge B(t):
(a) Use the statistics derived in Section 17.7 derived for the Brownian bridge to write down the
probability density for B(t) at any time 0 ≤ t ≤ 1.
(b) Compute the time-averaged density for B(t), where the average is taken over 0 ≤ t ≤ 1.

Problem 17.12
Given a state-dependent diffusion function of the form

σ(y) = σ0 + (σ1 − σ0)Θ(y − d), (17.930)

where the diffusion rate is σ0 for y < d and σ1 for y > d, show that an explicit solution (17.349) for
the SDE (17.338)

dy(t) = σ(y) ◦ dW (t) (17.931)

with the conditions y(1) = y(0) = 0, is given by

y(t) = σ0B(t) +

[
(σ1 − σ0)B(t) + d

(
1− σ1

σ0

)]
Θ[B(t)− d], (17.932)

where Θ(x) is the Heaviside function and B(t) is a standard Brownian bridge.

Problem 17.13
(a) Show that

δ[f(x)] =
∑

x0∈f−1(0)

δ(x− x0)
|f ′(x0)|

, (17.933)
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where the sum is over the (isolated) zeros of f(x). Good ways to proceed are: to write the delta
function as a derivative of the step function Θ[f(x)], or to treat the delta function as a limit of a more
‘‘reasonable’’ function, such as a box function of width a and height 1/a.
(b) Show that

δ′[f(x)] =
∑

x0∈f−1(0)

[
δ′(x− x0)

f ′(x0)|f ′(x0)|
+
f ′′(x0) δ(x− x0)
|f ′(x0)|3

]
. (17.934)

The same suggested approaches apply here.

Problem 17.14
Recall that for a generalized Brownian bridge B0→c(t) that connects B0→c(0) = 0 to final point
B0→c(1) = c, the probability of crossing a boundary at d is [Eq. (17.387)]

Pcross[B0→c(t); d, c] = e−2d(d−c) (d ≥ 0, c). (17.935)

Using only this expression (along with basic probability theory and your own cunning) to obtain the
analogous expression [Eq. (17.372)]

Pcross[W (t); d, t] = erfc
(

d√
2t

)
(17.936)

for a standard Wiener path W (t) to cross the boundary at d ≥ 0 in the time interval [0, t].
Hint: rescale the bridge probability to account for the alternate time interval, and interpret this as a
conditional probability on a Wiener path W (t), given that W (t) = c.

Problem 17.15
Consider a Wiener process W (t). Show that for any d, compute the probability that W (t′) = d for
some time 0 ≤ t′ ≤ T , and show that it approaches unity as T −→∞.

Problem 17.16
Rederive the probability density 17.710

f`(x) =
[
1− e[c

2−(|d|+|c−d|)2]/2t
]
δ(x− 0+) +

1

t

(
x+ |d|+ |c− d|

)
e[c

2−(x+|d|+|c−d|)2]/2t, (17.937)

for the local time of a Brownian bridge Bt(0→c)(t) pinned to c at time t. Use an alternate derivation:
begin with the same Feynman–Kac-based approach as in Section 17.13.3, but take g(x) = Θ(c− x)
instead of g(x) = eik(x−c), and then after working out the solution of the appropriate ODE, differentiate
with respect to c to obtain the pinning delta function.
Note that the Wiener path can be pinned even more directly by taking g(x) = δ(x− c). The advantage
of the method using g(x) = eik(x−c) is that it replaces the book-keeping of several different cases with a
single extra integral over k. Also, note that by avoiding the c-derivative and completing the calculation,
it is possible to obtain the joint probability of W (t) occupying [0,∞) and the local time `[W (t); d] taking
on a particular value.

Problem 17.17
(a) Using the calculation of the probability density for the local time `[W (t); d] as a template, derive
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the following formula for the expectation value82

λ

∫ ∞
0

dt e−λt
〈〈

exp
(
− s`[W (t); d]− s′`[W (t); d′]

)〉〉
W (t)

= 1−
s
[√

2λ+ s′
(
1− e−

√
2λ|d−d′|

)]
e−
√
2λ|d| + s′

[√
2λ+ s

(
1− e−

√
2λ|d−d′|

)]
e−
√
2λ|d′|(√

2λ+ s
)(√

2λ+ s′
)
− ss′e−2

√
2λ|d−d′|

,

(17.938)
giving the dual moment-generating function for the two local times `[W (t); d] and `[W (t); d′], given
that the process W (t) is stopped exponentially at rate λ.
(b) Repeat for a Brownian bridge Bt(0→c)(t), pinned at the exponentially distributed stopping time t
to B(t) = c, to find the analogous result83

λ

∫ ∞
0

dt e−λt
e−c

2/2t

√
2πt

〈〈
exp

(
− s`[Bt(0→c)(t′); d]− s′`[Bt(0→c)(t′); d′]

)〉〉
Bt(0→c)(t′)

=

√
λ

2
e−
√
2λ|c|

 1−
s
[(√

2λ+ s′
)
e−
√
2λ|d| − s′e−

√
2λ(|d′|+|d−d′|)

]
e−
√
2λ(|c−d|−|c|)(√

2λ+ s
)(√

2λ+ s′
)
− ss′e−2

√
2λ|d−d′|

−
s′
[(√

2λ+ s
)
e−
√
2λ|d′| − se−

√
2λ(|d|+|d−d′|)

]
e−
√
2λ(|c−d′|−|c|)(√

2λ+ s
)(√

2λ+ s′
)
− ss′e−2

√
2λ|d−d′|

 ,

(17.939)
where the Gaussian factor on the left-hand side indicates this expectation value was taken with respect
to a joint distribution for the local times and for the stopping point of B(t).

Problem 17.18
(a) Using the representation

δ′(x) = lim
a→0+

δ(x+ a/2)− δ(x− a/2)
a

(17.940)

and the results of Problem 17.17, derive the following formula for the expectation value

λ

∫ ∞
0

dt e−λt
〈〈

exp
(
− s`′[W (t); d]

)〉〉
W (t)

= 1− e−
√
2λ|d|, (17.941)

giving the moment-generating function for the local-time derivative `′[W (t); d] and `[W (t); d′], given
that the process W (t) is stopped exponentially at rate λ.
(b) Invert the λ and s Laplace transforms in this result to obtain an expression for the probability
density f`′(x) of `′[W (t); d]. You should obtain something a bit funny; what gives?

Problem 17.19
Consider closed Brownian bridges BT (t) [i.e., such that BT (T ) = 0].
(a) Using the probability method of Eqs. (17.592), show that〈〈

δ[BT (τ)− c]F [BT (t)]
〉〉

= Φ[c, τ(1− τ/T )]
〈〈
F
[
BT (t)

]〉〉
BT (τ)=c

, (17.942)

82Andrei N. Borodin and Paavo Salminen, Handbook of Brownian Motion—Facts and Formulae, 2nd ed. (Birkhäuser, 2002),
p. 177, Eq. (1.18.1).

83This is similar to, but not quite the same as, Borodin and Salminen, op. cit., p. 177, Eq. (1.18.5).
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where the conditional ensemble average on the right-hand side refers to Brownian bridges pinned to c
at time τ (0 < τ < T ), and

Φ(x, σ2) =
1√
2πσ2

e−x
2/2σ2

(17.943)

is the centered Gaussian distribution with variance σ2.
(b) Prove the same result by adapting the explicit-integration method of Section 17.12.4.

Problem 17.20
Work out an analytic expression for the path integral (17.900) in the special case α(y) = −ay,

A(c) =
〈〈
δ[y(t)− c]

〉〉
y(t)

dy = −a y(t) dt+ dW (t),

(17.944)

under the initial condition y(0) = 0, and verify numerically that the Faddeev–Popov form (17.909) of
the path integral converges to the same value.





Chapter 18

Quantum Trajectories for
Photodetection

18.1 Quantum Jumps

In deriving the unconditioned master equation for spontaneous emission in Section 11.5,

∂tρ = − i

h̄
[H, ρ] + ΓD[σ]ρ,

(unconditioned master equation for spontaneous emission) (18.1)
where the Lindblad superoperator D[σ]ρ is again given by

D[c]ρ := cρc† − 1

2

(
c†cρ+ ρc†c

)
,

(18.2)
(Lindblad superoperator)

we have explicitly ignored the state of the field by computing the partial trace. Now we will consider what
happens when we measure it. In particular, we will assume that we make projective measurements of the
field photon number in every mode, not distinguishing between photons in different modes. It is this extra
interaction that will yield the continuous measurement of the atomic state.

From the relation
∂tρee = −Γρee (18.3)

that we derived in the Weisskopf–Wigner treatment of spontaneous emission [Eq. (11.42)], the transition
probability in a time interval of length dt is Γρee dt = Γ

〈
σ†σ

〉
dt, where we recall that σ†σ = |e〉〈e| is the

excited-state projection operator. Then assuming an ideal detector that detects photons at all frequencies,
polarizations, and angles, there are two possibilities during this time interval:

1. No photon detected. The detector does not ‘‘click’’ in this case, and this possibility happens with
probability 1−Γ

〈
σ†σ

〉
dt. The same construction as above for the master equation carries through, so

we keep the equations of motion for ρee, ρeg, and ρge, where the last two are given by

∂tρge =

(
iω0 −

Γ

2

)
ρge. (18.4)

However, we do not keep the same equation for ρgg: no photodetection implies that the atom does not
return to the ground state. To see this, recall that the atom–field interaction Hamiltonian HAF in the
rotating-wave approximation contains a term of the form σa†. The only way for the atom to end up
in the ground state (the action of σ) is for a photon to be created (the action of a†). So if no photon
is detected, then σ could not have acted on the atom. Thus, ∂tρgg = 0. This case is thus generated by
the master equation

∂tρ = − i

h̄
[H, ρ]− Γ

2
[σ†σ, ρ]+. (18.5)
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This equation is the same as the unconditioned equation (18.1), except for the σρσ† term, which is
precisely what we argued should be omitted. This evolution is unnormalized since Tr[ρ] decays to zero
at long times. We can remedy this by explicitly renormalizing the state ρ(t+ dt), which gives

∂tρ = − i

h̄
[H, ρ]− Γ

2
[σ†σ, ρ]+ + Γ

〈
σ†σ

〉
ρ. (18.6)

This follows from adding an extra term to the master equation to satisfy the normalization Tr[ρ] = 1,
which implies dTr[ρ] = Tr[dρ] = 0.

2. Photon detected. A click on the photodetector occurs with probability Γ
〈
σ†σ

〉
dt. Again, the

interaction Hamiltonian HAF in the rotating-wave approximation contains a term of the form σa†,
which tells us that photon creation (and subsequent detection) is accompanied by lowering of the
atomic state. Thus, the evolution for this time interval is given by the reduction

ρ(t+ dt) =
σρ(t)σ†

〈σ†σ〉
. (18.7)

We can write this in differential form as

dρ =
σρσ†

〈σ†σ〉
− ρ, (18.8)

so that ρ is subtracted from itself, and is thus replaced by the first term, which is the lowered and
renormalized density operator.

The overall evolution is stochastic, with either case occurring during a time interval dt with the stated
probabilities.

We can explicitly combine these two probabilities by using the counting process N(t) (see Sections
17.5.1 and 17.5.2). In any given time interval dt, we define dN such that it is unity with probability Γ

〈
σ†σ

〉
dt

and zero otherwise. Thus, we can write the average over all possible photodetection histories as

〈〈dN〉〉 = Γ
〈
σ†σ

〉
dt.

(18.9)
(instantaneous photodetection probability)

Now we can add the two above possible cases together, with a weighting factor of dN for the second case,
to obtain a stochastic master equation (SME):

dρ = − i

h̄
[H, ρ] dt− Γ

2
[σ†σ, ρ]+dt+ Γ

〈
σ†σ

〉
ρ dt+

(
σρσ†

〈σ†σ〉
− ρ
)
dN.

(SME for direct photodetection) (18.10)
It is unnecessary to include a weighting factor of (1− dN) for the first term, since dN dt = 0. The evolution
here is smooth, except punctuated by individual events where the density operator changes discontinuously
to the ground state. We will refer to such events as quantum jumps.1 Note that while we are using the
notation dN(t) that suggests a Poisson process, because of the state dependence of the mean, N(t) is not
Poisson-distributed in general (photon antibunching is a good example), and it is more properly called a
counting process (Section 17.5.2).

This SME gives the evolution of the quantum state conditioned on the results of the photodetection
measurement. To see this explicitly, note that we can write the current from the idealized photodetector as

Idet(t) = Qph
dN(t)

dt
, (18.11)

where Qph is the total charge conducted by the detector for each photon detection event (which we assume
to be deterministic and perfectly repeatable). The current thus appears ideally as a sequence of random

1E. Schrödinger, ‘‘Are There Quantum Jumps? Part I,’’ The British Journal for the Philosophy of Science 3, 109 (1952);
E. Schrödinger, ‘‘Are There Quantum Jumps? Part II,’’ The British Journal for the Philosophy of Science 3, 233 (1952).
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delta functions representing the detected photons, and dN is the same quantity that appears in the SME.
We can thus write the SME directly in terms of the photocurrent as

dρ

dt
= − i

h̄
[H, ρ]− Γ

2
[σ†σ, ρ]+ + Γ

〈
σ†σ

〉
ρ+

(
σρσ†

〈σ†σ〉
− ρ
)
Ĩdet(t).

(SME with measurement record) (18.12)
where Ĩdet(t) := Idet(t)/Qph is the scaled detector current. We can also refer to Ĩ(t) as the measurement
record, since it contains all the information from the measurement of the resonance fluorescence. The SME
(18.12) thus shows how to incorporate the measurement record into the evolution of the quantum state—the
observer’s state of knowledge of the atomic system.

18.1.1 Ensemble Average

To work out the ensemble average of the SME (18.10), we will make use of the ensemble average 〈〈dN〉〉 from
Eq. (18.9). It is tempting to assume the statistical independence of ρ(t) and dN(t),

〈〈ρ dN〉〉 = 〈〈ρ〉〉〈〈dN〉〉 (wrong!), (18.13)

similar to the statement 〈〈ρ dW 〉〉 = 0 from Itō calculus. Although this assumption does in fact lead to the
correct ensemble-averaged master equation, it does so for the wrong reasons: as we can see from Eq. (18.9)
that dN(t) depends on ρ(t) [though ρ(t) depends only on dN(t′) for t′ < t, not on dN(t)].

However, we will still need to work out the expectation values like 〈〈ρ dN〉〉, that appear in the last
term of the ensemble average of Eq. (18.10). Treating the explicit possible outcomes n of dN(t) in terms of
the corresponding probablities P [dN(t) = n],

〈〈ρ(t) dN(t)〉〉 =

〈〈
ρ(t)

∑
n∈{0,1}

nP [dN(t) = n]

〉〉

=

〈〈
ρ(t)P [dN(t) = 1]

〉〉
= Γ

〈〈
ρ(t)

〈
σ†σ

〉〉〉
dt.

(18.14)

Similarly, it follows that 〈〈
ρ(t) dN(t)

〈σ†σ〉

〉〉
= Γ

〈〈
ρ(t)

〉〉
dt. (18.15)

Using these two relations, the ensemble average of Eq. (18.10) becomes

d〈〈ρ〉〉 = − i

h̄
[H, 〈〈ρ〉〉] dt− Γ

2
[σ†σ, 〈〈ρ〉〉]+dt+ Γ

〈〈〈
σ†σ

〉
ρ
〉〉
dt+

〈〈(
σρσ†

〈σ†σ〉
− ρ
)
dN

〉〉

= − i

h̄
[H, 〈〈ρ〉〉] dt− Γ

2
[σ†σ, 〈〈ρ〉〉]+dt+ Γ

〈〈〈
σ†σ

〉
ρ
〉〉
dt+ Γ

(
σ〈〈ρ〉〉σ† −

〈〈
ρ
〈
σ†σ

〉〉〉)
dt

= − i

h̄
[H, 〈〈ρ〉〉] dt− Γ

2
[σ†σ, 〈〈ρ〉〉]+dt+ Γσ〈〈ρ〉〉σ†dt.

(18.16)

The resulting ensemble-averaged master equation,

d〈〈ρ〉〉
dt

= − i

h̄
[H,〈〈ρ〉〉] + ΓD[σ]〈〈ρ〉〉, (18.17)

(ensemble-averaged SME)

has precisely the same form as the unconditioned master equation (18.1) that we derived earlier. The
unconditioned master equation thus follows from a measurement process, where the information from the
measurement is discarded, and the observer averages (traces) over all possible measurement outcomes.
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18.1.2 Quantum Trajectories and the Stochastic Schrödinger Equation

It is a fairly easy exercise to verify that this master equation is equivalent to the stochastic Schrödinger
equation (SSE)

d|ψ〉 = − i

h̄
H|ψ〉dt+ Γ

2

(〈
σ†σ

〉
− σ†σ

)
|ψ〉dt+

(
σ√
〈σ†σ〉

− 1

)
|ψ〉 dN,

(SSE for direct detection) (18.18)
by keeping terms to second order,

dρ = d
(
|ψ〉〈ψ|

)
=
(
d|ψ〉

)
〈ψ|+ |ψ〉

(
d〈ψ|

)
+
(
d|ψ〉

)(
d〈ψ|

)
, (18.19)

and using dN2 = dN . This SSE is called an unravelling2 of the unconditioned master equation (18.1), since
the dissipation in the master equation—which can’t be written as a deterministic Schrödinger equation—can
be written as a stochastic Schrödinger equation. Note that Markovian master equations can generally be
unravelled in an infinite number of ways; we have only indicated one way so far here. A solution to the SSE
is called a quantum trajectory,3 and the solution of the unconditioned master equation represents the
average over all trajectories. (Solutions of the SME are also called quantum trajectories.)

18.1.3 Information Gain

Clearly, the observer gains information about the atom when the photodetector clicks, but what is perhaps
less obvious is that the observer also gains information about the atom even when a photon is not detected.
We can see this from either the SME (18.10) or the SSE (18.18), since even during times when photons
are not detected (dN(t) = 0), there are still measurement-related terms (proportional to Γ) that are still
‘‘active.’’ Let’s look at the evolution in two cases to see how this works. In particular, suppose the atom
starts in a pure state, so that we can work with the SSE. Suppose also that the atom is not driven by an
external field, so there are no Rabi oscillations. In this case, we can ignore all Hamiltonian evolution by
trasforming to a suitable rotating frame (where the two levels are degenerate). Then the state vector of the
general form

|ψ〉 = cg|g〉+ ce|e〉 (18.20)

obeys the equation, assuming no photon is detected,

∂t|ψ〉 = −
Γ

2
ce|e〉+

Γ

2
|ce|2|ψ〉, (18.21)

which in terms of the coefficients becomes

∂tce = −Γ

2

(
1− |ce|2

)
ce

∂tcg =
Γ

2
|ce|2cg.

(18.22)

Note that unlike the equations of motion for the unconditioned case, these equations are nonlinear in the
coefficients due to the measurement process.

Now suppose the atom starts in the superposition state

|ψ(t = 0)〉 = 1√
2

(
|g〉+ |e〉

)
, (18.23)

2This term was coined by Howard Carmichael, An Open Systems Approach to Quantum Optics (Springer, 1993). For earlier
work on photon counting statistics, see H. J. Carmichael, Surendra Singh, Reeta Vyas, and P. R. Rice, ‘‘Photoelectron waiting
times and atomic state reduction in resonance fluorescence,’’ Physical Review A 39, 1200 (1989).

3Howard Carmichael, op. cit.
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and suppose that no photon is detected until some long time t. Since |ce|2 < 1, the excited state decays
(somewhat more quickly than exponentially) away asymptotically to zero, and the population is thus trans-
ferred to the ground state. The interpretation is this: if the observer knows the atom to be in either state
with equal probability, and does not see an emitted photon after a very long time (compared to 1/Γ), then
the observer concludes that the atom was in fact in the ground state. By not observing a photon, the
observer still gains information about the state of the atom and ‘‘collapses’’ it to the ground state.

On the other hand, if the initial atomic state is the excited state,

|ψ(t = 0)〉 = |e〉, (18.24)

then the observer knows that at some point, the atom must decay: the observer knows the atom to be in
the excited state with certainty until the photon is detected. This is reflected by the above equations, since
if |ce|2 = 1, the excited state does not decay: ∂tce = 0.

The measurement terms have interpretations that are less clear if the atom also undergoes Rabi os-
cillations. However, the measurement terms must act in the same way in a small time dt, regardless of
other processes that influence the atom. The combined evolution of a monitored atom, conditioned on not
detecting a photon (dN = 0), with Rabi oscillations is illustrated here for the case Ω = Γ.

Wt/2p
0 5

·s
o† s

‚

1

0

The solid line is what we expect of ordinary, resonant Rabi oscillation without any spontaneous emission
(Γ = 0). The dashed line is the nonlinear, conditioned evolution with dN = 0. The Rabi oscillations are
severely distorted by the measurement, which tends to cause decay of the excited-state amplitude; thus the
rise in excited-state population is slowed, and the fall is accelerated, leading to oscillations closer in shape to
a sawtooth wave. The dotted line shows the probability of the atom not having decayed by that time. This is
significant since we only see the distorted Rabi oscillations by keeping experiments where the photodetector
does not click; any experiments where the detector clicks must be discarded, so that we post-select on the
dN = 0 cases. Note that this nonlinear evolution is thus difficult to see past the first oscillation, since the
nondecay probability becomes very small.

18.1.4 Monte Carlo Trajectories

Stochastic Schrödinger equations of this form are popular for simulating master equations,4 since if the
state vector has O(n) components, the density matrix will have O(n2) components, and thus is much more
computationally expensive to solve.5 If s solutions (quantum trajectories) of the stochastic Schrödinger

4R. Dum, P. Zoller, and H. Ritsch, ‘‘Monte Carlo simulation of the atomic master equation for spontaneous emission,’’
Physical Review A 45 4879 (1992) (doi: 10.1103/PhysRevA.45.4879); C. W. Gardiner, A. S. Parkins, and P. Zoller, ‘‘Wave-
function quantum stochastic differential equations and quantum-jump simulation methods,’’ Physical Review A 46 4363 (1992)
(doi: 10.1103/PhysRevA.46.4363); Yvan Castin, Jean Dalibard, and Klaus Mølmer, ‘‘A Wave Function Approach to Dissipative
Processes,’’ AIP Conference Proceedings 275, 143 (1993) (Thirteenth International Conference on Atomic Physics, ICAP-13,
H. Walther, T. W. Hänsch, and B. Neizert, Eds.) (doi: 10.1063/1.43795); P. Marte, R. Dum, R. Taïeb, P. D. Lett, and P.
Zoller, ‘‘Quantum wave function simulation of the resonance fluorescence spectrum from one-dimensional optical molasses,’’
Physical Review Letters 71 1335 (1993) (doi: 10.1103/PhysRevLett.71.1335); Klaus Mølmer and Yvan Castin, ‘‘Monte Carlo
wavefunctions in quantum optics,’’ Quantum and Semiclassical Optics 8, 49 (1996) (doi: 10.1088/1355-5111/8/1/007).

5If you want to be fastidious, a state that can be represented in terms of n basis states will have a state vector that can be
represented by 2n − 2 real numbers, while the density-matrix representation will require n2 − 1 real numbers. The count for

http://dx.doi.org/10.1103/PhysRevA.45.4879
http://dx.doi.org/10.1103/PhysRevA.46.4363
http://dx.doi.org/10.1063/1.43795
http://dx.doi.org/10.1103/PhysRevLett.71.1335
http://dx.doi.org/10.1088/1355-5111/8/1/007
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equation can be averaged together to obtain a sufficiently accurate solution to the master equation and
s � n, then this Monte-Carlo-type method is computationally efficient for solving the master equation.
However, note that the average of the simulated ensemble converges slowly, typically as 1/

√
s, so this

Monte-Carlo method is best used where n is very large (such as when simulating the center-of-mass motion
of a quantum system), and very high accuracy is not required.

This idea is illustrated here, where the first plot shows the evolution of the excited-state probability
for a single atom (quantum trajectory) with jumps to the ground state, corresponding to a detected photon.
Nine other trajectories are included to illustrate the dephasing due to the random nature of the jumps. The
usual Rabi oscillations are visible here, since the atom is driven by a classical field of Rabi frequency Ω, but
the oscillations are ‘‘interrupted’’ by the spontaneous emission events (here with Γ = Ω/10).

Wt/2p
0 10

·s
o† s

‚

1

0

·s
o† s

‚

1

0

The second plot shows the ensemble-averaged excited-state probability computed from the unconditioned
master equation (solid line), an average of 20 trajectories (dashed line), and an average of 2000 trajectories
(dotted line). As many trajectories are averaged together, the average converges to the master-equation
solution for the ensemble average. (About 20,000 trajectories are necessary for the Monte-Carlo average to
be visually indistinguishable from the master-equation solution on the time scale plotted here.) Note that the
‘‘Rabi oscillations’’ apparent here are distorted slightly by the nonlinear renormalization term in Eq. (18.18)
from the usual sinusoidal oscillations in the absence of spontaneous emission. However, the damping rate in
the above plots is small, so the distortion is not visually apparent. Unravellings of this form are much easier
to solve computationally than ‘‘quantum-state diffusion’’ unravellings involving dW that we will study later.
Of course, it is important for more than just a numerical method, since this gives us a powerful formalism
for handling the evolution of a quantum state, accounting for photodetection.

Although quantum trajectories represent a useful simulation method for the master equation, they are
interesting in their own right, since they model the measurement process itself and the resulting conditioned
dynamics. In fact, some of the original work6 that motivated quantum trajectories was to understand

|ψ〉 follows from having n complex numbers, one of which can be discarded due to fixed normalization and an arbitrary overall
phase. The count for ρ follows from having n real numbers on the diagonal, and then counting the complex numbers above the
diagonal (the elements below the diagonal are redundant). The number of complex diagonal numbers is the sum of all integers
from 1 to (n− 1), or n(n− 1)/2. Multiply by 2 to get the real numbers, and then add n to get n2 − n+ n = n2. Remove one
real number for Tr[ρ] = 1, and you get n2 − 1.

6C. Cohen–Tannoudji and J. Dalibard, ‘‘Single-Atom Laser Spectroscopy. Looking for Dark Periods in Fluorecence Light.’’



18.1 Quantum Jumps 835

experiments7 on quantum jumps in vee atoms (a slightly different usage of the term from our usage
above), where the fluorescence on a fast transition depends on—blinks on and off to indicate—the state
of the atom with respect to the other (slow) transition. The quantum-jump results are understood as
‘‘single-shot’’ (single-trajectory) phenomena, not as ensemble averages.

18.1.5 Detector Efficiency

To handle the case of photodetectors with less than ideal efficiency η, we simply combine the conditioned
master equation (18.10) and unconditioned master equation (18.1), with weights η and 1−η, respectively:

dρ = − i

h̄
[HA, ρ]dt+ η

Γ

2

[〈
σ†σ

〉
− σ†σ, ρ

]
+
dt+ (1− η)ΓD[σ]ρ dt+

(
σρσ†

〈σ†σ〉
− ρ
)
dNη.

(SME for inefficient detection) (18.25)
The weighting for the counting-process term is absorbed into the counting process itself,

〈〈dNη〉〉 = ηΓ
〈
σ†σ

〉
dt,

(detection probability for inefficient detection) (18.26)
to account for the fact that fewer photons are detected. We can also write this master equation in the form

dρ = − i

h̄
[HA, ρ]dt+ ΓD[σ]ρ dt+ ηΓ

〈
σ†σ

〉
ρ dt− ηΓσρσ† dt+

(
σρσ†

〈σ†σ〉
− ρ
)
dNη,

(SME for inefficient detection) (18.27)
where it is clear from the Lindblad-superoperator term that the total disturbance is equivalent to the un-
conditioned case, and the subsequent terms, whose effects are proportional to η, represent the influence of
detecting the fraction η of the photons.

That sounds reasonable, but let’s do that more carefully. First, divide dN up into two parts, dN1 and
dN2, such that

〈〈dN1〉〉 = ηΓ
〈
σ†σ

〉
dt

〈〈dN2〉〉 = (1− η)Γ
〈
σ†σ

〉
dt.

(18.28)

The sum of two counting processes is still a counting process, and each counting process is characterized by
its intensity (mean transition rate) in the same way that a Poisson process is fully characterized by its mean.
Thus, we can write

dN1 + dN2 = dN, (18.29)

noting that while this is always true for standard Poisson processes, we are justified in writing this here only
because the state dependence enters each of the counting processes in the same way here. We can thus write
the SME (18.10) as

dρ = − i

h̄
[H, ρ]dt− Γ

2
[σ†σ, ρ]+dt+ Γ

〈
σ†σ

〉
ρ dt+

(
σρσ†

〈σ†σ〉
− ρ
)
dN1 +

(
σρσ†

〈σ†σ〉
− ρ
)
dN2. (18.30)

Europhysics Letters 1, 441 (1986); P. Zoller, M. Marte, and D. F. Walls, ‘‘Quantum jumps in atomic system,’’ Physical Review
A 35, 198 (1987) (doi: 10.1103/PhysRevA.35.198).

7Warren Nagourney, Jon Sandberg, and Hans Dehmelt, ‘‘Shelved Optical Electron Amplifier: Observation of Quantum
Jumps,’’ Physical Review Letters 56, 2797 (1986) (doi: 10.1103/PhysRevLett.56.2797); Th. Sauter, W. Neuhauser, R. Blatt, and
P. E. Toschek, ‘‘Observation of Quantum Jumps,’’ Physical Review Letters 57, 1696 (1986) (doi: 10.1103/PhysRevLett.57.1696);
J. C. Bergquist, R. G. Hulet, W. M. Itano, and D. J. Wineland, ‘‘Observation of Quantum Jumps in a Single Atom,’’ Physical
Review Letters 57, 1699 (1986) (doi: 10.1103/PhysRevLett.57.1699); W. M. Itano, J. C. Bergquist, and D. J. Wineland,
‘‘Photon Antibunching and Sub-Poissonian Statistics from Quantum Jumps in One and Two Atoms,’’ Physical Review A 38,
559 (1988) (doi: 10.1103/PhysRevA.38.559); R. G. Hulet, D. J. Wineland, J. C. Bergquist, and W. M. Itano, ‘‘Precise Test of
Quantum Jump Theory,’’ Phys. Rev. A 37, 4544 (1988) (doi: 10.1103/PhysRevA.37.4544) W. M. Itano, D. J. Heinzen, J. J.
Bollinger, and D. J. Wineland, ‘‘Quantum Zeno effect,’’ Physical Review A 41, 2295 (1990) (doi: 10.1103/PhysRevA.41.2295);
D. J. Berkeland, D. A. Raymondson, and V. M. Tassin, ‘‘Tests for non-randomness in quantum jumps,’’ Physical Review A 69,
052103 (2004) (doi: 10.1103/PhysRevA.69.052103).

http://dx.doi.org/10.1103/PhysRevA.35.198
http://dx.doi.org/10.1103/PhysRevLett.56.2797
http://dx.doi.org/10.1103/PhysRevLett.57.1696
http://dx.doi.org/10.1103/PhysRevLett.57.1699
http://dx.doi.org/10.1103/PhysRevA.38.559
http://dx.doi.org/10.1103/PhysRevA.37.4544
http://dx.doi.org/10.1103/PhysRevA.41.2295
http://dx.doi.org/10.1103/PhysRevA.69.052103
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If we detect photons with efficiency η, then not detecting a fraction 1 − η of the photons is equivalent to
taking an ensemble average over dN2, because we are discarding the information provided by dN2. Taking
this average, we let double angle brackets denote this ensemble average with respect to dN2, and again note
that ρ(t) and dN2(t) are statistically independent:

d〈〈ρ〉〉 = − i

h̄
[H,〈〈ρ〉〉]dt− Γ

2
[σ†σ,〈〈ρ〉〉]+dt+ Γ

〈
σ†σ

〉
〈〈ρ〉〉dt+

(
σ〈〈ρ〉〉σ†

〈σ†σ〉
−〈〈ρ〉〉

)
dN1 +

(
σ〈〈ρ〉〉σ†

〈σ†σ〉
−〈〈ρ〉〉

)
〈〈dN2〉〉

= − i

h̄
[H,〈〈ρ〉〉]dt− Γ

2
[σ†σ,〈〈ρ〉〉]+dt+ Γ

〈
σ†σ

〉
〈〈ρ〉〉dt+

(
σ〈〈ρ〉〉σ†

〈σ†σ〉
−〈〈ρ〉〉

)
dN1

+(1− η)Γσ〈〈ρ〉〉σ† dt− (1− η)Γ
〈
σ†σ

〉
〈〈ρ〉〉dt

= − i

h̄
[H,〈〈ρ〉〉]dt− ηΓ

2
[σ†σ,〈〈ρ〉〉]+dt+ ηΓ

〈
σ†σ

〉
〈〈ρ〉〉dt+ (1− η)ΓD[σ]〈〈ρ〉〉+

(
σ〈〈ρ〉〉σ†

〈σ†σ〉
−〈〈ρ〉〉

)
dN1.

(18.31)
This is equivalent to Eqs. (18.25) if we understand ρ to be the ensemble average 〈〈ρ〉〉 and we relabel dN1 −→
dNη.

In the case η < 1, it is not possible to unravel the SME into an equivalent SSE. It is only in the
case η = 1 that this is possible, because only in this case does an initially pure state remain pure under
the master-equation evolution—otherwise, the observer must trace over all possibilities for the undetected
photons and thus necessarily ends up with a mixed state. Of course, the resulting density operator can
be computed by simulating many trajectories of the SSE, and then computing the appropriate (partial)
ensemble average.

18.2 Homodyne Detection

Now we will see how we can get a completely different unravelling of the master equation by modifying the
atomic field measurement. In particular, we will obtain a white-noise limit of a jump process in the master
equation. To set up this measurement, suppose that all of the light radiated from an atom is collimated
‘‘somehow’’ (e.g., by exotic ‘‘4π’’ optics) into a directed beam. An alternative to simply feeding it into a
photon-counting detector is to mix it on a beam splitter with a local oscillator. What exactly we mean by
a local oscillator is a monochromatic field with an intensity much larger than the atomic field, but otherwise
is somewhat context-dependent: if the atom is driven by a monochromatic field, then we would use part
of the driving field as the local oscillator, while if the atom is undriven, we would simply use a laser field
at the atomic resonance frequency. The point is, the atom will naturally be oscillating with a spectrum
centered at some frequency, and we would choose the local oscillator to have the same frequency. Once the
radiation field and local oscillator are mixed together by the beam splitter, the light is then detected. This
measurement is called homodyne detection,8 and here we will consider the simplest case of homodyne
detection, where only one output of the beam splitter is monitored.

local oscillator
detector

Even though this setup detects some ‘‘irrelevant’’ light due to the local oscillator, the amount of information
that we acquire via this setup (within the idealizations below) is equivalent to that of direct detection. If the

8Homodyne detection was treated in terms of quantum trajectories first by Howard Carmichael, op. cit. Our treatment
here more closely follows that of Howard Mark Wiseman, Quantum Trajectories and Feedback, Ph.D. thesis (University of
Queensland, 1994), and H. M. Wiseman and G. J. Milburn, ‘‘Quantum theory of field-quadrature measurements,’’ Physical
Review A 47, 642 (1993) (doi: 10.1103/PhysRevA.47.642).

http://dx.doi.org/10.1103/PhysRevA.47.642
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radiated field from the atom is detected directly, the operator that we associate with the field is proportional
to

C =
√
Γσ, (18.32)

so that the average number of photons detected in a time interval dt is〈
C†C

〉
dt = Γ

〈
σ†σ

〉
dt. (18.33)

We can similarly associate the operator
Cloc =

√
Γa, (18.34)

with the local-oscillator field, where a is the annihilation operator for the local-oscillator field mode (which
is comparable to the atomic lowering operator σ—recall from Section 5.7 that the dipole radiation field is
written in terms of the atomic dipole operator σ). The normalization here assures that photons in either the
dipole or local-oscillator fields are detected in the same way by the detector. The combined field operator,
after the beam splitter (on the detector side), is then

Cr =
√
Γ
(
rσ +

√
1− r2 a

)
, (18.35)

where r ∈ [0, 1] is the field reflection coefficient of the beam splitter (as seen by the atomic field). Here, we
are assuming that the fields of the collimated atomic radiation and the local oscillator are perfectly ‘‘mode
matched.’’

We will model the local oscillator as a coherent state |α〉 of light—the quantum model for a classical,
monochromatic field—with photon flux Γ|α|2 (whose detection is also described by a counting process).
Recalling that |α〉 is an eigenstate of the field annihilation operator a, we can write a|α〉 = α|α〉, and thus
the operator for the total field at the detector effectively becomes

Cr =
√
Γ
(
rσ +

√
1− r2 α

)
(18.36)

whenever applied to the field state. Note also that α is in general a complex number, representing the phase
of the local oscillator field.

In this homodyne scheme, any atomic radiation that transmits through the beam splitter is not de-
tected, and the information associated with that light is ‘‘wasted.’’ Thus we will want to consider the limit
r −→ 1, but we will then also take the limit |α| −→ ∞ such that the transmitted field amplitude

β := α
√
1− r2 (18.37)

remains nonzero. (In fact we will eventually take the limit β −→∞.) Thus, the detected field operator is

Cβ =
√
Γ (σ + β) , (18.38)

and so we see that the effect of adding the local-oscillator field is to add a scalar constant to the atomic
lowering operator. The average photodetection rate due to the combined field is

〈〈dN〉〉 =
〈
C†βCβ

〉
dt = Γ

〈
(σ† + β∗)(σ + β)

〉
dt = Γ

[〈
σ†σ

〉
+
〈
β∗σ + βσ†

〉
+ |β|2

]
dt. (18.39)

As we expect, the photodetection rate is the sum of the individual photodetection rates for the local oscillator
and for the atomic radiation, plus an interference term. Herein lies the advantage of homodyne detection:
the atomic signal due to the interference terms is effect ‘‘boosted’’ by the local oscillator by a factor of |β|.
This is an enormous advantage if the detector suffers from a low level of background noise (‘‘dark currents’’),
since the homodyne scheme can raise the signal to a level much larger than background noise. We will also
see that homodyne detection measures different aspects of the atom, as compared with direct detection.
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18.2.1 State Collapse

When a photon is detected directly from the atom, recall that the state vector is reduced according to

|ψ〉 −→ C|ψ〉√
〈C†C〉

=
σ|ψ〉√
〈σ†σ〉

, (18.40)

or equivalently, the density operator is reduced according to

ρ −→ CρC†

Tr[CρC†]
=
CρC†

〈C†C〉
=
σρσ†

〈σ†σ〉
. (18.41)

The same reduction occurs when a homodyne photon is detected, but now using the operator Cβ , for the
state vector,

|ψ〉 −→ Cβ |ψ〉√〈
C†βCβ

〉 =
(σ + β)|ψ〉√

〈(σ† + β∗)(σ + β)〉
, (18.42)

and of course the density operator,

ρ −→
CβρC

†
β〈

C†βCβ

〉 =
(σ + β)ρ(σ† + β∗)

〈(σ† + β∗)(σ + β)〉
. (18.43)

The reduction here is partial: when a photon is detected, it is not possible to distinguish whether the photon
came from the atom or the local oscillator, and thus the atom is projected into a coherent superposition of
being reduced as in the direct-detection case (if the photon came from the atom) and of being unaffected (if
the photon came from the local oscillator). The two cases are weighted by the amplitudes of the atomic and
local oscillator fields, respectively.

18.2.2 Quantum-State Diffusion

Evidently, we obtain the master equation for homodyne detection from the master equation for direct
detection by the replacement

σ −→ σ + β. (18.44)

However, note that adding the local oscillator field cannot change the form of the unconditioned master
equation

∂tρ = − i
h̄
[H, ρ] + ΓD[σ]ρ, (18.45)

since in the unconditioned case the local oscillator influences quantum information that we are discarding
anyway. Noting that

D[σ + β]ρ = (σ + β)ρ(σ† + β∗)− 1

2

[
(σ† + β∗)(σ + β), ρ

]
+

= D[σ]ρ+ 1

2

[
β∗σ − βσ†, ρ

]
= D[σ]ρ− i

h̄

[
ih̄

2

(
β∗σ − βσ†

)
, ρ

]
.

(18.46)

Thus, the unconditioned master equation is invariant under the simultaneous replacement

σ −→ σ + β, H −→ H − ih̄Γ

2

(
β∗σ − βσ†

)
.

(transformation from jump to homodyne detection) (18.47)
Thus, this is the total transformation we should make to go from direct to homodyne detection.
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Recalling from Eq. (18.10) that the master equation for direct detection is

dρ = − i

h̄
[H, ρ]dt− Γ

2
[σ†σ, ρ]+dt+ Γ

〈
σ†σ

〉
ρ dt+ J [σ]ρ dN, (18.48)

where we have defined the jump superoperator

J [c]ρ :=

(
cρc†

Tr[cρc†]
− ρ
)

=

(
cρc†

〈c†c〉
− ρ
)
.

(18.49)
(jump superoperator)

Thus, the master equation for homodyne detection is

dρ = − i

h̄
[H, ρ]dt−Γ

2

[(
β∗σ − βσ†

)
, ρ
]
dt−Γ

2
[(σ†+β∗)(σ+β), ρ]+dt+Γ

〈
(σ† + β∗)(σ + β)

〉
ρ dt+J [σ+β]ρ dN.

(18.50)
Expanding out the middle three terms, we see that the |β|2 terms cancel, so that

dρ = − i

h̄
[H, ρ]dt− ΓH[β∗σ]ρ dt− Γ

2
[σ†σ, ρ]+dt+ Γ

〈
σ†σ

〉
ρ dt+ J [σ + β]ρ dN

= − i

h̄
[H, ρ]dt− ΓH[β∗σ]ρ dt− Γ

2
H[σ†σ]ρ dt+ J [σ + β]ρ dN,

(18.51)

where we have defined the measurement superoperator

H[c]ρ := cρ+ ρc† − Tr[cρ+ ρc†]ρ

= cρ+ ρc† −
〈
c+ c†

〉
ρ.

(18.52)
(homodyne superoperator)

The transition rate of the counting process is correspondingly modified to read

〈〈dN〉〉 = Γ
〈
(σ† + β∗)(σ + β)

〉
dt, (18.53)

which matches the photodetection rate we computed above for the homodyne case.
Now we will consider the limit |β| −→ ∞ of a strong local oscillator, so that most of the detected

photons come from the local oscillator. The rate of information gain—and thus the rate at which we disturb
the system—remains constant, but the rate at which photons are detected becomes arbitrarily large. Thus,
the white-noise approximation for the counting process N(t) is appropriate (here the approximation has
same form as for the Poisson process), and we can make the replacement

dN −→
〈〈
dN

dt

〉〉
dt+

√〈〈
dN

dt

〉〉
dW, (18.54)

which in the homodyne case here becomes

dN −→ Γ
〈
(σ† + β∗)(σ + β)

〉
dt+

√
Γ〈(σ† + β∗)(σ + β)〉 dW (18.55)

to obtain an Itō SDE for the state evolution. First, let’s work out the part proportional to dt:

J [σ + β]ρ〈〈dN〉〉 =
(
(σ + β)ρ(σ† + β∗)

〈(σ† + β∗)(σ + β)〉
− ρ
)
Γ
〈
(σ† + β∗)(σ + β)

〉
dt

= Γ(σ + β)ρ(σ† + β∗) dt− Γ
〈
(σ† + β∗)(σ + β)

〉
ρ dt

= Γσρσ† dt− Γ
〈
σ†σ

〉
ρ dt+ Γ

(
β∗σρ+ ρβσ†

)
dt− Γ

〈
β∗σ + βσ†

〉
ρ dt

= Γ
〈
σ†σ

〉
J [σ]ρ dt+ ΓH[β∗σ]ρ dt.

(18.56)
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Notice that we have dropped the ensemble-average symbols on the right-hand side, since the ensemble average
is only for convenience of notation. Thus, the H[β∗σ]ρ terms cancel in the master equation (18.51), which
thus becomes

dρ = − i

h̄
[H, ρ]dt− Γ

2
H[σ†σ]ρ dt+ Γ

〈
σ†σ

〉
J [σ]ρ dt+

√
Γ〈(σ† + β∗)(σ + β)〉 J [σ + β]ρ dW

= − i

h̄
[H, ρ]dt+ ΓD[σ]ρ dt+

√
Γ〈(σ† + β∗)(σ + β)〉 J [σ + β]ρ dW.

(18.57)

In the part proportional to dt, we see that all the β-dependent parts cancel, so taking the limit of large |β| is
trivial. We can now expand out the part proportional to dW , keeping only the lowest-order terms in |β|−1:

√
Γ〈(σ† + β∗)(σ + β)〉 J [σ + β]ρ =

(
(σ + β)ρ(σ† + β∗)

〈(σ† + β∗)(σ + β)〉
− ρ
)√

Γ〈(σ† + β∗)(σ + β)〉

=

(
|β|2ρ+ (β∗σρ+ ρβσ†)−

〈
β∗σ + βσ†

〉
ρ

|β|2
− ρ

)√
Γ|β|2

=
√
Γ

[
(β∗σρ+ ρβσ†)−

〈
β∗σ + βσ†

〉
ρ
]

|β|

=
√
ΓH

[
σ
β∗

|β|

]
ρ

=
√
ΓH

[
σeiφ

]
ρ.

(18.58)

Here, φ is the phase of the local oscillator, defined by

β =: |β|e−iφ. (18.59)
(local-oscillator phase)

Thus, the master equation becomes

dρ = − i

h̄
[H, ρ]dt+ ΓD

[
σeiφ

]
ρ dt+

√
ΓH
[
σeiφ

]
ρ dW,

(SME for homodyne detection) (18.60)
where we note that due to the quadratic nature of the Lindblad superoperator, we have used

D[σ]ρ = D
[
σeiφ

]
ρ. (18.61)

The form (18.60) for the stochastic master equation is our main result here: adding the local oscillator field
prior to detection completely changes the form of the SME. The form here, in terms of the Wiener process
dW (t), is called the quantum-state diffusion form9 for the SME (as opposed to the quantum-jump form).
In this form it is easy to see that the ensemble average recovers the unconditioned master equation (18.1),
since the ensemble average in Itō calculus amounts to setting dW = 0.

9N. Gisin and I. C. Percival, ‘‘The quantum-state diffusion model applied to open systems,’’ Journal of Physics A: Mathemat-
ical and General 25, 5677 (1992) (doi: 10.1088/0305-4470/25/21/023). For other related early work, see A. Barchielli, L. Lanz,
and G. M. Prosperi, ‘‘A Model for the Macroscopic Description and Continual Observations in Quantum Mechanics,’’ Nuovo Ci-
mento B 72, 79 (1982); A. Barchielli and G. Lupieri, ‘‘Quantum stochastic calculus, operation valued stochastic processes, and
continual measurements in quantum mechanics,’’ Journal of Mathematical Physics 26, 2222 (1985) (doi: 10.1063/1.526851);
V. P. Belavkin, in Information Complexity and Control in Quantum Physics, A. Blaquiere, S. Diner, and G. Lochak, Eds.
(Springer, 1987); V. P. Belavkin, ‘‘A new wave equation for a continuous nondemolition measurement,’’ Physics Letters A 140,
355 (1989) (doi: 10.1016/0375-9601(89)90066-2); V. P. Belavkin, ‘‘A posterior Schrödinger equation for continuous nondemo-
lition measurement,’’ Journal of Mathematical Physics 31, 2930 (1990) (doi: 10.1063/1.528946); L. Diósi, ‘‘Stochastic Pure
State Representation for Open Quantum Systems,’’ Physics Letters A 114, 451 (1986) (doi: 10.1016/0375-9601(86)90692-4);
and L. Diósi, ‘‘Continuous Quantum Measurement and Itô Formalism,’’ Physics Letters A 129, 419 (1988) (doi: 10.1016/0375-
9601(88)90309-X).

http://dx.doi.org/10.1088/0305-4470/25/21/023
http://dx.doi.org/10.1063/1.526851
http://dx.doi.org/10.1016/0375-9601(89)90066-2
http://dx.doi.org/10.1063/1.528946
http://dx.doi.org/10.1016/0375-9601(86)90692-4
http://dx.doi.org/10.1016/0375-9601(88)90309-X
http://dx.doi.org/10.1016/0375-9601(88)90309-X
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These trajectories are illustrated here, for the same paramters as for the quantum-jump unravelling
above (Γ = Ω/10). The first plot shows the evolution of the excited-state probability for a single atom
(quantum trajectory) with quantum-state diffusion, with each infinitesimal jump corresponding to a detected
photon in the homodyne setup. Nine other trajectories are included to illustrate the dephasing due to the
stochastic nature of the evolution, and the qualitative difference with respect to the quantum-jump evolution.
The usual Rabi oscillations are still visible here, since the atom is driven by a classical field of Rabi frequency
Ω, the the oscillations are distorted by influence of the quantum noise. The influence is visually greatest
when the excited-state population is greatest, which makes sense intuitively: if the atom is in the ground
state, then the observer knows that any detected photon is due only to the local oscillator.
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The second plot shows the ensemble-averaged excited-state probability computed from the unconditioned
master equation (solid line), an average of 20 trajectories (dashed line), and an average of 2000 trajectories
(dotted line). As many trajectories are averaged together, the average converges to the master-equation
solution for the ensemble average. (About 20,000 trajectories are necessary for the Monte-Carlo average to
be visually indistinguishable from the master-equation solution on the time scale plotted here.) In all cases,
the trajectories are plotted in discrete time increments of ∆t = 0.005, but the trajectories were calculated
using increments of ∆t = 0.0025 (using a stochastic Runge-Kutta-type numerical method of order 1.5).

18.2.3 Measurement Record

Now we can ask, what exactly are we measuring here? Recall from Eq. (18.11) that the photodetector
current is

Idet(t) = Qph
dN(t)

dt
, (18.62)

where we are in the limit where dN is given by the replacement (18.55). Thus,

Idet(t) = QphΓ
〈
(σ† + β∗)(σ + β)

〉
+Qph

√
Γ〈(σ† + β∗)(σ + β)〉 ξ(t), (18.63)

where again ξ(t) = dW (t)/dt, and the second term represents the shot noise (Section 17.5.3.1) associated
with the detector photocurrent. In general, we will want to subtract off the large constant photocurrent due
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to the local oscillator field, and then retain only the lowest-order terms in |β|−1 in the dt and dW parts:

Idet(t)−QphΓ|β|2 = QphΓ
〈
β∗σ + βσ†

〉
+Qph

√
Γ|β|2 ξ(t). (18.64)

We can then define the normalized photocurrent by

Ĩdet(t) :=
Idet(t)−QphΓ|β|2

Qph|β|
= Γ

〈
σeiφ + σ†e−iφ

〉
+
√
Γ ξ(t).

(normalized photocurrent) (18.65)
In the standard form of an Itō SDE, we can write

dr(t) := Ĩdet(t) dt = Γ
〈
σeiφ + σ†e−iφ

〉
dt+

√
Γ dW.

(homodyne measurement record) (18.66)
We can regard dr(t) as the (scaled) measurement record for homodyne detection, with r(t) proportional to
the total accumulated charge conducted by the photodetector (total photon count).

We thus see that on average, we gain information about either the real or imaginary part of the radiated
field, or equivalently σ, depending on the local-oscillator phase:

〈〈dr(t)〉〉 = Γ
〈
σeiφ + σ†e−iφ

〉
dt. (18.67)

For example, if we choose φ = 0 (such that β ∈ R), we measure the ‘‘X1 quadrature’’〈
σ + σ†

〉
=〈σx〉 , (18.68)

whereas if we choose φ = π/2 (such that −iβ ∈ R), we measure the ‘‘X2 quadrature’’〈
iσ − iσ†

〉
=〈σy〉 . (18.69)

In either case, clearly the homodyne measurement provides information about the mean atomic dipole
moment, or the phase of the atomic dipole, as opposed to the direct measurement, which was more closely
related to the atomic excitation〈σz〉. Note that with the proper choice of local-oscillator frequency, the dipole
field and local oscillator time dependences cancel, these expectation values are measured in the rotating frame
of the local oscillator. Thus, the expectation values are (adiabatic) constants. Of course, due to the dW term
in the measurement record (18.66), the information in the mean is masked by quantum noise, and so the
information must be extracted, e.g., by signal averaging. Of course, the best (i.e., correct in the Bayesian
sense) method for obtaining information about the system is to evolve the master equation, conditioned
on the measurement record. Since the dW in (18.66) is the same as the dW in the SME (18.60), we can
eliminate it and write the SME directly in terms of the measurement record:

dρ = − i

h̄
[H, ρ]dt+ ΓD

[
σeiφ

]
ρ dt+

√
ΓH
[
σeiφ

]
ρ

(
dr(t)− Γ

〈
σeiφ + σ†e−iφ

〉
dt

√
Γ

)
.

(homodyne SME with measurement signal) (18.70)
This equation is still an Itō SDE, even though dW does not explicitly appear here.

18.2.4 Information Gain from the Measurement Record

Now let’s make a statement that is somewhat subtle, but nevertheless helps to gain insight here. Suppose
that you and someone else have access to the same measurement record dr(t), which begins at t = 0, but for
some reason the two of you disagree on the initial state ρ(t = 0) of the system (i.e., the Bayesian ‘‘prior’’).
That is, you two have different density operators at t = 0. We are thus regarding the density operator as
being subjective information about the quantum state. We will return to this topic in depth later, but let’s
just go with it for now. For technicalities of consistency, we will assume that both you and the other observer
either both assign a particular measurement outcome (based on the density operator) to consistenly have
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either zero or nonzero probability (i.e., in any basis, both observers agree on whether or not any particular
diagonal density-matrix element is zero). In this view, either state is as good as any other, so let’s view the
measurement record as being related to the expectation value of the other observer B:

dr(t) = Γ
〈
σeiφ + σ†e−iφ

〉
B
dt+

√
Γ dW ′. (18.71)

Here, the B subscript denotes that the expectation value is taken with respect to the density operator ρB
of the second observer. Clearly, dW ′ is not the same as the original dW if the expectation values differ with
respect to the two quantum states. Then, we may rewrite the SME (18.70) as

dρ = − i

h̄
[H, ρ]dt+ΓD[σ]ρ dt+

√
ΓH
[
σeiφ

]
ρ
[√

Γ
(〈
σeiφ + σ†e−iφ

〉
B
−
〈
σeiφ + σ†e−iφ

〉 )
dt+ dW ′

]
. (18.72)

Notice that the other expectation value here is taken with respect to your (observer A’s) state ρ. Thus, we
see that the measurement term is sensitive to the difference between the estimates of the quantity〈

σeiφ + σ†e−iφ
〉

(18.73)

according to you and to observer B. In fact, this difference will be suppressed during the evolution, so that as
you and observer B gain more and more consistent information, the difference in your density operators will
tend to vanish at long times: in light of new information, the density operator ‘‘forgets’’ its initial condition.
It is also possible to insist on an objective view of this same situation, where your initial density operator
is ‘‘wrong,’’ and observer B is an omniscient observer that is ‘‘right.’’ In this case, with more measurement
information, your density operator will tend to converge to the ‘‘true’’ density operator. This is sometimes a
useful way to think about things, but you must be careful since it will also get you into trouble (e.g., it leads
to problems associated with wave-function collapse being a physical process). Note that the convergence
of states here must be viewed with caution, since complete convergence can only occur if the measurement
information in fact resolves the differences between the different states. For example, if you and I disagree
about the uncertainty in the X1 quadrature, but the measurement only provides information about the
X2 quadrature, then clearly our states need not converge to the same state as a result of the continuous
measurement: the measurement won’t affect the X1 uncertainty, so we won’t agree on that aspect of the
state.

The convergence of states is in some sense more intuitive for the jump process without the local oscil-
lator. Recall that a detected photon lowers the atom to the ground state |g〉. Thus, with this measurement,
any initial state is mapped to the same final state via a single jump, and so any observers must subsequently
agree on the final state.

18.2.5 Diffusion Form of the Stochastic Schrödinger Equation

The SME (18.60) is equivalent to the SSE

d|ψ〉 = − i
h̄
H|ψ〉 dt− Γ

2

[
σ†σ −

〈
σ + σ†

〉
σ +

1

4

〈
σ + σ†

〉2] |ψ〉 dt+√Γ [σ − 1

2

〈
σ + σ†

〉]
|ψ〉 dW,

(SSE for homodyne detection) (18.74)
as we can see again by expanding dρ to second order in d|ψ〉 and using the Itō rule dW 2 = dt. Again,
this ‘‘diffusion unravelling’’ of the SME is only valid for unit detection efficiency. Otherwise, we must use a
modified SME, which we will derive below.

18.2.6 Balanced Homodyne Detection

The homodyne technique above, while relatively easy to analyze, has some practical disadvantages. First is
the large dc offset due to the local oscillator that must be subtracted to obtain the desired signal. Second
is the beam splitter, which must have close to unit reflection, and the corresponding requirement that the
local oscillator field be very strong. Both of these problems are solved in practice by balanced homodyne
detection, which involves a 50/50 beam splitter, detecting both output ports of the beam splitter, and then
subtracting the two photocurrents.
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local oscillator
detector 1

detector 2

Suppose that the beam splitter is lossless with reflection coefficient r ∈ [0, 1]. Then proceeding in the same
way as in the last section, the operator associated with the field impinging on detector 1 is

C1 =
√
Γ
(
rσ +

√
1− r2 α

)
, (18.75)

where t =
√
1− r2 is the transmission coefficient of the (lossless) beam splitter, and again α is the amplitude

of the coherent state |α〉 of the local-oscillator field. The operator associated with the field impinging on
detector 2 is

C2 =
√
Γ
(√

1− r2 σ − rα
)
, (18.76)

which follows from the Stokes relation r′ = −r relating the reflection coefficient of the beam splitter from
the two sides, or alternately that we may regard the beam splitter as inducing a unitary transformation on
the input fields of the form [

t r
−r t

]
, (18.77)

with r2 + t2 = 1, which in this case is an orthogonal transformation since we have assumed the coefficients
to be real.

We can now associate two counting processes dN1 and dN2 with detectors 1 and 2, respectively, to
account for ‘‘clicks’’ on each detector. The average photodetection rate of detector 1 is

〈〈dN1〉〉 =
〈
C†1C1

〉
dt

= Γ
[
r2
〈
σ†σ

〉
+ r
√

1− r2
〈
α∗σ + ασ†

〉
+
(
1− r2

)
|α|2

]
dt,

(18.78)

while the mean photodetection rate of detector 2 is

〈〈dN2〉〉 =
〈
C†2C2

〉
dt

= Γ
[(
1− r2

)〈
σ†σ

〉
− r
√
1− r2

〈
α∗σ + ασ†

〉
+ r2|α|2

]
dt.

(18.79)

Again, the contributions of the two fields, as well as the interference effects, are apparent in these expressions.
Now the two detectors generate photocurrents as before according to

Idet,1 = Qph,1
dN1(t)

dt

Idet,2 = Qph,2
dN2(t)

dt
,

(18.80)

where for the moment, we will assume the detectors have generally different ‘‘gains’’ Qdet,1 and Qdet,2 per
photon. The subtracted photocurrent is then

I− = Idet,1 − Idet,2

= Qph,1
dN1(t)

dt
−Qph,2

dN2(t)

dt
,

(18.81)
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where the mean is given by

〈〈I−〉〉 = Γ

[ [
Qph,1r

2 −Qph,2
(
1− r2

)]〈
σ†σ

〉
+ (Qph,1 +Qph,2) r

√
1− r2

〈
α∗σ + ασ†

〉
+
[
Qph,1

(
1− r2

)
−Qph,2r

2
]
|α|2

]
.

(18.82)

Note that with the condition
Qph,1

(
1− r2

)
= Qph,2r

2, (18.83)

the |α|2 term vanishes; that is, the gains of the photodetectors can be adjusted to null out the large dc term.
However, the small

〈
σ†σ

〉
term vanishes only if

Qph,1r
2 = Qph,2

(
1− r2

)
. (18.84)

The only way to satisfy both conditions is to take a completely symmetric, or balanced, setup with Qph,1 =
Qph,2 = Qph and r2 = 1/2. In this case, the mean subtracted photocurrent takes on the simpler form

〈〈I−〉〉 = QphΓ
〈
α∗σ + ασ†

〉
, (18.85)

and thus in the balanced setup, only the interference terms contribute without further subtraction or ap-
proximation.

18.2.6.1 Master Equation

Now we will derive the master equation for balanced homodyne detection, and see that in the limit of a strong
local oscillator, the result is the same as for simple homodyne detection. Recalling again from Eq. (18.10)
that the master equation for direct detection is

dρ = − i

h̄
[H, ρ]dt− Γ

2
H[σ†σ]ρ dt+ J [σ]ρ dN, (18.86)

where 〈〈dN〉〉 = Γ
〈
σ†σ

〉
dt, and the relevant superoperators are once again

J [c]ρ :=

(
cρc†

〈c†c〉
− ρ
)

H[c]ρ := cρ+ ρc† +
〈
c+ c†

〉
ρ.

(18.87)

We can decompose the counting process dN into two parts dN1 and dN2, as we did in Section 18.1.5, and
correspondingly split the other damping term in the master equation, so that the split counting processes
are determined by

〈〈dN1〉〉 = r2Γ
〈
σ†σ

〉
dt

〈〈dN2〉〉 =
(
1− r2

)
Γ
〈
σ†σ

〉
dt,

(18.88)

and the master equation is

dρ = − i

h̄
[H, ρ] dt

− r2Γ
2
H[σ†σ]ρ dt+ J [σ]ρ dN1

−
(
1− r2

) Γ
2
H[σ†σ]ρ dt+ J [σ]ρ dN2.

(18.89)

This equation is equivalent to the original direct-detection master equation (18.86), but now we can interpret
this form as direct detection of the atomic fluorescence after a beam splitter, where terms on the second line
represent detector 1, and the terms on the third line represent detector 2.
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Now note that we currently have collapse operators

C1 =
√
Γ rσ

C2 =
√
Γ
√
1− r2 σ

(18.90)

associated with the two detectors, which give the expectation values (18.88). To incorporate the local-
oscillator field, and obtain the proper homodyne collapse operators (18.75) and (18.76), we must make the
replacement

σ −→ σ +

√
1− r2
r

α (18.91)

in the parts of the master equation (18.89) associated with detector 1, and we must also make the replacement

σ −→ σ − r√
1− r2

α (18.92)

in the parts of the master equation (18.89) associated with detector 2. In analogy with the calculation of
Eq. (18.47), upon making these replacements, to keep the unconditioned master equation unchanged, we
must also transform the Hamiltonian according to

H −→ H − ih̄Γ

2
r
√

1− r2
(
α∗σ − ασ†

)
+
ih̄Γ

2
r
√
1− r2

(
α∗σ − ασ†

)
= H, (18.93)

and thus the Hamiltonian needs no modification under the above replacements. That is, the effects of the
two replacements on the unconditioned master equation exactly cancel, unlike the case of simple homodyne
detection. Thus, implementing the replacements in Eq. (18.89), we have

dρ = − i

h̄
[H, ρ]dt

− r2Γ
2
H

[(
σ† +

√
1− r2
r

α∗

)(
σ +

√
1− r2
r

α

)]
ρ dt+ J

[
σ +

√
1− r2
r

α

]
ρ dN1

−
(
1− r2

) Γ
2
H
[(
σ† − r√

1− r2
α∗
)(

σ − r√
1− r2

α

)]
ρ dt+ J

[
σ − r√

1− r2
α

]
ρ dN2.

(18.94)

Expanding out and simplifying the H[c]ρ terms, we see that all terms involving α cancel, leaving the simpler
expression

dρ = − i

h̄
[H, ρ]dt− Γ

2
H
[
σ†σ

]
ρ dt

+ J

[
σ +

√
1− r2
r

α

]
ρ dN1 + J

[
σ − r√

1− r2
α

]
ρ dN2.

(18.95)

Now, to take the white-noise limit, where the amplitude of the local oscillator is large (|α| −→ ∞). In this
case, we again make replacements of the form

dN −→ 〈〈dN
dt
〉〉dt+

√
〈〈dN
dt
〉〉 dW, (18.96)

In particular, the contribution to the master equation proportional to dt from the dN1 term is

J

[
σ +

√
1− r2
r

α

]
ρ〈〈dN1〉〉 = r2Γ

〈
σ†σ

〉
J [σ]ρ dt+ r

√
1− r2 ΓH[α∗σ]ρ dt, (18.97)

where the details are exactly as in the previous calculation of Eqs. (18.56). Similarly, the contribution to
the master equation proportional to dt from the dN2 term is

J
[
σ − r√

1− r2
α

]
ρ〈〈dN2〉〉 =

(
1− r2

)
Γ
〈
σ†σ

〉
J [σ]ρ dt− r

√
1− r2 ΓH[α∗σ]ρ dt. (18.98)
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When these parts are included in the master equation, the first terms combine to form the usual dissipation
term from the unconditioned equation, while the second terms cancel each other, and the result is

dρ = − i

h̄
[H, ρ]dt+ ΓD[σ]ρ dt

+

√√√√r2Γ

〈(
σ† +

√
1− r2
r

α∗

)(
σ +

√
1− r2
r

α

)〉
J

[
σ +

√
1− r2
r

α

]
ρ dW1

+

√√√√ (1− r2) Γ
〈(

σ† − r√
1− r2

α∗
)(

σ − r√
1− r2

α

)〉
J
[
σ − r√

1− r2
α

]
ρ dW2,

(18.99)

where now dW1 and dW2 are the Wiener processes corresponding to dN1 and dN2, respectively. Unfortu-
nately, the stochastic terms do not simplify nearly as well, and so we will now consider the limit of a strong
local oscillator, |α| −→ ∞, and keep only the lowest order terms in |α|−1. The calculation is the same as in
Eqs. (18.58),

dρ = − i

h̄
[H, ρ]dt+ ΓD[σ]ρ dt+

√
ΓH
[
σeiφ

]
ρ dW,

(balanced homodyne master equation) (18.100)
where as before φ is the phase of the local-oscillator field,

α =: |α|e−iφ, (18.101)
(local-oscillator phase)

and where the Wiener process dW is given in terms of its independent constituents by

dW = r dW1 +
√
1− r2 dW2,

(18.102)
(composite noise process)

and is thus itself a standard Wiener process. The form of the master equation is thus independent of r, but
the two Wiener processes contribute to dW equally only in the balanced case r = 1/

√
2.

18.2.6.2 Measurement Record

When we take the white-noise limit of the subtracted photocurrent (i.e., the measurement record), and again
keep only lowest-order terms in |α|−1, we find

I− = (Qph,1 +Qph,2) r
√
1− r2

〈
α∗σ + ασ†

〉
dt+Qph,1

√
Γ(1− r2)|α|2 dW1 −Qph,2

√
Γr2|α|2 dW2, (18.103)

if we assume condition (18.83) is fulfilled so that the large |α|2 dc offset term in the mean photocurrent
vanishes. However, note that even with Eq. (18.83), there is no simple way to combine the two quantum-
noise terms. If the two detectors have equal response, Qph,1 = Qph,2 = Qph, then

I− = QphΓ
〈
α∗σ + ασ†

〉
dt+Qph

√
Γ|α| dW ′, (18.104)

where the composite Wiener process is

dW ′ =
√
1− r2 dW1 + r dW2. (18.105)

However, note that dW ′ is not equivalent to the composite Wiener process dW that appeared in the master
equation (18.102). These two noise processes are only simply identified in the case of perfect balancing,
r = 1/

√
2, in which case dW ′ = dW ,

I− = QphΓ
〈
α∗σ + ασ†

〉
dt+Qph

√
Γ|α| dW.

(balanced homodyne photocurrent) (18.106)
This is of the same form as for simple homodyne detection, but no extra subtraction is required to eliminate
the dc offset term. The measurement photocurrent can then be rescaled as for simple homodyne detection.
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18.2.7 Heterodyne Detection

In general, the local-oscillator field need not have the same nominal frequency as the atomic radition (i.e.,
it need not be the same field that drives the atom), and in such case the measurement setup corresponds
to heterodyne detection. In the above analysis of homodyne detection, we have made no particular
assumptions about the phase φ of the local oscillator, and we can thus treat heterodyne detection by simply
setting φ = ∆t, where ∆ = ωlo−ω is the detuning between the local oscillator frequency ωlo and the driving
field ω of the atom. Thus, from the homodyne SME (18.89), the heterodyne-detection master equation
becomes

dρ = − i

h̄
[H, ρ]dt+ ΓD[σ]ρ dt+

√
ΓH
[
σei∆t

]
ρ dW,

(18.107)
(heterodyne SME)

and from Eq. (18.66), the measurement record (scaled photocurrent) is

dr(t) = Γ
〈
σei∆t + σ†e−i∆t

〉
dt+

√
Γ dW.

(heterodyne measurement record) (18.108)
Heterodyne detection is often used in the case where the detuning ∆ is large (compared to some relevant
frequency scale, such as the inverse of a measurement averaging time), in which case the information in
the measurement record is ‘‘encoded’’ at the high frequency ∆. This is often pragmatically useful in the
laboratory, since technical noise tends to drop off as 1/ω, and thus the encoding at high frequency is generally
less susceptible to technical noise. After detection it is most useful to demodulate the photocurrent signal
by shifting the useful information to near-dc. In post-processing this is done by multiplying by the harmonic
function e−i∆t to obtain

dr̃(t) := dr(t)e−i∆t = Γ
〈
σ + σ†e−2i∆t

〉
dt+

√
Γ dV, (18.109)

where
dV := e−i∆tdW

(18.110)
(rotating Wiener process)

is the frequency-shifted noise process. For large detunings, the rapidly rotating term at frequency 2∆ is
ignorable over any reasonable averaging time and is thus negligible, so we may write10

dr̃(t) ≈ Γ〈σ〉 dt+
√
Γ dV,

(18.111)
(heterodyne measurement record)

Thus, the measurement record now contains information about 〈σ〉, and thus about both quadratures 〈σx〉
and 〈σy〉. The reason that this works is that the detuning separates the components 〈σ〉 and

〈
σ†
〉

to different
frequencies ±∆, and thus the information about only one of these expectation values may be detected. By
contrast, in homodyne detection the information about the two operators is encoded at the same frequency,
and thus we only obtain information in the quadrature combinations

〈
σ ± σ†

〉
. Note that demodulating the

signal, as in analog electronics, by multiplying dr by the real harmonic function cos∆t does not work in the
same way, since it shifts the information for both 〈σ〉 and

〈
σ†
〉

to zero frequency, and thus amounts simply
to homodyne detection.

In terms of the noise process dV , we may write the master equation as

dρ = − i

h̄
[H, ρ]dt+ ΓD[σ]ρ dt+

√
ΓH
[
σei∆t

]
ρ ei∆tdV.

(18.112)
(heterodyne SME)

In the noise term there are thus contributions that go as σe2i∆tdV and σ†dV . However, we may not make
a rotating wave approximation here and neglect the former compared to the latter, because dW contains all

10For explicit solutions of the dynamics for homodyne and heterodyne detection, see Howard Wiseman, ‘‘Complementarity
in Spontaneous Emission: Quantum Jumps, Staggers, and Slides,’’ in Directions in Quantum Optics, H. J. Carmichael, R. J.
Glauber, and M. O. Scully, Eds. (Springer, 2001), p. 347.
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frequencies, and thus both terms are ‘‘fast’’ in the same sense. In treating this equation it is useful to note
the relations (valid in the limit of large ∆)

〈〈dV 〉〉 = ei∆t〈〈dW 〉〉 = 0

dV 2 = e−2i∆tdt ≈ 0

(dV )∗dV = dW 2 = dt.

(18.113)

Otherwise, there is no fundamental simplification to the master equation in this case, and even though
the measurement information is different, it is simplest to think of the heterodyne and homodyne master
equations as equivalent except for the time dependence of the phase φ.

18.2.8 Detector Efficiency and Multiple Observers

The SME (18.60) for homodyne detection,

dρ = − i

h̄
[H, ρ]dt+ ΓD[σ]ρ dt+

√
ΓH[σ]ρ dW, (18.114)

where for simplicity we have taken the local-oscillator phase φ = 0 (though all of our conclusions apply to
any setup above), applies when the detector catches all of the photons emitted by the atom. To model a
finite detection efficiency, suppose the radiated field is split by a beam splitter into two components weighted
by √η1 and √η2, respectively (i.e., the intensities are weighted by η1 and η2), which are then monitored by
homodyne detection on homodyne detectors 1 and 2, respectively.

local oscillator

local
oscillator

homodyne 1
detector

homodyne 2
detector

Æh1

Æh2

We are assuming the amplitudes √η1 and √η2 to be real, with η1+η2 = 1. Then the SME above is modified
to include the two measurement processes, where σ −→ √η1σ for the process on detector 1, and σ −→ √η2σ
for the process on detector 2:

dρ = − i

h̄
[H, ρ]dt+ ΓD[√η1σ]ρ dt+

√
ΓH[√η1σ]ρ dW1 + ΓD[√η2σ]ρ dt+

√
ΓH[√η2σ]ρ dW2. (18.115)

We can combine the two dissipation terms, since they are linear in η1,2, and factor the η1,2 out of the
measurement terms to obtain

dρ = − i

h̄
[H, ρ]dt+ ΓD[σ]ρ dt+

√
η1ΓH[σ]ρ dW1 +

√
η2ΓH[σ]ρ dW2.

(SME for two observers) (18.116)
The dissipation term is precisely the same as if the light were not split: the disturbance does not depend on
th details of the measurement. Of course, if we define

dW :=
√
η1dW1 +

√
η2dW2, (18.117)
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we recover the original master equation where the light was not split. The measurement record (18.66) is
correspondingly modified into two measurement records for the two detectors:

dr1(t) = Γ
〈√

η1σ +
√
η1σ
†〉 dt+√Γ dW1

dr2(t) = Γ
〈√

η2σ +
√
η2σ
†〉 dt+√Γ dW2.

(measurement records for two observers) (18.118)
The original measurement record is recovered by taking the combination

√
η1dr1(t) +

√
η2dr2(t) = Γ

〈
σ + σ†

〉
dt+

√
Γ dW = dr(t). (18.119)

We can rescale these records so that the expectation values have the same amplitudes as the original mea-
surement record:

dr̃1(t) =
dr1√
η1

= Γ
〈
σ + σ†

〉
dt+

√
Γ

η1
dW1

dr̃2(t) =
dr2√
η2

= Γ
〈
σ + σ†

〉
dt+

√
Γ

η2
dW2.

(measurement records for two observers) (18.120)
In this case, the quantum noise is effectively amplified for each of the two detectors compared to the case of
a single detector. As we will discuss below, the increased quantum noise is due to the presence of another
information channel, which necessarily disturbs, or back-acts, on the quantum system.

Now what we essentially have is the theory for two observers monitoring the same atomic fluorescence.
Suppose that there are two observers 1 and 2, each of which has access to only their respective detector 1 or
2. Observer 1 does not have access to detector 2, and thus must trace over all possible results on detector
2. We do this by taking an ensemble average over all possible realizations of dW2, which we again do by
effectively setting dW2 = 0, and thus obtain the SME for the state of knowledge ρ1 of observer 1:

dρ1 = − i

h̄
[H, ρ1]dt+ ΓD[σ]ρ1 dt+

√
η1ΓH1[σ]ρ1 dW

′
1.

(SME for observer 1) (18.121)
Here, we have used the notation

H1[c]ρ := cρ+ ρc† − Tr[cρ1 + ρ1c
†]ρ

= cρ+ ρc† −
〈
c+ c†

〉
1
ρ,

(18.122)

so that the superscript on the H superoperator denotes that the expectation value is taken with respect to
ρ1. The measurement record for observer 1 has the same form as in Eq. (18.120),

dr̃1(t) = Γ
〈
σ + σ†

〉
1
dt+

√
Γ

η1
dW ′1,

(measurement record for observer 1) (18.123)
but now the expectation value is taken with respect to ρ1. Correspondingly, we cannot assume that the noise
process dW ′1 according to observer 1 is the same as the original dW1. Similarly, the SME for observer 2 is

dρ2 = − i

h̄
[H, ρ2]dt+ ΓD[σ]ρ2 dt+

√
η2ΓH2[σ]ρ2 dW

′
2,

(SME for observer 2) (18.124)
and the measurement record according to observer 2 is

dr̃2(t) = Γ
〈
σ + σ†

〉
2
dt+

√
Γ

η2
dW ′2.

(measurement record for observer 2) (18.125)
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We can interpret the first SME (18.116) and corresponding measurement records (18.120) that include both
detectors as those of another omniscient observer that has access to both detectors. We can now equate the
two expressions for each measurement record to obtain

dW ′1 =
√
η1Γ
[〈
σ + σ†

〉
−
〈
σ + σ†

〉
1

]
+ dW1

dW ′2 =
√
η2Γ
[〈
σ + σ†

〉
−
〈
σ + σ†

〉
2

]
+ dW2,

(18.126)

relating the noise processes dW ′1 and dW ′2 for the individual observers to the noise processes dW1 and dW2

for the omniscient observer. Note that we have derived the above equations assuming the two observers
are making the same measurement on the light, but this is easily generalized to the case of two different
measurements by the two observers.

The case of inefficient detection is exactly the case of a single observer in the presence of a second
observer, where the observer does not have all the possible information and needs to trace over all the
undetected information. Then the observer’s SME becomes

dρ = − i

h̄
[H, ρ]dt+ ΓD[σ]ρ dt+

√
ηΓH[σ]ρ dW,

(inefficient homodyne detection SME) (18.127)
and the measurement record is

dr̃(t) = Γ
〈
σ + σ†

〉
dt+

√
Γ

η
dW,

(inefficient homodyne detection measurement record) (18.128)
where η is the efficiency of the detector (i.e., the fraction of total intensity that is actually registers on the
detector).

18.3 Conditioned Dynamics and Squeezing

Now that we have fairly general forms of the master equation for homodyne and heterodyne measurement,
we would like to interpret the measurement terms in the master equations to see their physical meaning. In
particular, the H[c]ρ terms (i.e., the noise terms) represent the information gain due to the measurement
process, while the D[c]ρ terms represent the disturbance to, or the backaction on, the state of the system
due to the measurement. Of course, as we see from the dependence on the efficiency η, the backaction
occurs independently of whether the observer uses or discards the measurement information (corresponding
to η = 1 or 0, respectively).

Interpreting the master equation in this way is an important exercise because the measurement record
dr tells us what the observer actually measured, but to find out what the observer actually knows about
the system in light of the measurement, we must actually solve the master equation. Of course, this is quite
difficult to do in general, but we can consider the evolution of the lowest moments (expectation values of
powers of x and p) of the canonical variables. This will give us the observer’s time-dependent estimates of
position and momentum, as well as the associated uncertainties.

Let us consider the case of homodyne detection of a cavity field—which we recall from Chapter 12 is
equivalent to homodyne detection of the atomic field under the replacements σ −→ a, Γ −→ κ—with the
additional evolution under the action of a Hamiltonian H:

dρ = − i

h̄
[H, ρ] dt+ κD[a]ρ dt+√ηκH[a]ρ dW.

(SME for cavity homodyne detection) (18.129)
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Correspondingly, the measurement record for measurement efficiency η is

dr̃(t) = κ
〈
a+ a†

〉
dt+

√
κ

η
dW.

(measurement record for cavity homodyne detection) (18.130)
Here, a is the cavity annihilation operator, and we are only considering a measurement of the X1 quadrature
(proportional to a+ a†, as we will define below) to simplify things. For an arbitrary operator A, we can use
the master equation and d〈A〉 = Tr[Adρ] to obtain following equation of motion for the expectation value
〈A〉:

d〈A〉 = − i

h̄
〈[A,H]〉 dt

+κ

〈
a†Aa− 1

2

(
a†aA+Aa†a

)〉
dt

+
√
ηκ
〈
a†A+Aa−〈A〉

〈
a+ a†

〉〉
dW.

(expectation-value evolution under SME) (18.131)
The first line gives the Hamiltonian evolution, the second line the effect of the dissipation/disturbance D[a]ρ,
and the last line is the effect of the measurement information H[a]ρ.

The evolution of the isolated cavity is then given by the harmonic oscillator Hamiltonian

H =
p2

2m
+

1

2
mω 2x2,

(18.132)
(cavity Hamiltonian)

which we write in canonical coordinates rather than the raising and lowering operators (m here is an ‘‘effective
mass,’’ which while quantizing the field we decided was the permittivity ε0). We will thus derive the the
lowest few moments of x and p using the above formula for d〈A〉. We will also make the simplifying
assumption that the initial state is Gaussian, so that we only need to consider the simplest five moments:
the means 〈x〉 and 〈p〉, the variances Vx and Vp, where Vα :=

〈
α2
〉
−〈α〉2, and the symmetrized covariance

Cxp := (1/2)〈[x, p]+〉 −〈x〉〈p〉. These moments completely characterize arbitrary Gaussian states (including
mixed states). Recall from Section 5.6.1 that we already decided that the Gaussian state was a ‘‘natural’’
state for the damped harmonic oscillator, where D[a]ρ is precisely the damping term that we used then.

18.3.1 Moment Equations

To set up the calculation, we recall for the harmonic oscillator that the annihilation operator is related to
the canonical coordinates by

a =
1√
2x0

x+ i
x0√
2h̄
p, (18.133)

where the length scale x0 is defined by

x0 :=

√
h̄

mω
. (18.134)
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Evaluating the terms in the above evolution equation for the various moments gives the following moment
equations for the conditioned evolution in this case:

d〈x〉 = 1

m
〈p〉 dt− κ

2
〈x〉 dt+

√
2ηκ

mω

h̄

(
Vx −

h̄

2mω

)
dW

d〈p〉 = −mω2〈x〉 dt− κ

2
〈p〉 dt+

√
2ηκ

mω

h̄
Cxp dW

∂tVx =
2

m
Cxp − κ

(
Vx −

h̄

2mω

)
− 2ηκ

mω

h̄

(
Vx −

h̄

2mω

)2

∂tVp = −2mω2Cxp − κ
(
Vp −

mωh̄

2

)
− 2ηκ

mω

h̄
C2
xp

∂tCxp =
1

m
Vp −mω2Vx − κCxp − 2ηκ

mω

h̄
Cxp

(
Vx −

h̄

2mω

)
.

(moment evolution under SME) (18.135)
Here, we have used the following moment relations, valid for a Gaussian state:11〈

x3
〉
= 3〈x〉Vx +〈x〉3

1
2

〈
[x, p2]+

〉
= 2〈p〉Cxp +〈x〉

[
Vp +〈p〉2

]
1
4 〈[x, [x, p]+]+〉 = 2〈x〉Cxp +〈p〉

[
Vx +〈x〉2

]
.

(18.136)

This approximation decouples the variances from any higher-order moments and removes any noise terms
from the variance equations.

18.3.2 Quadrature Moments

We can make these equations look a bit more symmetric by defining the stationary quadrature operators

X1 :=
1

2

(
a+ a†

)
=

√
mω

2h̄
x

X2 :=
1

2i

(
a− a†

)
=

√
1

2mωh̄
p,

(18.137)
(field quadratures)

in which case the moment equations transform to

d〈X1〉 = ω〈X2〉 dt−
κ

2
〈X1〉 dt+

√
4ηκ

(
VX1
− 1

4

)
dW

d〈X2〉 = −ω〈X1〉 dt−
κ

2
〈X2〉 dt+

√
4ηκCX1X2 dW

∂tVX1
= 2ωCX1X2

− κ
(
VX1
− 1

4

)
− 4ηκ

(
VX1
− 1

4

)2

∂tVX2 = −2ωCX1X2 − κ
(
VX2 −

1

4

)
− 4ηκC 2

X1X2

∂tCX1X2
= ω(VX2

− VX1
)− κCX1X2

− 4ηκCX1X2

(
VX1
− 1

4

)
.

(quadrature-moment evolution) (18.138)
Here it is more obvious that X1 and X2 are treated symmetrically, and the Hamiltonian evolution simply
involves a rotation in the X1-X2 plane at a frequency ω, corresponding to the free evolution of the cavity
field.

11Salman Habib, ‘‘Gaussian Dynamics is Classical Dynamics,’’ arXiv.org preprint (arXiv: quant-ph/0406011); though the
relations here simply reflect the fact that for Gaussians, odd-order centered moments always vanish.

http://arxiv.org/abs/quant-ph/0406011
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18.3.3 Interpretation

Now on to the interpretation of the moment equations (18.138). First, consider the unconditioned evolution
of the means 〈X1〉 and 〈X2〉, where we average over all possible noise realizations. Again, since 〈〈ρ dW 〉〉 = 0,
we can simply set dW = 0 in the above equations, and we will drop the double angle brackets for brevity.
The Hamiltonian evolution terms are of course the same, but now we see extra damping terms. Decoupling
these two equations gives an equation of the usual form for the damped harmonic oscillator for the mean
position:

∂ 2
t 〈X1〉+ κ∂t〈X1〉+

(
ω 2 +

κ2

4

)
〈X1〉 = 0. (18.139)

The same equation of motion follows for the other quadrature X2. Note that we identify the frequency ω
here as the actual oscillation frequency ωκ of the damped oscillator, given by ω 2

κ = ω 2 − κ2/4, and not
the resonance frequency ω that appears the usual form of the classical formula. Then both quadratures
undergo damped harmonic oscillation, so that the trajectory in the X1-X2 plane is a radially symmetric
spiral towards the origin (or a circle in the limit κ = 0).

The noise terms in these equations correspond to nonstationary diffusion, or diffusion where the trans-
port rate depends on the state of the system. Note that under such a diffusive process, the system will
tend to come to rest in configurations where the diffusion coefficient vanishes, an effect closely related to the
‘‘blowtorch theorem.’’12 Here, this corresponds to VX1

= 1/4 and CX1X2
= 0, or Vx = h̄/2mω and Cxp = 0

in the original coordinates, which correspond to the values of the ground state (or any coherent state).
The variance equations also contain unconditioned damping terms (proportional to κ but not η).

These damping terms cause the system to equilibrate with the same variance values as noted above; they
also produce the extra equilibrium value VX2

= 1/4 or Vp = mωh̄/2. The conditioning term (proportional to
η) in the equation for VX1

merely accelerates the contraction of VX1
, and thus represents information gain

in the X1 quadrature (i.e., the one we are measuring). It also accelerates the settling to the equilibrium
value VX1 = 1/4. The measurement term in the VX2 equation involves only the covariance: this says that
if CX1X2 6= 0, then the two quadratures are correlated, and thus a measurement on X1 also provides some
information about X2.

18.3.4 Squeezing (or Lack Thereof)

Thus, we see that the essential effect of the antihermitian measurement operator is to damp the energy
from the system, whether it is stored in the centroids or in the variances. In fact, what we see is that
this measurement process selects coherent states, states that have the same shape as the harmonic-oscillator
ground state, but whose centroids oscillate along the classical harmonic-oscillator trajectories. One thing
that we can immediately conclude from this analysis is that even though the homodyne measurement obtains
information about the ‘‘x quadrature,’’ since the measurement accelerates the decay of Vx, we can see that
the measurement does not squeeze the quadradure—that is, the uncertanty does not become smaller than
that of the coherent state (ground state) in steady state. Squeezing can be produced by a measurement,
but it requires the measurement operator to be of the form a+ a† (i.e., we must realize a direct, Hermitian
‘‘position measurement’’) rather than simply a measurement via a. That is, the master equation should be
of the form

dρ = κD[X1]ρ dt+
√
ηκH[X1]ρ dW (18.140)

to produce squeezing in X1, but this does not correspond to a photodetection measurement that we have
considered thus far. Because the measurement operator is Hermitian in this case, the measurement would not
cause damping, and would have to be realized by a dispersive (i.e., nonabsorbing) measurement interaction,
say by firing a beam of atoms through a lossless cavity and measuring atomic phase shifts due to nonresonant
interaction with the cavity field. This master equation also has the form of a position measurement, which
we will consider in depth in the next chapter.

12Term coined by Rolf Landauer, ‘‘Statistical physics of machinery: forgotten middle-ground,’’ Physica A 194, 551 (1993)
(doi: 10.1016/0378-4371(93)90385-H).

http://dx.doi.org/10.1016/0378-4371(93)90385-H
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18.3.5 Homodyne Detection

Now recall that in homodyne detection, the frequency of the local oscillator matches that of the cavity, which
has the same effect in the above equations of setting ω −→ 0:

d〈X1〉 = −
κ

2
〈X1〉 dt+

√
4ηκ

(
VX1 −

1

4

)
dW

d〈X2〉 = −
κ

2
〈X2〉 dt+

√
4ηκCX1X2

dW

∂tVX1
= −κ

(
VX1
− 1

4

)
− 4ηκ

(
VX1
− 1

4

)2

∂tVX2
= −κ

(
VX2
− 1

4

)
− 4ηκC 2

X1X2

∂tCX1X2
= −κCX1X2

− 4ηκCX1X2

(
VX1
− 1

4

)
.

(quadrature-moment evolution under homodyne detection) (18.141)
In this way, the measurement always gets information about a single quadrature (in this case, the measure-
ment provides information about the X1 quadrature).

18.3.6 Heterodyne Detection

To treat heterodyne detection, note that the local oscillator and cavity frequencies do not match, which
amounts to letting ω −→ ∆ in Eqs. (18.138), where ∆ is again the detuning between the local oscillator and
the cavity. Then defining the corotating quadratures

X̃1 := X1 cos∆t−X2 sin∆t

X̃2 := X1 sin∆t+X2 cos∆t,

(18.142)
(corotating quadratures)

we can transform the variances to the new variables using

VX̃1
= VX1

cos2 ∆t+ VX2
sin2 ∆t− 2CX1X2

sin∆t cos∆t

VX̃2
= VX1 sin2 ∆t+ VX2 cos2 ∆t+ 2CX1X2 sin∆t cos∆t

CX̃1X̃2
= VX1

sin∆t cos∆t− VX2
sin∆t cos∆t+ CX1X2

(cos2 ∆t− sin2 ∆t)

(18.143)
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to rewrite the moment equations as

d
〈
X̃1

〉
= −κ

2

〈
X̃1

〉
dt+

√
4ηκ

(
VX1
− 1

4

)
cos∆t dW −

√
4ηκCX1X2

sin∆t dW

d
〈
X̃2

〉
= −κ

2

〈
X̃2

〉
dt+

√
4ηκ

(
VX1
− 1

4

)
sin∆t dW +

√
4ηκCX1X2

cos∆t dW

∂tVX̃1
= −κ

(
VX̃1
− 1

4

)
− 4ηκ

(
VX1
− 1

4

)2

cos2 ∆t− 4ηκC 2
X1X2

sin2 ∆t

+8ηκCX1X2

(
VX1
− 1

4

)
sin∆t cos∆t

∂tVX̃2
= −κ

(
VX2
− 1

4

)
− 4ηκ

(
VX1
− 1

4

)2

sin2 ∆t− 4ηκC 2
X1X2

cos2 ∆t

−8ηκCX1X2

(
VX1 −

1

4

)
sin∆t cos∆t

∂tCX̃1X̃2
= −κCX̃1X̃2

− 4ηκ

(
VX1
− 1

4

)2

sin∆t cos∆t+ 4ηκC 2
X1X2

sin∆t cos∆t

+2ηκCX1X2

(
VX1 −

1

4

)
(cos2 ∆t− sin2 ∆t).

(18.144)

In doing so, we have eliminated the Hamiltonian free-evolution terms, but we have introduced some explicit
time dependence in the equations. We will now consider the variance equations in the limit of large ∆, and
we will replace terms oscillating at frequencies of order ∆ by their time-averaged values, being careful to
implement the inverse relations for the original variances,

VX1
= VX̃1

cos2 ∆t+ VX̃2
sin2 ∆t+ 2CX̃1X̃2

sin∆t cos∆t

VX2
= VX̃1

sin2 ∆t+ VX̃2
cos2 ∆t− 2CX̃1X̃2

sin∆t cos∆t

CX1X2
= −VX̃1

sin∆t cos∆t+ VX̃2
sin∆t cos∆t+ CX̃1X̃2

(cos2 ∆t− sin2 ∆t),

(18.145)

so that we obtain

∂tVX̃1
= −κ

(
VX̃1
− 1

4

)
− 2ηκC 2

X̃1X̃2
− 2ηκ

(
VX̃1
− 1

4

)2

∂tVX̃2
= −κ

(
VX̃2
− 1

4

)
− 2ηκC 2

X̃1X̃2
− 2ηκ

(
VX̃2
− 1

4

)2

∂tCX̃1X̃2
= −κCX̃1X̃2

− ηκ

2
CX̃1X̃2

(
VX̃1

+ VX̃2
− 1

2

)
.

(variance evolution under heterodyne detection) (18.146)
The heterodyne variance equations are now relatively simple. In particular, notice that in homodyne detec-
tion, the measurement was represented in the X1 quadrature by the term

−4ηκ
(
VX̃1
− 1

4

)2

, (18.147)

while in heterodyne detection, both quadratures have measurement terms of this form, but with an overall
factor of 2ηκ instead of 4ηκ. So again, while heterodyne detection provides measurment information about
both quadratures, it does so at only half the rate at which homodyne detection provides information about
a single quadrature. Note that you can get similar results by splitting the field on a 50/50 beam splitter,
and use two homodyne detection setups, set to monitor complementary quadratures, to monitor each output
field of the beam splitter. In this case, the factor of 1/2 in the information rate is more obvious.
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18.3.7 Explicit Solutions for the Uncertainty Dynamics

Incidentally, for homodyne detection, the X1 variance evolves from Eqs. (18.141) as

∂tVX1 = −κ
(
VX1 −

1

4

)
− 4ηκ

(
VX1 −

1

4

)2

. (18.148)

If we assume the variance is very broad, the measurement term dominates the dissipation term, so that

∂tVX1 = −4ηκ
(
VX1 −

1

4

)2

, (18.149)

and this equation has the solution

VX1
(t) =

VX1
(0)− 1/4

1 + 4ηκ[VX1
(0)− 1/4]t

+
1

4
. (18.150)

That is, the variance decreases like 1/t, which makes sense since the uncertainty should decrease as 1/
√
t

for averaging a noisy process. Of course, as the variance approaches the steady-state value of 1/4, the
damping term becomes dominant, and the decay becomes exponential. This is represented by the more
general solution of (18.148),

VX1(t) =
(VX1

(0)− 1/4)

eκt + 4η[VX1(0)− 1/4](eκt − 1)
+

1

4
, (18.151)

which contains the 1/t behavior at short times as well as the exponential decay at long times.

18.3.8 Phase Estimation

As an example of an application that illustrates the difference between homodyne and heterodyne detection,
we will consider the problem of estimating the phase of a pulse of light. The phase uncertainty and quantum
noise here, for example, put limits on how much information can be encoded in the phase of an optical pulse.
To keep this treatment simple, we will consider as as simple model the field pulse to be modeled in the same
way as the single-mode cavity field above.

First, consider the homodyne detection of the cavity phase in terms of the two complementary quadra-
ture variables X1 and X2. We will suppose the phase of the field to be reasonably well defined and the field
amplitude to be larger than its uncertainty. We will assume that 〈X1〉 = 0 initially; we can treat the general
case by simply applying a rotation to this basic configuration. We will further assume a Gaussian state for
simplicity, and to capture the essence of the problem (recall that the state will be asymptotically Gaussian
under the measurement anyway). We can then represent the quantum state by a distribution in phase space
(e.g., a Wigner distribution, as in Section 4.3).

X¡

X™

dof

The question of the phase of the quantum state is then essentially recasting the same problem of measuring
the field quadratures into polar coordinates. In the particular case shown here, the uncertainty in the phase
ϕ of the quantum state is clearly related to the uncertainty in X1. But it should also be clear that the phase
uncertainty ∆ϕ is related to the amplitude of the field (i.e., the distance of the wave-packet centroid from
the origin): a larger amplitude implies a smaller phase uncertainty, given that the uncertainty ∆X1 is fixed.
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The measurement, as we discovered above, causes the X1 uncertainty to contract, assuming the local-
oscillator phase φ = 0. For the particular case we are considering now, this means that the phase uncertainty
decreases—we gain knowledge about the phase.

X¡

X™

dof

The other effect of the measurement is that the amplitude of the field decreases, so that the centroid of the
wave packet moves towards the origin. After all, photodetection proceeds as the photodetector absorbs the
field. (This is assuming that the cavity is not driven to counteract the cavity damping.) The dissipation
has the opposite effect on the phase uncertainty; as the wave packet moves towards the origin with ∆X1

fixed, the angle subtended by the wave packet increases, and thus δϕ increases. Of course, we have seen
that the dissipation also reduces ∆X1. However, once the variance VX1 reaches its steady-state value 1/4,
any decrease in amplitude increases the phase uncertainty. Of course, the point of all this is that when the
phase uncertainty is much larger than the minimum quantum limit and the amplitude of the field is large,
the dominant effect of the measurement is the rapid decrease of ∆X1, which reduces the phase uncertainty.

Now, however, consider the case where the phase ϕ of the field is near π rather than near π/2. In this
case, a reduction in the uncertainty ∆X1 reduces the uncertainty of the field amplitude, but not its phase.

X¡

X™

dof

Thus, gaining information on the phase in homodyne detection depends on having a particular phase to begin
with. That is, the phase sensitivity of homodyne detection has a phase-dependent sensitivity. Heterodyne
detection has the advantage that the measurement reduces the phase uncertainty for any phase, since as we
saw above, the uncertainties of both X1 and X2 decrease in response to the meaasurement.

X¡

X™

dof

The price of this ‘‘omnidirectional’’ phase sensitivity is that the phase uncertainty decreases (assuming the
decrease to be dominated by the measurement information) at half the rate for the best case of homodyne
detection. Of course, it greatly outperforms the homodyne measurement in its worst case, and the heterodyne
measurement simultaneously provides information about the field amplitude.
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To see this mathematically, note that for the case of homodyne detection in the best case of 〈ϕ〉 = π/2,
to see the reduction in phase uncertainty, we need the equation for VX1 in Eqs. (18.141):

∂tVX1
= −κ

(
VX1
− 1

4

)
− 4ηκ

(
VX1
− 1

4

)2

. (18.152)

If the wave packet is localized and the amplitude of the field is large, then to lowest order in the phase
uncertainty we may convert between the Cartesian and polar variances according to

〈R〉2 Vϕ ≈ VX1 , where 〈R〉 =〈X2〉 . (18.153)

Then assuming the measurement-induced reduction of Vϕ is much faster than the damping of 〈R〉, we may
write

∂tVϕ ≈ −κ

(
Vϕ −

1

4〈R〉2

)
− 4ηκ〈R〉2

(
Vϕ −

1

4〈R〉2

)2

. (18.154)

We can see here again the first, damping term (which should also be negligible in this limit), and the second,
information term. We can explicitly see how the quantum-limited phase uncertainty is related to the field
amplitude: the best phase uncertainty is δφ ≈ 1/2〈R〉, at least in the absence of squeezing. Furthermore, the
rate of information collapse increases with the field amplitude, which again reflects the fact that the phase
uncertainty δϕ is related both to ∆X1 and the field amplitude.

Then to treat the general case, we must rotate the phase space while maintaining the measurement
of X1. We have already done this in Eq. (18.144), and adapting the variance equation for VX̃1

in the same
way, we replace ∆t by φ and for simplicity ignore any covariance between the amplitude and phase to find

∂tVϕ ≈ −κ

(
Vϕ −

1

4〈R〉2

)
− 4ηκ〈R〉2 cos2 φ

(
Vϕ −

1

4〈R〉2

)2

. (18.155)

Thus the measurement-induced collapse rate is now modulated by cos2 φ, where φ now represents the phase
change of the local oscillator from our base case above. That is, this is the sensitivity of the homodyne
measurement when the expected phase is 〈ϕ〉 = φ+ π/2 and the measurement is of the X1 quadrature. The
heterodyne case follows from adapting the same variance equation in Eq. (18.146):

∂tVϕ ≈ −κ

(
Vϕ −

1

4〈R〉2

)
− 2ηκ〈R〉2

(
Vϕ −

1

4〈R〉2

)2

. (18.156)

This is, of course, the same as the homodyne expression averaged over the local-oscillator phase φ. Again,
we have lost the dependence on the local-oscillator phase, but at the cost of a factor of 2 in the information-
collapse rate.

18.3.8.1 Adaptive Measurements

Then in making a phase measurement, how is it possible to take advantage of the extra phase sensitivity in
homodyne detection, when it seems to require already knowing the phase to begin with? One strategy is
to use both heterodyne and homodyne detection in an adaptive phase measurement.13 The idea is to
start out a measurement of a light pulse without any knowledge of the phase using heterodyne detection.
As the observer begins to get an idea of the phase, the observer switches the local oscillator to homodyne
detection, with a local-oscillator phase set to maximize the sensitivity based on the heterodyne estimate.
As the homodyne measurement continues, the observer feeds back to the local oscillator phase to track the
estimated phase (which is diffusing stochasically due to the measurement) to ensure that sensitivity is always
maximized.

13H. M. Wiseman, ‘‘Adaptive Phase Measurements of Optical Modes: Going Beyond the Marginal Q Distribution,’’ Physical
Review Letters 75, 4587 (1995) (doi: 10.1103/PhysRevLett.75.4587); this adaptive scheme was implemented experimentally by
Michael A. Armen, John K. Au, John K. Stockton, Andrew C. Doherty, and Hideo Mabuchi, ‘‘Adaptive Homodyne Measurement
of Optical Phase,’’ Physical Review Letters 89, 133602 (2002) (doi: 10.1103/PhysRevLett.89.133602).

http://dx.doi.org/10.1103/PhysRevLett.75.4587
http://dx.doi.org/10.1103/PhysRevLett.89.133602
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18.4 Exercises

Problem 18.1
Verify that the stochastic Schrödinger equation (SSE) [Eq. (18.18)] for quantum jumps,

d|ψ〉 = − i

h̄
H|ψ〉dt+ Γ

2

(〈
σ†σ

〉
− σ†σ

)
|ψ〉dt+

(
σ√
〈σ†σ〉

− 1

)
|ψ〉 dN, (18.157)

is equivalent to the stochastic master equation (SME) [Eq. (18.158)]

dρ = − i

h̄
[H, ρ]dt− Γ

2
[σ†σ, ρ]+dt+ Γ

〈
σ†σ

〉
ρ dt+

(
σρσ†

〈σ†σ〉
− ρ
)
dN. (18.158)



Chapter 19

Position Measurement

Here we will study the continuous observation of a Hermitian observable, namely the position of a quantum
particle. We will do so fairly abstractly, but then give a physical example of how a position measurement
can arise in atomic resonance fluorescence.

19.1 Prelude: General Form for the Master Equation

Before working out another continuous measurement process, we can ask the question, what is the most
general form of the measurement master equation when the measurements involve Gaussian noise? A simple
but nonrigorous argument1 that establishes the general form for the unconditioned master equation, and
then extend it to examine stochastic master equations (SMEs). Thus, we will see that the form of the
(Markovian) SME involving Wiener noise is quite constrained, and it is intuitively easy to adapt the SME
to many different measurement processes simply by choosing the correct measurement operator (which we
denote below by c).

19.1.1 Positive Maps

Under unitary (unconditioned) evolution, the Schrödinger equation tells us that in a short time interval dt,
the state vector undergoes the transformation

|ψ〉 −→ |ψ〉+ d|ψ〉 =
(
1− iH

h̄
dt

)
|ψ〉, (19.1)

where H is the Hamiltonian. The same transformation applied to the density operator gives the Schrödinger–
von Neumann equation (from Section 4.1):

ρ+ dρ =

(
1− iH

h̄
dt

)
ρ

(
1 + i

H

h̄
dt

)
= ρ− i

h̄
[H, ρ] dt. (19.2)

To be physical, any transformation of the density operator must be completely positive. That is, the trans-
formation must preserve the fact that the density operator has only nonnegative eigenvalues. This property
guarantees that the density operator can generate only sensible (nonnegative) probabilities. (To be more
precise, complete positivity means that the transformation for a system’s density operator must preserve the
positivity of the density operator—the fact that the density operator has no negative eigenvalues—of any
larger system containing the system.) It turns out that the most general form of a linear, completely positive

1S. L. Adler, ‘‘Derivation of the Lindblad generator structure by use of the Itô stochastic calculus,’’ Physics Letters A 265,
58 (2000) (doi: 10.1016/S0375-9601(99)00847-6).

http://dx.doi.org/10.1016/S0375-9601(99)00847-6
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transformation is2

ρ −→
∑
n

AnρA
†
n, (19.3)

where the An are arbitrary operators. The Hamiltonian evolution above corresponds to a single infinitesimal
transformation operator A = 1− iH dt/h̄.

19.1.2 Lindblad Form

Now let’s examine the transformation for a more general, stochastic operator of the form

A = 1− iH
h̄
dt+ b dt+ c dW, (19.4)

where b and c are operators. We will use this operator to ‘‘derive’’ a Markovian master equation, then
indicate how it can be made more general. We may assume here that b is Hermitian, since we can absorb
any antihermitian part into the Hamiltonian. Putting this into the transformation (19.3), we find

dρ = − i

h̄
[H, ρ] dt+ [b, ρ]+dt+ cρc† dt+

(
cρ+ ρc†

)
dW, (19.5)

recalling that [A,B]+ := AB + BA is the anticommutator. We can then take an average over all possible
Wiener processes, which again we denote by the double angle brackets 〈〈 〉〉. To compute the ensemble
average, we again use the property 〈〈ρ dW 〉〉 = 0 of Itō calculus, so that

d〈〈ρ〉〉 = − i

h̄
[H, 〈〈ρ〉〉] dt+ [b, 〈〈ρ〉〉]+ dt+ c〈〈ρ〉〉c† dt. (19.6)

Since the operator 〈〈ρ〉〉 is an average over valid density operators, it is also a valid density operator and must
therefore satisfy Tr[〈〈ρ〉〉] = 1. Hence we must have dTr[〈〈ρ〉〉] = Tr[d〈〈ρ〉〉] = 0. Using the cyclic property of
the trace, this gives the constraint

Tr
[
〈〈ρ〉〉

(
2b+ c†c

)]
= 0. (19.7)

This holds for an arbitrary density operator only if

b = − c†c

2
. (19.8)

Thus we obtain the Lindblad form3 of the unconditioned master equation (averaged over all possible noise
realizations):

d〈〈ρ〉〉 = − i

h̄
[H, 〈〈ρ〉〉] dt+D[c]〈〈ρ〉〉 dt. (19.9)

As before, we have defined the Lindblad superoperator

D[c]ρ := cρc† − 1

2

(
c†cρ+ ρc†c

)
, (19.10)

where ‘‘superoperator’’ refers to the fact that D[c] operates on ρ from both sides. It is worth reiterating here
that the cρc† term results from the dW part of the transformation, and thus this term cannot be represented
by a Hamiltonian transformation, even if the Hamiltonian is non-Hermitian, as we noted in Section 5.5.3.
This is the most general (Markovian) form of the unconditioned master equation for a single dissipation
process. Different choices for the operator c thus give the quantum backaction (disturbance) for different
measurement processes.

2K.-E. Hellwig and K. Kraus, ‘‘Operations and Measurements. II,’’ Communications in Mathematical Physics 16, 142
(1970); Benjamin Schumacher, ‘‘Sending entanglement through noisy quantum channels,’’ Physical Review A 54, 2614 (1996)
(doi: 10.1103/PhysRevA.54.2614).

3G. Lindblad, ‘‘On the generators of quantum dynamical semigroups,’’ Communications in Mathematical Physics 48, 199
(1976) (doi: 10.1007/BF01608499).

http://dx.doi.org/10.1103/PhysRevA.54.2614
http://dx.doi.org/10.1007/BF01608499
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19.1.3 Stochastic Terms

The full transformation from Eq. (19.5) then becomes

dρ = − i

h̄
[H, ρ] dt+D[c]ρ dt+

(
cρ+ ρc†

)
dW. (19.11)

This is the linear SME, which we will discuss again elsewhere. We know from our treatment in Section 18.2
of homodyne detection (where c −→ σ) that this equation is not ‘‘complete,’’ since it is missing the nonlinear
term. The problem is that this form of the master equation does not in general preserve the trace of the
density operator, since the condition Tr[dρ] = 0 implies

Tr
[
ρ
(
c+ c†

)
dW

]
= 0. (19.12)

We could interpret this relation as a constraint4, on c, but we will instead keep c an arbitrary operator and
explicitly renormalize ρ + dρ by adding a term proportional to the left-hand side of (19.12). The result is
the nonlinear form

dρ = − i

h̄
[H, ρ] dt+D[c]ρ dt+H[c]ρ dW, (19.13)

where again the measurement superoperator is

H[c]ρ := cρ+ ρc† −
〈
c+ c†

〉
ρ. (19.14)

This corresponds to using the normalizing transformation

ρ −→ AρA†

Tr[AρA†]
, (19.15)

instead of the unnormalized transformation that we considered,

ρ −→ AρA†, (19.16)

to first order in dt. The normalized transformation has exactly the form of a POVM-type reduction as we
consider below.

When c =
√
Γσ, we recover precisely the master equation for homodyne detection of spontaneous

emission. In general, c can be chosen differently to model different continuous measurement processes.

19.1.4 Generalization

More generally, we may have any number of measurements, or output channels, happening simultaneously.
The result is

dρ = − i

h̄
[H, ρ] dt+

∑
n

(D[cn]ρ dt+H[cn]ρ dWn) . (19.17)

This is the same as Eq. (19.13), but this time summed (integrated) over multiple possible measurement op-
erators cn, each with a separate Wiener noise process independent of all the others. This simply corresponds
to having multiple terms in the general positive map (19.3).

In view of the arguments from our treatment of detector efficiency in homodyne detection in Sec-
tion (18.2.8), when the measurements are inefficient, we have5

dρ = − i

h̄
[H, ρ] dt+

∑
n

(D[cn]ρ dt+
√
ηnH[cn]ρ dWn) , (19.18)

4S. L. Adler, op. cit.
5This form is close to the most general form of the master equation, but can still be generalized further. See H. M. Wiseman

and L. Diosi, ‘‘Complete parameterization, and invariance, of diffusive quantum trajectories for Markovian open systems,’’
Chemical Physics 268, 91 (2001) (doi: 10.1016/S0301-0104(01)00296-8).

http://dx.doi.org/10.1016/S0301-0104(01)00296-8
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where ηn is the efficiency of the nth detection channel. The corresponding measurement record for the nth
process can be written (with an arbitrary normalization) as

drn(t) =

〈
cn + c†n

〉
2

dt+
dWn√
4ηn

. (19.19)

Again, for homodyne detection, we recover the right results if we let c = σ and interpret drn/2Γ as a rescaled
measurement record.

19.2 A Second Prelude: Positive-Operator-Valued Measures

To help handle generalized measurements, we will now introduce the somewhat mathematical concept of
a positive-operator-valued measure (POVM). By referring to generalized measurements, we mean to differ-
entiate these measurements from the usual projective, or von Neumann, measurements, which is what you
normally find in introductory quantum-mechanics texts. The usual description goes like this: for a quantum
system in state |ψ〉, a measurement of the observable Q leaves the system in an eigenstate |q〉 of Q with
probability 〈ψ|Q|ψ〉, in which case the ‘‘result’’ of the measurement is the eigenvalue q. We can see that this
notion of a measurement is lacking in two situations. First, it does not properly describe the situation in
photodetection of atomic radiation, where each detection event results in the loss of energy (i.e., the atom
is always found to be in the ground state), and we gain information even during instants when a photon is
not detected. Thus, POVMs are crucial to the formal definition of a continuous measurement. The second
situation is when the observable is the position operator, where eigenstate collapse is unphysical: a position
eigenstate is a state of infinite energy. POVMs allow us to define an imprecise or partial measurement of an
observable, which will be a stepping stone on the way to defining a continuous measurement of position.

19.2.1 Discrete, Finite Spaces

Consider a discrete, finite Hilbert space of dimension N . That is, the Hilbert space is spanned by the set of
eigenstates

{|q〉 : q = 1, . . . , N} (19.20)

of the observable Q. Then we can define a positive-operator-valued measure (POVM) as a set of
positive-semidefinite operators Ω†qΩq that sum to the identity operator:

Nq∑
q=1

Ω†qΩq = 1. (19.21)

Note that we are writing the qth positive operator Ω†qΩq as a factorization in terms of the Kraus operator
Ωq, since any positive operator always has such a factorization. We also note that the number Nq of positive
operators is not necessarily the same as the dimension N of the Hilbert space.

Now the important physical point here is that a POVM defines a quantum measurement on the
Hilbert space. The qth possible outcome of the measurement is that the state vector changes according to
the replacement

|ψ〉 −→ Ωq|ψ〉√〈
Ω†qΩq

〉 , (19.22)

or in terms of the density operator,

ρ −→
ΩqρΩ

†
q

Tr[ΩqρΩ†q]
=

ΩqρΩ
†
q〈

Ω†qΩq

〉 . (19.23)
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That is, in the qth outcome, the state is ‘‘hit’’ by the operator Ωq and then renormalized if necessary. The
probability that the qth outcome occurs is

P (q) = Tr[ΩqρΩ†q] =
〈
Ω†qΩq

〉
. (19.24)

The (classical) ‘‘result’’ of the quantum measurement in this case is simply q (or some physically meaningful
function of q). This notion may seem rather abstract, but we can note that the usual projective measurement
comes out as a special case of the POVM-based measurement. In particular, the usual measurement arises
from a projection-valued measure, where we partition the Hilbert space according to a set of (Hermitian)
projection operators

Pq := |q〉〈q| (19.25)

that also sum to the identity:
N∑
q=1

P 2
q = 1. (19.26)

Of course, P 2
q = Pq, but we have written the sum in this form to emphasize the similarity with Eq. (19.21)

by taking Ωq = Pq and Nq = N . Then the standard projective measurement of the observable Q results in
the qth outcome of a reduction to the qth eigenstate |q〉,

|ψ〉 −→ Pq|ψ〉√〈
P 2
q

〉 = |q〉, (19.27)

or in terms of the density operator,

ρ −→
PqρP

†
q

Tr[PqρP †q ]
=
PqρP

†
q〈

P 2
q

〉 = |q〉〈q|. (19.28)

This outcome happens with probability

P (q) = Tr[PqρP †q ] =
〈
P 2
q

〉
=〈Pq〉 , (19.29)

which for a pure state |ψ〉 becomes the familiar Born rule

P (q) = |〈q|ψ〉|2. (19.30)

Thus, the POVM-based measurement above is a reasonably straightforward generalization of the usual
projective measurements, at least when the standard measurements are cast in the proper way.

19.2.2 Measure

Why is a POVM called a ‘‘POVM’’? The answer requires an excursion into mathematics, and so the short
answer, if you feel the need to skip forward, is that a measure is usually something that assigns numbers to
sets, and so a positive-operator-valued measure is a measure that instead associates positive operators with
sets, and thence probabilities to the same sets via the expectation value as above. To really answer this
question, we need to define what we usually mean by a measure, and then adapt it to the operator case.
Informally, a measure is a rule for assigning numbers to subsets of some set, or space. This is a very useful
notion in probability theory, where you would consider the set of all possible outcomes or events, and the
measure would assign probabilities to each outcome or collection of outcomes. Alternately, a measure is an
abstraction of the notion of volume, where the measure represents the ‘‘volume’’ of subsets of the main set.

Before formally defining a measure, though, we should first note that for a given space, it is problematic
to try to define a measure on every subset. Instead, we will define the measure on only a limited collection
of subsets, chosen to make the definition of the measure consistent. Formally, this collection is a σ-algebra,
which we define as a collection S of subsets of the space X such that:
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1. The empty set is included: ∅ ∈ S .

2. Countable, disjoint unions are included (with countable here meaning finite or countably infinite): if
U ⊂ S with A ∩B = ∅ for any A,B ∈ U , and U is countable, then⋃

A∈U

A ∈ S . (19.31)

3. Complements are included: if A ∈ S , then X −A ∈ S .

Any element of a σ-algebra is said to be a measurable set. This definition can be contrasted with the
possibly familiar definition for a topology on a space X, which is a collection T of subsets of X such that:6

1. The empty set and the whole space are included: ∅ ∈ T , X ∈ T .

2. Arbitrary unions are included: if U ⊂ S , then⋃
A∈U

A ∈ S . (19.32)

3. Finite intersections are included: if U ⊂ S with U finite, then⋂
A∈U

A ∈ S . (19.33)

Any element of a topology is said to be an open set, while the complement of an open set is said to be
a closed set. Thus, while topologies contain in general only open sets, σ-algebras contain both open and
closed sets. For example, on the real line R, the standard topology is the topology consisting of all open
intervals of the form (a, b) and all possible unions of such intervals (and the empty set). It turns out there is
a unique σ-algebra associated with the standard topology, which is the smallest σ-algebra containing it. This
is called the Borel σ-algebra on R, which would contain all open intervals as well as all closed intervals of
the form [a, b] (and many other sets). The notion of a σ-algebra may not be intuitively clear at this stage,
but the definition is basically concocted to make the definition of measure work out, as we will now see.

A measure is a function µ : S −→ [0,∞] defined on a σ-algebra S on a space X, which satisfies

1. The empty set has zero measure: µ(∅) = 0.

2. The measure for countable, disjoint unions adds: if U ⊂ S with A∩B = ∅ for any A,B ∈ U , and U
is countable, then

µ

( ⋃
A∈U

A

)
=
∑
A∈U

µ(A). (19.34)

These two requirements are sensible considering our analogies to probabilities and volumes, and we can also
see how the requirements for a σ-algebra guarantee that we don’t have any problems in defining a measure
(the last axiom for a σ-algebra imposes the sensible constraint that if A is a measureable subset, then so
is X − A). Note that the point ∞ is explicitly included in the range of a measure, which is intuitively a
‘‘good’’ measure for something like the entire real line. Also, strictly speaking, we have defined a positive
measure, since we have only allowed nonnegative values in the range of µ. As an example of measure, the
Lebesgue measure on the real line is defined on the Borel σ-algebra. We can define it in several cases as
follows:

1. It turns out that any open set A can be written as the union of a countable set of open intervals (aj , bj),
in which case the Lebesgue measure of A is the sum of the interval lengths:

µ(A) :=
∑
j

(bj − aj). (19.35)

6For further reading, see, e.g., James R. Munkres, Topology: a First Course (Prentice-Hall, 1975).
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2. It turns out that any closed set B can be written as a closed interval [a, b] with the union of a countable
set of open intervals (aj , bj) removed from it,

B = [a, b]−
⋃
j

(aj , bj), (19.36)

where every aj > a and every bj < b, in which case the Lebesgue measure of B is the length of the
closed interval minus the Lebesgue measure of the removed component:

µ(A) := (b− a)−
∑
j

(bj − aj). (19.37)

3. For any other set C in the Borel σ-algebra, the Lebesgue measure is the infimum (greatest lower bound)
of the set of Lebesgue measures of all open sets containing C:

µ(C) := inf{µ(A) : A is open and C ⊂ A} (19.38)

Note that there exist sets that do not have Lebesgue measures according to the above definitions, and thus
they are excluded by considering only the σ-algebra. The Lebesgue measure is useful in that it extends the
notion of length to more complicated and subtle sets: the set of rational numbers, being countable, is a set of
Lebesgue measure zero on the real line; and the Cantor middle-thirds set, a fractal set constructed by starting
with the interval [0, 1], removing the open ‘‘middle third’’ interval (1/3, 2/3), removing the middle-thirds
of the two remaining closed intervals, and so on ad infinitum, is an uncountable set but of zero Lebesgue
measure.

For measurements, the concept of a probability measure is more useful, and it is simply that of a
measure, but where the range of the measure is [0, 1] rather than [0,∞], with a measure of the whole space
being unity. For example, the Lebesgue measure on the space [0, 1] is a probability measure, and corresponds
to a uniform probability density on the same interval.

19.2.3 General Definition

Now with the above mathematical concepts, we can now give a more general definition of a POVM than in
the finite case above. In more general terms, a positive-operator-valued measure (POVM) defined on
a σ-algebra S on a space X is a function Π that takes as values positive semidefinite, Hermitian operators
on a Hilbert space H such that for any |ψ〉 ∈H , the function µ : X −→ [0, 1], defined by

µ(A) := 〈ψ|Π(A)|ψ〉 (19.39)

for any measurable subset A of X, defines a probability measure on S . In particular, this implies that Π(X) is
the identity operator, which is the generalization of the sum rule (19.21). Thus, the POVM associates positive
operators with measurable subsets of the space of outcomes, which are then associated with probabilities by
appropriate expectation values. In this way, we can define a family of probability measures, ‘‘parameterized’’
by the quantum state.

We could, of course, write the probability measure more generally in terms of the density operator as

µ(A) = Tr[Π(A)ρ]. (19.40)

Incidentally, a trace of this form is (for a Hilbert space of dimension larger than two) the only way to
construct a quantum probability measure; this is essentially the content of Gleason’s theorem.7

7Andrew M. Gleason, ‘‘Measures on the Closed Subspaces of a Hilbert Space,’’ Journal of Mathematics and Mechanics 6,
885 (1957) (doi: 10.1512/iumj.1957.6.56060).

http://dx.doi.org/10.1512/iumj.1957.6.56060
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19.2.4 Realization

It is important to note that measurements induced by POVMs, while generalizing projective measurements,
don’t introduce anything fundamentally new to quantum mechanics: any of these more general measurements
can be realized by introducing an auxiliary system (ancilla), performing a unitary transformation on the
combined system, and then perform a projective measurement on the ancilla. Thus, generalized measurements
correspond to indirect measurements, where information about a system comes from projective measurements
on the ‘‘environment’’ with which the system has interacted (and thus become entangled with).

This result is known as Naimark’s theorem (or Neumark’s theorem),8 and we will only sketch
the argument for the finite case here. Starting with the system in the state |ψ〉, we will extend the Hilbert
space to contain the environment, whose dimension is equal to the number of Kraus operators defining the
POVM, |ψ〉 −→ |ψ〉|0E〉 ≡ |ψ 0E〉. We will assume the environment to always start in a particular state that
we label |0E〉. Note that we are assuming a pure state for the system, which we may as well do as long as
we are extending the Hilbert space by invoking purification (Section 4.4.5). We can thus define an operator
U that acts on the composite state as

U |ψ 0E〉 =
∑
q

(Ωq|ψ〉) |qE〉 =
∑
q

√
〈ψ|Ω†qΩq|ψ〉

 Ωq|ψ〉√
〈ψ|Ω†qΩq|ψ〉

 |qE〉, (19.41)

where the Kraus operators Ωq only operate on the original system, and the |qE〉 environment states are
orthogonal. In the last step we have written the part of the state of the original system as a normalized
state, leading to explicit coefficients of the superposition. We can also see explicitly how the system and
environment are entangled after the operation U . Now computing the norm of the transformed composite
state,

〈ψ 0E|U†U |ψ 0E〉 =
∑
qq′

〈qE|〈ψ|Ω†q Ωq′ |ψ〉|q′E〉

=
∑
q

〈ψ|Ω†q Ωq|ψ〉

= 〈ψ|ψ〉,

(19.42)

so that U preserves the norm of states in the subspace of the original system. The operator U is thus unitary
on this subspace, but is not fixed uniquely by the above argument. In principle, the action of U on the
environment can be chosen to make U unitary on the composite Hilbert space. Basically, this is because
taken as a matrix, the columns of U span the subspace of the original system (i.e., a subset of them form
an orthonormal basis), and the extra degrees of freedom (elements of the extra rows) in expanding U to
the composite Hilbert space may then be chosen to make the columns of U form an orthonormal basis on
the entire composite space. Now after the transformation, a projective measurement of the state of the
environment leads to the result |qE〉 with probability

Tr
[
|qE〉〈qE| U |ψ 0E〉〈ψ 0E|U†

]
= 〈ψ|Ω†qΩq|ψ〉. (19.43)

Furthermore, the projection of the environment into state |qE〉 induces the transformation

|ψ〉 −→ Ωq|ψ〉√
〈ψ|Ω†qΩq|ψ〉

(19.44)

on the original system. Thus we have constructed the POVM-based measurement based on the larger
projective measurement.

8Asher Peres, Quantum Theory: Concepts and Methods (Springer, 1995), Section 9-6, p. 285. For a similar argument to
what we present here for the unitary representation of linear positive maps, see Benjamin Schumacher, op. cit.
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19.2.5 Example: Spontaneous Emission

As an example of a POVM, we return to the stochastic master equation for photodetection of atomic
resonance fluorescence with quantum jumps from Section 18.1:

dρ = − i

h̄
[H, ρ]dt− Γ

2
[σ†σ, ρ]+dt+ Γ

〈
σ†σ

〉
ρ dt+

(
σρσ†

〈σ†σ〉
− ρ
)
dN. (19.45)

In any given time interval of duration dt, there are only two possible outcomes: no photon is detected, or
one photon is detected. We can define this evolution in terms of a POVM as follows. Let U(dt) denote
the evolution operator for the combined atom–field system. Before each infinitesimal time interval, the field
starts in the vacuum state |0〉, and after each infinitesimal time interval, the detector projectively measures
the field and registers a detection event if a photon is emitted into any mode. Since the detector does not
distinguish modes, we will simply denote the field state as |1〉 in the case of an emitted photon. Then the
two ‘‘jump operators’’ for the two measurement outcomes are9

Ω0(dt) = 〈0|U(dt)|0〉 = 1− iH
h̄
dt− Γ

2
σ†σ dt

Ω1(dt) = 〈1|U(dt)|0〉 =
√
Γ dt σ.

(19.46)

In the case of no photon detected, the state is transformed according to

ρ −→ Ω0(dt)ρΩ
†
0(dt)

Tr
[
Ω0(dt)ρΩ

†
0(dt)

] = ρ− i

h̄
[H, ρ] dt− Γ

2
[σ†σ, ρ]+ dt+ Γ

〈
σ†σ

〉
ρ dt, (19.47)

keeping terms to first order in dt, and in the case of a detector click the state is transformed according to

ρ −→ Ω1(dt)ρΩ
†
1(dt)

Tr
[
Ω1(dt)ρΩ

†
1(dt)

] =
σρσ†

〈σ†σ〉
. (19.48)

These two transformations correspond exactly to the transformations induced by the SME (19.45) in the
cases dN = 0 and dN = 1, respectively. The probabilities also work out as expected. For example, a photon
is detected with probability

P (1) = Tr
[
Ω1(dt)ρΩ

†
1(dt)

]
= Γ

〈
σ†σ

〉
dt, (19.49)

and the probability for not detecting a photon is the complement of this, as seen by taking the appropriate
trace using Ω0(dt).

Notice that this POVM tends to drive the atom towards the ground state, as compared to the uncon-
ditioned Hamiltonian evolution (and for either possible outcome Ω0,1). By involving the atomic annihilation
operator, we see in this case that the POVM generalizes projective measurements by modeling dissipation
due to the measurement process. In the case at hand, the physical origin of the dissipation in the case at
hand is absorption of radiated photons by the photodetector.

19.2.6 Example: Gaussian Projectors

POVMs can also generalize projective measurements to model partial or imprecise measurements. Partial
measurements leave some uncertainty in the measured observable, whereas projective measurements leave
the system in a state where the observable is perfectly defined—that is, an eigenstate of the observable.
As a simple example, we can model partial measurements by defining the measurement operators Ωq to
be Gaussian-weighted sums over projection operators for the discrete set of eigenstates |q〉 (q ∈ Z) of the
observable Q:

Ωq =
1

N

∞∑
j=−∞

e−κ(j−q)
2/4|j〉〈j|. (19.50)

9H. M. Wiseman, ‘‘Quantum Trajectories and Quantum Measurement theory,’’ Quantum and Semiclassical Optics 8, 205
(1996) (doi: 10.1088/1355-5111/8/1/015).

http://dx.doi.org/10.1088/1355-5111/8/1/015
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Here,

N 2 :=

∞∑
j=−∞

e−κ(j−q)
2/2, (19.51)

so that
∞∑

q=−∞
Ω†qΩq = 1, (19.52)

as required for the operators to form a POVM. The Gaussian weights lead to having only partial infor-
mation about Q after the measurement. For example, in a highly uncertain mixed state, where 〈q|ρ|q〉 is
approximately the same for any q and 〈q|ρ|q′〉 = 0 for any q 6= q′, the measurement leads to the collapse

ρ −→
ΩqρΩ

†
q

Tr[ΩqρΩ†q]
≈ 1

N

∑
j

e−κ(j−q)
2/2|q〉〈q|. (19.53)

The qth possible final state is thus peaked about the eigenvalue q, and additionally has an uncertainty
∆Q = 1/

√
κ.

In the limit κ −→∞, the measurements here reduce to the usual projective measurements. Thus, for
large κ, the variance in the measurement results (taken over an ensemble of measurements on identically
prepared systems) is dominated by the uncertainty in the quantum state, while for small κ, the measurement
variance is dominated by the uncertainty introduced by the measurement operators Ωq. This distinction
divides two categories of measurments, strong measurements where κ is large, and weak measurements,
where κ is small.10

We can also generalize these Gaussian projectors to the continuous-variable case. For example, for a
position measurement, the properly normalized measurement operators have the form

Ω(α) =
( κ
2π

)1/4 ∫ ∞
−∞

dx e−κ(x−α)
2/4|x〉〈x|. (19.54)

Again, if this operator is applied to a an initially uncertain state (such as a momentum eigenstate), the
resulting position variance in the collapsed state is 1/κ (i.e., the uncertainty is 1/

√
κ). In what follows, we

will consider sequences of weak position measurements of this form, and thus construct continuous quantum
measurements of position. For this it is useful to consider the product of two operators,

Ω(α′;κ′)Ω(α;κ) =

(
κκ′

(2π)2

)1/4 ∫ ∞
−∞

dx′
∫ ∞
−∞

dx e−κ
′(x′−α′)2/4|x′〉〈x′|e−κ(x−α)

2/4|x〉〈x|

=

(
κκ′

(2π)2

)1/4 ∫ ∞
−∞

dx e−κ
′(x−α′)2/4e−κ(x−α)

2/4|x〉〈x|

=

(
κκ′

(2π)2

)1/4

exp
[
− κκ′

κ+ κ′
(α− α′)2

] ∫ ∞
−∞

dx exp

[
− (κ+ κ′)

4

(
x− ακ+ α′κ′

κ+ κ′

)2
]
|x〉〈x|,

(19.55)
which corresponds to a sequence of two Gaussian position measurements, the first of strength κ and the
second of strength κ′, with measurement outcomes α and then α′, respectively. This operator product is
still Gaussian, but it is not normalized properly in the sense that Ω(α) is normalized (note that the norm
vanishes if α − α′ becomes large), but we can see from its form that applying this operator to an initially
uncertain state gives 1/(κ + κ′) for the resulting position variance of the state. Hence, a sequence of two
Gaussian measurements is effectively equivalent to a single Gaussian measurement, where the strength is

10Yakir Aharonov, David Z. Albert, and Lev Vaidman, ‘‘How the result of a measurement of a component of the spin of a
spin- 1

2
particle can turn out to be 100,’’ Physical Review Letters 60, 1351 (1988) (doi: 10.1103/PhysRevLett.60.1351). See also

comments by A. J. Leggett, ‘‘Comment on ‘How the result of a measurement of a component of the spin of a spin- 1
2

particle can
turn out to be 100,’ ’’ Physical Review Letters 62, 2325 (1988) (doi: 10.1103/PhysRevLett.62.2325), and Asher Peres, ‘‘Quantum
Measurements with Postselection,’’ Physical Review Letters 62, 2326 (1988) (doi: 10.1103/PhysRevLett.62.2326), as well as
the reply by Y. Aharonov and L. Vaidman, Physical Review Letters 62, 2327 (1988) (doi: 10.1103/PhysRevLett.62.2327).

http://dx.doi.org/10.1103/PhysRevLett.60.1351
http://dx.doi.org/10.1103/PhysRevLett.62.2325
http://dx.doi.org/10.1103/PhysRevLett.62.2326
http://dx.doi.org/10.1103/PhysRevLett.62.2327
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the sum of the individual measurement strengths, as long as no other transformation or evolution occurs
between the two measurements.

Notice how the information from the second measurement is incorporated with that of the first. After
the first measurement, the best estimate for the position of the quantum system is α, with uncertainty 1/

√
κ.

After the second measurement (where the result is α′), the new best position estimate is an average of the
old estimate and the new measurement result,

〈x〉 = ακ+ α′κ′

κ+ κ′
, (19.56)

weighted by the respective uncertainties. The new uncertainty of the estimate is reduced to 1/
√
κ+ κ′.

19.3 Continuous Position Measurement

Now, to construct a continuous measurement of position, we will arrange to have a sequence of weak position
measurements, separated in time by ∆t. We will also let the measurement strength depend on time by making
the rescaling κ −→ 8κ∆t in the measurement operator (19.54), so that

Ω(α;∆t) =

(
4κ∆t

π

)1/4 ∫ ∞
−∞

dx e−2κ∆t(x−α)
2

|x〉〈x|. (19.57)

The factor of 8 here simply gives a convenient normalization for the measurement strength. We will return
to the dependence on the time interval ∆t below, but this particular scaling is necessary to obtain a sensible
limit as ∆t −→ 0.

Now with this set of measurement operators, the probability of obtaining a particular measurement
result α is

P (α) = Tr[Ω(α)ρΩ†(α)]

= Tr

[(
4κ∆t

π

)1/4 ∫ ∞
−∞

dx e−2κ∆t(x−α)
2

|x〉〈x|ρ
(
4κ∆t

π

)1/4 ∫ ∞
−∞

dx′ e−2κ∆t(x
′−α)2 |x′〉〈x′|

]

=

√
4κ∆t

π

∫ ∞
−∞

dx e−4κ∆t(x−α)
2

〈x|ρ|x〉.

(19.58)

In the limit of small ∆t, the Gaussian factor in the integrand is much broader than the position probability
density 〈x|ρ|x〉 for the quantum state. Since it varies slowly over the scale of 〈x|ρ|x〉, the Gaussian factor
can be pulled out of the integral, with x replaced by 〈x〉, near which 〈x|ρ|x〉 is peaked. The integral then
becomes trivial, and we obtain

P (α) =

√
4κ∆t

π
e−4κ∆t[〈x〉−α]

2

, (19.59)

so that the measurement result α is a Gaussian random variable with variance 1/8κ∆t. Noting also that
〈α〉 =〈x〉, we can write α as an explicit Gaussian random variable in terms of a Wiener increment ∆W (also
a Gaussian random variable) as

α =〈x〉+ ∆W√
8κ∆t

(19.60)

since the mean and variance agree with those from the probability density (19.59). Recall that α is an
index for the measurement operator—equivalently, the measurement result for a particular time interval of
duration ∆t—but we may regard it in a sense as a stochastic, dynamical variable, since the measurement is
repeated in time.
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19.3.1 State Collapse and the Stochastic Schrödinger Equation

As the stream of measurement results α(t) comes in, the quantum state must be correspondingly modified
in light of the new measurement information. Recall that a measurement result of α in a particular time
interval of duration ∆t causes the state to transform according to

|ψ(t+∆t)〉 = Ω(α)|ψ(t)〉√
〈ψ(t)|Ω†(α)Ω(α)|ψ(t)〉

. (19.61)

To simplify the evaluation, we can ignore the renormalization factor, so that we can use Eq. (19.57) for the
measurement operator to see that the state change is given by

|ψ̃(t+∆t)〉 = Ω(α)|ψ(t)〉

=

(
4κ∆t

π

)1/4 ∫ ∞
−∞

dx e−2κ∆t(x−α)
2

|x〉〈x|ψ(t)〉

=

(
4κ∆t

π

)1/4

e−2κ∆t(x−α)
2

|ψ(t)〉,

(19.62)

since the x in the exponential is the position operator. Here, the twiddle indicates an unnormalized state
vector. Dropping the normalization factor and inserting expression (19.60) for α, we find

|ψ̃(t+∆t)〉 = exp

[
−2κ∆t

(
x−〈x〉 − ∆W√

8κ∆t

)2
]
|ψ(t)〉

∝ exp
[
−2κ∆t x2 + x

(
4κ〈x〉∆t+

√
2κ∆W

)]
|ψ(t)〉,

(19.63)

where we have dropped the terms in the exponential that do not involve the position operator. In the
infinitesimal limit, we can thus write

|ψ̃(t+ dt)〉 = exp
[
−2κx2 dt+ x

(
4κ〈x〉 dt+

√
2κ dW

)]
|ψ(t)〉

=
[
1− 2κx2 dt+ x

(
4κ〈x〉 dt+

√
2κ dW

)
+ κx2 dW 2

]
|ψ(t)〉

=
[
1−

(
κx2 − 4κx〈x〉

)
dt+

√
2κx dW

]
|ψ(t)〉,

(19.64)

where we have (without approximation) expanded the exponential to first order in dt and second order in
dW , setting dW 2 = dt according to the rules of Itō calculus. Normalizing the new state vector and expanding
to first order in dt (and second in dW ),

|ψ(t+ dt)〉 = |ψ̃(t+ dt)〉√
〈ψ̃(t+ dt)|ψ̃(t+ dt)〉

=

[
1−

(
κx2 − 4κx〈x〉

)
dt+

√
2κx dW

]
|ψ(t)〉√〈

1 + 8κx〈x〉 dt+ 2
√
2κx dW

〉
=
[
1−

(
κx2 − 4κx〈x〉+ 4κ〈x〉2

)
dt−

(
3κ〈x〉2 + 2κx〈x〉

)
dW 2 +

√
2κ(x−〈x〉) dW

]
|ψ(t)〉

=
[
1− κ (x−〈x〉)2 dt+

√
2κ(x−〈x〉) dW

]
|ψ(t)〉,

(19.65)
so that we arrive at the stochastic Schrödinger equation for the continuous position measurement:

d|ψ〉 = −κ (x−〈x〉)2 |ψ〉 dt+
√
2κ(x−〈x〉)|ψ〉 dW. (19.66)
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Again, accompanying the SSE is the measurement record (19.60), which in the infinitesimal limit becomes

dy =〈x〉 dt+ dW√
8κ
, (19.67)

where dy := αdt, or directly in terms of α,

α(t) =〈x〉+ ξ(t)√
8κ
, (19.68)

where as before ξ(t) ≡ dW (t)/dt. In terms of α, the variance sensibly diverges in the infinitesimal limit,
because the information gained in time dt is zero. To obtain position information, the observer must average
dy(t) over some finite time interval:

y(t)

t
=

1

t

∫ t

0

dt′ 〈x〉+ 1√
8κ t

∫ t

0

dW (t′)

=
1

t

∫ t

0

dt′ 〈x〉+ W (t)√
8κ t

(19.69)

The second term represents uncertainty in the measurement, and generically converges to zero as 1/
√
t. The

first term, which represents the position information, would be simply〈x〉 if this expectation value were time-
independent, but the integral requires knowledge of the time evolution of the state, and thus its calculation
requires the solution to the SSE.

19.3.1.1 Gaussian Noise

In constructing the above SSE, we explicitly assumed Gaussian collapse operators Ω(α). This resulted in the
Gaussian noise process dW appearing in the SSE, because in the infinitesimal limit (weak-measurement limit),
the width and thus also the shape of the collapse operator determined the noise statistics of measurement
results α(t). The question is, how general is this? If we had assumed a different form for Ω(α), would we
have obtained a different noise process? The answer is that the infinitesimal limit is an idealization, and
really we should only consider increments

∆y(t) :=

∫ t+∆t

t

dy(t) (19.70)

for the measurement record (and corresponding finite increments for the quantum-state evolution). Such
an increment is a sum over arbitrarily many infinitesimal noise increments, and thus under the continuous
idealization, any ‘‘reasonable’’ form for the probability distribution of the noise increments will give results
equivalent to the choice of Gaussian noise and Gaussian collapse operators, according to the central-limit
theorem. By ‘‘reasonable,’’ we first mean that in the above finite construction, before taking the limit
∆t −→ 0, the variance of the collapse operator (i.e., the variance of the state Ω(α)|ψ〉 for an initially very
uncertain state |ψ〉) should exist and be finite, so that the statistics of many combined collapses are Gaussian.
Further, in the limit ∆t −→ 0, the variance of the infinitesimal increments should be proportional to dt:
otherwise, for a variance scaling of the form dtβ , the above integral ∆y will be either vanish (β > 1) or diverge
(β < 1). Thus, Gaussian noise is general in the sense that any (appropriately normalized) continuous noise
process dV representing a continuous measurement may be regarded as the Wiener process dW , so long as
the integrated increments ∆V have finite variance.

19.3.2 Stochastic Master Equation

As in the case of photodetection, we can generalize the SSE by using it to derive a stochastic master equation,
expanding to second order:11

dρ =
(
d|ψ〉

)
〈ψ|+ d|ψ〉

(
d|ψ〉

)
+
(
d|ψ〉

)(
d|ψ〉

)
. (19.71)

11The Gaussian-projector method in the continuous limit was introduced to derive the unconditioned form for this master
equation first by Carlton M. Caves and G. J. Milburn, ‘‘Quantum-mechanical model for continuous position measurements,’’
Physical Review A 36, 5543 (1987) (doi: 10.1103/PhysRevA.36.5543).

http://dx.doi.org/10.1103/PhysRevA.36.5543
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The resulting SME is

dρ = −κ[x, [x, ρ]] dt+
√
2κ (xρ+ ρx− 2〈x〉 ρ) dW

= 2κD[x]ρ dt+
√
2κH[x]ρ dW,

(19.72)

where recall the superoperators we defined previously in Chapter 18:

D[c]ρ := cρc† − 1

2

(
c†cρ+ ρc†c

)
H[c]ρ := cρ+ ρc† − Tr[cρ+ ρc†]ρ.

(19.73)

Of course, the dW here, while effectively a stochastic variable, is defined in terms of the measurement record
(19.67), so that we may eliminate it and write the SME in terms of the measurement results dy:

dρ = −κ[x, [x, ρ]] dt+ 4κ (xρ+ ρx− 2〈x〉 ρ) (dy −〈x〉 dt)

= 2κD[x]ρ dt+ 4κH[x]ρ (dy −〈x〉 dt).
(19.74)

Also, in writing down this SME (as well as the corresponding SSE above), we have ignored any Hamiltonian
evolution that proceeds in parallel with the measurement process. Thus, Hamiltonian terms should be added
as necessary, so that

dρ = − i
h̄
[H, ρ] dt− κ[x, [x, ρ]] dt+

√
2κ (xρ+ ρx− 2〈x〉 ρ) dW (19.75)

in the case of the SME with system Hamiltonian H. Of course, the corresponding term may be added to
the SSE.

19.3.3 Inefficient Detection and Multiple Observers

Notice that we may write the SME (19.72) as

dρ = −κ[x, [x, ρ]] dt+
√
2κ1H[x]ρ dW1 +

√
2κ2H[x]ρ dW2, (19.76)

and the measurement record as
dy =〈x〉 dt+ dW1√

8κ1
+

dW2√
8κ2

, (19.77)

where dW1 and dW2 are Wiener processes, so long as κ1 + κ2 = κ and we thus identify dW =
√
κ1 dW1 +√

κ2 dW2 as the Wiener process from before. We can then associate dW1 and dW2 with different observers, or
with the information detected and not detected by a single observer.12 This is precisely the same construction
as for photodetection (Section 18.2.8), except now the detector for position information is more abstract.
However, the same ideas apply. Taking κ1 = ηκ (with η ∈ [0, 1]), we can take an ensemble average over all
realizations of dW2 (and then relabel dW1 −→ dW ) to obtain the SME for inefficient detection, where η is
the fraction of information actually received by the observer:

dρ = −κ[x, [x, ρ]] dt+
√
2ηκH[x]ρ dW. (19.78)

Correspondingly, the measurement record becomes

dy =〈x〉 dt+ dW√
8ηκ

(19.79)

12see also A. Barchielli, ‘‘Stochastic differential equations and a posteriori states in quantum mechanics,’’ Int. J. Theor.
Phys. 32, 2221 (1993) (doi: 10.1007/BF00672994); and Jacek Dziarmaga, Diego A. R. Dalvit, Wojciech H. Zurek, ‘‘Conditional
quantum dynamics with several observers,’’ Phys. Rev. A 69, 022109 (2004) (doi: 10.1103/PhysRevA.69.022109).

http://dx.doi.org/10.1007/BF00672994
http://dx.doi.org/10.1103/PhysRevA.69.022109
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for the case of inefficient detection. The bad-detection limit η = 0 leads to

dρ = −κ[x, [x, ρ]] dt, (19.80)

which is simply the unconditioned master equation for a position measurement. In this case, only the
disturbance is left, and we will see shortly that the disturbance term here corresponds to momentum diffusion.

Similarly, the SME (19.76) represents the evolution for position measurement by two observers that
do not share information, but from the point of view of an omniscient observer. Observers 1 and 2 thus have
their own SMEs, given by tracing out the other noise process,

dρ1 = −κ1[x, [x, ρ1]] dt− κ2[x, [x, ρ1]] dt+
√
2κ1H[x]ρ1 dW ′1

dρ2 = −κ1[x, [x, ρ2]] dt− κ2[x, [x, ρ2]] dt+
√
2κ1H[x]ρ2 dW ′2.

(19.81)

Of course, the disturbance for both measurement processes are present, independent of the ensemble averages.
The corresponding measurement records for each observer are

dy1 =〈x〉1 dt+
dW ′1√
8κ1

dy2 =〈x〉2 dt+
dW ′2√
8κ2

.

(19.82)

The Wiener processes dW ′1,2 for the individual observers are in general different from the corresponding
processes dW1,2 from the omniscient observer, because in the individual master equations, the expectation
values are taken with respect to ρ1,2 rather than ρ. Equating (κ1 dy1 + κ2 dy2)/κ with dy,

κ1
κ
〈x〉1 dt+

κ2
κ
〈x〉2 dt+

√
κ1 dW

′
1√

8κ
+

√
κ2 dW

′
2√

8κ
=〈x〉+ dW√

8κ
, (19.83)

we can split up the two terms on the right-hand side consistently and separate the parts depending on κ1
and κ2, so that for example

κ1
κ
〈x〉1 dt+

√
κ1 dW

′
1√

8κ
=
κ1
κ
〈x〉 dt+

√
κ1
κ

dW√
8κ
, (19.84)

and find
dW ′1 =

√
8κ1 [〈x〉 −〈x〉1] dt+ dW1

dW ′2 =
√
8κ2 [〈x〉 −〈x〉2] dt+ dW2

(19.85)

for the relation between the noise sources of the individual observers to the noise sources of the omniscient
observer.

19.3.4 Interpretation

To better see the effects of the measurement terms in the SME (19.72), we will look at the evolution of the
first- and second-order moments, as we did in the case of photodetection. Again deriving the equation of
motion for the expectation value of an arbitrary operator A, essentially by taking Eq. (18.131) and setting
a −→ x, we obtain (now including Hamiltonian evolution)

d〈A〉 = − i

h̄
〈[A,H]〉 dt− κ〈[x, [x,A]]〉 dt+

√
2ηκ

[
〈[x,A]+〉 − 2〈A〉〈x〉

]
dW. (19.86)

Assuming for simplicity a Hamiltonian evolution according to the harmonic-oscillator Hamiltonian

H =
p2

2m
+

1

2
mω 2x2, (19.87)
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it follows that the means and variances obey the evolution equations13

d〈x〉 = 1

m
〈p〉 dt+

√
8ηκVx dW

d〈p〉 = −mω 2
0 〈x〉 dt+

√
8ηκCxp dW

∂tVx =
2

m
Cxp − 8ηκV 2

x

∂tVp = −2mω 2
0 Cxp + 2h̄2κ− 8ηκC 2

xp

∂tCxp =
1

m
Vp −mω 2

0 Vx − 8ηκVxCxp,

(19.88)

where again the variances Vx and Vp are defined by Vα :=
〈
α2
〉
−〈α〉2, and the symmetrized covariance is

Cxp := (1/2)〈[x, p]+〉 −〈x〉〈p〉. In deriving these evolution equations, we have again explicity assumed a
Gaussian state, for which the moments obey [see Eqs. (18.136)]

〈
x3
〉
= 3〈x〉Vx +〈x〉3

1
2

〈
[x, p2]+

〉
= 2〈p〉Cxp +〈x〉

[
Vp +〈p〉2

]
1
4 〈[x, [x, p]+]+〉 = 2〈x〉Cxp +〈p〉

[
Vx +〈x〉2

]
.

(19.89)

These relations explicitly decouple the means and variances from the higher-order moments. Also, since the
Gaussian state is preserved both by the harmonic Hamiltonian evolution and by the position measurement
(which amounts to a Gaussian collapse at each instant in time), there is no loss of generality involved in
assuming a Gaussian state provided that the system starts in a Gaussian state, and even if the system starts
in some other state, the position measurement will eventually force the system into a Gaussian state.

In examining Eqs. (19.88), we can simply use the coefficients to identify the source and thus the
interpretation of each term. The first term in each equation is due to the natural Hamiltonian evolution of
the harmonic oscillator. Terms originating from the D[c]ρ component are proportional to κ dt but not η; in
fact, the only manifestation of this term is the 2h̄2κ term in the equation of motion for Vp. Thus, a position
measurement with rate constant k produces momentum diffusion (heating) at a rate 2h̄2κ, as is required to
maintain the uncertainty principle as the position uncertainty contracts due to the measurement. (This can
also be seen by deriving the Fokker–Planck equation for the Wigner function; see Problem problem:fokker-
planck-x-measurement.)

There are more terms here originating from the H[c]ρ component of the master equation, and they are
identifiable since they are proportional to either √ηκ or ηκ. The dW terms in the equations for 〈x〉 and 〈p〉
represent the stochastic nature of the position measurement. That is, during each small time interval, the
wave function collapses slightly, but we don’t know exactly where it collapses to. The stochastic term in the
〈x〉 equation is proportional to Vx, since the larger the variance, the wider the range of potential collapses.
The stochastic term in the 〈p〉 equation is proportional to Cxp, since a position measurement only induces
momentum collapses if x and p are correlated (Cxp 6= 0). This stochastic behavior is precisely the same
behavior that we saw in Eq. (19.60).

The more subtle point here lies with the nonstochastic terms proportional to ηκ, which came from the
second-order term, as in the last term of

dVx = d
〈
X2
〉
− 2〈X〉 d〈X〉 − (d〈X〉)2, (19.90)

where Itō calculus generates a nonstochastic term from dW 2 = dt. Notice in particular the term of this
form in the Vx equation, which acts as a damping term for Vx. This term represents the certainty gained
via the measurement process. The other similar terms are less clear in their interpretation, but they are

13A. C. Doherty and K. Jacobs, ‘‘Feedback control of quantum systems using continuous state estimation,’’ Physical Review
A 60, 2700 (1999) (doi: 10.1103/PhysRevA.60.2700).

http://dx.doi.org/10.1103/PhysRevA.60.2700
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necessary to maintain consistency of the evolution. Essentially, again Vp and Cxp are only modified by a
position measurement, which you might expect would only influence Vx, if x and p are correlated. Hence
the presence of Cxp in these terms.

Note that we have made the assumption of a Gaussian initial state in deriving these equations, but this
assumption is not very restrictive. Due to the linear potential and the Gaussian collapse operators, these
equations of motion preserve the Gaussian form of the initial state. The Gaussian collapses additionally
converts arbitrary initial states into Gaussian states at long times. Furthermore, as we have mentioned, the
assumption of a Gaussian measurement is not restrictive—under the assumption of sufficiently high noise
bandwidth, the central-limit theorem guarantees that temporal coarse-graining yields Gaussian noise for any
measurement process giving random deviates with bounded variance.

As a simple example to illustrate the conditioned dynamics, below is plotted the evolution of a free
particle (with Hamiltonian H = p2/2m, in units where m = h̄ = 1), with and without a continuous position
measurement. The time runs from t = 0 to t = 10, and the measurement strengths are k = 0 (left) and k = 0.1
(right). In the unconditioned case, the initial variance Vx = 2 spreads ballistically, characteristic of a free
particle. In the measured case, the initial variance Vx = 2 contracts due to the measurement, because position
becomes more certain under the measurement process, until dispersion and the measurement balance. The
centroid also moves stochastically due to the random nature of the measurement process. Of course, the
stochastic motion is different for each possible realization of the measurement process.

x

←
 t

im
e

x

19.3.5 Linear Stochastic Evolution Equations

Recall from Section 19.1.2 that the infinitesimal transformation ρ −→ Ω(dW )ρΩ†(dW ), with collapse oper-
ator

Ω(dW ) = 1− iH
h̄
dt− 1

2
c†c dt+ c dW, (19.91)

leads to the unnormalized evolution equation

dρ̃ = − i

h̄
[H, ρ̃] dt+D[c]ρ̃ dt+

(
cρ̃+ ρ̃c†

)
dW, (19.92)
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where ρ̃ is the unnormalized density operator. Adding the nonlinear term −
〈
c+ c†

〉
ρ dW restores the proper

trace of ρ, and thus leads to the familiar normalized SME

dρ = − i

h̄
[H, ρ] dt+D[c]ρ dt+

(
cρ+ ρc†

)
dW −

〈
c+ c†

〉
ρ dW

= − i

h̄
[H, ρ] dt+D[c]ρ dt+H[c]ρ dW.

(19.93)

This linear SME is clearly equivalent to the linear SSE

d|ψ̃〉 = −iH
h̄
|ψ̃〉 dt− 1

2
c†c|ψ̃〉 dt+ c|ψ̃〉 dW, (19.94)

where |ψ̃〉 is the unnormalized state vector, since this corresponds to the infinitesimal transformation |ψ̃〉 −→
Ω(dW )|ψ̃〉. The corresponding normalized SSE reads

d|ψ〉 = − i
h̄
H|ψ〉 dt− 1

2

[
c†c−

〈
c+ c†

〉
c+

1

4

〈
c+ c†

〉2] |ψ〉 dt+ [c− 1

2

〈
c+ c†

〉]
|ψ〉 dW, (19.95)

as we saw before for homodyne detection, Eq. (18.74). We may regard the corresponding measurement
record (up to an arbitrary factor) in either case to be

dr(t) =
〈
c+ c†

〉
dt+ dW. (19.96)

Despite the fact that it does not preserve the norm of the state, the linear SME (19.92) and linear SSE
(19.94) are still useful—provided that they are interpreted properly—precisely because they are linear and
thus facilitate analytic solutions.14

19.3.5.1 Norm of the Linear Solution

To see the effect of using the unnormalized equation, consider the evolution of the norm of the state in an
infinitesimal time interval, assuming the state is initially normalized:

Tr[ρ̃(t+ dt)] = Tr[Ω(dW )ρ(t)Ω†(dW )]. (19.97)

That is, the norm is just the probability that the outcome labeled by the value of dW occurred. The normaliza-
tion factors for evolution in subsequent time intervals simply multiply, and so for an initially normalized state
at t = 0, the normalization (trace) of the final state ρ̃(t) gives the probability that the particular realization
dW (t) of the measurement actually occurred.

19.3.5.2 Interpretation of the Solution

However, for the same realization dW (t), the evolution according to the linear SSE (SME) is not equivalent
to evolution according to the normalized SSE (SME). We can see this because the linear evolution is given in
terms of the transformation operator Ω(dW ) (19.91), which is labeled solely by the stochastic variable dW ,
which is independent of the state. By contrast, the normalized evolution of the state corresponds to collapse
operators Ω(dr), which are labeled by the measurement result dr(t) (19.96), which depends on the state via
the expectation value. The linear evolution thus corresponds to taking dr(t) = dW , that is, shifting the
measurement results by the amount

〈
c+ c†

〉
. Thus, the unnormalized evolution according to the linear SSE

(SME), after renormalization at the end, corresponds to the correct normalized evolution for some possible
measurement realization dr(t), just not the one given by Eq. (19.96). In fact, the measurement record
corresponding to the linear evolution is generically much less likely than, say, the realization according to
Eq. (19.96), which occurs with the same probability as that for choosing the realization of dW (t). However,

14Peter Goetsch and Robert Graham, ‘‘Linear stochastic wave equations for continuously measured quantum systems,’’
Physical Review A 50, 5242 (1994) (doi: 10.1103/PhysRevA.50.5242); H. M. Wiseman, ‘‘Quantum trajectories and quantum
measurement theory,’’ Quantum and Semiclassical Optics 8, 205 (1996) (doi: 10.1088/1355-5111/8/1/015).

http://dx.doi.org/10.1103/PhysRevA.50.5242
http://dx.doi.org/10.1088/1355-5111/8/1/015
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as we argued above, the norm of the unnormalized state gives the probability that this realization dr(t) = dW
actually occurred, and so as long as we weight these trajectories appropriately in any ensemble average, we
have no problem.

Thus, to summarize: linear SSEs and SMEs give different conditioned evolution than their normalized
counterparts, and in fact they realize particular evolutions with the wrong probability (assuming dW (t) is
chosen with the proper probability), but the probability for realizing any particular simulated trajectory
is given by the final norm of the state. Simulation according to the normalized equations always gives
solutions that are equally likely if dW (t) is chosen with the proper probability. To see another example of
this in terms of the position measurement, recall from Eq. (19.64) that the infinitesimal evolution under a
continuous position measurement is given by

|ψ̃(t+ dt)〉 =
[
1−

(
κx2 − 4κx〈x〉

)
dt+

√
2κx dW

]
|ψ(t)〉, (19.98)

where, although the result is not normalized, the result is chosen with the correct probability by our con-
struction. The corresponding position measurement record was

dy =〈x〉 dt+ dW√
8κ
, (19.99)

in terms of which we can write the above evolution as

|ψ̃(t+ dt)〉 =
[
1− κx2 dt+ 4κx dy

]
|ψ(t)〉. (19.100)

Now if we make the replacement dy −→ dW/
√
8κ, that is we shift the mean of the distribution of position-

measurement results, we obtain the infinitesimal evolution

|ψ̃(t+ dt)〉 =
[
1− κx2 dt+

√
2κx dW

]
|ψ(t)〉. (19.101)

corresponding to the linear SSE for position measurement,

d|ψ̃〉 = −κx2|ψ̃〉 dt+
√
2κx|ψ̃〉 dW, (19.102)

or equivalently the SME
dρ̃ = −κ[x, [x, ρ]] dt+

√
2κ (xρ̃+ ρ̃x) dW (19.103)

for position measurement, equivalent to the general forms (19.102) and (19.103) with c =
√
2κx.

19.3.5.3 Explicit Solutions of Measurement Dynamics

In the linear form, then, analytic solutions become more tractable. The solution to the linear SSE (19.94) is
thus given by noting that

ea dt+b dW = 1 + a dt+ b dW +
1

2
b2 dW 2 = 1 +

(
a+

b2

2

)
dt+ b dW, (19.104)

so that composing infinitesimal exponential evolution operations gives

|ψ̃(t)〉 = exp
[
− i
h̄

∫ t

0

H(t′) dt′ − 1

2

∫ t

0

(
c†c+ c2

)
dt′ +

∫ t

0

c dW (t′)

]
|ψ(0)〉 (19.105)

if c and H commute, which in the case of having no explicit time dependence of c (i.e., the measurement is
not changed with time) and a time-independent Hamiltonian becomes

|ψ̃(t)〉 = exp
[
− iHt

h̄
− 1

2

(
c†c+ c2

)
t+ cW (t)

]
|ψ(0)〉. (19.106)
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Recall that W (t) is a Gaussian random variable with zero mean and variance t, so that we do not need the
entire history dW (t) to compute the final solution.

Now consider a nondemolition measurement of a Hermitian observable operator Q (i.e., the mea-
surement leaves eigenstates of Q in eigenstates of Q), so that we let c =

√
2κQ in the above equations, and

have a corresponding measurement record

dy =〈Q〉+ dW√
8κ

(19.107)

for the conditioned evolution. Then the final state is

|ψ̃(t)〉 = exp
[
− iHt

h̄
− 2κQ2 t+

√
2κQW (t)

]
|ψ(0)〉. (19.108)

Decomposing the initial state into eigenstates |q〉 of Q,

|ψ(0)〉 =
∑
q

cq|q〉, (19.109)

we may write the final state as

|ψ̃(t)〉 =
∑
q

cq exp
[
− iEqt

h̄
− 2κq2 t+

√
2κ qW (t)

]
|q〉, (19.110)

where H|q〉 = Eq|q〉. Now recall that the probability of this particular outcome is given by the norm of the
final state

〈ψ̃(t)|ψ̃(t)〉 =
∑
q

|cq|2 exp
[
−4κq2 t+

√
8κ qW (t)

]
. (19.111)

or in terms of the rescaled Wiener process

Y (t) :=
W (t)√
8κ t

, (19.112)

the norm becomes
〈ψ̃(t)|ψ̃(t)〉 =

∑
q

|cq|2 exp
[
−4κq2 t+ 8κtq Y (t)

]
. (19.113)

But the actual probability for realizing Y (t) is the probability for picking Y (t) in a simulation (i.e., the
corresponding Gaussian probability for picking W (t)), multiplied by the norm of the final state:

P (Y, t) =
1√
2πt

e−W
2/2t dW

dY
〈ψ̃(t)|ψ̃(t)〉

=

√
4κt

π
e−4κtY

2 ∑
q

|cq|2 exp
[
−4κq2 t+ 8κtq Y (t)

]
=

√
4κt

π

∑
q

|cq|2e−4κt(Y−q)
2

.

(19.114)

That is, the probability distribution for Y (t) is a sum of Gaussians of width 1/
√
8κt, centered about each

eigenvalue q and weighted by the usual Born probability c 2q . But recalling that using the linear SSE amounts
to choosing the measurement record with the expectation value of the observable removed,

dy =
dW√
8κ
, (19.115)
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and thus we interpret

Y (t) =
1

t

∫ t

0

dy(t′) (19.116)

as simply the time-averaged measurement result. Thus, we have shown in the case where there is no real
interplay between the measurement and the Hamiltonian evolution, we can solve the measurement evolution
explicitly and see that the time average of the measurement record gives the observed value of Q for a
particular trajectory (particular experiment). This observed value converges (almost always) to an eigenvalue
of the discrete observable as 1/

√
t.

19.4 Imaged Resonance Fluorescence as a Position Measurement

Now we will consider several physical examples of position measurements, taking a single atom as a concrete
example of a quantum-mechanical particle. The first one we will consider is the case of photodetection of
ordinary resonance fluorescence, where the atom is excited by a plane wave, as we have already treated in
Chapter 18. However, to gain position information, it is not sufficient to simply detect the photons, you have
to image the scattered light, just as you would use a camera or a microscope to locate a small object.

19.4.1 Center-of-Mass Dynamics

We can write the SME for spontaneous emission as usual as

dρ = − i

h̄
[H, ρ]dt− Γ

2
H[σ†σ]ρ dt+ J [σ]ρ dN, (19.117)

with superoperators

J [c]ρ :=

(
cρc†

〈c†c〉
− ρ
)

H[c]ρ := cρ+ ρc† −
〈
c+ c†

〉
ρ,

(19.118)

and a Poisson process characterized by
〈〈dN〉〉 = Γ

〈
σ†σ

〉
dt. (19.119)

Now we want to consider how the evolution of the atomic internal state influences the atomic center-of-
mass motion. We need to explicitly include the mechanical effects of the resonance fluorescence. First, we
will model the situation of angle-resolved photodetection, where we break up the Poisson process dN into
many infinitesimal Poisson processes dN(θ, φ)/dΩ, corresponding to emission in any possible direction (θ, φ).
Additionally, if the photon is detected in the direction k, then the atom must recoil with momentum −h̄k,
which is equivalent to applying the operator

σe−ik·r (19.120)

to the atomic state at each detection event, rather than just the lowering operator σ. Thus, for the term
describing each subprocess dN(θ, φ)/dΩ, we make the replacement

σ −→ σe−ik·r, (19.121)

where k points along the direction (θ, φ), and then sum over all angles to obtain

dρ = − i

h̄
[H, ρ] dt− Γ

2
H[σ†σ]ρ dt+

∫
dΩJ

[
σe−ik·r

]
ρ
dN(θ, φ)

dΩ
. (19.122)

(Compare to the form (5.404) of the atom–field interaction Hamiltonian, where the spatial dependence of
the field enters via the Rabi frequency.) The Poisson processes are characterized by the means

〈〈dN(θ, φ)

dΩ
〉〉 = Γ

〈
σ†σ

〉
fε̂(θ, φ) dt, (19.123)
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where fε̂(θ, φ) is the dipole radiation pattern for a dipole unit vector of ε̂. In the Weisskopf–Wigner treatment
of spontaneous emission in Chapter 11, we obtained this master equation by simply accounting for the spatial
dependence of the vacuum field modes by letting

gk −→ gke
ik·r (19.124)

in the atom–field interaction Hamiltonian to obtain

HAF =
∑
k,ζ

h̄
(
gk,ζak,ζσ

†eik·r + g∗k,ζa
†
k,ζσe

−ik·r
)
, (19.125)

and then expanding the state vector also in the momentum basis

|ψ〉 =
∫
d3pψe(p)|p, e〉+

∫
d3p
∑
k,ζ

ψk,ζ(p)|p, g, 1k,ζ〉. (19.126)

In the weak-excitation limit, we can take the magnitude of k to have the value of an externally applied probe
field, which will generally be near enough to resonance that it will match the resonant wave number (if the
detuning is very large, the Rayleigh-scattered photons are elastically scattered from the incident field and
thus have the same wave number as the driving field). Recall that the measurement terms only account for
the momentum recoil on emission; any additional recoil due to photon absorption is already accounted for
by the Hamiltonian evolution (see, e.g., Section 5.8.6.6).

We can simplify the angle-resolved SME by carrying out the angular integral, defining dN to be one
whenever max[dN(θ, φ)] = 1. The result is

dρ = − i

h̄
[H, ρ]dt− Γ

2
H[σ†σ]ρ dt+ J

[
σe−ik·r

]
ρ dN, (19.127)

with
〈〈dN〉〉 = Γ

〈
σ†σ

〉
dt (19.128)

as before. The angles θ and φ are then stochastic variables with probability density f(θ, φ) sin θ.

19.4.2 Imaging

The above master equation (19.122) is for an angle-resolving detector. What we see is that angle-resolved
detection keeps explicit track of the atomic momentum kicks due to spontaneous emission. An imaging
detector, on the other hand, gives up resolution of the direction of the emitted photon wave vector k, thus
obtaining instead some position information about the atom. An imaging system operates by summing
fields from many directions together and then detecting the resulting interference pattern. The procedure
for obtaining the measurement operators for the imaging system is as follows.15 Notice that we can regard
the master equation (19.122) as a normal jump process of the form (19.117), with measurement operators

σ(θ, φ) =
√
f(θ, φ)σe−ikz cos θ, (19.129)

where we sum over all possible emission angles. In writing down this family of operators, we are specializing
to one-dimensional motion along the z-axis (x = y = 0), so we only require the z-component k cos θ of
k. This operator ranges from −1 to 1 in cos θ and from 0 to 2π in φ. Thus, we can write down Fourier
coefficients (operators) for σ(θ, φ), since these functions are defined on a bounded domain, with two indices
α and β:

σ̃αβ =
σ√
4π

∫ 2π

0

dφ

∫ 1

−1
d(cos θ)

√
f(θ, φ) e−ikz cos θeiαπ cos θeiβφ. (19.130)

15M. Holland, S. Marksteiner, P. Marte, and P. Zoller, ‘‘Measurement Induced Localization from Spontaneous Decay,’’ Phys-
ical Review Letters 76, 3683 (1996) (doi: 10.1103/PhysRevLett.76.3683); W. Greenwood, P. Pax, and P. Meystre, ‘‘Atomic
transport on one-dimensional optical lattices,’’ Physical Review A 56, 2109 (1997) (doi: 10.1103/PhysRevA.56.2109). For one
experimental implementation, see Hidetoshi Katori, Stefan Schlipf, and Herbert Walther, ‘‘Anomalous Dynamics of a Single
Ion in an Optical Lattice,’’ Physical Review Letters 79, 2221 (1997) (doi: 10.1103/PhysRevLett.79.2221).

http://dx.doi.org/10.1103/PhysRevLett.76.3683
http://dx.doi.org/10.1103/PhysRevA.56.2109
http://dx.doi.org/10.1103/PhysRevLett.79.2221
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However, this expression corresponds to imaging via an ideal imaging system, where the aperture extends
over the full 4π solid angle (requiring, for example, arbitrarily large lenses on either side of the atom). In
practice it is rare to come anywhere close to this extreme. Thus, we include the effects of an aperture
that only allows the imaging system to detect radiated light within a limited solid angle. We thus take the
intensity transmission of the aperture to be represented by the function T (θ, φ), so that we explicitly ignore
any phase-shift effects of the aperture. The collapse operator for imaged detection is thus modified to be
the Fourier transform of the angular distribution, which now includes the aperture function:

σ̃αβ =
σ√
4π

∫ 2π

0

dφ

∫ 1

−1
d(cos θ)

√
T (θ, φ)f(θ, φ) e−ikz cos θeiαπ cos θeiβφ. (19.131)

Of course, any phase mask could be modeled by introducing a factor exp[iϕ(θ, φ)] in the above integrand.
Now consider the φ part of the above integral, which we may write as

aβ :=
1√
2π

∫ 2π

0

dφ
√
T (θ, φ)f(θ, φ) eiβφ. (19.132)

Note that in this part of the measurement operator, there is no position dependence, and thus we will be
able to eliminate it from the dynamics. With our normalization convention, we have chosen our normalized
basis functions as eiβφ/

√
2π, and thus

∞∑
β=−∞

eiβ(φ−φ
′) = 2πδ(φ− φ′), (19.133)

where the argument of the delta function is taken modulo 2π, so that we have the overall normalization
∞∑

β=−∞

a†βaβ =

∫ 2π

0

dφT (θ, φ)f(θ, φ). (19.134)

If we trace over the measurement result β, this amounts to using the reduced density operator
∞∑

β=−∞

aβρa
†
β = ρ

∫ 2π

0

dφT (θ, φ)f(θ, φ), (19.135)

which is equivalent to making the replacement

aβ −→
√
T̃ (θ) (19.136)

in the operator σ̃αβ , where we now have the effective aperture

T̃ (θ) :=

∫ 2π

0

dφT (θ, φ)f(θ, φ). (19.137)

Thus, the measurement operator (19.131) loses the irrelevant index β, and reduces to

σ̃α = N A(z − αλ/2)σ, (19.138)

where the effect on the position degree of freedom due to the photodetection is given by the operator

A(z) :=
1

N
√
2

∫ 1

−1
d(cos θ)

√
T̃ (θ) e−ikz cos θ, (19.139)

and N is a normalization constant that does not influence the effect of the operator. The A(z) operators,
for ‘‘reasonable’’ apertures, contain localized functions of the position z, and thus correspond to position
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measurements. Again, the effect of the operator σ̃α is equivalent to that of the original form σ̃αβ , but with
a trace over β:

σ̃αρσ̃
†
α =

∞∑
β=−∞

σ̃αβρσ̃
†
αβ . (19.140)

The idea here is that for motion along the z-axis, photons going into any azimuthal angle φ are equivalent
as far as providing position information about the atom. Thus, the θ dependence of the aperture will be
most important, but the φ dependence gives some effective θ dependence if the aperture is not separable in
(θ, φ).

Notice that with the normalization convention for the Fourier coefficients here, if we remove the
aperture by setting T (θ, φ) = 1, we have∫

dΩσ†(θ, φ)σ(θ, φ) =
∑
α

σ̃†ασ̃α = σ†σ, (19.141)

so that the set of measurement operators is complete and properly normalized in either basis. An arbitrary
aperture mask will then reduce the efficiency of the measurement, since not all of the photons will be detected.
In this case, ∑

α

σ̃†ασ̃α = ηΩσ
†σ, (19.142)

where we have defined the detection efficiency of the angular aperture by

ηΩ :=

∫ 2π

0

dφ

∫ 1

−1
d(cos θ)T (θ, φ)f(θ, φ) =

∫ 1

−1
d(cos θ) T̃ (θ). (19.143)

While this is the efficiency for photon detection, we will see that in general this is not the same as the
efficiency for information gain.

If we then choose the normalization N =
√
ηΩ, we will thus have the detection operator

σ̃α =
√
ηΩA(z − αλ/2)σ, (19.144)

where the effect on the position degree of freedom due to the photodetection is given by the operator

A(z) =
1√
2ηΩ

∫ 1

−1
d(cos θ)

√
T̃ (θ) e−ikz cos θ, (19.145)

so that we associate the efficiency of the detection explicitly with the collapse operator, and now in view of
the normalization (19.142), the operators A(z) form a POVM.

We can thus get the imaged-detection SME from the angle-resolved form (19.122) by first separating
the angular part of the measurement term according to what fraction of light at a given angle makes it
through the aperture:

dρ = − i

h̄
[H, ρ]dt− Γ

2
H[σ†σ]ρ dt+

∫
dΩJ

[
σe−ikz cos θ]ρ dN1(θ, φ)

dΩ
+

∫
dΩJ

[
σe−ikz cos θ]ρ dN2(θ, φ)

dΩ
.

(19.146)
Here, dN1(θ, φ)/dΩ enumerates the processes by which a photon is detected through the aperture, satisfying

〈〈dN1(θ, φ)

dΩ
〉〉 = Γ

〈
σ†σ

〉
T (θ, φ)f(θ, φ) dt, (19.147)

and dN2(θ, φ)/dΩ represents the fictitious processes by which the photons that are blocked by the aperture
are detected, and thus satisfies

〈〈dN2(θ, φ)

dΩ
〉〉 = Γ

〈
σ†σ

〉
[1− T (θ, φ)]f(θ, φ) dt, (19.148)
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so that taking the two processes together is equivalent to the original model. Eliminating the undetected
photons, we take an ensemble average over dN2/dΩ to obtain

dρ = − i

h̄
[H, ρ]dt+Γ

∫ 1

−1
d(cos θ) R̃(θ)D

[
σe−ikz cos θ]ρ dt−ηΩΓ

2
H[σ†σ]ρ dt+

∫
dΩJ

[
σe−ikz cos θ]ρ dN1(θ, φ)

dΩ
,

(19.149)
where the second term is the quantum backaction due to the undetected photons, the third term is the
backaction due to the detected photons, and the last term represents the gain of measurement information.
Here we have defined the angular distribution of blocked photons

R̃(θ) :=

∫ 2π

0

dφ [1− T (θ, φ)]f(θ, φ), (19.150)

so that the transmitted and blocked distributions add to the ‘‘natural’’ radiation pattern when there is no
aperture:

T̃ (θ) + R̃(θ) =

∫ 2π

0

dφ f(θ, φ). (19.151)

Now from our argument relating the position-sensitive operators σ̃α to the momentum-kicking operators
σe−ikz cos θ, we may rewrite the last term as a sum over σα:

dρ = − i

h̄
[H, ρ]dt+ Γ

∫ 1

−1
d(cos θ) R̃(θ)D

[
σe−ikz cos θ]ρ dt− ηΩΓ

2
H[σ†σ]ρ dt+

∞∑
α=−∞

J [σ̃α]ρ dNα. (19.152)

This amounts to a unitary transformation on the measurement operators, under which the rest of the master
equation is invariant, as implied by the completeness in Eq. (19.140). Here, the Poisson processes are
characterized by

〈〈dNα〉〉 = ηΩΓTr
[
σ†σ|A(z − αλ/2)|2ρ

]
dt, (19.153)

so that the probability of the measurement outcome α goes as the squared modulus of the overlap of
A(z − αλ/2) with the center-of-mass part of the atomic wave function ψ(z). Again, we may combine the
Poisson processes dNα into a single process dNΩ,

dρ = − i

h̄
[H, ρ]dt+ Γ

∫ 1

−1
d(cos θ) R̃(θ)D

[
σe−ikz cos θ]ρ dt− ηΩΓ

2
H[σ†σ]ρ dt+ J [σ̃α]ρ dNΩ, (19.154)

where the combined Poisson process is characterized by

〈〈dNΩ〉〉 = ηΩΓ
〈
σ†σ

〉
dt, (19.155)

and the probability distribution for the integer outcome α is the expectation value

P (α) =

∫
dz 〈e, z|ρ|e, z〉|A(z − αλ/2)|2. (19.156)

The expectation value is taken with respect to the excited-state part |e〉 of the atomic state, since this is
what survives after the reduction ρ −→ σρσ†/

〈
σ†σ

〉
representing the photon detection. Notice also that the

set of possible measurement values is not continuous, but rather is discretely spaced by λ/2, which is rather
odd for the result of a position measurement. However, this is the case because the Fourier transform was
taken with respect to a bounded domain, and is thus a consequence of the sampling theorem (Chapter 25):
the information contained in a function on a bounded, continuous domain is equivalent in the Fourier domain
to the information in a function on a discrete (but infinite) domain.
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19.4.2.1 Example: 4π Detection

As an example of a particular form for the position-reduction operator A(z), a radiating atomic dipole
oriented along the z-axis has

fẑ(θ, φ) =
3

8π
sin2 θ, (19.157)

in which case the effective aperture becomes

T̃ (θ) =
3

4
sin2 θ. (19.158)

This gives the measurement operator

A(z) =

√
3π2

8

J1(kz)

kz
, (19.159)

where J1(x) is an ordinary Bessel function. Since J1(x) decays as x−1/2 for large x, the tails of the collapse
operator here decay as z−3/2.

19.4.2.2 Example: Small Gaussian Aperture

Often in real situations, the aperture subtends only a small solid angle. Intuitively, one expects a camera
imaging system to be most effective when oriented normal to the z-axis, so we choose the aperture to be
centered about θ = π/2.

detector

dq

x

y z

We can also arbitrarily take the aperture to be centered about φ = 0. It is mathematically convenient
to assume a Gaussian transmission function for the aperture, and we thus take the intensity transmission
function of the aperture to be

T (θ, φ) = exp
[
− 2(θ − π/2)2

(δθ)2

]
exp
[
− 2φ2

(δφ)2

]
(19.160)

where δθ and δφ are the same for a circular aperture. Now the effective aperture becomes

T̃ (θ) ≈ ηφ exp
[
− 2(θ − π/2)2

(δθ)2

]
, (19.161)

where the azimuthal angular integral is

ηφ(θ) :=

∫ π

−π
dφ exp

[
− 2φ2

(δφ)2

]
f(θ, φ). (19.162)

We can suppress the dependence on θ by assuming that the distribution function f(θ, φ) varies slowly over
the width δθ of the aperture (in particular, we should not choose the aperture to be near a direction in which
the radiation pattern vanishes). This happens when the aperture is narrow, and the result is the constant
efficiency

ηφ ≈
∫ π

−π
dφ exp

[
− 2φ2

(δφ)2

]
f(θ = π/2, φ). (19.163)
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If f(θ, φ) is the usual dipole radiation pattern (19.157), then we may take f(θ = π/2, φ) = 3/8π, and thus

ηφ ≈
3

8π

∫ ∞
−∞

dφ exp
[
− 2φ2

(δφ)2

]
=

3δφ

8
√
2π

(19.164)

in the limit where δφ is small.
If δθ is small, then the integrand is only appreciable for θ near π/2 due to the Gaussian factor.

Recentering the integrand in Eq. (19.145), making the small-angle approximation in the rest of the integrand,
and extending the limits of integration, we find

A(z) =

√
ηφ
2ηΩ

∫ π/2

−π/2
dθ cos2 θ e−ikz sin θ exp

[
− θ2

(δθ)2

]
≈
√

ηφ
2ηΩ

∫ ∞
−∞
dθ e−ikzθ exp

[
− θ2

(δθ)2

]
=

√
πηφ
2ηΩ

δθ exp

[
−
(
k δθ

2

)2

z2

]
.

(19.165)

Thus, the measurement operator in this case is also Gaussian. We can write the fraction of photons trans-
mitted by the aperture as

ηΩ =

∫ 1

−1
d(cos θ) T̃ (θ) ≈ ηφ

√
π

2
δθ (19.166)

in the same regime of small δθ, and thus the Gaussian operator becomes

A(z) =

√√
π

2
δθ exp

[
−
(
k δθ

2

)2

z2

]
(19.167)

upon eliminating ηΩ.

19.4.3 Adiabatic Elimination of the Internal Atomic State

So far, we have seen how the internal and external dynamics of the atom are intrinsically linked. Now we
want to focus on the external atomic dynamics. To do so, we will take advantage of the natural separation
of the time scales of the dynamics. The internal dynamics are damped at the decay rate Γ, which is typically
on the order of ∼107 s−1. The external dynamics are typically much slower, corresponding to kHz or smaller
oscillation frequencies for typical laser dipole traps. The adiabatic approximation assumes that the internal
dynamics equilibrate rapidly compared to the external dynamics, and are thus always in a quasi-equilibrium
state with respect to the external state.

19.4.3.1 Internal Quasi-Equilibrium

At this point, we must consider the internal atomic dynamics more precisely, and as a review we will
compactly rederive the necessary steady-state results from Section 5.5.1. A resonant, driving (classical) laser
field enters in the usual form

H̃AF =
h̄Ω

2

(
σe−ikD·r + σ†eikD·r

)
, (19.168)

where the Rabi frequency Ω characterizes the strength of the laser–atom interaction, and we have included the
spatial dependence of a driving plane-wave driving field Ω(r) = ΩeikD·r propagating along kD. Restricting
our attention again to the z-axis, the Hamiltonian becomes

H̃AF =
h̄Ω

2

(
σe−ikDz cos θD + σ†eikDz cos θD

)
, (19.169)



888 Chapter 19. Position Measurement

In writing down this interaction, we have made (as before) the standard unitary transformation to a rotating
frame where the free atomic Hamiltonian H̃A = 0. Note that if the driving field propagates along a normal
to the z-axis, the spatial dependence of the field vanishes in H̃AF.

The usual unconditioned master equation with this interaction, but neglecting the external motion
(that is equivalent to the usual, on-resonance optical Bloch equations) is

∂tρ = − i

h̄
[H̃D, ρ] + ΓD[σ]ρ. (19.170)

This equation implies that the expectation value of an operator A evolves as

∂t〈A〉 = −
i

h̄

〈
[A, H̃D]

〉
+ Γ

〈
σ†Aσ − 1

2
[σ†σ,A]+

〉
. (19.171)

This gives the following equations of motion for the density-matrix elements ραβ := 〈α|ρ|β〉:

∂tρee = ∂t
〈
σ†σ

〉
=
iΩ

2

[
〈σ〉 e−ikDz cos θD −

〈
σ†
〉
eikDz cos θD

]
− Γ

〈
σ†σ

〉
,

∂tρeg = ∂t〈σ〉 =
iΩeikDz cos θD

2

(〈
σ†σ

〉
−
〈
σσ†

〉)
− Γ

2
〈σ〉 .

(19.172)

The remaining matrix elements are determined by ρge = ρ∗eg and ρgg =
〈
σσ†

〉
= 1−

〈
σ†σ

〉
. Setting the time

derivatives to zero, we can solve these equations to obtain (as we already derived in Section 5.5.1)〈
σ†σ

〉
t→∞ =

Ω2/Γ2

1 + 2Ω2/Γ2
,

〈σ〉t→∞ =
−iΩeikDz cos θD/Γ

1 + 2Ω2/Γ2
,

(19.173)

for the internal steady-state of the atom.

19.4.3.2 External Master Equation

To make the adiabatic approximation and eliminate the internal dynamics, we note that there is no effect
on the external dynamics apart from the slow center-of-mass motion in the potential V (x) and the collapses
due to the detection events. When the internal timescales damp much more quickly than the external time
scales, we can make the replacements 〈

σ†σ
〉
−→

〈
σ†σ

〉
t→∞

〈σ〉 −→〈σ〉t→∞
(19.174)

in the master equation (19.154) and mean Poisson process (19.155). In this approximation, we will similarly
ignore the fast fluctuations of the atomic operators, which do not substantially couple to the slow atomic
dynamics, and thus also make the replacements

σ†σ −→
〈
σ†σ

〉
t→∞

σ −→〈σ〉t→∞ .
(19.175)

Furthermore, we will work in the small-excitation regime (Ω� Γ), so that〈
σ†σ

〉
≈
〈
σ†
〉
〈σ〉 ≈ Ω2

Γ2
. (19.176)

In this case, the master equation simplifies and becomes

dρ = − i

h̄
[HCM, ρ]dt+ γ

∫ 1

−1
d(cos θ) R̃(θ)D

[
eikDz cos θDe−ikz cos θ]ρ dt+ J [A(z − αλ/2)eikDz cos θD

]
ρ dNΩ,

(19.177)
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where the mean of the Poisson process becomes

〈〈dNΩ〉〉 = ηΩγ dt, (19.178)

and we have defined the mean spontaneous-scattering rate

γ := Γ
〈
σ†σ

〉
. (19.179)

The Hamiltonian HCM refers to the external, center-of-mass Hamiltonian for the atom, since the evolutions
according to the atomic Hamiltonian H̃A and H̃AF are trivial in this regime. Notice that the disturbance
(backaction) term contains two momentum-shift operators, a deterministic one for absorption and a random
one for spontaneous emission. The absorption disturbance can be eliminated in this one-dimensional analysis
by taking the driving wave vector kD to be orthogonal to the z-axis (θD = π/2).

There is effectively now no dependence on the internal atomic degrees of freedom in the master equation,
since all such dependence has been reduced to constant averages. We can thus take a partial trace over the
internal degrees of freedom by defining the external density operator

ρext :=〈e|ρ|e〉+〈g|ρ|g〉 , (19.180)

so that we obtain

dρext = −
i

h̄
[HCM, ρext]dt+ γ

∫ 1

−1
d(cos θ) R̃(θ)D

[
eikDz cos θDe−ikz cos θ]ρext dt

+ J
[
A(z − αλ/2)eikDz cos θD

]
ρext dNΩ.

(19.181)

Now we have what we want: a master equation for the atomic center-of-mass state that exhibits localizing
collapses due to a physical measurement process. What we essentially have is continuous evolution, with the
end of each interval of mean length (ηΩγ)

−1 punctuated by a measurement reduction of the form

ρext −→
eikDz cos θDA(z − αλ/2)ρextA

†(z − αλ/2)e−ikDz cos θD

〈|A(z − αλ/2)|2〉
. (19.182)

But note that here there is extra disturbance for the amount of information we gain, because the aperture
only picks up a fraction of the available information. We will return to this point shortly.

19.4.4 White-Noise Limit: Gaussian Aperture

Now we will take the white-noise limit, and we will thus obtain a master equation in the standard form for
an inefficient, continuous position measurement. To do this, we will consider the case of a small Gaussian
aperture, for which we showed the collapse operator was Gaussian and given by Eq. (19.167). As in the finite-
step construction of the continuous position measurement, the Gaussian collapse operator A(α) is applied
to the state after every time interval of average length ∆t = (ηΩγ)

−1. In the regime of slow atomic center-
of-mass motion, the collapses come quickly compared to the motion. Then it is a good approximation (in
the temporal coarse-graining sense) to take the formal limit ∆t −→ 0, while keeping the rate of information
gain constant.

19.4.4.1 Spatial Continuum Approximation

If an atom is initially completely delocalized, after one photon is detected and the collapse operator A(z−α′)
applies, where α′ = αλ/2, the atom is reduced to a width of order

δα =
1

k δθ
=

λ

2π δθ
. (19.183)

Since this is much larger than the spacing
∆α =

π

k
=
λ

2
, (19.184)
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it is effectively impossible to ‘‘see’’ the discreteness of the measurement record, and it is a good approximation
to replace the set of measurement operators with a set corresponding to a continuous range of possible
measurement outcomes. Since in the limit of small spacing ∆x, it is a good approximation to write an
integral as a sum ∑

n

f(n∆x)∆x =

∫
dx f(x) (19.185)

for an arbitrary function f(x), we can make the formal replacement

A(z − α′) −→ A(z − α′)√
∆α

(19.186)

to obtain the continuum limit of the position collapse operators with proper normalization, now regarding
α′ as a continuous position index rather than a discrete real index of spacing λ/2. Dropping the prime from
α′, and using Eq. (19.183) in Eq. (19.167), we now have the collapse operator

A(z − α) =

√
1√
2πδα

exp
[
− (z − α)2

4(δα)2

]
. (19.187)

We have implicitly written down this operator in the position basis, so technically we should write

A(z − α) =
∫
dz|z〉〈z|

√
1√
2πδα

exp
[
− (z − α)2

4(δα)2

]
(19.188)

to be general. Again, α is now a continuous index with dimensions of length, rather than an integer index.
Modifying the SME (19.177) appropriately, and taking cos θD = 0 (i.e., taking the direction of the

pump beam to be orthogonal to the z-axis), we now have

dρext = −
i

h̄
[HCM, ρext]dt+ γ

∫ 1

−1
d(cos θ) R̃(θ)D

[
e−ikz cos θ]ρext dt+ J [A(z − α)]ρext dNΩ. (19.189)

The probability density for α is then, with the appropriate modification of Eq. (19.156),

P (α) =

∫
dz 〈z|ρext|z〉|A(z − α)|2 =

∫
dz 〈z|ρext|z〉

1√
2πδα

exp
[
− (z − α)2

2(δα)2

]
. (19.190)

If the atomic wave packet is well localized beyond the scale δα, the probability distribution is thus Gaussian
with variance (δα)2.

19.4.4.2 Quantum-State Diffusion

Comparing the collapse operator A(z) of Eq. (19.188) with the collapse operator (19.57) we see that they
are the same if we identify

4κ∆t =
1

2(δα)2
. (19.191)

Solving for the measurement strength κ, using ∆t = 1/ηΩγ,

κ =
ηΩγ

8(δα)2
=
π2ηΩγ(δθ)

2

2λ2
. (19.192)

Repeating the procedure of Section 19.3.1, we can take the limit ∆t −→ 0 with κ fixed. Here, however,
this is a mathematical, coarse-graining approximation, as the measurements are really still occuring with a
nonzero mean time between collapses. The resulting master equation, in ‘‘quantum-state diffusion’’ form, is

dρext = −
i

h̄
[HCM, ρext]dt+ γ

∫ 1

−1
d(cos θ) R̃(θ)D[e−ikz cos θ]ρext dt

+ 2κD[z]ρext dt+
√
2κH[z]ρext dW.

(19.193)
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The form here is the same as in Eq. (19.72), except for an extra ‘‘disturbance term’’ representing the
undetected photons.

19.4.4.3 Diffusion Rates

To simplify the master equation (19.193), we will analyze the diffusion rates due to the second and third terms
(proportional to γ and κ, respectively). From the analysis of Eqs. (19.88), recall that the term 2κD[z]ρext dt
causes diffusion in momentum at the rate

Dκ = 2h̄2κ =
ηΩ
4
γh̄2k2(δθ)2. (19.194)

This is the disturbance corresponding to the information gain. The relation κ = Dκ/(2h̄
2) will be useful

below.
We can compute the total diffusion rate due to the spontaneously emitted photons as follows. Each

photon emission causes a momentum kick of magnitude h̄k cos θ, and the spontaneous emission rate is γ.
Averaging over the angular photon distribution (19.157), the diffusion rate becomes

DSE = γh̄2k2
∫
dΩ f(θ, φ) cos2 θ = γh̄2k2

5
. (19.195)

On the other hand, we can compute the diffusion rate due only to the detected photons. Using the Gaussian
aperture function (19.161) with Eq. (19.164) for the azimuthal part (assuming the usual dipole-radiation
pattern) to obtain

T̃ (θ) ≈ ηΩ
δθ

√
2

π
exp
[
− 2(θ − π/2)2

(δθ)2

]
, (19.196)

the partial diffusion rate for detected photons is

DΩ = γh̄2k2
∫ 1

−1
d(cos θ) T̃ (θ) cos2 θ

= γh̄2k2
ηΩ
δθ

√
2

π

∫ 1

−1
d(cos θ) cos2 θ exp

[
− 2(θ − π/2)2

(δθ)2

]
≈ ηΩ

4
γh̄2k2(δθ)2,

(19.197)

where we again used the fact that δθ is small. This is precisely the same rate as Dκ, since they are two
different representations of the same physical process.

We see now that the second and third terms of Eq. (19.193) have the same effect of momentum diffusion,
both corresponding to heating from photon scattering, but at different rates, corresponding to the partition
between detected and undetected photons. We can combine them to obtain

dρext = −
i

h̄
[HCM, ρext]dt+ 2keffD[z]ρext dt+

√
2ηeffkeffH[z]ρext dW, (19.198)

where the effective measurement strength is

keff =
DSE

2h̄2
=
γk2

10
, (19.199)

and the effective measurement efficiency is

ηeff =
κ

keff
=

5

4
ηΩ(δθ)

2. (19.200)

Notice that since δθ is assumed small, the apparent efficiency ηeff derived from comparing the information
rate to the disturbance rate, is much smaller than the photon-detection efficiency of ηΩ. Evidently, the
photons radiated near θ = π/2 are much less effective compared to the photons radiated near θ = 0 or
π. This result is counterintuitive when considering typical imaging setups as we have considered here, but
suggests that other ways of processing the radiated photons (e.g., measuring the phase of photons radiated
closer to the z-axis) are more effective than camera-like imaging.
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19.5 Position Measurement via Excitation by a Local Probe Field

Now we will examine a position-measurement method for an atom that uses resonance fluorescence but uses
the resolution of a focused probe beam instead of the resolution of an imaging system to gain the position
information. This setup is cleaner in the sense that the efficiency is only determined by the photon detection
probability, and the form and width of the collapse operator can be chosen essentially independently of the
measurement efficiency.

19.5.1 Localized Probe Field

Recall from Eq. (19.122) that the quantum-jump SME for resonance fluorescence from a two-level atom is
given by

dρ = − i

h̄
[H̃, ρ]dt− Γ

2
H[σ†σ]ρ dt+

∫
dΩJ

[
σe−ik·r

]
ρ
dN(θ, φ)

dΩ
. (19.201)

in the case of angle-resolved detection of the photons, where again the Poisson processes corresponding to
each angular element are

〈〈dN(θ, φ)

dΩ
〉〉 = Γ

〈
σ†σ

〉
fε̂(θ, φ) dt. (19.202)

The Hamiltonian describes both the atomic motion and the atom–field coupling, so we can decompose it
into these parts as

H̃ = HCM + H̃AF, (19.203)

where the center-of-mass Hamiltonian describes one-dimensional motion along the z-axis,

H =
p 2
z

2mA
+ V (z), (19.204)

where V (z) is some external atomic potential, and the atom–field coupling Hamiltonian is given in the
rotating frame of the laser field from Eq. (5.406) by

H̃AF =
h̄

2

[
Ω∗(z)σ +Ω(z)σ†

]
, (19.205)

where Ω(z) is the space-dependent Rabi frequency representing the resonant probe field, defined such that
|Ω(z)|2 is proportional to the local intensity. We assume the probe to propagate normal to the z-axis, so
that we can assume a zero average momentum recoil on absorption.

In the weak-excitation regime, where the rate of spontaneous emission is much smaller than the excited-
state decay rate Γ, we can adiabatically eliminate the atomic internal state, which as in Section (19.4.3)
amounts to replacing the operator σ by its space-dependent, steady-state value 〈σ〉t→∞ ≈ −iΩ(z)/Γ (to
lowest order in Ω/Γ). With this replacement, the SME (19.201) becomes

dρ = − i

h̄
[HCM, ρ]dt−

1

2Γ
H
[
|Ω(z)|2

]
ρ dt+

∫
dΩJ

[
Ω(z)e−ik·r

]
ρ
dN(θ, φ)

dΩ
. (19.206)

while the mean of the Poisson process reduces to

〈〈dN〉〉 = 1

Γ

〈
|Ω(z)|2

〉
dt. (19.207)

Clearly, now, the electric-field profile Ω(z) of the probe acts as a collapse operator for a position measurement,
and the rate of spontaneous scattering gives information about the atomic position. To make these equations
a bit cleaner, we can define a normalized collapse operator by

A(z) :=
Ω(z)

Ω∫ , (19.208)
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where we have defined the integrated Rabi frequency

Ω∫ :=

√∫ ∞
−∞

dz |Ω(z)|2. (19.209)

Then in terms of the normalized collapse operators, the SME becomes

dρ = − i

h̄
[HCM, ρ]dt−

Ω 2∫
2Γ
H
[
|A(z)|2

]
ρ dt+

∫
dΩJ

[
A(z)e−ik·r

]
ρ
dN(θ, φ)

dΩ
. (19.210)

and the Poisson means become

〈〈dN(θ, φ)

dΩ
〉〉 =

Ω 2∫
Γ

〈
|A(z)|2

〉
fε̂(θ, φ) dt. (19.211)

The overall rate of information gain is thus given by the ratio Ω 2∫ /Γ. Note that the two information-related
terms have opposite effects: for a localized probe profile |A(z)|, the last (stochastic) term collapses (local-
izes) the atomic wave function by multiplying by |A(z)| and renormalizing. By contrast, in the absence of
photodetection events, the second term moves the atom away from the probe by transforming the proba-
bility density according to ρzz −→ ρzz − 2(Ω 2∫ /2Γ)(|A(z)|2ρzz + ρzz|A(z)|2) dt, thus tending to reduce the
population where |A(z)|2 is maximum.

Physically, where does the information come from? From the steady-state relations〈σ〉t→∞ ≈ −iΩ(z)/Γ
and

〈
σ†σ

〉
t→∞ ≈ |Ω(z)|

2/Γ2 (again, to lowest order in the field strength), we can see that the excited-state
amplitude in steady state is related to the ground-state amplitude by ψe(z) ∝ Ω(z)ψg. The spontaneous-
emission event then ‘‘flushes away’’ ψg(z), making ψe(z) the new atomic wave function. While the information
is given in principle by the emission event, the information is ‘‘set up’’ by the absorption of the photon from
the probe field. Correspondingly, the back-action on the quantum state due to the localized probe (i.e., the
increase of the momentum width of the atomic state due to the position-space collapse) is due to absorption
of a photon with a superposition of wave-vector orientations, as is consistent with having the localized probe
field.

Of course, as we saw from the quantum theory of imaged resonance fluorescence above, the emitted
photon contains yet more center-of-mass information about the atom, beyond the fact that it has merely
scattered an atom, as a consequence of the random direction of the photon recoil. In principle, you could ex-
tract the most information about the atom by also imaging the resonance fluorescence, but if the fluorescence
is merely detected without imaging or angle resolution, then we should trace over all possible photodetection
angles in (19.210),

dρ = − i

h̄
[HCM, ρ]dt−

Ω 2∫
2Γ
H
[
|A(z)|2

]
ρ dt+

∫ 1

−1
d(cos θ) f̃ε̂(θ)J

[
A(z)e−ikz cos θ]ρ dN, (19.212)

so that

〈〈dN〉〉 =
Ω 2∫
Γ

〈
|A(z)|2

〉
dt, (19.213)

and the last term in the SME puts the atom in an incoherent superposition of having recoiled in all possible
directions, weighted by the correct probabilities. Note that we have also carried out the φ part of the angular
integral in the last term of (19.212), where

f̃ε̂(θ) :=

∫ 2π

0

dφ f̃ε̂(θ, φ) (19.214)

is the effective angular distribution for the atomic resonance fluorescence, since the φ angle is immaterial as
far as the atomic dynamics are concerned.
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19.5.2 Scanning Probe Field

The fluorescent probe, as outlined above, only gives information about whether or not the atom is in the
vicinity of the probe. To obtain a more standard position measurement, we can now consider the case of
a moving probe field, where the center of the probe moves according to the trajectory zprobe(t). We will
assume zprobe(t) to be a sawtooth function of constant velocity vprobe, but jumping discontinuously from
zmax to −zmax at the end of each sweep. We will also assume the time for a single scan to be much slower
than the time scale Γ−1 for the internal state to equilibrate, but we will assume it to be much faster than
any motional time scale for the atom. We also assume that the atom will remain localized within the region
(−zmax, zmax). The effect of the moving probe is to make the replacement A(z) −→ A[z − zprobe(t)] in the
above SME. Performing a time average on the probe-raster time scale in the second term then amounts to
replacing A(z−zprobe(t)) by a function that is approximately uniform over (−zmax, zmax) and zero elsewhere.
Because of our assumption that the atom stays within the range of the probe, the second term has no effect
on the atomic state, and can be dropped. What we are essentially saying is that the probe should always
excite the atom equally no matter where it is, and thus there is no information to be gained by not detecting
a photon. Thus,

dρ = − i

h̄
[HCM, ρ]dt+

∫ 1

−1
d(cos θ) f̃ε̂(θ)J

[
A[z − zprobe(t)]e

−ikz cos θ]ρ dN, (19.215)

with

〈〈dN(t)〉〉 =
Ω 2∫
Γ

〈
|A[z − zprobe(t)]|2

〉
dt. (19.216)

Now we can see that zprobe(t) acts as an index for the displaced collapse operator A(z − zprobe(t)). If the
probe raster time ∆tr is much shorter than both the time scale for atomic motion and the mean time between
spontaneous-scattering events, but we carefully time-resolve the detection events, then as far as the motional
dynamics are concerned, we can time-average the dynamics on time scales of ∆tr to write

dρ = − i

h̄
[HCM, ρ]dt+

∫ 1

−1
d(cos θ) f̃ε̂(θ)J

[
A(z − zd)e

−ikz cos θ]ρ dN, (19.217)

where zd ∈ (−zmax, zmax), which is simply zprobe(t) evaluated at the time of the detection event, is a
stochastic, random variable with probability density

P (zd) =
〈
|A(z − zd)|2

〉
, (19.218)

and the Poisson process now responds only to the time-averaged probe intensity,

〈〈dN(t)〉〉 =
Ω 2∫
Γ

[∫ ∞
−∞

dz |A(z)|2 rect(z/2zmax)

]
dt =: γ dt, (19.219)

where the bracketed quantity represents the convolution of the probe-intensity profile |A(z)|2 with the time-
averaged trajectory probe, evaluated at z = 0 (thus assuming zmax is much larger than the width of A(z) and
that the atom stays away from the edges of the scan range), and we have used rect(z) as the rectangular-pulse
function of unit height and width.

19.5.3 Example: Gaussian Probe

Again, to see how much information we are getting, we can compare the diffusion rate due to the measurement
process to the rate of information gain. If we take the collapse operators A(z) to have a Gaussian profile,
that is, we take the probe intensity to have the Gaussian form

|A(z − zd)|2 ∝ exp
(
−2(z − zd)

2

w 2
0

)
, (19.220)
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where w0 is the beam-waist parameter for the Gaussian beam, we can then compare to the Gaussian form
of Eq. (19.57) to identify the measurement strength as κ = 1/2w 2

0 ∆t. Noting that the average time ∆t
between detection events is 1/γ (assuming unit detection efficiency of the radiated photons), the measurement
strength in the formal white-noise limit is κ = γ/2w 2

0 . From our analysis of Eqs. (19.88), we conclude that the
momentum-diffusion rate due to the measurement (i.e., the application of the A(z) operators) is Dp = h̄2κ.
However, this is only the diffusion rate due to absorption, which is where the position-dependent nature of
the probe enters; the emission events cause additional diffusion.

From Eq. (19.195), the diffusion rate due to spontaneous emission (i.e., the application of the e−ikz cos θ

factors), assuming an atomic dipole oriented along the z-axis, is

DSE =
γh̄2k2

5
. (19.221)

Thus, the effective measurement-information efficiency for this probe-measurement scheme is that fraction
of the total diffusion rate that corresponds to the measurement gain (i.e., the absorption):

ηeff =
Dp

Dp +DSE
=

1

1 + 2w 2
0 k

2/5
. (19.222)

In other words, the effective measurement efficiency goes down as the beam waist w0 becomes larger, because
the information gained becomes smaller but the disturbance due to spontaneous emission is the same.
Practically, w0 is limited to something on the order of λ, and for a very tight focus of w0 = λ, the effective
measurement efficiency would be limited to a maximum of ηeff = 6%, a rather low value. The efficiency is
correspondingly further reduced by the detection efficiency.

19.6 Continuous Momentum Measurement by EIT

As an alternative to continuous measurements of position, we can also consider schemes to continuously
measure the momentum of a single atom. In some sense, continuous measurements of position and momentum
are equivalent, since to some extent one can infer a momentum trajectory from a continuous record of position,
and vice versa. In the simple but important example of the harmonic oscillator, position and momentum
represent different yet equivalent directions in phase space. Electromagnetically induced transparency (EIT)
provides a momentum-sensitive probe for a single atom that works without a cavity.16

19.6.1 General Remarks

Recalling the phenomenon of EIT from Section 6.2.2, the susceptibility of an atomic gas of number density
N for a weak probe field (field 2) due to the pump (field 1) is [from Eq. (6.70)]

χ =
−4N |〈g2|ε̂2 · d|e〉|2

ε0h̄

[(∆2 −∆1) + iγg]

Ω 2
1

, (19.223)

where we have taken the limit of a strong pump field (large Ω1). We assume now that for an atom at rest,
the two fields are at Raman resonance (∆1 = ∆2 = ∆), and we also assume that the pump and probe
counterpropagate, so that ∆1 = ∆+ k2v and ∆2 = ∆− k2v, where v is the atomic velocity in the direction
of the EIT fields, and k2 is the wave number of the probe field. Then

χ =
−4N |〈g2|ε̂2 · d|e〉|2

ε0h̄Ω 2
1

(−2kv + iγg), (19.224)

and assuming that the ground-state relaxation rate γg is negligible, we see that the susceptibility is real
and proportional to the atomic velocity. The atoms thus present a refractive index n = 1 + Re[χ]/2 whose
deviation from the vacuum value is proportional to the velocity.

16P. Rabl, V. Steixner and P. Zoller, ‘‘Quantum limited velocity readout and quantum feedback cooling of a trapped ion via
electromagnetically induced transparency,’’ Physical Review A 72, 043823 (2005) (doi: 10.1103/PhysRevA.72.043823).

http://dx.doi.org/10.1103/PhysRevA.72.043823
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detector

local oscillator

EIT probe

By measuring the phase of the probe beam using homodyne detection, we thus continuously extract momen-
tum (velocity) information about the atom. Of course, the ‘‘number density’’ N for a single atom is small,
but EIT functions to amplify the effect of the atomic momentum on the phase of the field, and so we need
to treat this system more carefully below.

19.6.2 Homodyne Detection of the EIT Probe

With direct detection of the EIT probe beam, the appropriate collapse operator for a detected photon in
analogy with Section 18.2 is

Cdirect =
√
Γ2(σ2 + αprobe), (19.225)

where Γ2 is the partial decay rate on the EIT probe transition, σ2 := |g2〉〈e| is the atomic annihilation
operator for the EIT probe transition, and αprobe is a complex number representing the coherent state of
the probe field. Strictly speaking, this is the collapse operator for the mode of the probe field, and photons
scattered into other modes must be treated by a separate detection process, as we will do later. This collapse
operator already has the appropriate form for homodyne detection, as it represents the lack of knowledge
about whether a detected photon came from the atom or from the probe field. We assume the pump field
to be in a different mode, and we will otherwise ignore the pump except for its cooperative effects with the
probe.

When the probe field is then monitored via simple homodyne detection, as in the above diagram, the
collapse operator is then modified to include the local-oscillator field as

Chomodyne =
√

Γ2(σ2 + αprobe + β), (19.226)

where we have already taken the limit as the reflection coefficient of the beam splitter vanishes, taking
the local-oscillator amplitude to be correspondingly large (and absorbing the reflection coefficient into the
local-oscillator amplitude β). Combining the two classical fields, we can write

Chomodyne =
√
Γ2(σ2 + β′), (19.227)

where β′ := β + αprobe. This collapse operator has precisely the form of the collapse operator for simple
homodyne detection, and thus the analysis for homodyne detection from Section 18.2 carries through here.
Thus, from our previous analysis of homodyne detection, the SME becomes

dρ = − i

h̄
[H, ρ]dt+ Γ2D

[
σ2e

iφ
]
ρ dt+

√
ηΓ2H

[
σ2e

iφ
]
ρ dW, (19.228)

where H is the atomic Hamiltonian, including the interaction with the pump and probe fields, φ is the phase
of the combined field β′,

β′ =: |β′|e−iφ. (19.229)

and the efficiency η represents the fraction of photons radiated by the atom on the |g2〉 −→ |e〉 transition
into the mode of the probe beam—recall that the phase shift of the probe beam is due to the interference
of the dipole radiation and the original probe field. The corresponding scaled photocurrent (measurement
record) is

dr̃(t) = Γ2

〈
σ2e

iφ + σ†2e
−iφ
〉
dt+

√
Γ2

η
dW, (19.230)

so that we must still choose the local-oscillator phase φ to obtain the appropriate information.
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19.6.3 Adiabatic Approximation

Since the atomic motion is much slower than the internal atomic dynamics, we can adiabatically eliminate
the internal atomic state by replacing the internal atomic operators (namely σ2) by their steady-state values.
The steady-state coherence from Eq. (6.68) on the probe transition |g2〉 −→ |e〉 is

〈σ2(t −→∞)〉 = ρ̃eg2
(t −→∞) =

i(Ω2/2)[(∆2 −∆1) + iγg]

(i∆2 − Γ2/2)[(∆2 −∆1) + iγg]− i(Ω1/2)2
. (19.231)

Assuming Raman resonance (∆1 = ∆2) for atoms at rest, ignoring the ground-state relaxation (γg = 0),
assuming a counterpropagating pump-probe pair, so that ∆1 = ∆ + k2v and ∆2 = ∆ − k2v, and keeping
only the first-order velocity term,

〈σ2(−→∞)〉 = 4k2Ω2

Ω 2
1

v =
4k2Ω2

maΩ 2
1

p. (19.232)

Then choosing a measurement phase φ = 0, the measurement record (19.230) becomes

dr̃(t) =
√
8κΓ2〈p〉 dt+

√
Γ2

η
dW, (19.233)

where the measurement strength is

κ :=
8k 2

2 Γ2Ω
2
2

m 2
a Ω

4
1

, (19.234)

where ma is the atomic mass. The SME (19.228) then becomes

dρ = − i

h̄
[H, ρ]dt+ 2κD[p] ρ dt+

√
2ηκH[p] ρ dW, (19.235)

and the measurement record (19.233) can be rescaled to appear in a more standard form for a position-type
measurement:

dy :=
dr̃(t)√
8κΓ2

=〈p〉 dt+ dW√
8ηκ

. (19.236)

This result is valid in the momentum range

|p| � maΩ
2
1

8k2
√

∆ 2
2 + (Γ2/2)2

, (19.237)

which follows if the second term of the denominator of Eq. (19.231) is to dominate the first. If we assume
a small probe detuning ∆2 compared to Γ2, a moderate pump of Ω1 = Γ2 ∼ 20× 106 s−1, and we consider
the case of 87Rb (λ = 780 nm), then this corresponds to the range |p| � 200h̄k2. Assuming further a weak
probe of Ω2 = Ω1/10, the measurement strength is κ = 9(h̄k2)

2s−1.

19.6.4 Spontaneous Scattering

The spontaneous scattering rate should be small, at least when the motion of the atom stays near p = 0,
due to the nature of the dark state. To compute the rate of spontaneous scattering, we use the equation of
motion

∂tρg2g2 =
iΩ2

2
(ρ̃g2e − ρ̃eg2

) + Γ2ρee, (19.238)

as follows from the unconditioned master equation for EIT, Eq. (6.63). In steady state, this gives the
excited-state population in terms of the coherence on the probe-transition:

ρee(t −→∞) =
iΩ2

2Γ2
(ρ̃eg2

− ρ̃g2e). (19.239)
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We can expand the steady-state coherence (19.231) to second order in momentum to obtain

ρ̃eg2
(t −→∞) =

4k2Ω2

maΩ 2
1

p− 32k 2
2 (iΓ2/2 + ∆2)Ω2

m 2
a Ω

2
1

p2 +O(p3), (19.240)

and then put this into Eq. (19.239) to find

ρee(t −→∞) =
32k 2

2 Ω
2
2

m 2
a Ω

4
1

p2 +O(p3). (19.241)

The steady-state scattering rate is then simply

Rsc(t −→∞) = (Γ1 + Γ2)ρee =
32k 2

2 (Γ1 + Γ2)Ω
2
2

m 2
a Ω

4
1

p2 +O(p3), (19.242)

so we see that the scattering rate vanishes to first order in the atomic momentum. However, to account for
this effect, we should include an extra diffusion term to the SME (19.235)

dρ = − i

h̄
[H, ρ]dt+ 2κD[p] ρ dt+

√
2ηκH[p] ρ dW + γ

∫ 1

−1
d(cos θ)f̃ε̂(θ)D[e−ikz cos θ]ρ dt, (19.243)

where γ := 〈Rsc〉, the angular distribution f̃ε̂(θ) is defined by Eq. (19.214), and we are assuming that the
extra spontaneous scattering is not detected. Note again that since the EIT measurement is dispersive, it
scales as p, while the spontaneous emission scales as p2. Again, this is because the dipole-radiated field scales
as p, and the phase shift is due to an interference with this field and the forward EIT probe beam, so that
the phase shift goes as the product of the two fields, while the spontaneous emission goes as the square of
the dipole-radiated field.

19.6.5 Phase

It is illuminating to work out the relative phases of the atomic dipole, the EIT probe field, and the local-
oscillator field. The phase of the atomic dipole, given by the phase of Eq. (19.232), is defined with respect to
the phase of the EIT probe field. To lowest order in momentum, the atomic dipole (and thus the dipole field)
is thus exactly in phase with the probe field. Further, we saw that the appropriate choice of local-oscillator
phase was φ = 0, so that the local oscillator is also exactly in phase with the atomic dipole and the driving
field. This seems a bit strange: if the probe is, in fact, phase-shifted by the effective refractive index of the
atom, then the atom should radiate in quadrature with the field, not in phase with it (radiation exactly in
or exactly out of phase can affect only the amplitude, not the phase, of the probe field). Further, to detect
the phase of the probe field, the local oscillator should again be in quadrature with the probe field, so that
any phase shifts of the probe would act to modulate the detected intensity of the local oscillator.

An easy way to resolve this difficulty is to note that to have a strong coupling to the atom, the EIT
probe field should be tightly focused onto the atom. If we take as a concrete example a Gaussian beam, we
may write the probe field as

E(+)(r) = E
(+)
0

(
−x̂+

x

z − iz0
ẑ

)
w0

w(z)
exp

[
− r2

w2(z)

]
exp

[
ikz − i tan−1

(
z

z0

)]
exp

[
ik

r2

2R(z)

]
, (19.244)

where the beam propagates along the z-direction and is (mostly) polarized along the −x-direction, w0 is the
Gaussian beam-waist parameter that characterizes the beam waist at the focus, z0 = πw 2

0 /λ is the Rayleigh
length, r2 = x2 + y2 is the radial coordinate, w(z) := w0

√
1 + (z/z0)2 is the z-dependent spot size, and

R(z) := z[1 + (z0/z)
2] is the radius of curvature of the phase fronts. The Gaussian beam as written here

solves the electromagnetic wave equation in the paraxial approximation (i.e., as long as the divergence angle
of the beam is not too large). The important thing to notice is the second exponential factor, which gives
the longitudinal phase. There is the usual plane-wave-type phase of ikz, but there is also the Gouy phase
of −i tan−1(z/z0), which varies from iπ/2 at z −→ −∞ to 0 at the focus z = 0 to −iπ/2 at z −→ ∞. The
Gouy phase is generic for focused beams, and plays an important role here.
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The dipole field lacks this Gouy phase, with a phase varying as ikz along the z-axis. Similarly, we take
the local oscillator to be collimated (but still Gaussian), so its Gouy phase varies negligibly over the scale of
the optical apparatus. Thus, even though the dipole, EIT-probe, and local-oscillator fields are all in phase
at the atomic position (Gaussian-beam focus) z = 0, by the time the EIT probe is recollimated in the far
field, it has accumulated an extra phase shift of −iπ/2. Thus, as we expect, the EIT probe is in quadrature
with both the atomic-dipole and local-oscillator fields.

From this, we can view the homodyne detection slightly differently. Rather than regarding the detection
as a measurement of the phase of σ2, we can regard it as a measurement of the phase of the phase-shifted
EIT probe, σ2 + αprobe = σ2 − i|αprobe|, by adding the local-oscillator field β, as in Eq. (19.226). Our
analysis above showed the phase of σ2 to be near zero, and the same choice of phase was best for the local
oscillator, while the phase of −i in the EIT probe here is due to the Gouy phase accumulated as the probe
beam travels from the atom to the detector. Viewed thusly, since the homodyne-detection signal measured〈
σ2 + σ†2

〉
in the analysis above, here it measures

〈
(σ2 − i|αprobe|) + (σ2 − i|αprobe|)†

〉
=
〈
σ2 + σ†2

〉
, and

thus the conclusions above still obtain: because the probe and local-oscillator fields are in quadrature, the
homodyne measurement rejects any contribution to the measurement signal from the probe. Similarly,
viewed this way, the analysis for balanced homodyne detection as in Section 18.2.6 carries through here, if we
view the balanced homodyne detection as a measurement of the probe phase rather than the atomic phase.
Then the same SME and measurement record result, except that there is no need to subtract a dc offset
from the measurement signal.

19.6.6 Detection Efficiency

The detection efficiency η here is simply the probability that a photon radiated by the atom is scattered
into the mode of the EIT probe. As an example case, we will take the EIT probe again to be a Gaussian
beam, and compute explicitly the overlap between the probe and dipole waves. It is sufficient to consider
the overlap in the far field, for which the Gaussian beam (19.244) becomes

E(+)(r) = E
(+)
0

z0
z

exp
[
− z

2
0 r

2

w 2
0 z

2

]
, (19.245)

noting that we have dropped the polarization and phase factors, as they will be irrelevant for the mode
overlap (within the paraxial approximation, they will exactly match the same factors for the dipole wave).
We can then write this field as a normalized field mode function√

fGaussian(r) =
2z0√
2π w0z

exp
[
− z

2
0 r

2

w 2
0 z

2

]
, (19.246)

normalized so that at any fixed z, ∫
dx

∫
dy fGaussian(r) = 1. (19.247)

Assuming a linearly polarized atomic dipole, the usual field dipole pattern is

√
fx̂(θ, φ) =

√
3

8π
sin θ =

√
3

8π

y2 + z2

x2 + y2 + z2
, (19.248)

but where θ and φ are defined with respect to the polarization (x) axis, not the z-axis. In the paraxial
approximation, we may write this field in terms of a normalized spatial distribution (by dividing by z) as

√
fx̂(r) ≈

1

z

√
3

8π

(
1− x2

2z2

)
. (19.249)

Then the efficiency is the overlap integral of the Gaussian field with the dipole field:

η =

∫
dx

∫
dy
√
fx̂(r)fGaussian(r) =

√
3w0(4z

2
0 − w 2

0 )

8z 3
0

≈
√
3λ

2πw0
. (19.250)



900 Chapter 19. Position Measurement

For a focus of w0 = 5λ (for a far-field divergence half-angle of 3.6◦), the efficiency is 5.5%, while for a focus
of w0 = λ (for a far-field divergence half-angle of 18◦, where the paraxial approximation is no longer very
good), the efficiency is 27%.



19.7 Exercises 901

19.7 Exercises

Problem 19.1
Show that the Weyl correspondence (Section 4.3.5) for the stochastic master equation for position
measurement,

dρ = 2κD[x]ρ dt+
√
2κH[x]ρ dW

= 2κxρx− κ(x2ρ+ ρx2) dt+
√
2κ
[
xρ+ ρx− 2〈x〉 ρ

]
dW (t)

(19.251)

(without Hamiltonian evolution) gives the Fokker-Planck equation for the Wigner function with no
drift and a momentum diffusion coefficient of D = 2h̄2κ, plus a stochastic driving term:

dW (x, p) = h̄2κ∂ 2
pW (x, p) dt+

√
8κ
(
x−〈x〉

)
W (x, p) dW (t). (19.252)

Problem 19.2
Show that the Weyl correspondence (Section 4.3.5) for the stochastic master equation for position-
squared measurement,

dρ = 2κD[x2]ρ dt+
√
2κH[x2]ρ dW

= 2κx2ρx2 − κ(x4ρ+ ρx4) dt+
√
2κ
[
x2ρ+ ρx2 − 2

〈
x2
〉
ρ
]
dW (t)

(19.253)

(without Hamiltonian evolution) gives the Fokker-Planck equation for the Wigner function with no
drift and a position-dependent momentum diffusion coefficient of D = 8h̄2κx2, plus a stochastic driving
term:

dW (x, p) = 4h̄2κx2∂ 2
pW (x, p) dt+

√
8κ

(
x2 −

〈
x2
〉
−
h̄2∂ 2

p

4

)
W (x, p) dW (t). (19.254)

Problem 19.3
Consider a particle subjected to a noisy potential of the form

V (x, t) = h̄
√
κx ◦ dW (t)

dt
. (19.255)

(a) Why is it appropriate to write the potential in Stratonovich form, rather than Itō form?
(b) Write down a stochastic Schrödinger equation for the particle, convert it to Itō form, and then use
the result to derive a stochastic master equation.
(c) Show that in the ensemble average, this SME is equivalent to the unconditioned SME for position
measuremeent. (In the conditioned case, the two master equations are not equivalent; for example, the
noisy potential still generates a linear SME.)





Chapter 20

Path Integration

20.1 Feynman Path Integral

We will begin by developing the path-integral formulation of quantum mechanics,1 at least for the evolution
of a single particle in a potential. Recall that we introduced the propagator [Eq. (15.17)] as the matrix
representation of the evolution operator,

K(β, t;α, t0) := 〈β|U(t, t0)|α〉,
(20.1)

(propagator)

where the evolution operator corresponds to a time-independent Hamiltonian H(x, p):

U(t, t0) = e−iH(x,p)(t−t0)/h̄. (20.2)

Here we will work more specifically with the position-representation propagator

K(x, t;x0, t0) := 〈x|U(t, t0)|x0〉 = 〈x, t|x0, t0〉.
(20.3)

(propagator)

In the last expression here, the evolution operator has been ‘‘hidden’’ inside the states according to the
notation

|x, t〉 = eiHt/h̄|x〉 (20.4)

where the ‘‘wrong’’ time dependence comes not from |x, t〉 denoting time-evolving states in the sense of
|x(t)〉, but as eigenstates of the Heisenberg-picture operator x(t). Thus, the propagator here is roughly a
‘‘transition amplitude’’ from x0 at time t0 to x at time t. More precisely, if we recall that

|ψ(t)〉 = U(t, t0)|ψ(t0)〉, (20.5)

we can apply 〈x| and inserting an identity to give

〈x|ψ(t)〉 = 〈x|U(t, t0)|ψ(t0)〉 =
∫
dx0 〈x|U(t, t0)|x0〉〈x0|ψ(t0)〉, (20.6)

or

ψ(x, t) =

∫
dx0K(x, t;x0, t0)ψ(x0, t0),

(20.7)
(evolution via propagator)

so that K(x, t;x0, t0) is a convolution kernel corresponding to the evolution (i.e., K(x, t;x0, t0) is a repre-
sentation of the Green function for the Schrödinger equation).

1R. P. Feynman, ‘‘Space-Time Approach to Non-Relativistic Quantum Mechanics,’’ Reviews of Modern Physics 20, 367
(1948) (doi: 10.1103/RevModPhys.20.367); Richard P. Feynman and A. R. Hibbs, ‘‘Quantum Mechanics and Path Integrals,’’
(McGraw–Hill, 1965).

http://dx.doi.org/10.1103/RevModPhys.20.367
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A key technique in the construction of the path integral is the splitting of the propagator at an
intermediate time. This is easy to do, we simply insert the identity operator, expanded in the position basis
at some intermediate time t′, into the propagator inner product,

K(x, t;x0, t0) = 〈x, t|x0, t0〉

=

∫
dx′〈x, t|x′, t′〉〈x′, t′|x0, t0〉,

(20.8)

with the result

K(x, t;x0, t0) =

∫
dx′K(x, t;x′, t′)K(x′, t′;x0, t0).

(composition property of propagator) (20.9)
This is the analogue of the Chapman–Kolmogorov equation (17.133) for conditional probability densities
in diffusion problems. This relation basically says that we can regard the transition from x0 to x at the
corresponding times to be as if the particle ‘‘passed through’’ the intermediate x′ point, so long as we sum
the amplitude over all possible intermediate points x′.

20.1.1 Dividing the Evolution

Now the idea is to do the same thing, but split the time interval (t− t0) into N equal subintervals of length
δt = (t − t0)/N , and inserting an identity between each of the split factors of the evolution operator. We
will assume N to be large (such that we will suppose δt to be infinitesimal). Sticking to the specific form
(20.2) for the evolution operator, we find2

K(x, t;x0, t0) = 〈x|e−iH(x,p)(t−t0)/h̄|x0〉

= 〈xN |e−iH(Nδt)/h̄|x0〉

= 〈xN |e−iHδt/h̄
[∫

dxN−1|xN−1〉〈xN−1|
]
e−iHδt/h̄ · · · e−iHδt/h̄

[∫
dx1|x1〉〈x1|

]
e−iHδt/h̄|x0〉.

(20.10)
Then we have an (N − 1)-dimensional integral over a product of N matrix elements,

K(x, t;x0, t0) =

∫ (N−1∏
j=1

dxj

)
〈xN |e−iHδt/h̄|xN−1〉〈xN−1|e−iHδt/h̄|xN−2〉 · · · 〈x1|e−iHδt/h̄|x0〉. (20.11)

This is now an infinite-dimensional integral, since we have in mind the limit N −→∞.

20.1.2 Splitting the Evolution Operator

To continue, we will assume a standard particle Hamiltonian of the form

H =
p2

2m
+ V (x) = T (p) + V (x), (20.12)

where p = (h̄/i)∂x as usual, and while we are treating only one dimension, the generalization to multiple
dimensions is straightforward. The Baker–Campbell–Hausdorff expansion3 allows us to split the evolution
operator with this Hamiltonian according to

e−iHδt/h̄ = e−iT (p)δt/h̄e−iV (x)δt/h̄ +O(δt2). (20.13)
2We are following here the phase-space construction of the path integral, as in Mark Srednicki, Quantum Field Theory

(Cambridge, 2007), Chapter 6 (draft available at http://web.physics.ucsb.edu/~mark/ms-qft-DRAFT.pdf).
3R. M. Wilcox, ‘‘Exponential Operators and Parameter Differentiation in Quantum Physics,’’ Journal of Mathematical

Physics 8, 962 (1967) (doi: 10.1063/1.1705306).

http://web.physics.ucsb.edu/~mark/ms-qft-DRAFT.pdf
http://dx.doi.org/10.1063/1.1705306
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(For more on this operator splitting, see Section 26.1.) The correction term here is negligible in the following
sense: there are N such correction terms that add together, which gives an error Nδt2 = δt, which vanishes
as δt −→ 0. Then considering any one of the matrix elements in the integrand of (20.11), we have

〈x2|e−iHδt/h̄|x1〉 = 〈x2|e−iT (p)δt/h̄e−iV (x)δt/h̄|x1〉

=

∫
dp1 〈x2|e−iT (p)δt/h̄|p1〉〈p1|e−iV (x)δt/h̄|x1〉,

(20.14)

where we have inserted a momentum-space identity operator between the operators. We should be careful
to emphasize that the position and momentum appearing in the exponentials are operators. Since we have
inner products of eigenstates of these operators, we can simply replace them by the appropriate eigenvalues,

〈x2|e−iHδt/h̄|x1〉 =
∫
dp1 〈x2|p1〉〈p1|x1〉e−iT (p1)δt/h̄e−iV (x1)δt/h̄

=
1

2πh̄

∫
dp1 e

ip1(x2−x1)/h̄e−iT (p1)δt/h̄e−iV (x1)δt/h̄,
(20.15)

where we have used the inner product

〈x|p〉 = eipx/h̄√
2πh̄

, (20.16)

which is just the momentum eigenstate expressed in the position basis. Note that in introducing the momen-
tum integral, we have also introduced a Fourier transformation. In fact, by tacking on an extra |x2〉 on the
front of Eq. (20.14) and then integrating over x2, we have the recipe for propagating the initial state |x2〉 over
a small time δt: first propagate using the potential-energy exponential operator, which is diagonal in x, then
Fourier transform to momentum space, where we may apply the kinetic operator, and finally transform back
to position space to express the result in the x2 basis. This is in fact the basis for split-operator methods
for numerically solving the Schrödinger equation (Chapter 26).

Since T (p) is quadratic, the momentum integral in the mini-propagator (20.15) is a Gaussian integral,
so we will go ahead and carry it out by completing the square. Letting δx1 := x2 − x1,

〈x2|e−iHδt/h̄|x1〉 =
1

2πh̄

∫
dp1 e

ip1δx1/h̄e−ip
2
1 δt/2mh̄e−iV (x1)δt/h̄

=
1

2πh̄
e−iV (x1)δt/h̄

∫
dp1 e

−i(p1−mδx1/δt)
2δt/2mh̄eim(δx1)

2/2h̄(δt)

=
1

2πh̄
eim(δx1)

2/2h̄(δt)e−iV (x1)δt/h̄

∫
dp1 e

−ip 2
1 δt/2mh̄,

(20.17)

where we have shifted away the constant offset in the Gaussian integrand. The integral here is not strictly
convergent, but we can help it by nudging it into the territory of convergent Gaussian integrals:∫ ∞

−∞
dx e−iαx

2

= lim
β→0

∫ ∞
−∞

dx e−(β+iα)x
2

= lim
β→0

√
π

β + iα
=

√
π

iα
. (20.18)

Thus,

〈x2|e−iHδt/h̄|x1〉 =
1

2πh̄
eim(δx1)

2/2h̄(δt)e−iV (x1)δt/h̄

√
2πmh̄

iδt

=

√
m

i2πh̄δt
eim(δx1)

2/2h̄(δt)e−iV (x1)δt/h̄

=

√
m

i2πh̄δt
eimẋ

2
1 (δt)/2h̄e−iV (x1)δt/h̄

=

√
m

i2πh̄δt
eiL(x1,ẋ1)δt/h̄,

(20.19)
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where we have taken
ẋ =

δx

δt
(20.20)

in view of the δt −→ 0 limit, and we have identified

L(x, ẋ) =
1

2
mẋ2 − V (x) (20.21)

as the classical Lagrangian.

20.1.3 Functional Integral

Now collecting all N matrix elements (20.19) and putting them into the propagator (20.11), we have

K(x, t;x0, t0) =
( m

i2πh̄δt

)N/2
∫ (N−1∏

j=1

dxj

)
eiL(xN−1,ẋN−1)δt/h̄eiL(xN−2,ẋN−2)δt/h̄ · · · eiL(x0,ẋ0)δt/h̄

=
( m

i2πh̄δt

)N/2
∫ (N−1∏

j=1

dxj

)(
N−1∏
j=0

eiL(xj ,ẋj)δt/h̄

)
.

(20.22)

Defining the path-integral differential

Dx :=
( m

i2πh̄δt

)N/2 N−1∏
j=1

dxj ,
(20.23)

(functional-integral differential)

we can simplify the notation in Eq. (20.22) and recombine the exponentials to write

K(x, t;x0, t0) =

∫
Dx exp

[
i

h̄

∫ t

t0

dtL(x, ẋ)

]
.

(20.24)
(Feynman propagator)

This is a functional integral or path integral, as we are integrating the action functional

S[x(t)] =

∫ t

t0

dt′ L[x(t′), ẋ(t′)],
(20.25)

(action functional)

in terms of which the propagator has the even simpler form

K(x, t;x0, t0) =

∫
Dx exp

(
i

h̄
S[x]

)
,

(20.26)
(Feynman propagator)

noting that the integration is with respect to the trajectory (or function) x(t). Recall that we discussed the
related functional differentiation in Section 8.2.1, and we discussed the Lagrangian and classical variational
principles in Section 8.2.2. Note that the normalization factor in (20.23) is highly divergent, but it is typically
hidden inside the differential here since it typically drops out of calculations on the way to a physical result.

20.1.4 Phase-Space Path Integral

An alternate form of the path integral, before carrying out the momentum integrals, comes about by rewriting
the first line of Eq. (20.17) in terms of ẋ1 = δx1/δt and the Hamiltonian H(x, p) as

〈x2|e−iHδt/h̄|x1〉 =
1

2πh̄

∫
dp1 e

ip1ẋ1δt/h̄e−iH(x1,p1)δt/h̄. (20.27)
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Then collecting all the matrix elements, we can now write the phase-space path integral4

K(x, t;x0, t0) =

∫
DxDp exp

[
i

h̄

∫ t

t0

dt [pẋ−H(x, p)]

]
,

(phase-space propagator) (20.28)
where the integration measure in phase space is

DxDp :=
1

(2πh̄)(N−1)/2

(
N−1∏
j=1

dxj

)(
N−1∏
j=0

dpj

)
.

(functional-integration measure) (20.29)
This looks similar to before, except that we now have the phase-space action—the integral of pẋ−H—in the
propagator instead of the Lagrangian action, and the integration is over both positions and momenta. (Note
that like in the classical application of the phase-space action, as in Section 8.2.2, the endpoints of x(t) are
pinned to x0 and x, while the momentum endpoints are not similarly restricted.) At this point, in the case
of a Hamiltonian quadratic in p, the integral is Gaussian and can be carried out analytically as above. The
stationary-phase condition on the p integral gives the classical Hamilton equation

∂p [pẋ−H(x, p)] = ẋ− ∂pH(x, p) = 0, (20.30)

which can be used to eliminate p in favor of ẋ in pẋ − H(x, p) to reproduce the Lagrangian, and thus the
Lagrangian form of the propagator (20.24).

Note that while the positions and momenta were introduced in similar ways, there is a fundamental
asymmetry between them.5 In the infinitesimal propagator from xj to xj+1, we regard the position as moving
smoothly between these two coordinates in a time δt. However, the momentum is a constant pj over the
same time interval. So in this time-slicing construction (the construction with finite N), the path position
follows a continuous, polygonal path, while the momentum is discontinuous and piecewise constant.

20.1.5 Example: Free-Particle Propagator

To evaluate the propagator (20.24) for the free particle, L(x, ẋ) = mẋ2/2, it is easiest to go back to the
discrete form (20.22), which we can write explicitly as

K(x, t;x0, t0) =
( m

i2πh̄δt

)N/2
∫ (N−1∏

j=1

dxj

)(
N−1∏
j=0

eimẋ
2
j δt/2h̄

)

=
( m

i2πh̄δt

)N/2
∫ (N−1∏

j=1

dxj

)(
N−1∏
j=0

eim(xj+1−xj)
2/2h̄δt

)
.

(20.31)

Now let
xj = x̄j + δj , (20.32)

where x̄j is the straight-line path from x0 to x = xN ,

x̄j = x0 +

(
x− x0
t− t0

)
(tj − t0) =: x0 + v̄(tj − t0), (20.33)

where v̄ = (x − x0)/(t − t0) is the mean velocity of the path, and the δj are the ‘‘fluctuations’’ about this
average. In particular, note that

δ0 = δN = 0. (20.34)
4This general form of the path integral in phase space was given by H. Davies, ‘‘Hamiltonian approach to the method of

summation over Feynman histories,’’ Mathematical Proceedings of the Cambridge Philosophical Society 59, 147 (1963) (doi:
10.1017/S0305004100002097).

5H. Davies, op. cit.; Claude Garrod, ‘‘Hamiltonian Path-Integral Methods,’’ Reviews of Modern Physics 38, 483 (1966) (doi:
10.1103/RevModPhys.38.483); M. S. Marinov, ‘‘Path integrals in quantum theory: An outlook of basic concepts,’’ Physics
Reports 60, 1 (1980) (doi: 10.1016/0370-1573(80)90111-8).

http://dx.doi.org/10.1017/S0305004100002097
http://dx.doi.org/10.1103/RevModPhys.38.483
http://dx.doi.org/10.1016/0370-1573(80)90111-8
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For the increments in the path integral, we may write

xj+1 − xj = (x̄j+1 + δj+1)− (x̄j + δj) = (δj+1 − δj) + v̄δt, (20.35)

and thus the Gaussian factors in the path integral (20.31) involve squared differences of the form

(xj+1 − xj)2 = (δj+1 − δj + v̄δt)2 = (δj+1 − δj)2 + 2(δj+1 − δj)v̄δt+ v̄2δt2. (20.36)

This means that the path integral (20.31) splits into a product of three components, each involving Gaussian
functions of each of these terms. For example, the last term leads to the product

N−1∏
j=0

eimv̄
2δt/2h̄ = eimv̄

2Nδt/2h̄ = eimv̄
2(t−t0)/2h̄ = eim(x−x0)

2/2h̄(t−t0), (20.37)

while the second term
N−1∏
j=0

eim(δj+1−δj)v̄/h̄ = eim(δN−δ0)v̄/h̄ = 1, (20.38)

in view of Eq. (20.34). Collecting these with the remaining product leads to the path integral

K(x, t;x0, t0) =
( m

i2πh̄δt

)N/2

eim(x−x0)
2/2h̄(t−t0)

∫ (N−1∏
j=1

dδj

)(
N−1∏
j=0

eim(δj+1−δj) 2/2h̄δt

)
, (20.39)

where we should keep in mind that δ0 = δN = 0 in the j = 0 and j = N − 1 factors. Also, note that
since the coordinate transformation from xj to δj was just a coordinate shift, there is no Jacobian factor
to worry about. In making the coordinate transformation here, we have reduced the problem of computing
K(x, t;x0, t0) to that of a periodic path integral of the form K(0, t; 0, t0).

To finish up the path integral, we can begin by examining the δj integral, which involves the terms

(δ2 − δ1)2 + (δ1 − δ0)2 = δ 2
2 − 2δ2δ1 + 2δ 2

1

(δj+1 − δj)2 + (δj − δj−1)2 = δ 2
j+1 − 2δj+1δj + 2δ 2

j − 2δjδj−1 + δ 2
j−1

(δN − δN−1)2 + (δN−1 − δN−2)2 = 2δ 2
N−1 − 2δN−1δN−2 + δ 2

N−2

(20.40)

If we add up these contributions, we have an integral of the form

K(x, t;x0, t0) =
( m

i2πh̄δt

)N/2

eim(x−x0)
2/2h̄(t−t0)

∫ (N−1∏
j=1

dδj

)
exp

[
im

2h̄δt
(δαMαβδβ)

]
, (20.41)

where now Mαβ is a matrix of dimension (N −1)× (N −1), and has twos along the diagonal, and −1’s along
the adjacent diagonals:

(Mαβ) =



2 −1 0 · · · 0 0
−1 2 −1 · · · 0 0
0 −1 2 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 2 −1
0 0 0 · · · −1 2


. (20.42)

This matrix has determinant
det(Mαβ) = N, (20.43)
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as we will now show. Let detn denote the determinant of the n × n version of the same matrix. Then
expanding the determinant in terms of minors along the first row gives the recursion relation

detn = 2detn−1 − detn−2. (20.44)

With the initial values det1 = 2 and det2 = 3, we can see that the recursion and initial conditions are
satisfied by

detn = n+ 1. (20.45)

This establishes the determinant (20.43).
Now to finish up with the path integral, we can use the Gaussian integration formula∫

dNz exp [− zαSαβzβ ] =
πN/2√

det(Sαβ)
, (20.46)

for an N ×N matrix Sαβ [see, for example, the normalized Gaussian function in Eq. (4.165)], and adapt it
for complex Gaussians as in Eq. (20.18). The result is

K(x, t;x0, t0) =
( m

i2πh̄δt

)N/2

eim(x−x0)
2/2h̄(t−t0)

(
i2πh̄δt

m

)(N−1)/2
1√
N

=

√
m

i2πh̄Nδt
eim(x−x0)

2/2h̄(t−t0)

(20.47)

or finally,

K(x, t;x0, t0) =

√
m

i2πh̄(t− t0)
exp

[
im(x− x0)2

2h̄(t− t0)

]
(20.48)

(free-particle propagator)

Note that the removal of the mean x̄(t) from the path x(t) to focus on the fluctuations δ(t) here is the same
idea as the Brownian-bridge construction B(t) =W (t)− tW (1) [Eq. (17.287)], where the (linear) mean drift
is subtracted away to produce a periodic path.

20.2 Classical Limit

One nice feature of the path integral is that it gives a clear path to the classical limit, at least in a heuristic
argument.6 Returning to the propagator (20.26),

K(x, t;x0, t0) =

∫
Dx exp

(
i

h̄
S[x]

)
, (20.49)

note that as h̄ −→ 0, the exponential becomes highly oscillatory. Except, that is, where the rest of the expo-
nent, S[x], vanishes. Thus, we might expect the oscillatory paths to roughly cancel, and the integral should
be dominated by the ‘‘stationary’’ paths, for which slight variations don’t change the action. Dropping all
but these stationary paths is known as the stationary-phase approximation, and amounts to restricting
the path integral to classical paths satisfying

δS[x] = 0,
(20.50)

(stationary-phase condition)

which is just the variational principle that generates the Euler-Lagrange equation. That is, when h̄ is small
compared to the action of the system, the path integral is dominated by the contribution from the classical
path. Paths that deviate from the classical path by even a small amount on the classical scale are suppressed
because they oscillate wildly and cancel other, slightly deviant paths. When h̄ is larger relative to the action,
the paths have more leeway to ‘‘explore’’ around the classical path without suffering the fate of cancellation.

6Richard P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals (McGraw–Hill, 1965), Section 2-3, p. 29.
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20.2.1 Semiclassical Propagator

With this picture in mind, we can go on and develop an approximate form for the propagator in the
semiclassical regime.7 Since we expect the classical path xc to be important, we will consider small deviations
δx from it:

x(t) = xc(t) + δx(t). (20.51)

Then expanding the action in a functional Taylor series around the classical path, we find

S[x] = S[xc] + δS[xc] +
1

2
δ2S[xc] + · · ·

(20.52)
(series expansion of the action)

up to second order. Note that by definition, δS[xc] = 0, but we leave the first-order term here to illustrate
the general pattern.

Let’s take a moment to examine the notation here. Given the action functional (20.25),

S[x(t)] =

∫ t

t0

dt′ L[x(t′), ẋ(t′)], (20.53)

recall that we define the first variation δS[x] of the functional as

δS[x; δx] := lim
ε→0

S[x+ ε δx]− S[x]
ε

= ∂εS[x+ ε δx]

∣∣∣∣
ε=0

,
(20.54)

(first variation)

in analogy to the usual derivative, but the perturbation to the argument is a function δx(t). Note that this
variation is, roughly speaking, proportional to δx, and hence why we can use it in the series expansion. Then
the second variation is the variation of the first variation:

δ2S[x; δx; δx′] := lim
ε→0

δS[x+ ε δx; δx′]− δS[x; δx′]
ε

= ∂εδS[x+ ε δx; δx′]
∣∣∣
ε=0

= ∂ε∂ε′S[x+ ε δx+ ε′ δx′]
∣∣∣
ε=ε′=0

.

(second variation) (20.55)
This pattern of definitions can obviously continue indefinitely for higher-order variations.

The variations can then serve as the definition for functional derivatives. In terms of the first variation,
the first functional derivative δS/δx is defined such that the inner product with the perturbation δx gives
the first variation: 〈

δS

δx
, δx

〉
:=

∫ t

t0

dt′
δS

δx(t′)
δx(t′) := δS[x; δx].

(20.56)
(first functional derivative)

The second functional derivative is similarly defined in terms of the second variation as〈
δx,

δ2S

δx2
δx

〉
:=

∫ t

t0

dt′
∫ t

t0

dt′′ δx(t′)
δ2S

δx(t′) δx(t′′)
δx(t′′) := δ2S[x; δx; δx′].

(second functional derivative) (20.57)
Note that these are all reasonably straightforward generalizations of the same derivatives for a scalar-valued
function of a vector S(xj), where the first derivative is a vector of partial derivatives ∂S/∂xj , and the second
derivative is a matrix of derivatives ∂2S/∂xj∂xk.

7L. S. Schulman, Techniques and Applications of Path Integration (Wiley, 1981), Chapter 13; Hagen Kleinert, Path Integrals
in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets, 5th ed. (World Scientific, 2009), Chapter 4.
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In terms of the functional derivatives, we can write the series expansion (20.52) for the action as

S[x] = S[xc] +

∫ t

t0

dt′
δS

δx(t′)

∣∣∣∣
x=xc

δx(t′) +
1

2

∫ t

t0

dt′
∫ t

t0

dt′′
δ2S

δx(t′) δx(t′′)

∣∣∣∣
x=xc

δx(t′) δx(t′′) + · · ·

(series expansion of the action) (20.58)
as an alternative to Eq. (20.52). Again, δS/δx vanishes when evaluated at xc, and again this just generalizes
the discrete form of the Taylor series.

Inserting this latter expansion into the path integral (20.49), we note again that the first-order term
is zero, and we also note that the second-order term gives a Gaussian factor in the fluctuations δx(t):

Ksc(x, t;x0, t0) = eiS[xc]/h̄

∫
Dx exp

(
i

2h̄

∫
dt′
∫
dt′′ δx(t)

δ2S

δx(t′) δx(t′′)

∣∣∣∣
x=xc

δx(t′′)

)
. (20.59)

We will be careful and go back to the discrete (time-sliced) form for the path integral to evaluate it, as in
Eq. (20.22):

Ksc(x, t;x0, t0) =
( m

i2πh̄δt

)N/2

eiS[xc]/h̄

∫ (N−1∏
j=1

dδxj

)
exp

 i

2h̄

N−1∑
j=1

N−1∑
j′=1

δxj
∂2S

∂xj ∂xj′

∣∣∣∣
x=xc

δxj′

 . (20.60)

Note that the sums in the exponential only run from 1 to N − 1 because we regard the endpoints x0 and xN
to be fixed. Then using the Gaussian-integral formula (20.46),

Ksc(x, t;x0, t0) =

√
m

i2πh̄δt

(m
δt

)(N−1)/2
det−1/2

(
∂2S

∂xj ∂xj′

)
exp

(
i

h̄
S[xc]

)
, (20.61)

where the determinant is over an (N − 1)× (N − 1) matrix. In continuous language, we can write this result
in terms of a functional determinant as

Ksc(x, t;x0, t0) =

√
m

i2πh̄δt
det−1/2

[
δt

m

(
δ2S

δx2

)]
exp

(
i

h̄
S[xc]

)
,

(semiclassical propagator) (20.62)
where we may take the determinant to be defined by the discrete expression (20.61). Note that in deriving
this propagator, we have considered lowest-order quantum fluctuations about the classical trajectory, in what
amounts to making a Gaussian approximation for the fluctuations. While the exponential gives the quantum
phase factor along the classical path, the determinant gives the correction to the amplitude as the size of
the Gaussian fluctuations stretches or compresses in phase space.

For the action (20.53), we can write out the first action variation

δS[x; δx] =

∫ t

t0

dt′
(
∂L

∂x
δx+

∂L

∂ẋ
δẋ

)
=

∫ t

t0

dt′
(
∂L

∂x
− d

dt

∂L

∂ẋ

)
δx

(20.63)

and the second variation

δ2S[x; δx] =

∫ t

t0

dt′
(
∂2L

∂x2
δx δx+ 2

∂L

∂x∂ẋ
δx δẋ+

∂2L

∂ẋ2
δẋ δẋ

)
,

=

∫ t

t0

dt′
∫ t

t0

dt′′ δ(t′ − t′′)

×
(

∂2L

∂x(t′) ∂x(t′′)
δx(t′) δx(t′′) + 2

∂L

∂x(t′) ∂ẋ(t′′)
δx(t′) δẋ(t′′) +

∂2L

∂ẋ(t′) ∂ẋ(t′′)
δẋ(t′) δẋ(t′′)

)
,

(20.64)
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and thus the functional derivatives
δS[x]

δx(t)
=
∂L

∂x
− d

dt

∂L

∂ẋ
(20.65)

and
δ2S[x]

δx(t) δx(t′)
= δ(t− t′)

(
∂2L

∂x2(t)
+ 2

∂L

∂x(t) ∂ẋ(t)

d

dt′

)
− d

dt
δ(t− t′) ∂2L

∂ẋ2(t)

d

dt′
. (20.66)

In this last expression, note that all derivative operators d/dt operate on everything to the right.
For a particle Lagrangian (20.21),

L(x, ẋ) =
1

2
mẋ2 − V (x), (20.67)

the first functional derivative is
δS[x]

δx(t)
= −V ′(x)−mẍ, (20.68)

while the second derivative becomes

δ2S[x]

δx(t) δx(t′)
= −δ(t− t′)V ′′(x)−m d

dt
δ(t− t′) d

dt′
, (20.69)

in which case the functional determinant in the propagator (20.62) becomes

det−1/2
[
δt

m

(
δ2S

δx2

)]
= δt−(N−1)/2 det−1/2

(
− d

dt
δ(t− t′) d

dt′
− δ(t− t′) V

′′(xc)

m

)
= δt−(N−1) det−1/2

(
−∂ 2

t −
V ′′(xc)

m

)
,

(20.70)

where we have used the discrete form of the delta function, which is the identity times δt−1. In fact, we have
already evaluated the last determinant here in the case V (x) = 0 for the free particle. By noting that the
second-order, finite-difference operator for the second derivative can be written

∆
(2)
t ψ(t) :=

ψ(t+ δt)− 2ψ(t) + ψ(t− δt)
δt2

, (20.71)

such that
∂ 2
t ψ(t) = ∆

(2)
t ψ(t) +O(δt3), (20.72)

the matrix M in Eq. (20.42) is the discrete representation for the operator −δt2∂ 2
t . Recalling from Eq. (20.43)

that det M = N , then
det
(
−∂ 2

t

)
= δt−2(N−1)N, (20.73)

and this means, for example, that we can write the propagator (20.62) in continuous notation in terms of a
‘‘renormalized’’ determinant:

Ksc(x, t;x0, t0) =

√
m

i2πh̄(t− t0)

√
det(−∂ 2

t )

det[−∂ 2
t − V ′′(xc)/m]

exp
(
i

h̄
S[xc]

)
,

(semiclassical propagator) (20.74)
where we used t− t0 = Nδt.
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20.2.1.1 Gel’fand–Yaglom Method

To evaluate the functional determinant further here, we can extend the recursion method that we used in
Section 20.1.5 for the free-particle determinant. In place of the matrix (20.42) for the operator −δt∂ 2

t , we
can compute the determinant we need in terms of a similar (N − 1)× (N − 1) matrix:

det
[
−∂ 2

t − V ′′(xc)/m
]

det(−∂ 2
t )

=
1

N
det



2− δt2ω 2
N−1 −1 0 · · · 0 0

−1 2− δt2ω 2
N−2 −1 · · · 0 0

0 −1 2− δt2ω 2
N−3 · · · 0 0

...
...

...
. . .

...
...

0 0 0 · · · 2− δt2ω 2
2 −1

0 0 0 · · · −1 2− δt2ω 2
1


,

(20.75)
where

ω 2
j :=

V ′′(xc,j)

m
=
V ′′[xc(tj)]

m
(20.76)

defines an effective, time-dependent, harmonic-oscillator frequency based on the curvature of the potential
along the classical path. As in the free-particle case, the n × n version of the determinant satisfies the
recursion relation

detn =
[
2− δt2ω 2

n

]
detn−1 − detn−2, (20.77)

with initial values
det1 = 2− δt2ω 2

1

det2 = (2− δt2ω 2
2 )(2− δt2ω 2

1 )− 1.
(20.78)

To cast this recursion into continuous form, note that we can rewrite Eq. (20.77) as

detn − 2detn−1 + detn−2
δt2

+ ω 2
ndetn−1 = 0. (20.79)

Defining
Dn := δt detn, (20.80)

the recursion is the same,
Dn − 2Dn−1 +Dn−2

δt2
− ω 2

nDn−1 = 0. (20.81)

but we can recast the initial conditions as

D1 = δt(2− δt2ω 2
1 )

D2 −D1

δt
= (2− δt2ω 2

2 )(2− δt2ω 2
1 )− 3 + δt2ω 2

1 .
(20.82)

In the continuum limit δt −→ 0, D(t) then satisfies the differential equation[
∂ 2
t + ω2(t)

]
D(t) = 0

D(0) = 0

Ḋ(0) = 1.

(continuous representation of the determinant) (20.83)
The determinant then is simply D(t)/δt, where t here is the final time of the propagator. This recasting of
the functional determinant into the solution of an ordinary differential equation is specific to determinants
of Schrödinger-type operators −∂ 2

x + V (x) in one dimension, and this is the Gel’fand–Yaglom method
for computing functional determinants.8

8I. M. Gel’fand and A. M. Yaglom, ‘‘Integration in Functional Spaces and its Applications in Quantum Physics,’’ Journal
Mathematical Physics 1, 48 (1960) (doi: 10.1063/1.1703636); Hagen Kleinert, op. cit., Section 2.4; M. Chaichian and A.
Demichev, Path Integrals in Physics, Volume I: Stochastic Processes in Quantum Mechanics (Institute of Physics, 2001),
p. 168.

http://dx.doi.org/10.1063/1.1703636
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20.2.1.2 Van Vleck–Morette Determinant

Now we will use the Gel’fand–Yaglom method to establish a simple form for the semiclassical functional
determinant.9 Using the classical equation of motion mẍc = −V ′(xc) and differentiating with respect to
time leads to [

∂ 2
t +

V ′′(xc)

m

]
ẋc = 0. (20.84)

This in turn implies that ẋc(t) is a solution to the differential equation (20.83). To emphasize this, we will
write the solution

D1(t) = ẋc(t). (20.85)
Since we have a second-order differential equation, there are two independent solutions D1 and D2, and the
Wronskian determinant

W := det
[
D1 D2

Ḋ1 Ḋ2

]
= D1Ḋ2 −D2Ḋ1 (20.86)

is constant, because the coefficient of ∂ 2
t is constant and the coefficient of ∂t vanishes. Dividing through by

D 2
1 ,

Ḋ2

D1
− D2

D 2
1

Ḋ1 =
W

D 2
1

, (20.87)

and noting that the left-hand side is the derivative of D2/D1, we can integrate both sides to obtain

D2(t)

D1(t)
− D2(t0)

D1(t0)
=

∫ t

t0

dt′
W

D 2
1 (t
′)
, (20.88)

or to simplify,

D2(t) =
D2(t0)

D1(t0)
D1(t) +WD1(t)

∫ t

t0

dt′

D 2
1 (t
′)
. (20.89)

The general solution D(t) can be written as a superposition c1D1 + c2D2, or

D(t) = c1ẋc(t) + c2ẋc(t)

∫ t

t0

dt′

ẋ 2
c (t
′)
, (20.90)

where we have absorbed some of the t0-dependent constants in the coefficients. The initial conditions from
(20.83) give c1 = 0 from D(t0) = 0, and c2 = ẋc(t0) from Ḋ(t0) = 1. Thus, we have the solution

D(t) = ẋc(t) ẋc(t0)

∫ t

t0

dt′

ẋ 2
c (t
′)

(20.91)

to represent the functional derivative.
We will continue by transforming this into a simpler form. First, recall that a classical particle in one

dimension, by virtue of the conserved energy

E =
1

2
mẋ 2

c + V (xc) =
p 2

c
2m

+ V (xc), (20.92)

can always be solved in the sense of obtaining an integral for t(x):

t− t0 =

∫ x

x0

dx′
m√

2m[E − V (x′)]
=

∫ x

x0

dx′
m

p(x′)
. (20.93)

Differentiating this gives

∂t

∂E
= −

∫ x

x0

dx′
m2(

2m[E − V (x′)]
)3/2 = −

∫ x

x0

dx′
m2

p3(x′)
. (20.94)

9Here we are mainly following M. Chaichian and A. Demichev, op. cit., Section 2.2.3; see also Hagen Kleinert, op. cit.,
Sections 2.4.5 and 4.3.
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Then we can use this result to simplify the integral∫ t

t0

dt′

ẋ 2
c (t
′)

= m2

∫ t

t0

dt′

p 2
c (t
′)

= m3

∫ t

t0

ẋc dt
′

p 3
c (t
′)

= m3

∫ x

x0

dxc

p 3
c (xc)

= −m ∂t

∂E
.

(20.95)

Now to calculate ∂E∂t. Starting with the phase-space action, we have

S[xc] =

∫ t

t0

dt′
[
pc(t

′) ẋc(t
′)−H(xc, pc)

]
=

∫ x

x0

dxc pc(xc)− (t− t0)E.
(20.96)

Differentiating with respect to the endpoint x,

∂S[xc]

∂x
= pc(x) +

∫ x

x0

dxc
∂pc

∂x
− (t− t0)

∂E

∂x

= pc(x) +

[ ∫ x

x0

dxc
∂pc

∂E
− (t− t0)

]
∂E

∂x
,

(20.97)

where we pulled ∂E/∂x out of the integral, since we regard E as only depending on boundary conditions
(e.g., on x0 and ẋ0, or x0 and x). Then

∂pc

∂E
=

(
∂E

∂pc

)−1
=

(
∂pc

m

)−1
=

1

ẋc
, (20.98)

and so the second term in Eq. (20.97) vanishes, so that

∂S[xc]

∂x
= pc(x). (20.99)

Differentiating with respect to the initial coordinate,

∂2S[xc]

∂x0∂x
=
∂pc(x)

∂x0
=

∂

∂x0

√
2m[E − V (x)] =

m

pc(x)

∂E

∂x0
. (20.100)

To find ∂E/∂x0, we can differentiate Eq. (20.96) with respect to x0 to obtain

∂S[xc]

∂x0
= −pc(x0)− (t− t0)

∂E

∂x0
, (20.101)

and then differentiate with respect to t to obtain

∂E

∂x0
= −∂

2S[xc]

∂t∂x0
. (20.102)

From Eq. (20.96), we can differentiate with respect to x0

∂S[xc]

∂x0
= −pc(x0) +

∫ x

x0

dxc
∂pc

∂x0
− (t− t0)

∂E

∂x0

= −pc(x0) +

[ ∫ x

x0

dxc
∂pc

∂E
− (t− t0)

]
∂E

∂x0

= −pc(x0),

(20.103)
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in analogy to Eq. (20.99). Thus, Eq. (20.102) becomes

∂E

∂x0
=
∂pc(x0)

∂t
=
∂pc(x0)

∂E

∂E

∂t
=

m

pc(x0)

∂E

∂t
, (20.104)

and putting this in Eq. (20.100) we have

∂2S[xc]

∂x0∂x
=

m2

pc(x0)pc(x)

∂E

∂t
. (20.105)

Solving for ∂E/∂t,
∂E

∂t
= ẋc(x0)ẋc(x)

∂2S[xc]

∂x0∂x
. (20.106)

Putting this into Eq. (20.95), ∫ t

t0

dt′

ẋ 2
c (t
′)

= −m
(
ẋc(x0)ẋc(x)

∂2S[xc]

∂x0∂x

)−1
, (20.107)

so the determinant solution D(t) in Eq. (20.91) finally becomes

D(t) = −m
(
∂2S[xc]

∂x0∂x

)−1
(20.108)

The original determinant that we needed in Eq. (20.75) becomes

det
[
−∂ 2

t − V ′′(xc)/m
]

det(−∂ 2
t )

=
1

Nδt
D(t) =

m

(t− t0)

(
−∂

2S[xc]

∂x0∂x

)−1
(20.109)

At long last, the semiclassical propagator (20.74) simplifies to

Ksc(x, t;x0, t0) =
1√
2πih̄

√
−∂

2S[xc]

∂x0∂x
exp

(
i

h̄
S[xc]

)
,

(semiclassical propagator) (20.110)
so that the determinant reduces to a derivative of the classical action at the propagator endpoints.

More generally, in multiple dimensions, this result generalizes to

Ksc(x, t;x0, t0) =
1√
2πih̄

det1/2
[
−∂

2S[xc]

∂x0∂x

]
exp

(
i

h̄
S[xc]

)
,

(semiclassical propagator) (20.111)
The determinant here,

det
[
−∂

2S[xc]

∂x0∂x

]
= det

[
−∂p0

∂x

]
= det

[
− ∂p
∂x0

]
,

(Van Vleck–Morette determinant) (20.112)
is called the Van Vleck–Morette determinant.10 This determinant has an interpretation as follows. In
the variational spirit of the path integral, the classical trajectory xc is specified in terms of its endpoints
x0 and x. Alternately, it can be specified in terms of the initial conditions (x0,p0) or the end conditions
(x,p). The Van Vleck–Morette determinant is the determinant of the coordinate transformation between
the variational and initial/end specifications. Since the phase-space area of a small bundle of paths around

10The determinant was introduced in the semiclassical context by J. H. Van Vleck, Proceedings of the National Academy of
Sciences 14, 178 (1928) (doi: 10.1073/pnas.14.2.178); and introduced in the context of path integration by C. DeWitt-Morette,
Physical Review 81, 848 (1951) (doi: 10.1103/PhysRev.81.848). See also, for example, Bryce DeWitt, The Global Approach to
Quantum Field Theory, vol. 1 (Oxford, 2003), Chapter 14.

http://dx.doi.org/10.1073/pnas.14.2.178
http://dx.doi.org/10.1103/PhysRev.81.848


20.2 Classical Limit 917

the classical path is invariant along the path (classically, at least), roughly speaking the determinant maps
this area into position space, to represent the effect of local convergence or divergence of classical trajectories
on the amplitude. (In optics terminology, this is akin to using Gaussian beams instead of rays for tracing
optical systems, and the spreading or converging of the beam waist influences the intensity at the beam
center.)

We are also glossing over what happens if the functional determinant in Eq. (20.62) vanishes, such
that the Van Vleck–Morette determinant diverges. This corresponds to the formation of caustics in the
classical trajectories, and requires more careful treatment.11

20.2.2 Example: Semiclassical Propagator for the Harmonic Oscillator

As an example of the semiclassical propagator, we will evaluate this explicitly for a harmonic oscillator of
frequency ω. Note that for this case, the semiclassical propagator (20.62) is exact, because it was based on
a truncation at the second derivative, and higher derivatives will vanish anyway for the harmonic oscillator,
which has a quadratic Lagrangian.

20.2.2.1 Classical Action

Thus, starting with the classical action,

S[xc] =

∫ t

t0

dt′
(
mẋ2

2
− mω2x2

2

)
, (20.113)

we will integrate by parts on the first term to obtain

S[xc] =
mxẋ

2

∣∣∣∣t
t0

− m

2

∫ t

t0

dt′ x
(
ẍ+ ω2x

)
. (20.114)

The second factor in the integrand vanishes under the classical equations of motion, so we only have the
boundary term

S[xc] =
m

2
xẋ
∣∣t
t0
. (20.115)

We will then use the classical trajectory

xc(t) = x0 cosω(t− t0) +
ẋ0
ω

sinω(t− t0) (20.116)

to evaluate the action integral, with the result

S[xc] =
m

2

[
x0ẋ0

(
cos2 ω(t− t0)− sin2 ω(t− t0)

)
+

(
ẋ 2
0

ω
− ωx 2

0

)
cosω(t− t0) sinω(t− t0)

]
− m

2
x0ẋ0

=
m

2

[(
ẋ 2
0

ω
− ωx 2

0

)
cosω(t− t0) sinω(t− t0)− 2x0ẋ0 sin2 ω(t− t0)

]
.

(20.117)
Now rearranging the general solution (20.113) to obtain ẋ0 at the final spacetime coordinates (x, t),

ẋ0 =
ω(x− x0 cosωt)

sinωt
(20.118)

we can eliminate the initial derivative. After a bit of algebra we find

S[xc] =
mω

2 sinω(t− t0)

[(
x 2
0 + x2

)
cosω(t− t0)− 2x0x

]
(harmonic-oscillator action) (20.119)

for the classical action in terms of only the time interval and the end coordinates x0 = xc(t0) and x = xc(t).
11M. V. Berry and K. E. Mount, ‘‘Semiclassical approximations in wave mechanics,’’ Reports on Progress in Physics 35, 315

(1972) (doi: 10.1088/0034-4885/35/1/306).

http://dx.doi.org/10.1088/0034-4885/35/1/306
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20.2.2.2 Determinant

Then to obtain the Van Vleck–Morette determinant for the harmonic oscillator, we simply differentiate the
action:

∂2S[xc]

∂x0∂x
= − mω

sinω(t− t0)
.

(Van Vleck–Morette determinant, harmonic-oscillator) (20.120)
Then assembling the parts of the semiclassical propagator (20.110), we have

K(x, t;x0, t0) =

√
mω

2πih̄ sinω(t− t0)
exp

(
imω

2h̄ sinω(t− t0)

[(
x 2
0 + x2

)
cosω(t− t0)− 2x0x

])
.

(propagator, harmonic oscillator) (20.121)
Again, though we derived this expression via the semiclassical propagator, this is identical to the fully
quantum propagator. Any higher-order corrections to the path integral go as higher powers of h̄−1, and as
functional derivatives of the action beyond second order. It is also easy to check that this expression reduces
correctly to the free-particle propagator (20.48) in the limit ω −→ 0. In deriving that result, we also used
the classical (straight-line) path to simplify the calculation.

20.3 Monte-Carlo Methods in Quantum Statistical Mechanics

One nice connection of the path-integral formulation of quantum mechanics is to statistical mechanics,12 as
we will now review. This connection comes by recalling the definition of the partition function

Z := Tr
[
e−βH

]
,

(20.122)
(partition function)

where β := 1/kBT for temperature T and Boltzmann constant kB. We can then compare this to the
propagator from combining Eqs. (20.1) and (20.2):

K(β, t;α, t0) = 〈β|e−iH(x,p)(t−t0)/h̄|α〉. (20.123)

In particular, choosing the initial and final states to be the same, and then choosing imaginary times t0 = 0
and t = −ih̄β, we have

K(α,−ih̄β;α, 0) = 〈α|e−βH |α〉. (20.124)

This imaginary-time replacement is called a Wick rotation of the propagator. Summing over all states |α〉
gives the trace we require to complete the partition function, so we identify

Z =
∑
α

K(α,−ih̄β;α, 0),

(imaginary-time propagator as partition function) (20.125)
or in the position representation,

Z =

∫
dxK(x,−ih̄β;x, 0) =

∫
dx 〈x,−ih̄β|x, 0〉.

(imaginary-time propagator as partition function) (20.126)
In particular, from the path integral (20.24), we can make the same replacement to obtain

Z =

∫
dx

∫
Dx exp

[
i

h̄

∫ t

0

dtL(x, ẋ)

]
t→−ih̄β

.

(partition function as path integral) (20.127)
12Richard P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals (McGraw–Hill, 1965), Chapter 10.
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We can absorb the dx integral into the path integral as follows. Recall that in the integration path measure
(20.23), we had path coordinates x1 . . . xN−1 for the integration, with initial and final coordinates x0 and
x ≡ xN . For the purposes of the diffusion integral (20.127), recall that we should identify the endpoints

x = x0 = xN , (20.128)

which is the subject of the last integration dx. Alternately, for reasons we will come to, we can enforce this
by keeping the integral over x, calling it an integral over x0, and then introducing an integral over xN , so
long as we also introduce a δ(xN − x0) in the integrand to enforce xN = x0. Thus, we can write

Z =

∫
D̃x δ[x(h̄β)− x0] exp

[
i

h̄

∫ t

0

dtL(x, ẋ)

]
t→−ih̄β

,

(partition function as path integral) (20.129)
where we have modified the integration measure to read

D̃x :=

(
m

2πh̄2δβ

)N/2 N∏
j=0

dxj ,

(functional-integral differential for periodic paths) (20.130)
and in the continuum limit, we have identified the endpoint xN ≡ x(t) −→ x(h̄β).

To see what all this means, note that the Hamiltonian (20.12) implies the Schrödinger equation

ih̄∂tψ = − h̄2

2m
∂ 2
xψ + V (x)ψ, (20.131)

which under the same imaginary-time replacement becomes

∂βψ =
h̄2

2m
∂ 2
xψ − V (x)ψ,

(20.132)
(diffusion equation in imaginary time)

which is a diffusion equation in the imaginary time β, with a damping term (corresponding to a space-
dependent cooling in a heat equation) due to V (x). Thus, we expect the paths in Eq. (20.127) to correspond
to diffusive paths that as a whole satisfy the diffusion equation (20.132). We will develop this notion further
in the next section, but this is also the content of the Feynman–Kac formula, as we developed in the form
of Eqs. (17.447) and (17.448) in the context of stochastic calculus.

20.3.1 Path Integral as Ensemble Average

Now we will explore in more detail the paths in the diffusive path integral (20.127). Writing out the
Lagrangian explicitly in the path integral, we have

Z =

∫
D̃x δ[x(h̄β)− x0] exp

[
i

h̄

∫ t

0

dt

(
1

2
mẋ2 − V (x)

)]
t→−ih̄β

=

∫
D̃x δ[x(h̄β)− x0] exp

[
− 1

h̄

∫ h̄β

0

dβ̃
(m
2
(∂β̃x)

2 + V (x)
)]

,

(20.133)

where β̃ := h̄β. Now the idea is to split the two terms in the exponential, giving different interpretations to
each one.

Suppose that f(x) is a unit-normalized, nonnegative distribution:∫
dx f(x) = 1. (20.134)
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Then we may write any integral involving the product of f(x) with another function as an average,∫
dx f(x) g(x) = 〈〈g(x)〉〉f(x), (20.135)

where the expectation value is an ensemble average chosen from the ‘‘probability’’ distribution f(x). We can
apply this to the path integral (20.133)

Z =

∫
D̃x δ[x(h̄β)− x0] exp

[
−m
2h̄

∫ h̄β

0

dβ̃ (∂β̃x)
2

]
exp

[
− 1

h̄

∫ h̄β

0

dβ̃ V (x)

]
, (20.136)

where, after appropriate normalization, the first exponential factor (the kinetic factor) will play the role of
the probability measure f(x).

This probability measure will be normalized by introducing a normalization constant η, such that the
resulting path integral is normalized. Then the generalization of Eq. (20.134) is∫

D̃′x f [x(t)] =
1

η

∫
D̃′x exp

[
−m
2h̄

∫ h̄β

0

dβ̃ (∂β̃x)
2

]
= 1, (20.137)

where D̃′x is the same as D̃x, but omits the integration over the endpoint x(h̄β) (or xN ), because this
integration is already taken care of by the δ function. In discrete form, this reads

η =

∫
D̃′x exp

[
−m
2h̄

∫ h̄β

0

dβ̃ (∂β̃x)
2

]

=

(
m

2πh̄2δβ

)N/2 ∫ N−1∏
j=0

dxj exp
[
− m

2h̄2δβ
(xj+1 − xj)2

]
,

(20.138)

where δβ = β/N . Note that this has the form of N − 1 Gaussian convolutions with one final integral over
the result. We can proceed by carrying out first the x0 integral, which is a Gaussian integral of the form∫

dx0 exp
[
− m

2h̄2δβ
(x1 − x0)2

]
=

√
2πh̄2δβ

m
, (20.139)

where we have simply recentered the x0 integration by x0 −→ x0− x1 and performed the Gaussian integral.
Then Eq. (20.138) becomes

η =

(
m

2πh̄2δβ

)N/2
√

2πh̄2δβ

m

∫ N−1∏
j=1

dxj exp
[
− m

2h̄2δβ
(xj+1 − xj)2

]
. (20.140)

Iterating this procedure N − 1 more times, we have

η =

(
m

2πh̄2δβ

)N/2(
2πh̄2δβ

m

)N/2

= 1, (20.141)

and we see that we already have a normalized integral from keeping the momentum-integration factors (had
we dropped these factors, we could easily use this normalization procedure to restore them). Then applying
Eq. (20.135) to the path integral (20.136),

Z =

∫
dx0

〈〈
δ[x(h̄β)− x0] exp

[
− 1

h̄

∫ h̄β

0

dβ̃ V (x)

]〉〉
, (20.142)

where we changed the remaining xN integration over to an integration over x0 via the δ function, and the
double brackets here refer to an ensemble average over x(β̃) chosen from the probability functional f [x(t)]
defined in Eq. (20.137).
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Now before proceeding, we can interpret things a bit. The probability functional f [x(t)] that defines
the ensemble average is, in its finite representation in Eq. (20.138), a product of Gaussian factors of the form

exp
[
− m

2h̄2δβ
(xj+1 − xj)2

]
. (20.143)

This factor is a Gaussian probability density for the separation of neighboring points xj+1 and xj , and says
that a pair of such points will only be chosen with significant probability if |xj+1 − xj | is small, of the order
of the standard deviation

√
h̄2δβ/m or less. Thus, the points xj define a continuous path in the N −→ ∞

limit, of random, Gaussian steps of variance h̄2δβ/m. This is just a Wiener process (or Brownian motion).
However, a standard Wiener path W (t) takes a step of variance dt in a time interval dt, so we can identify
x(β̃) as a scaled, displaced Wiener process:

x(β̃) = x0 +

√
h̄

m
W (β̃), (20.144)

since dW (β̃) has an rms average of
√
h̄δβ. Furthermore, the δ function in the expectation value ties the

endpoint x(h̄β) of the path to the initial point x0. This is just a Brownian bridge tied down at ‘‘time’’ h̄β
to its initial position. We have in fact already worked out the conversion of the δ function to a bridge in
Eq. (17.561), with result 〈〈

δ[W (T )]F [W (t)]

〉〉
=

1√
2πT

〈〈
F [BT (t)]

〉〉
, (20.145)

where F is some functional, and BT (t) is a Brownian bridge that is ‘‘tied down,’’ BT (t = T ) = 0, at time
t = T . To adapt this to our paths x(β̃), we can note that the tie-down time is h̄β, but this should really be
a factor h̄/m longer in view of Eq. (20.144). Thus, the path integral (20.142) becomes

Z =

√
m

2πh̄2β

∫
dx0

〈〈
exp

[
− 1

h̄

∫ h̄β

0

dβ̃ V (x)

]〉〉
x(β̃)=x0+

√
h̄/mBh̄β(β̃)

,

(partition function as ensemble average over Brownian bridges) (20.146)
where now, the ensemble average is over Wiener loops or Brownian bridges that start and end at x0, where
we sum over all possible x0. The exponential factor involves an integral of the potential V evaluated along
the stochastic loop. Note that the overal β-dependent normalization factor can be dropped, as overall factors
in partition functions are ignorable. Also, note that since we have defined the Brownian bridges or stochastic
loops to be periodic in β̃, with period h̄β, we may regard the ‘‘imaginary time’’ β̃ itself to be periodic (i.e.,
representing a compact time dimension), with the same period.

20.3.1.1 Alternate Normalization of the Periodic Path

It is constructive to consider alternate ways to compute the normalization of the path integral (20.136). We
already covered one method in Section 20.1.5, where we evaluated a determinant as part of a direct matrix-
Gaussian integration to integrate a periodic path integral. Another way is to simply normalize against the
free-particle partition function, obtained by simply setting V = 0 in Eq. (20.136):

Z0 =

∫
D̃x δ[x(h̄β)− x0] exp

[
−m
2h̄

∫ h̄β

0

dβ̃ (∂β̃x)
2

]

=

∫
D̃′x exp

[
−m
2h̄

∫ h̄β

0

dβ̃ (∂β̃x)
2

]
.

(20.147)

This second form looks superficially the same as the integral (20.138) that we computed before, but because
the xN integral changed the δ function into a pinned endpoint on the path, this integral also includes the
contribution that we obtained from the δ function in Eq. (20.145). Rather than deal with the path integral,
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we will go back to the original partition function (20.122), writing out the free-space Hamiltonian and the
momentum-space trace:

Z0 =

∫
dx 〈x| exp

[
−βp

2

2m

]
|x〉. (20.148)

To evaluate this, we insert a momentum-space identity, to reduce the momentum operators in the exponential
to eigenvalues:

Z0 =

∫
dx

∫
dp 〈x|p〉〈p| exp

[
−βp

2

2m

]
|x〉

=
1

2πh̄

∫
dx

∫
dp exp

[
−βp

2

2m

]
=

√
m

2πh̄2β

∫
dx.

(20.149)

The remaining position integral is a divergent volume factor, which is telling us that we shouldn’t normalize
with respect to Z0, but rather to the free-partition-function density Z0(x), which is just Z0 without the extra
integration factor:

Z0(x) =

√
m

2πh̄2β
. (20.150)

This gives the proper normalization of the kinetic part of the partition function (20.136), including the δ
function, but without the integral over x0. Thus, in converting Eq. (20.136) to an ensemble average, we
associate a factor of 1/Z0(x) (i.e., 1/η in our previous notation) with the probability functional f [x(t)],
leaving a factor of Z0(x) in the remaining ensemble average. The result is

Z =

√
m

2πh̄2β

∫
dx0

〈〈
exp

[
− 1

h̄

∫ h̄β

0

dβ̃ V (x)

]〉〉
x(h̄β)=x0

,

(ensemble average via alternate normalization) (20.151)
which agrees exactly with Eq. (20.146), implementing the normalization due to the change to an ensemble
average and the loop-closure δ function all in one go. However, we don’t get the clear distinction of the
factor here as being due to the pinning of the loop end.

20.3.1.2 YANPP (Yet Another Normalization of the Periodic Path)

Finally, we will compute the normalization yet another way, illustrating how to perform the explicit, iterated
convolution with the δ function up front (this method is more along the lines of Section 20.1.5, but with
direct evaluation of the individual integrals). We need to compute the free-partition-function density, which
we can infer from Eqs. (20.147):

Z0(x) =

∫
D̃′x δ[x(h̄β)− x0] exp

[
−m
2h̄

∫ h̄β

0

dβ̃ (∂β̃x)
2

]
. (20.152)

In discrete form, this expression becomes

Z0(x) =

(
m

2πh̄2δβ

)N/2 ∫ N−1∏
j=0

dxj δ(xN − x0) exp
[
− m

2h̄2δβ
(xj+1 − xj)2

]
, (20.153)

Note that this is the same as η in Eqs. (20.138), but now with the loop-closure δ-function included. Carrying
out the x0 integral implements the δ function, leaving a somewhat more complicated integrand than before:

Z0(x) =

(
m

2πh̄2δβ

)N/2 ∫ 
N−1∏
j=1

dxj exp
[
− m

2h̄2δβ
(xj+1 − xj)2

] exp
[
− m

2h̄2δβ
(x1 − xN )2

]
. (20.154)
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We can then carry out the x1 integral∫
dx1 exp

[
− m

2h̄2δβ
(x2 − x1)2

]
exp

[
− m

2h̄2δβ
(x1 − xN )2

]
=

∫
dx1 exp

[
− m

2h̄2δβ
(x2 − x1)2

]
exp

[
− m

2h̄2δβ
(x1 − xN )2

]
=

∫
dx1 exp

[
− m

h̄2δβ
x 2
1

]
exp

[
− m

4h̄2δβ
(x2 − xN )2

]
=

√
πh̄2δβ

m
exp

[
− m

4h̄2δβ
(x2 − xN )2

]
,

(20.155)

where we complete the square via

(x2 − x1)2 + (x1 − xN )2 = 2x 2
1 − 2x1(x2 + xN ) + x 2

2 + x 2
N

= 2[x1 − (x2 + xN )/2]2 − (x2 + xN )2/2 + x 2
2 + x 2

N

= 2[x1 − (x2 + xN )/2]2 + (x2 − xN )2/2.

(20.156)

For the x2 integral, we then complete a square (x3−x2)2+(x2−xN )2/2, so let’s guess that the general case
will be a square of the form

(xj+1 − xj)2 + (xj − xN )2/j = (1 + 1/j)x 2
j − 2xj(xj+1 + xN/j) + x 2

j+1 + x 2
N/j

= [(j + 1)/j][xj − (xj+1 + xN/j)j/(j + 1)]2

− (xj+1 + xN/j)2j/(j + 1) + x 2
j+1 + x 2

N/j

= [(j + 1)/j][xj − (xj+1 + xN/j)j/(j + 1)]2 + (xj+1 − xN )2/(j + 1).

(20.157)
Therefore, the jth integral will contribute a factor of

√
j2πh̄2δβ/(j + 1)m, and change the ‘‘outside expo-

nential’’ from an argument of (xj − xN )2/j to (xj+1 − xN )2/(j + 1). After the (N − 1)th integral, all the
exponential factors vanish, leaving

Z0(x) =

(
m

2πh̄2δβ

)N/2(
2πh̄2δβ

m

)(N−1)/2 N−1∏
j=1

√
j

j + 1

=

√
m

2πh̄2Nδβ

=

√
m

2πh̄2β
.

(20.158)

This is, of course, the same factor we obtained in Eq. (20.150) in the previous section, but with distinctly
more work. In fact, we have just reproduced the Brownian-bridge construction via square-completion of
Section 17.7.1, suitably scaled for the present stochastic paths.The normalization of the partition function
then proceeds as in the previous section.

20.3.2 Feynman–Kac Formula

The Feynman–Kac formula that we treated before in Section 17.11 is an equivalent formalism for diffusive
path integrals, though we derived it before with a quite different approach using Itō calculus. In particular,
the form we will consider here is the solution (17.448)

f(x, t) =

〈〈
f0[x+W (t)] exp

(
−
∫ t

0

dt′ V [x+W (t′), t− t′]
)〉〉

(20.159)
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to the diffusion equation (17.447)
∂tf =

1

2
∂ 2
x f − V (x, t)f. (20.160)

To demonstrate the equivalence of this formula with the present formalism, we will need to transform this
equation into precisely the same diffusion equation as Eq. (20.132), which we will write as

∂β̃ψ =
1

2
∂ 2
x̃ψ −

V
(
x̃
√
h̄/m

)
h̄

ψ, (20.161)

where β̃ = h̄β as usual, and x̃ =
√
m/h̄ x. Then the solution of this equation according to Eq. (20.159) is at

x0 [i.e., f0(x) = δ(x− x0)]:

f(x̃, h̄β) =

〈〈
δ[x̃− x̃0 +W (h̄β)] exp

(
− 1

h̄

∫ h̄β

0

dβ̃ V
[√

h̄/mx̃0 +
√
h̄/mW (β̃)

])〉〉
. (20.162)

Note that what we have here is already the diffusive propagator, giving the probability density (amplitude)
at (x̃, h̄β), given that the ensemble started at (x̃0, 0). What remains from Eq. (20.125) is to set the final
point x equal to the initial point x0, and then integrate over the initial point to obtain the partition function:

Z =

∫
dx̃0 f(x̃0, h̄β) =

∫
dx̃0

〈〈
δ[W (h̄β)] exp

(
− 1

h̄

∫ h̄β

0

dβ̃ V
[√

h̄/mx̃0 +
√
h̄/mW (β̃)

])〉〉
. (20.163)

Then applying Eq. (20.145), we have

Z =
1√
2πh̄β

∫
dx̃0

〈〈
exp

(
− 1

h̄

∫ h̄β

0

dβ̃ V
[√

h̄/mx̃0 +
√
h̄/mBh̄β(β̃)

])〉〉
, (20.164)

and putting x̃0 =
√
m/h̄ x0, we find

Z =

√
m

2πh̄2β

∫
dx0

〈〈
exp

(
− 1

h̄

∫ h̄β

0

dβ̃ V
[
x0 +

√
h̄/mBh̄β(β̃)

])〉〉
, (20.165)

which is equivalent to the partition-function expression (20.146) that we already derived. Thus, the Feynman–
Kac formula reproduces what we derived quite differently from the imaginary-time propagator, and in fact
it indicates somewhat more generality in allowing for time dependence of the potential, which is more useful
in the Schrödinger propagator rather than the (equilibrium) partition function.

20.3.3 Thermal Density Matrix

To review the utility of the partition function, recall that the canonical partition function is given in terms
of the energies Ej of a system as

Z :=
∑
n

e−βEn , (20.166)

where the exponential terms in this sum represent the relative probabilities (according to the Boltzmann
distribution) of an element of the canonical ensemble to occupy state n. The partition function neatly gives
the normalization factor for the Boltzmann probabilities, such that the normalized probability of occupying
state n is

P (n) =
e−βEn

Z
, (20.167)

and useful quantities such as the thermal energy may be computed as derivatives of Z:

−∂β logZ = −∂βZ
Z

=
∑
n

En
e−βEn

Z
=
∑
n

EnP (n) =〈E〉 . (20.168)
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For a quantum system, the definition (20.122) follows by identifying state energies as expectation values
En = 〈n|H|n〉 with respect to energy eigenstates |n〉, such that

Z =
∑
n

e−β〈n|H|n〉 =
∑
n

〈n|e−βH |n〉 = Tr
[
e−βH

]
. (20.169)

Then note also that in thermal equilibrium, the quantum state, or thermal density operator is closely related,
as

ρ =
∑
n

P (n)|n〉〈n| = 1

Z

∑
n

e−βEn |n〉〈n| = 1

Z

∑
n

e−βH |n〉〈n|. (20.170)

This is an expression of ρ in the energy basis; the basis-independent expression is therefore

ρ =
e−βH

Z
.

(20.171)
(thermal density operator)

In the position representation, the density matrix is then simply

〈x|ρ|x′〉 = 〈x|e
−βH |x′〉
Z

.
(20.172)

(thermal density operator)

Examining the steps leading up to Eq. (20.125), we see that the exponential matrix element is precisely the
Wick-rotated propagator:

ρ(x, x′)Z = K(x,−ih̄β;x′, 0),
(imaginary-time propagator as thermal density matrix) (20.173)

and thus the propagator gives the thermal state of a system, up to a factor of Z, or simply the unnormalized
thermal density matrix. The next step in computing the partition function in terms of the propagator was
to carry out the spatial trace, which follows here as the simple normalization of the density operator:

Z = ZTrρ = Z

∫
dx 〈x|ρ|x〉 =

∫
dx 〈x|e−βH |x〉. (20.174)

Thus, all of the above path-integration results apply also to Zρ(x, x′), if we drop the overall spatial integral
and interpret the paths as traveling from x′ to x in imaginary time from 0 to h̄β. Thus, for example,
Eq. (20.127) becomes

ρ(x, x0) =
1

Z

∫
Dx exp

[
i

h̄

∫ t

0

dtL(x, ẋ)

]
t→−ih̄β

,

(partition function as path integral) (20.175)
where as in the original propagator, the paths run from x0 to x. Similarly, the ensemble-averaged expression
(20.146) translates to

ρ(x, x0) =
1

Z

√
m

2πh̄2β
e−m(x−x0)

2/2h̄2β

〈〈
exp

[
− 1

h̄

∫ h̄β

0

dβ̃ V (x)

]〉〉
x(β̃)

,

(partition function as ensemble average over Brownian bridges) (20.176)
where x(β̃) travels from x0 to x as β̃ goes from 0 to h̄β with steps of variance h̄δβ̃/m in each time step δβ̃.

The extra exponential factor here bears a bit more explanation. Because we want to pin the endpoint
of the path at x, and not x0, we must still carefully handle this pinning. To do this, we can take Eq. (20.175)
and introduce an integration over the endpoint xN as in Eq. (20.129), inserting a δ function to fix the
endpoint,

ρ(xh̄β , x0) =
1

Z

∫
dxN Dxδ[xN − xh̄β ] exp

[
−m
2h̄

∫ h̄β

0

dβ̃ (∂β̃x)
2

]
exp

[
− 1

h̄

∫ h̄β

0

dβ̃ V (x)

]
, (20.177)
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in mixed continuous-discrete notation, and where we have changed the notation for the endpoint from x to
xh̄β to avoid confusion with the paths x(β̃) in the path integral. There are N integrals implied by dxN Dx,
and the normalization factor in Dx is again the appropriate normalization factor for the kinetic term to act
as the probability density, so that the analogue of Eq. (20.142) becomes

ρ(xh̄β , x0) =
1

Z

〈〈
δ[x(h̄β)− xh̄β ] exp

[
− 1

h̄

∫ h̄β

0

dβ̃ V (x)

]〉〉
. (20.178)

Now we can evaluate the contribution of the δ function here by modifying Eq. (20.145) to handle the offset
δ function here. Examining the derivation of this relation, we can see that the factor of 1/

√
2πt there came

from the probability density for W (t), evaluated at W (t) = 0. If we instead evaluate this at some other final
point Wt, then we have [cf. Eq. (17.592)]〈〈

δ[W (t)−Wt]F [W (t)]

〉〉
=
e−W

2
t /2t

√
2πt

〈〈
F [Bt(t)]

〉〉
, (20.179)

which is what we require here. As in Eq. (20.146), to adapt this to the (unpinned) paths x(t), we set
t −→ h̄2β/m, and then count W (t) as the (scaled) separation of xh̄β from the initial point x0, which yields
Eq. (20.176).

20.3.3.1 Example: Free-Particle Thermal State

The simplest application of the formalism here is to work out the thermal density operator for a free particle.
Setting V = 0 in Eq. (20.176), the ensemble average becomes trivial, and thus

ρ(x, x′) =
1

Z

√
m

2πh̄2β
e−m(x−x′)2/2h̄2β .

(20.180)
(free particle thermal state)

Note that the partition function here involves a divergent volume integral over a constant, so we won’t bother
to write it down. Note also that the density operator here agrees with the free-space propagator (20.48)
under the replacement (t− t0) −→ −ih̄β (if we take away the factor of Z).

20.3.3.2 Example: Partition Function of an Infinite Square Well

Consider an infinite square well, open from x = 0 to L,

V (x) = lim
V0→∞

V0 [Θ(x− L) + Θ(−x)] , (20.181)

and let’s use world lines to compute the partition function (20.146). In that expression, we have an ensemble
average over a particular statistic: the exponentiated line integral of −V (x) over each path. If the path
touches either wall of the potential, we have exp(−∞) = 0, and if the path does not touch either wall, then
we have exp(−0) = 1. Thus, the ensemble average is just counting the probability that each path does not
touch either wall of the well. In the language of stochastic processes, this can be phrased in terms of the
escape probability of a Brownian bridge from the interval (−a, L− a) [see Eq. (17.415)]:

Pescape = 1 +

∞∑
j=−∞

[
e−2(a+jL)

2

− e−2(jL)
2
]
. (20.182)

Then the partition function is

Z =

√
m

2πh̄2β

∫
dx0

{
1− Pescape[x(β̃)]

}
. (20.183)
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To adapt the escape probability here, we should let a −→ x0, but since we are dealing with a bridge that is
effectively pinned at time h̄2β/m, we should compensate by setting a −→ x0/h̄

√
β/m and L −→ L/h̄

√
β/m:

Z =

√
m

2πh̄2β

∫ L

0

dx0

∞∑
j=−∞

[
e−2m(jL)2/h̄2β − e−2m(x0+jL)

2/h̄2β
]
. (20.184)

The integral over the second term vanishes, because it is of the form∫ 1

0

dx e−a(x+j)
2

=

√
π

4a

{
erf
[
(j + 1)

√
a
]
− erf

[
j
√
a
]}
, (20.185)

which vanishes under an infinite sum over j. (Note that the individual terms technically give rise to divergent
sums, which vanish independently if defined in the sense of a Cauchy principal value.) Then the partition
function is

Z =

√
m

2πh̄2β
L

∞∑
j=−∞

e−2m(jL)2/h̄2β , (20.186)

which is technically correct, but we will take this a bit further.
Starting with the Poisson sum rule in the form13

∞∑
n=−∞

δ(t− n) =
∞∑

n=−∞
ei2πnt =

∞∑
n=−∞

cos(2πnt), (20.187)
(Poisson sum rule)

we multiply by exp(−at2) and integrate over t,

∞∑
n=−∞

e−an
2

=

∞∑
n=−∞

∫
dt e−at

2

ei2πnt, (20.188)

so that
∞∑

n=−∞
e−an

2

=

√
π

a

∞∑
n=−∞

e−n
2π2/a.

(20.189)
(Poisson sum rule for Gaussians)

Using this formula, Eq. (20.186) becomes

Z =
1

2

∞∑
j=−∞

e−π
2h̄2βj2/2mL2

, (20.190)

or finally after simplifying the sum,

Z =

∞∑
n=1

e−βn
2π2h̄2/2mL2

=

∞∑
n=1

e−βEn ,

(partition function of infinite square well) (20.191)
which is what we expect for a partition function for a set of states with energies En = n2π2h̄2/2mL2. This
is the just another way to derive the eigenenergies for the infinite square well! Note that we just needed the
escape probability for a Brownian bridge here; we can also derive the density matrix with this technique,
using the more general formula (17.415) for a nonperiodic Brownian bridge.

13Daniel A. Steck, Classical and Modern Optics (2006), available online at http://steck.us/teaching.

http://steck.us/teaching
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20.3.4 Propagator Paths

In developing path integrals in statistical mechanics, due to the imaginary-time identification t = −ih̄β
leading to Eq. (20.125), each step in the path integral has a factor of the form exp[−m(δx)2/2h̄|δt|], where
|δt| = h̄β. In Section 20.3.1, this allowed us to develop the path integral as a Monte-Carlo average over
Wiener paths, where adjacent steps in the path were close, with δx ∼

√
δt.

However, the original quantum propagator has oscillatory factors of the form exp[im(δx)2/2h̄(δt)]
in Eq. (20.17), and it is less obvious that a similar interpretation in terms of diffusive paths is possible
there. The two amplitude distributions are contrasted in the plot below (showing the real Gaussian in the
imaginary-time case, and the real part of the imaginary Gaussian in the real-time case).

real

imaginary

dx/(2h-o|dt|/m)1/2
-5 50

a
m
p
li
tu
d
e

1

0

-1

Even though the factor exp[im(δx)2/2h̄(δt)] oscillates without decaying, note that it is possible to integrate
it in the sense of normalizing it, because the tail oscillations increase in frequency [in the same sense that the
Fresnel integrals C(x) and S(x) converge to well-defined values as x −→ ∞]. Nevertheless, the undamped,
oscillatory character of the step amplitudes cause problems for rigorous handling of the propagator path
integral, and there has been a great deal of work in establishing rigorous foundations for the complex path
integral.14

In a heuristic approach, we can still say that for a Gaussian distribution,

f(x) =
1√
πα

e−x
2/α2

(20.192)

the convolution of multiple Gaussians for successive steps in the path integral

(f ∗ f)(x) = 1√
2πα

e−x
2/2α2

. (20.193)

still works whether the phase of α is 0 or −π/4, so the complex Gaussian still works out as a stable ‘‘step’’
distribution. In the imaginary-time (real Gaussian) case, the Wiener-path interpretation came from the
decay of the Gaussian tails for large steps. In the real-time (imaginary Gaussian) case, the ‘‘unlikely’’ paths
from the diffusion picture still have large amplitude, but being in the oscillatory tails, they have a rapidly
oscillating phase, and tend not to contribute via cancellation with other unlikely paths. This is an argument
similar to the one used in Section 20.2.2 for the semiclassical limit of the path integral. In this heuristic way
we can still think of the important paths for the propagator as being the Wiener paths.

A reasonably safe and less heuristic approach to the propagator path integral is to realize that from
the treatment of path integrals for statistical mechanics in Section 20.3, propagators in imaginary time,
K(x2,−iτ2;x1,−iτ1), are mathematically well-defined objects with an interpretation in Wiener paths. The

14Sergio Albeverio and Sonia Mazzucchi, Scholarpedia 6, 8832 (2011) (doi: 10.4249/scholarpedia.8832).

http://dx.doi.org/10.4249/scholarpedia.8832
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quantum-mechanical propagators in real time, K(x2, t2;x1, t1), can then be defined via analytic continuation
of the imaginary-time function. (Similar arguments are possible for analytic continuation of imaginary mass
or h̄.) In this sense, even the quantum propagator is calculated in terms of Wiener paths. This gives
another way to think about how the important quantum paths are diffusive in nature despite the oscillatory
amplitude factors.

20.4 Ordering Issues

Going back to the derivation of the path-integral propagator (20.24), we made the assumption of a particle
Hamiltonian (20.12), where the Gaussian integration changed the momentum kinetic term into the velocity
kinetic term—but with the opposite sign—in the exponential. The question is, what happens if we have a
more general Hamiltonian H(x, p) that doesn’t separate out into position and momentum terms so easily?
That is, what if there is an ordering ambiguity, as in pxp, where different orderings are connected by correction
terms given in terms of commutators?

20.4.1 Model Problem

As an example, let us work out path integrals for a one-degree-of-freedom Hamiltonian of the form

H(x, p) = p
1

2mg(x)
p+ V (x),

(20.194)
(variable-mass Hamiltonian)

for some ‘‘space-dependent mass’’ or ‘‘metric’’ function g(x), and consider the case of various orderings of the
kinetic-energy term. The various orderings are equivalent up to commutator terms, which we will indicate.
Then, we will continue with a particular ordering (Weyl ordering) and work out the path integral in more
detail. We will keep the particular symmetric ordering here on the kinetic-energy term in mind as a reference
case. Actually, what turns out to be a more natural ordering is what we will refer to as ‘‘Laplace–Beltrami’’
or ‘‘covariant’’ ordering,

H4(x, p) :=
1

2m

(
1

g1/4
p

1
√
g
p

1

g1/4

)
+ V (x),

(Laplace–Beltrami Hamiltonian) (20.195)
as we will see below [Eq. (20.233)]; despite the more complicated form, the path-integral representations in
this ordering are more natural and simple, so this will be our more important reference case.

20.4.1.1 Basic Structure

The reason we need to be somewhat specific about the form of the Hamiltonian is that it will affect some
of the basic rules in quantum mechanics (normalization integrals, form of the plane wave, etc.). Before
continuing with the path integral, then, we will take a moment to work out the consequences of having a
Hamiltonian of the form (20.194), or one of its reorderings.

Starting with the classical Lagrangian

L(x, ẋ) =
m

2
g(x) ẋ2 − V (x),

(20.196)
(classical Lagrangian)

we can define the canonical momentum
p :=

∂L

∂ẋ
= mg(x) ẋ (20.197)

and the classical Hamiltonian
H(x, p) = pẋ− L =

p2

2mg(x)
+ V (x). (20.198)

In quantizing this Hamiltonian, there is an ambiguity in the ordering of the kinetic-energy term. We can
regard the ordering in Eq. (20.194) as an arbitrary choice for the sake of an example, with other orderings
obtainable by commuting operators.
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The classical Poisson bracket then has the form

[f, g]P :=
∂f

∂x

∂g

∂p
− ∂f

∂p

∂g

∂x
, (20.199)

provided (x, p) are canonical coordinates. Thus, the bracket of the canonical coordinates is still [x, p]P = 1,
which means that in quantum mechanics we still have the commutator

[x, p] = ih̄. (20.200)

This will define the form of the quantum-mechanical momentum operator.

20.4.1.2 Coordinate Transformation and Curvature

We have to be careful about interpreting the classical system in quantum mechanics, because of the difference
between orderings of x and p that does not happen classically, as we noted above.15 Note in particular that
the form of the Lagrangian and Hamiltonian that give rise to the ordering problem are analogous to a curved
structure in the phase and state space.16 The Lagrangian in particular implies the line element

ds2 = g(x) dx2, (20.201)

so that in coordinate-free form, the kinetic-energy function g(x)ẋ2 = (ds/dt)2 = (ds/dx)2(dx/dt)2. This is
equivalent to a flat-space line element

ds2 = dq2, (20.202)

given the nonlinear coordinate transformation

dq

dx
=
√
g(x). (20.203)

In these coordinates, the Lagrangian (20.196) becomes

Lq(q, q̇) =
m

2
g(x) q̇2

(
dx

dq

)2

− V (q) =
m

2
q̇2 − V (q), (20.204)

where V (q) = V [q(x)], which leads to the ordinary Hamiltonian

Hq(pq, q) =
p2

2m
+ V (q) (20.205)

with canonical momentum
pq =

∂L

∂q̇
= mq̇. (20.206)

In these coordinates, we know how to quantize the Hamiltonian: the canonical variables become operators
with commutator [q, pq] = ih̄. The Schrödinger equation in flat-space coordinates is then

ih̄∂tψ =

(
− h̄2

2m
∂ 2
q + V (q)

)
ψ. (20.207)

15Our discussion here is a simplified version of the more general multidimensional case. This point of view of using point-
coordinate transformations to understand quantum systems with ordering problems and quantum mechanics on curved manifolds
was pioneered by Bryce Seligman DeWitt, ‘‘Point Transformations in Quantum Mechanics,’’ Physical Review 85, 653 (1952)
(doi: 10.1103/PhysRev.85.653); Bryce S. DeWitt, ‘‘Dynamical Theory in Curved Spaces. I. A Review of the Classical and
Quantum Action Principles,’’ Reviews of Modern Physics 29, 377 (1957) (doi: 10.1103/RevModPhys.29.377). See also Hagen
Kleinert, Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets, 5th ed. (World Scientific,
2009), Section 1.13; Christian Grosche, ‘‘An Introduction into the Feynman Path Integral,’’ arXiv.org preprint (arXiv: hep-
th/9302097v1).

16at least in 2 or more dimensions; in one dimension the manifold cannot be regarded as ‘‘intrinsically’’ curved. The other
distinction is that in a truly curved manifold, the transformation that we will do can only be performed locally not globally; if
there is a global transformation to flat space, then the space is just a flat space in complicated coordinates.

http://dx.doi.org/10.1103/PhysRev.85.653
http://dx.doi.org/10.1103/RevModPhys.29.377
http://arxiv.org/abs/hep-th/9302097v1
http://arxiv.org/abs/hep-th/9302097v1
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The one-dimensional Laplacian transforms as

∂ 2
q = ∂q∂q =

dx

dq
∂x

(
dx

dq
∂x

)
=

1
√
g
∂x

(
1
√
g
∂x

)
, (20.208)

and so the Schrödinger equation in the original variables, corresponding to the Lagrangian (20.196), is

ih̄∂tψ =

(
− h̄2

2m
4+ V (x)

)
ψ,

(20.209)
(Schrödinger equation)

where the curved, one-dimensional Laplacian

4 :=
1
√
g
∂x

(
1
√
g
∂x

)
(20.210)

(Laplace–Beltrami operator, 1D)

is the one-dimensional form of the Laplace–Beltrami operator. Note that this implies a certain natural
ordering of the kinetic-energy term in the Hamiltonian, to which we will return below.

The coordinate transformation also induces some other changes in the structure of the Hilbert space.
In the flat coordinates, the inner product has the usual form

〈ψ1|ψ2〉 =
∫
dq ψ∗1(q)ψ2(q), (20.211)

which in the context of the curved Hamiltonian transforms to

〈ψ1|ψ2〉 =
∫
dx
√
g(x)ψ∗1(x)ψ2(x),

(20.212)
(inner product)

where ψ(x) := 〈x|ψ〉. To be consistent with this, the identity in the position representation must be∫
dx
√
g(x) |x〉〈x| = 1.

(20.213)
(identity in position representation)

By inserting this identity in the inner product

ψ(x) = 〈x|ψ〉 =
∫
dx′
√
g(x′) 〈x|x′〉〈x′|ψ〉 =

∫
dx′
√
g(x′) 〈x|x′〉ψ(x′), (20.214)

and comparing to
ψ(x) =

∫
dx′ δ(x− x′)ψ(x′), (20.215)

we can conclude

〈x|x′〉 = 1√
g(x)

δ(x− x′) (20.216)
(inner product of position states)

for the orthogonality relation of the position states. In terms of the propagator, which we can rederive by
using Eq. (20.212) to insert the identity in

ψ(x, t) = 〈x, t|ψ〉 =
∫
dx0

√
g(x0) 〈x, t|x0, t0〉〈x0, t0|ψ〉 =

∫
dx0

√
g(x0) 〈x, t|x0, t0〉ψ(x0, t0), (20.217)

so that we have generalized Eq. (20.7) to

ψ(x, t) =

∫
dx0

√
g(x0)K(x, t;x0, t0)ψ(x0, t0),

(20.218)
(evolution via propagator)
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where the propagator is

K(x, t;x0, t0) := 〈x, t|x0, t0〉 = 〈x|e−iH(t−t0)/h̄|x0〉
(20.219)

(propagator)

as it was before in the case where g is independent of x. By extension, in our application of the propagator
to statistical mechanics, by transforming Eq. (20.126) we can write

Z =

∫
dx
√
g(x)K(x,−ih̄β;x, 0) =

∫
dx0

∫
dx
√
g(x) δ(x− x0)K(x,−ih̄β;x0, 0),

(partition function) (20.220)
due to the change in integration measure.

Turning now to momentum, the momentum operator is defined in part by the commutator rule (20.200)
which we note is satisfied for the usual momentum operator, modified by inserting factors of g,

p =
h̄

i
g−α(x)∂xg

α(x), (20.221)

as we can quickly check:

xp =
h̄

i
g−α(x)x∂xg

α(x) =
h̄

i
g−α(x)(∂xx− 1)gα(x) = px+ ih̄. (20.222)

However, the momentum operator must be Hermitian with respect to the inner product (20.212),

〈ψ1|p|ψ2〉 = 〈ψ1|p†|ψ2〉, (20.223)

which as an inner product reads
〈ψ1, pψ2〉 =〈pψ1, ψ2〉 , (20.224)

and in explicit integral form, we have∫
dx g1/2−α ψ∗1(x)

[
h̄

i
∂xg

αψ2(x)

]
=

∫
dx

[
h̄

i
∂xg

αψ∗1(x)

]
g1/2−αψ2(x). (20.225)

This is satisfied only when α = 1/2− α, or α = 1/4,

p =
h̄

i

1

g1/4(x)
∂xg

1/4(x)

=
h̄

i
∂x −

h̄g′(x)

4g(x)

=
h̄

i
∂x −

h̄

4
[∂x log g(x)],

(20.226)
(momentum operator)

and so we have the usual momentum operator with a ‘‘curvature correction’’ given in terms of a derivative
of g(x). From this form of the momentum operator, we can infer the momentum eigenstates in the position
representation

〈x|p〉 = eipx/h̄√
2πh̄ g1/4

,
(20.227)

(momentum eigenstate)

with a factor of g−1/4 to ‘‘adapt’’ to the corresponding factors in the momentum operator. Then to infer
the momentum-representation identity operator, we can consider

〈x|p〉〈p|x′〉 = eip(x−x
′)/h̄

√
2πh̄ g1/4(x)g1/4(x′)

, (20.228)
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whence integration over p yields∫
dp 〈x|p〉〈p|x′〉 = δ(x− x′)

g1/4(x)g1/4(x′)
=
δ(x− x′)√

g(x)
. (20.229)

comparing to Eq. (20.216) then gives ∫
dp |p〉〈p| = 1

(20.230)
(momentum completeness)

for completeness in momentum states, and similarly we have

〈p|p′〉 = δ(p− p′) (20.231)
(momentum orthonormality)

for the momentum orthnormality relation.

20.4.1.3 “Natural” Ordering

Recall again that the classical Lagrangian (20.196) led to the Laplace–Beltrami operator (20.210) as the
natural generalization of the Laplacian, in the sense of connecting to the usual Laplacian under a coordinate
change into the standard form of the Lagrangian. Writing this operator in terms of the corresponding
momentum operator (20.226), we find

−h̄24 =
1

g1/4
p

1
√
g
p

1

g1/4
.

(20.232)
(Laplace–Beltrami operator, 1D)

Thus, the Hamiltonian induced by the Laplace–Beltrami operator is

H4(x, p) :=
1

2m

(
1

g1/4
p

1
√
g
p

1

g1/4

)
+ V (x),

(Laplace–Beltrami Hamiltonian) (20.233)
which in turn yields the Schrödinger equation (20.209). The kinetic energy differs from that of our original
(product-ordered) Hamiltonian (20.194) by ordering terms, as we can see by employing the commutation
relation [f(x), p] = ih̄f ′(x) multiple times:

1

g1/4
p

1
√
g
p

1

g1/4
=

1

g1/4
p

1

g3/4
p+ ih̄

1

g1/4
p

g′

4g7/4

= p
1

g
p− ih̄ g′

4g2
p+ ih̄

1

g1/4
p

g′

4g7/4

= p
1

g
p− ih̄ g′

4g2
p+ ih̄p

g′

4g2
− (ih̄)2

g′

4g5/4
g′

4g7/4

= p
1

g
p+

ih̄

4

[
p,
g′

g2

]
+
h̄2g′2

16g3

= p
1

g
p+

h̄2

4g3
(
gg′′ − 2g′2

)
+
h̄2g′2

16g3
,

(20.234)

so that
H(x, p) = H4(x, p) + V4(x, p),

(20.235)
(ordering relation)

where

V4(x, p) := −
h̄2(gg′′ − 2g′2)

8mg3
− h̄2g′2

32mg3
(20.236)

(effective ordering potential)

is an effective potential due to reordering our original Hamiltonian into the Laplace–Beltrami ordering. Any
ordering is valid as a problem, given that it is imposed by the physics. The Laplace–Beltrami Hamiltonian
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is ‘‘special’’ in that it is the correct choice for the Schrödinger equation corresponding to the classical
Lagrangian, and thus generated the modified structure of the inner product, momentum operators, and
so on. However, any other ordering can be regarded as valid in the sense of being the same as H4 plus
h̄-dependent ‘‘quantum-correction’’ potentials.

20.4.2 Point Transformations of the Path Integral

Now we would like to understand the path integral for a quantum system corresponding to the Lagrangian
(20.196), and thus the Hamiltonian H4(x, p) in Eq. (20.195) or (20.233). At first we will do this beginning
from the ‘‘flat-space’’ propagator for the Lagrangian

Lq(q, q̇) =
m

2
q̇2 − V (q), (20.237)

and thus the action functional
S[q(t)] :=

∫ t

t0

dtLq(q, q̇). (20.238)

We have already worked out this problem; to review, in terms of the action functional, the propagator in
continuous-time notation is [Eq. (20.26)]

K(q, t; q0, t0) =

∫
Dq exp

[
i

h̄
S[q(t)]

]
, (20.239)

or more precisely, in discrete form,

K(q, t; q0, t0) =
( m

i2πh̄δt

)N/2
∫ (N−1∏

j=1

dqj

)(
N−1∏
j=0

eiδS[qj ]/h̄

)
, (20.240)

where the short-time action is
δS[qj ] :=

∫ tj+1

tj

dtLq(q, q̇)

≈ Lq(qj , q̇j) δt

=
m

2δt
δq 2
j − V (qj) δt

=
m

2δt
(qj+1 − qj)2 − V (qj) δt.

(20.241)

Now we wish to consider the coordinate transformation
dq

dx
=
√
g(x) (20.242)

that maps us to the quantum system defined by H4(x, p), and use this transformation to work out the path
integral. In terms of the new coordinate x, we can write the short-time action as

δS[qj ] =
m

2δt
[q(xj+1)− q(xj)]2 − V [q(xj)] δt, (20.243)

if we regard the old coordinate as the transformation function q = q(x). The idea is that to simplify the
transformed kinetic energy in the action, we will have to write it in terms of the coordinate x at some time
in the range [tj , tj+1], expanding the path integral about these points. Here we will carry out this expansion
about both tj and tj+1/2, which we will refer to as the pre-point and midpoint choices.17 In terms of
stochastic calculus, these choices correspond to Itō and Stratonovich calculi, respectively, and we will also
see how the different choices and calculi here correspond to different possible orderings in the Hamiltonian.

17We are working out a simplified version of the calculation presented by H. O. Girotti and T. J. M. Simões, ‘‘A
Generalized Treatment of Point Canonical Transformations in the Path Integral,’’ Il Nuovo Cimento 74, 59 (1983) (doi:
10.1007/BF02721685), for the transformation in multiple dimensions about an arbitrary time point.

http://dx.doi.org/10.1007/BF02721685
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20.4.2.1 Midpoint (Stratonovich) Expansion of the Path Integral

We will start by expanding the short-time action (20.243) around x̄j to order δt, regarding δxj as O(
√
δt).

Starting with the expansions

q(xj) = q(x̄j)−
q′(x̄j)

2
δxj +

q′′(x̄j)

8
δx 2
j −

q′′′(x̄j)

48
δx 3
j

q(xj+1) = q(x̄j) +
q′(x̄j)

2
δxj +

q′′(x̄j)

8
δx 2
j +

q′′′(x̄j)

48
δx 3
j ,

(20.244)

the expansion for the short-time action becomes

δS[qj ] =
m

2δt
[q(xj+1)− q(xj)]2 − V [q(xj)] δt

=
m

2δt

[
q′(x̄j) δxj +

q′′′(x̄j)

24
δx 3
j

]2
− V [q(xj)] δt

=
m

2δt
q′2(x̄j) δx

2
j +

mq′(x̄j) q
′′′(x̄j)

24δt
δx 4
j − V [q(xj)] δt

=
m

2δt
g(x̄j) δx

2
j +

m(2gg′′ − g′2)
96g δt

δx 4
j − V [q(xj)] δt,

(20.245)

where we have used the derivatives

q′ =
√
g, q′′ =

g′

2
√
g
, q′′′ =

g′′

2
√
g
− g′2

4g3/2
=

2gg′′ − g′2

4g3/2
. (20.246)

Then we can also transform and then expand the integration measure about the midpoints, using

q′(xj) = q′(x̄j)−
q′′(x̄j)

2
δxj +

q′′′(x̄j)

8
δx 2
j

= q′(x̄j)

[
1− q′′(x̄j)

2q′(x̄j)
δxj +

q′′′(x̄j)

8q′(x̄j)
δx 2
j

]
=
√
g(x̄j)

[
1− g′(x̄j)

4g(x̄j)
δxj +

2gg′′ − g′2

32g2
δx 2
j

]
,

(20.247)

so that the measure becomes
N−1∏
j=1

dqj =

N−1∏
j=1

dxj q
′(xj)

=
1

q′(x0)

(
N−1∏
j=1

dxj

)
N−1∏
j=0

q′(xj)

=
1√
g(x0)

(
N−1∏
j=1

dxj

)
N−1∏
j=0

√
g(x̄j)

[
1− g′(x̄j)

4g(x̄j)
δxj +

2gg′′ − g′2

32g2
δx 2
j

]
.

(20.248)

Then collecting the various terms from Eqs. (20.245) and (20.248), and inserting them into the propagator
(20.240), we find

K(x, t;x0, t0) =
1√
g(x0)

( m

i2πh̄δt

)N/2
∫ (N−1∏

j=1

dxj

)

×

{
N−1∏
j=0

√
g(x̄j) exp

[
i

h̄

(
mg(x̄j)

2δt
δx 2
j − V [q(x̄j)] δt

)]
×
[
1− g′(x̄j)

4g(x̄j)
δxj +

(
2gg′′ − g′2

32g2

)
δx 2
j +

im(2gg′′ − g′2)
96h̄g δt

δx 4
j

]}
,

(20.249)
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after expanding out everything in the exponential except for the explicit kinetic and potential energies, so
that the other expansion terms appear as moment-type components in quasi-Gaussian integrals. We can
deal with the ‘‘mean’’ term of the form δxj by converting it into a prefactor as follows:

N−1∏
j=0

[
1− g′(x̄j)

4g(x̄j)
δxj +

g′2

32g2
δx 2
j

]
=

N−1∏
j=0

[
1− g′(xj)

4g(xj)
δxj +

g′2

32g2
δx 2
j −

gg′′ − g′2

8g2
δx 2
j

]
=

N−1∏
j=0

exp
[
− g
′(xj)

4g(xj)
δxj −

gg′′ − g′2

8g2
δx 2
j

]
=

N−1∏
j=0

exp
[
−δ log g1/4(xj)

]
=

N−1∏
j=0

[
g(xj)

g(xj+1)

]1/4
=

[
g(x0)

g(x)

]1/4
.

(20.250)

Here we used the conversion

g′(x̄j)

g(x̄j)
δxj =

(
g′(xj) + g′′(xj) δxj/2

g(xj) + g′(xj) δxj/2

)
δxj

=
g′(xj)

g(xj)
δxj +

gg′′ − g′2

2g2
δx 2
j ,

(20.251)

and note that we only track the xj vs. x̄j dependence of the coefficients of δxj , not δx 2
j , since the distinction

does not matter in the latter case to O(δt). Then the propagator (20.249) simplifies to

K(x, t;x0, t0) = [g(x)g(x0)]
−1/4

( m

i2πh̄δt

)N/2
∫ (N−1∏

j=1

dxj

)

×

{
N−1∏
j=0

√
g(x̄j) exp

[
i

h̄

(
mg(x̄j)

2δt
δx 2
j − V [q(x̄j)] δt

)]
×
[
1 +

(
gg′′ − g′2

16g2

)
δx 2
j +

im(2gg′′ − g′2)
96h̄g δt

δx 4
j

]} (20.252)

upon transforming the δx piece. Using the replacements

δx2 −→ ih̄

mg(x)
δt, δx4 −→ − 3h̄2

m2g2(x)
δt2, (20.253)
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to be justified later [Eq. (20.273), Section 20.4.2.3], the propagator becomes

K(x, t;x0, t0) = [g(x)g(x0)]
−1/4

( m

i2πh̄δt

)N/2
∫ (N−1∏

j=1

dxj

)

×

{
N−1∏
j=0

√
g(x̄j) exp

[
i

h̄

(
mg(x̄j)

2δt
δx 2
j − V [q(x̄j)] δt

)]
×
[
1 +

ih̄(gg′′ − g′2)
16mg3

δt− ih̄(2gg′′ − g′2)
32mg3

δt

]}

= [g(x)g(x0)]
−1/4

( m

i2πh̄δt

)N/2
∫ (N−1∏

j=1

dxj

)

×

{
N−1∏
j=0

√
g(x̄j) exp

[
i

h̄

(
mg(x̄j)

2δt
δx 2
j − V [q(x̄j)] δt

)][
1− ih̄g′2

32mg3
δt

]}
,

(20.254)
where the replacements are valid at any point in the time interval, because the difference is beyond order δt.
Then if we finish the coordinate transformation of the potential,

V [q(x̄j)] ≡ V (x̄j), (20.255)

and define the usual velocity

ẋj :=
δxj
δt

=
xj+1 − xj

δt
,

(20.256)
(velocity)

then the path integral finally becomes18

K(x, t;x0, t0) = [g(x)g(x0)]
−1/4

( m

i2πh̄δt

)N/2
∫ (N−1∏

j=1

dxj

)

×

{
N−1∏
j=0

√
g(x̄j) exp

[
iδt

h̄

(m
2
g(x̄j) ẋ

2
j − V (x̄j)− V̄eff(x̄j)

)]}
,

(midpoint path integral) (20.257)
where we exponentiated the last term in the path integral, and we have defined the effective potential

V̄eff(x) :=
h̄2g′2

32mg3
.

(20.258)
(midpoint effective potential)

As in the q variables, we can write this path integral in short-hand continuous notation as

K(x, t;x0, t0) = [g(x)g(x0)]
−1/4

∫
D
[
x
√
g(x̄)

]
exp

[
i

h̄
S̄[x(t)]

]
S̄[x̄(t)] =

∫ t

t0

dt
[
L(x̄, ẋ)− V̄eff(x̄)

]
L(x̄, ẋ) =

m

2
g(x̄) ẋ2 − V (x̄),

(midpoint effective potential, continuous shorthand) (20.259)
but it is particularly important to keep the discrete-form (20.257) as the fundamental object, since certain
things such as the factors of g must be counted carefully for the prefactor to make sense. Note also that
the midpoint path-integral action S̄(x̄, ẋ) does not agree with the classical action with only the Lagrangian
(20.196), being different by an effective potential that depends on the time-slicing expansion (and ordering
assumptions regarding the Hamiltonian).

18Note that this expression agrees with the more general one given by Christian Grosche, ‘‘An Introduction into the Feynman
Path Integral,’’ arXiv.org preprint (arXiv: hep-th/9302097v1), Eq. (2.24); and in M. Chaichian and A. Demichev, Path Integrals
in Physics, Volume I: Stochastic Processes in Quantum Mechanics (Institute of Physics, 2001), p. 249, Eq. (2.5.19).

http://arxiv.org/abs/hep-th/9302097v1
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20.4.2.2 Pre-Point (Itō) Expansion of the Path Integral

We can again expand the path integral (20.240), but now around the pre-point xj to obtain a different (but
equivalent) expression for the path integral. The recipe is the same as in the midpoint case:

1. Expand the kinetic energy in the action, keeping terms to O(δt), regarding δxj as O(
√
δt).

2. Expand the integration measure, to the extent necessary and also keeping terms to O(δt).

3. Write all extra terms as a product outside the exponential.

4. Replace powers of δxj outside the Gaussian path measure with powers of δt.

5. Exponentiate the converted terms.

6. Change velocity-like terms into prefactors if possible/desired.

Starting with the first item, we can expand the post-point coordinate,

q(xj+1) = q(xj) + q′(xj) δxj +
q′′(xj)

2
δx 2
j +

q′′′(xj)

6
δx 3
j ,

(20.260)

so that the short-time action (20.243) becomes (to order δt)

δS[qj ] =
m

2δt
[q(xj+1)− q(xj)]2 − V [q(xj)] δt

=
m

2δt

[
q′(xj) δxj +

q′′(xj)

2
δx 2
j +

q′′′(xj)

6
δx 3
j

]2
− V [q(xj)] δt

=
m

2δt
q′2(xj) δx

2
j +

m

2δt
q′(xj)q

′′(xj) δx
3
j +

m

δt

[
q′′2(xj)

8
+
q′(xj)q

′′′(xj)

6

]
δx 4
j − V [q(xj)] δt

=
m

2δt
g(xj) δx

2
j +

mg′(xj)

4δt
δx 3
j +

mg′2

32g δt
δx 4
j +

m(2gg′′ − g′2)
24g δt

δx 4
j − V [q(xj)] δt

=
m

2δt
g(xj) δx

2
j +

mg′(xj)

4δt
δx 3
j +

m(8gg′′ − g′2)
96g δt

δx 4
j − V [q(xj)] δt,

(20.261)

where we have again used the derivatives (20.246). Now we proceed on to the measure, which doesn’t need
much except for a careful counting of factors:

N−1∏
j=1

dqj =

N−1∏
j=1

dxj q
′(xj)

=
1

q′(x0)

(
N−1∏
j=1

dxj

)
N−1∏
j=0

q′(xj)

=
1√
g(x0)

(
N−1∏
j=1

dxj

)
N−1∏
j=0

√
g(xj).

(20.262)

Collecting all terms from the action (20.261) and measure (20.262), and expanding out the exponential in
the propagator (20.240), we have

K(x, t;x0, t0) =
1√
g(x0)

( m

i2πh̄δt

)N/2
∫ (N−1∏

j=1

dxj

)

×

{
N−1∏
j=0

√
g(xj) exp

[
i

h̄

(
mg(xj)

2δt
δx 2
j − V (xj) δt

)]
×
[
1 +

img′(xj)

4h̄δt
δx 3
j +

im(8gg′′ − g′2)
96h̄g δt

δx 4
j −

m2g′2

32h̄2δt2
δx 6
j

]}
,

(20.263)
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where we have carried out the expansion of the δx3/δt part to second order (generating a δx6/δt2 term) to
keep the expansion consistent, and we have dropped the dependence on q in the potential. Then using the
replacements (20.273) and (20.282), the propagator becomes

K(x, t;x0, t0) =
1√
g(x0)

( m

i2πh̄δt

)N/2
∫ (N−1∏

j=1

dxj

)

×

{
N−1∏
j=0

√
g(xj) exp

[
i

h̄

(
mg(xj)

2δt
δx 2
j − V (xj) δt

)]
×
[
1− 3g′(xj)

4g(xj)
δxj −

3ih̄(8gg′′ − g′2)
96mg3

δt+
15ih̄g′2

32mg3
δt

]}
.

(20.264)

In preparation to exponentiate the last factor, we can add and subtract a δx2 term,

K(x, t;x0, t0) =
1√
g(x0)

( m

i2πh̄δt

)N/2
∫ (N−1∏

j=1

dxj

)

×

{
N−1∏
j=0

√
g(xj) exp

[
i

h̄

(
mg(xj)

2δt
δx 2
j − V (xj) δt

)]
×
[
1− 3g′(xj)

4g(xj)
δxj +

9g′2

32g2
δx 2
j −

9ih̄g′2

32mg3
δt− 3ih̄(8gg′′ − g′2)

96mg3
δt+

15ih̄g′2

32mg3
δt

]}

=
1√
g(x0)

( m

i2πh̄δt

)N/2
∫ (N−1∏

j=1

dxj

)

×

{
N−1∏
j=0

√
g(xj) exp

[
i

h̄

(
mg(xj)

2δt
δx 2
j − V (xj) δt

)]
×
[
1− 3g′(xj)

4g(xj)
δxj +

9g′2

32g2
δx 2
j −

ih̄(gg′′ − g′2)
4mg3

δt− ih̄g′2

32mg3
δt

]}
,

(20.265)
where we have used the remaining replacement in Eqs. (20.273):

δx2 −→ ih̄

mg(x)
δt. (20.266)

Along the same lines as Eq. (20.250), we can change the δxj term into a prefactor via

N−1∏
j=0

[
1− 3g′(xj)

4g(xj)
δxj +

9g′2

32g2
δx 2
j

]
=

N−1∏
j=0

exp
[
− g
′(xj)

4g(xj)
δxj

]
=

N−1∏
j=0

exp
[
−δ log g3/4(xj) +

3(gg′′ − g′2)
8g2

δx 2
j

]
=

N−1∏
j=0

[
g(xj)

g(xj+1)

]3/4
exp

[
3(gg′′ − g′2)

8g2
δx 2
j

]
=

[
g(x0)

g(x)

]3/4 N−1∏
j=0

exp
[
iδt

h̄

(
3h̄2(gg′′ − g′2)

8mg3

)]
.

(20.267)
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Carrying this out in the propagator and exponentiating the remaining parts of the polynomial factor, we
have the desired form19

K(x, t;x0, t0) = g−3/4(x) g1/4(x0)
( m

i2πh̄δt

)N/2
∫ (N−1∏

j=1

dxj

)

×

{
N−1∏
j=0

√
g(xj) exp

[
iδt

h̄

(m
2
g(xj) ẋ

2
j − V (xj)− V<(xj)

)]}
,

(pre-point propagator) (20.268)
where the pre-point-ordering effective potential from the expansion is

V<(x) :=
h̄2g′2

32mg3
− h̄2(gg′′ − g′2)

8mg3
,

(20.269)
(pre-point effective potential)

and the velocity is as defined in Eq. (20.256). In continuous-notation shorthand, we can write this as

K(x, t;x0, t0) = g1/4(x0) g
−3/4(x)

∫
D
[
x
√
g(x)

]
exp

[
i

h̄
S<[x(t)]

]
S<[x(t)] =

∫ t

t0

dt [L(x, ẋ)− V<(x)]

L(x, ẋ) =
m

2
g(x) ẋ2 − V (x),

(pre-point effective potential, continuous shorthand) (20.270)
where x is to be read as the pre-point, and again the more precise discrete form (20.268) is important to keep
in mind for proper counting of factors. Note also that the action must be modified with an extra effective
potential, which is different from the potential that came out of the midpoint discretization above.

20.4.2.3 “Moment” Relations

Now to justify the ‘‘moment’’ formulae of the quasi-Gaussian integrals that we have used. To handle even
powers, we will quickly derive a form of the standard Gaussian moment theorem by integrating the product
of a Gaussian and an arbitrary power once by parts:

〈xn〉 = 1√
2πσ

∫
dxxn e−(x−µ)

2/2σ2

=
1√
2πσ

∫
dx (x+ µ)n e−x

2/2σ2

=
1√
2πσ

∫
dx (x+ µ)n−1x e−x

2/2σ2

+
µ√
2πσ

∫
dx (x+ µ)n−1 e−x

2/2σ2

=
(n− 1)σ2

√
2πσ

∫
dx (x+ µ)n−2 e−x

2/2σ2

+ µ
〈
xn−1

〉
= (n− 1)σ2

〈
xn−2

〉
+ µ

〈
xn−1

〉
.

(20.271)

In the path integral, we can think of the coordinate as δx, with δx2 appearing in the Gaussian weight, so we
can set µ = 0 in the above recursion, obtaining

〈xn〉 = (n− 1)σ2
〈
xn−2

〉
. (20.272)

19Note that this form generalized to multiple dimensions is quoted by Christian Grosche, ‘‘An Introduction into the Feynman
Path Integral,’’ arXiv.org preprint (arXiv: hep-th/9302097v1), Eq. (1.7). Note, however, that the form quoted there appears
somewhat different, as the quoted effective potential there vanishes in one dimension (where the Ricci scalar R = 0), and there
is no prefactor. That same form is quoted by M. Chaichian and A. Demichev, Path Integrals in Physics, Volume I: Stochastic
Processes in Quantum Mechanics (Institute of Physics, 2001), p. 246, Eq. (2.5.7).

http://arxiv.org/abs/hep-th/9302097v1
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This means that we can replace δxn by (n− 1)[ih̄δt/mg(x)] δxn−2, which implies the replacements

δx2 −→ ih̄

mg(x)
δt, δx4 −→ − 3h̄2

m2g2(x)
δt2, δx6 −→ − 15ih̄3

m3g3(x)
δt3.

(even-order rules) (20.273)
Technically, the variance-weight g is a function of the position, but here the width of the Gaussian is small
[O(δx)], and the rest of the integrand (beyond the normalized Gaussian weight) varies slowly over this
range—any corrections to the moments due to this slow variation is ignorable at order δt. However, this is
not true for the odd ‘‘moments,’’ which would otherwise vanish, because the leading contribution comes from
this variation. We can handle this more carefully as follows. First, we will define the ‘‘effective expectation’’

Eσ(x)[x
n] :=

∫
dxxn

1√
2πσ(x)

e−x
2/2σ2(x), (20.274)

which differs from a Gaussian expectation because the integral is not a normalized Gaussian distribution
if σ(x) is not constant. In view of our discussion above, we have set the mean µ = 0. Then using the
expansions

σ−1(x) = σ−1(0)

[
1− σ′(0)

σ(0)
x+O(x2)

]
x2

σ2(x)
=

x2

σ2(0)

[
1− 2σ′(0)

σ(0)
x+O(x2)

]
,

(20.275)

we can write the nth effective moment (for n > 2) as

Eσ(x)[x
n] ≈ 1√

2πσ(0)

∫
dxxn

[
1− σ′(0)

σ(0)
x

] [
1 +

σ′(0)

σ3(0)
x3
]
e−x

2/2σ2(0)

≈ 1√
2πσ(0)

∫
dxxn

[
1− σ′(0)

σ(0)
x+

σ′(0)

σ3(0)
x3
]
e−x

2/2σ2(0),

(20.276)

where we are working to order x in the expansions, keeping in mind that the contribution of the integral
comes from x of the order σ, so we are counting σ and its derivative as being of the same order as x. Then
writing the effective moment in terms of moments with respect to a Gaussian probability density of mean
zero and variance σ2(0),

Eσ(x)[x
n] =〈xn〉 − σ′(0)

σ(0)

〈
xn+1

〉
+
σ′(0)

σ3(0)

〈
xn+3

〉
= σ2(0)

[
(n− 1)

〈
xn−2

〉
− nσ

′(0)

σ(0)

〈
xn−1

〉
+ (n+ 2)

σ′(0)

σ3(0)

〈
xn+1

〉]
,

(20.277)

where we have effectively integrated by parts by using the moment formula (20.272). Then the strategy is
to match the coefficients of the three terms. Separating the n and the 2 in the last term and again using
Eq. (20.272), we find that we can merge this last piece with the middle term:

Eσ(x)[x
n] =

〈
σ2(0)xn−2

[
(n− 1)− nσ

′(0)

σ(0)
x+ (n+ 2)

σ′(0)

σ3(0)
x3
]〉

=

〈
σ2(0)xn−2

[
(n− 1)− nσ

′(0)

σ(0)
x+ n

σ′(0)

σ3(0)
x3
]
+ 2

σ′(0)

σ(0)
xn+1

〉
=

〈
σ2(0)xn−2

[
(n− 1)− nσ

′(0)

σ(0)
x+ n

σ′(0)

σ3(0)
x3
]
+ 2nσ2(0)

σ′(0)

σ(0)
xn−1

〉
=

〈
σ2(0)xn−2

[
(n− 1) + n

σ′(0)

σ(0)
x+ n

σ′(0)

σ3(0)
x3
]〉

= n

〈
σ2(0)xn−2

[
1 +

σ′(0)

σ(0)
x+

σ′(0)

σ3(0)
x3
]〉
− σ2(0)

〈
xn−2

〉
.

(20.278)
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Now using the expansion

σ2(x) = σ2(0)

[
1 +

2σ′(0)

σ(0)
x+O(x2)

]
, (20.279)

we can restore the x-dependence of the σ2 coefficient:

Eσ(x)[x
n] ≈ n

〈
σ2(0)

[
1 +

2σ′(0)

σ(0)
x

]
xn−2

[
1 +

σ′(0)

σ(0)
x− σ′(0)

σ3(0)
x3
]〉
− σ2(0)

〈
xn−2

〉
≈ n

〈
σ2(x)xn−2

[
1 +

σ′(0)

σ(0)
x− σ′(0)

σ3(0)
x3
]〉
− σ2(0)

〈
xn−2

〉
≈ nEσ(x)

[
σ2(x)xn−2

]
− σ2(0)

〈
xn−2

〉
.

(20.280)

In the last step, we used Eq. (20.276) to restore the effecive expectation, and we have consistently kept our
expansions to order x. Thus, we have the rule for effective moments (n > 2)

Eσ(x)[x
n] = nEσ(x)

[
σ2(x)xn−2

]
− σ2(0)

〈
xn−2

〉
, (20.281)

where the equality holds asymptotically for small σ(x).
In the even-n case, this moment rule reduces to Eq. (20.272), since the difference between the effective

and normal expectations is negligible at order δt. In the odd-n case, the last term vanishes, and this justifies
the replacement rule

δx3 −→ 3ih̄

mg(x)
δt δx

(20.282)
(odd-order rule)

under the quasi-Gaussian integral, which is the only odd ‘‘moment’’ that we will need.

20.4.2.4 Midpoint–Pre-point Conversion

Now that we have derived two equivalent forms—Eqs. (20.257)–(20.259) for the midpoint form and Eqs. (20.268)–(20.270)
for the pre-point form—we should check their equivalence explicitly. Starting with the mid-point path inte-
gral (20.257),

K(x, t;x0, t0) = [g(x)g(x0)]
−1/4

( m

i2πh̄δt

)N/2
∫ (N−1∏

j=1

dxj

)

×

{
N−1∏
j=0

√
g(x̄j) exp

[
iδt

h̄

(m
2
g(x̄j) ẋ

2
j − V (x̄j)− V̄eff(x̄j)

)]}
,

(20.283)

we will then need to expand out the g(x̄j) in the exponential as

g(x̄j) = g(xj) +
g′(xj)

2
δxj +

g′′(xj)

8
δx 2
j , (20.284)

and the measure factor as√
g(x̄j) =

√
g(xj)

[
1 +

g′(xj)

4g(xj)
δxj +

g′′(xj)

16g(xj)
δx 2
j −

g′2(xj)

32g2(xj)
δx 2
j

]
, (20.285)
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Writing out the expanded terms outside the exponential, we have

K(x, t;x0, t0) = [g(x)g(x0)]
−1/4

( m

i2πh̄δt

)N/2
∫ (N−1∏

j=1

dxj

)

×

{
N−1∏
j=0

√
g(xj) exp

[
iδt

h̄

(m
2
g(xj) ẋ

2
j − V (xj)− V̄eff(xj)

)]
×
[
1 +

img′(xj)

4h̄δt
δx 3
j +

img′′

16h̄δt
δx 4
j −

m2g′2

32h̄2δt2
δx 6
j

+
g′(xj)

4g(xj)
δxj +

g′′

16g
δx 2
j −

g′2

32g2
δx 2
j +

img′2

16h̄gδt
δx 4
j

]}
,

(20.286)
where we have consistently multiplied out and expanded to order δt as usual, and all quantities are evaluated
at the pre-point xj except as noted. Then using the replacements (20.273) and (20.282), we find

K(x, t;x0, t0) = [g(x)g(x0)]
−1/4

( m

i2πh̄δt

)N/2
∫ (N−1∏

j=1

dxj

)

×

{
N−1∏
j=0

√
g(xj) exp

[
iδt

h̄

(m
2
g(xj) ẋ

2
j − V (xj)− V̄eff(xj)

)]
×
[
1− 3g′(xj)

4g(xj)
δxj −

3ih̄g′′

16mg2
δt+

15ih̄g′2

32mg3
δt

+
g′(xj)

4g(xj)
δxj +

ih̄g′′

16mg2
δt− ih̄g′2

32mg3
δt− 3ih̄g′2

16mg3
δt

]}

= [g(x)g(x0)]
−1/4

( m

i2πh̄δt

)N/2
∫ (N−1∏

j=1

dxj

)

×

{
N−1∏
j=0

√
g(xj) exp

[
iδt

h̄

(m
2
g(xj) ẋ

2
j − V (xj)− V̄eff(xj)

)]
×
[
1− g′(xj)

2g(xj)
δxj −

ih̄g′′

8mg2
δt+

ih̄g′2

4mg3
δt

]}
,

(20.287)

Then preparing to re-exponentiate, we add and subtract the δx2 term,

K(x, t;x0, t0) = [g(x)g(x0)]
−1/4

( m

i2πh̄δt

)N/2
∫ (N−1∏

j=1

dxj

)

×

{
N−1∏
j=0

√
g(xj) exp

[
iδt

h̄

(m
2
g(xj) ẋ

2
j − V (xj)− V̄eff(xj)

)]
×
[
1− g′(xj)

2g(xj)
δxj +

g′2

8g2
δx 2
j −

ih̄g′2

8mg3
δt− ih̄g′′

8mg2
δt+

ih̄g′2

4mg3
δt

]}

= [g(x)g(x0)]
−1/4

( m

i2πh̄δt

)N/2
∫ (N−1∏

j=1

dxj

)

×

{
N−1∏
j=0

√
g(xj) exp

[
iδt

h̄

(m
2
g(xj) ẋ

2
j − V (xj)− V̄eff(xj)

)]
×
[
1− g′(xj)

2g(xj)
δxj +

g′2

8g2
δx 2
j −

ih̄(gg′′ − g′2)
8mg3

δt

]}
.

(20.288)
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As in Eq. (20.267), we can handle the δxj term as

N−1∏
j=0

[
1− g′(xj)

2g(xj)
δxj +

g′2

8g2
δx 2
j

]
=

N−1∏
j=0

exp
[
− g
′(xj)

2g(xj)
δxj

]
=

N−1∏
j=0

exp
[
−δ log

√
g(xj) +

gg′′ − g′2

4g2
δx 2
j

]
=

N−1∏
j=0

[
g(xj)

g(xj+1)

]1/2
exp

[
gg′′ − g′2

4g2
δx 2
j

]
=

[
g(x0)

g(x)

]1/2 N−1∏
j=0

exp
[
iδt

h̄

(
h̄2(gg′′ − g′2)

4mg3

)]
.

(20.289)

Implementing this and exponentiating the remaining polynomial terms, we have

K(x, t;x0, t0) = g−3/4(x) g1/4(x0)
( m

i2πh̄δt

)N/2
∫ (N−1∏

j=1

dxj

)

×

{
N−1∏
j=0

√
g(xj) exp

[
iδt

h̄

(m
2
g(xj) ẋ

2
j − V (xj)− V̄<(xj)

)]}
,

(20.290)

where the effective pre-point potential we derived from the mid-point propagator is

V̄<(x) := V̄eff(xj) +
h̄2(gg′′ − g′2)

8mg3
− h̄2(gg′′ − g′2)

4mg3
= V̄eff(xj)−

h̄2(gg′′ − g′2)
8mg3

. (20.291)

Putting in the midpoint effective potential (20.258), we find

V̄<(x) :=
h̄2g′2

32mg3
− h̄2(gg′′ − g′2)

8mg3
, (20.292)

which is exactly the effective potential V<(x) from Eq. (20.269) that we derived from the direct pre-point
expansion.

20.4.2.5 Discussion: Integration Under Different Path Measures

To summarize the results of this section so far: beginning with the flat-space propagator (20.240), we have
derived two different propagators—Eqs. (20.257) and (20.268)—by expanding about different points in the
interval between the jth and (j + 1)th time slices. We have also explicitly shown that they are equivalent,
in that one can be derived from the other by changing the expansion point.

In the language of stochastic differential equations, these two path integrals correspond to Stratonovich
(midpoint) and Itō (prepoint) calculi, at least in the imaginary-time forms of the propagators. In a broad
sense, a different choice of calculus will correspond to a different family of paths. More explicitly, the
midpoint propagator (20.257) generates imaginary-time paths according to the Stratonovich SDE

dx =

√
h̄

mg(x̄)
dW ≡

√
h̄

mg(x)
◦ dW, (20.293)

while the prepoint propagator generates paths via the Itō SDE

dx =

√
h̄

mg(x)
dt. (20.294)

Note that we have not written a drift term, as in both propagators we have explicitly eliminated velocities
and recast them in terms of prefactors and potentials. We know from the theory of SDEs in Section 17.4.2
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that these two SDEs do not produce equivalent solutions. For example, casting the SDE (20.293) into Itō
form would produce a drift term:

dx = − h̄g′(x)

4mg2(x)
dt+

√
h̄

mg(x)
dW. (20.295)

Again, this should be compared to the no-drift SDE (20.294) to understand why the paths are different.
Then the reason that we obtain the quantum effective potentials in the propagators—and in particular
different effective potentials for the same system but different choice of expansion point—is to compensate
for these differences in paths. Since the paths sample space differently, the potential weights them differently,
essentially reweighting the path integral for the new set of paths. That is, paths under one path measure
that less likely under the other measure must be ‘‘penalized’’ with a reduced amplitude to compensate for
the difference in measure.

We can also interpret the correction potentials at a more ‘‘microscopic’’ level. In arriving at the path
integrals, we made the coordinate transformation defined by g(x) in Eq. (20.203). When this is a nonlinear
transformation, it maps the flat-space Gaussian probability densities for the steps into distorted Gaussian
distributions. But the kinetic-energy factor (Gaussian in ẋ) is derived by expanding about the zero-slope
point of the distorted Gaussian, which does not necessarily coincide with the mean of the distribution. This
introduces an effective drift in the paths, which must be compensated for by the extra potential terms.

20.4.2.6 Cameron–Martin–Girsanov Transformation and Drift Potentials

Another common example of reweighting path integrals for different measures in the mathematical theory of
SDEs is based on a change in the drift term of the paths. This is called a Girsanov transformation, or a
Cameron–Martin transformation, or a Cameron–Martin–Girsanov transformation of measure.20

Roughly speaking, this transformation applies when comparing driftless paths

x(t) =W (t) (20.296)

to paths with a drift:

x̃(t) = x(t) +

∫ t

0

dt′ a[x̃(t′)]. (20.297)

Note that this last expression can be written in differential form as

dx̃(t) = dx(t) + a[x̃(t)] dt = a[x̃(t)] dt+ dW (t). (20.298)

A path integral corresponding to the drifting trajectories in Eqs. (20.297) and (20.298) is then

I(x, t;x0, 0) =

∫
Dx exp

[
−
∫ t

0

dt′
1

2

(
ẋ(t′)− a[x(t′)]

)2]
,

(20.299)
(model path integral)

where we have dropped the twiddle on x̃. We can interpret the part of the measure inside the exponential
here in discrete form as

1

2

(
ẋ(t′)− a[x(t′)]

)2
dt =

1

2

(
δx

δt
− a(x)

)2
δt =

(δx− a δt)2

2δt
, (20.300)

so that each step in the walk still has variance δt, but now also a mean of a(x) δt.
Then the Cameron–Martin–Girsanov transformation boils down to expanding the quadratic in the

exponential as follows:

I(x, t;x0, 0) =

∫
Dx exp

[
−
∫ t

0

dt′
ẋ2(t′)

2

]
exp
[ ∫ t

0

dx(t′) a(x)− 1

2

∫ t

0

dt′ a2(x)

]
(transformed path integral) (20.301)

20Andrei N. Borodin and Paavo Salminen, Handbook of Brownian Motion—Facts and Formulae, 2nd ed. (Birkhäuser, 2002),
pp. 49-50.
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Now the first exponential factor is the appropriate measure for trajectories without drift, as in Eq. (20.296).
The second exponential factor acts as a ‘‘potential’’ that corrects for switching to the different path measure,
and is called a Radon–Nikodym derivative. [The ‘‘derivative’’ here refers to being a ratio of the two
path measures, in analogy to transforming between probability distributions fy(y) and fx(x) by setting
fx(x) = fy(y)(dy/dx) given a coordinate transformation y(x).] This potential factor penalizes the paths
that don’t (randomly) move in the same way as the drifting paths, but rewards the ones that (randomly) do
move in the right way.

However, the correction factor in Eq. (20.301) does not correspond directly to a potential as we have
discussed it, in view of the stochastic integral [the first integral in this factor, with respect to dx(t′)]. However,
we can conveniently change this to a conventional integral as follows.21 Let A(x) be an antiderivative of
a(x); that is,

A′(x) = a(x). (20.302)

Then
dA(x) = A′(x) dx+

1

2
A′′(x) (dx)2

= a(x) dx+
1

2
a′(x) dt,

(20.303)

where we used the Itō rule dx2 = dW 2 = dt. Solving for a dx and integrating gives∫ t

0

a(x) dx(t′) = A[x(t)]−A[x(0)]− 1

2

∫ t

0

a′[x(t′)] dt′. (20.304)

Thus, Eq. (20.301) becomes

I(x, t;x0, 0) =

∫
Dx exp

[
−
∫ t

0

dt′
ẋ2(t′)

2

]
exp
[
− 1

2

∫ t

0

dt′
(
a′(x) + a2(x)

)]
exp
[
A[x(t)]−A[x(0)]

]
.

(transformed integral, potential form) (20.305)
Now the second exponential factor has the form of an effective potential

Veff(x) =
1

2

[
a′(x) + a2(x)

]
,

(20.306)
(effective drift potential)

and the last exponential factor represents an endpoint correction [which vanishes, for example, in the case
of closed paths with x(t) = x(0)].

To wrap up this discussion of drift potentials, we should reexamine subtleties in some of the steps in the
above treatment that we glossed over, which will connect with the discussion on operator orderings to follow
below. In particular, note that the first integral in the last exponential factor of Eq. (20.301) is a stochastic
integral, and thus we must specify a calculus to evaluate the integral. Given the expansion of Eq. (20.303),
we are clearly interpreting this as an Itō integral [i.e., a(x) in the path integral (20.299) is evaluated at the
prepoint x(t′)]. More precisely, given the path integral (20.305), it is equivalent to the path integral (20.299)
provided we interpret the latter integral in the prepoint sense. In the path-integral language, the difference
between, for example, a prepoint and midpoint interpretation comes about by introducing a correction of
order dx to a(x) in Eq. (20.301). The stochastic integral has a differential of dx, so the first-order correction
must be kept in this term (while these corrections are negligible in the last integral). In the language of
operator orderings below, such a term arises in the path integral from a term of the form p a(x) in the
corresponding quantum Hamiltonian, which can be ordered in different ways.

20.4.3 Operator Orderings

We have so far constructed the path integrals for the system corresponding to the Laplace–Beltrami Hamilto-
nian (20.195) by starting with a simpler Hamiltonian with no ordering issues, and then effecting a coordinate
change that transforms both the Hamiltonian and the path integral into the desired form. However, we should

21Barry Simon, Functional Integration and Quantum Physics (Academic Press, 1979), pp. 172-3 (ISBN: 0126442509).

http://www.amazon.com/gp/search/?field-isbn=0126442509
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also be able to follow a modified version of the basic path-integral construction of Section 20.1, using the
modified rules from Section 20.4.1.1 corresponding to the Laplace–Beltrami Hamiltonian (20.195). This
requires some care due to the operator-ordering issues, and we will see that different operator orderings nat-
urally give rise to different choices of stochastic calculus, or time-expansion points (midpoint vs. prepoint)
from the coordinate-transformation derivations of the path integrals in the previous section.

20.4.3.1 Itō Calculus and p-x Ordering

As our first ordering example, consider the ‘‘p-x’’-ordered version of (20.194),

Hpx(x, p) = p2
1

2mg(x)
+ V (x),

(variable-mass Hamiltonian, Itō ordering) (20.307)
will all momenta to the left and all positions to the right, which is called anti-standard ordering, or
which we will call Itō ordering or pre-point ordering, for reasons we will soon see. By commuting one
momentum, we have

Hpx(x, p) = p
1

2mg(x)
p+ ih̄p

g′

2mg2
+ V (x) = H(x, p) + ih̄p

g′

2mg2
, (20.308)

so that the product-ordered Hamiltonian is related to the Itō-ordered Hamiltonian via a commutator term
linear in p. We can then relate this Hamiltonian to the Laplace–Beltrami Hamiltonian via Eq. (20.235), so
that

Hpx(x, p) = H4(x, p) + V4(x) + ih̄p
g′

2mg2
, (20.309)

where the ordering potential V4 is defined in Eq. (20.236).
Now let’s revisit the construction of the path integral beginning with Eqs. (20.10) and (20.11):

Kpx(x, t;x0, t0) = 〈x|e−iHpx(x,p)(t−t0)/h̄|x0〉

=

∫ (N−1∏
j=1

√
g(xj) dxj

)
〈x|e−iHpxδt/h̄|xN−1〉〈xN−1|e−iHpxδt/h̄|xN−2〉 · · · 〈x1|e−iHpxδt/h̄|x0〉.

(20.310)
The change here—compared to the original path-integral construction of Section 20.1—is due to the modified
position identity (20.213), where we have extra factors of √g to keep track of. Then in analogy with
Eq. (20.14), we can insert the momentum identity (20.230) into each mini-propagator. Because of the
ordering choice, the natural place to insert the identity is to the left of the exponential, as the exponential
itself is p-x-ordered, at least to order δt. So we have

〈x2|e−iHpxδt/h̄|x1〉 =
∫
dp1 〈x2|p1〉〈p1|e−iHpxδt/h̄|x1〉

=

∫
dp1 〈x2|p1〉〈p1|x1〉 e−iHpx(x1,p1)δt/h̄

=
1

2πh̄[g(x2)g(x1)]1/4

∫
dp1 e

ip1(x2−x1)/h̄e−iHpx(x1,p1)δt/h̄

=
1

2πh̄[g(x2)g(x1)]1/4

∫
dp1 e

i[p1ẋ1−Hpx(x1,p1)]δt/h̄,

(20.311)

where as before
δx1 := x2 − x1, ẋ1 ≡

δx1
δt
, (20.312)

and we have used the inner product (20.227). This is really the crucial step in the derivation: because of the
ordering of the Hamiltonian, there was only one natural place to insert the momentum identity into the mini-
propagator. That, as a result, led to the position operators in the Hamiltonian resolving to the eigenvalues
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x1, rather than x2, and so we expect the result here to be consistent with the pre-point expansion of
Section 20.4.2.2. Thus, in constructing path integrals, p-x ordering in the Hamiltonian leads naturally
to Itō calculus, at least when we think about the equivalent path integral in the diffusion picture. Notice
that this matches the intuition from casting SDEs directly into the Fokker–Planck (Kolmogorov forward)
equation [see Eqs. (17.129) and (17.139)], which is a diffusion equation (Schrödinger equation in imaginary
time). There the derivative operators in the diffusion term appear to the left of the state-dependent diffusion
coefficient, just as the momentum operators appear to the left of the ‘‘diffusion coefficient’’ [which appears
in the SDE (20.295)] in the Hamiltonian (20.308).

Proceeding to collect all the matrix elements as we did before to derive the phase-space path integral
(20.28), we then have

Kpx(x, t;x0, t0) =
1

(2πh̄)N/2

∫ (N−1∏
j=1

√
g(xj) dxj

){
N−1∏
j=0

dpj
1

[g(xj+1)g(xj)]1/4
ei[pj ẋj−Hpx(xj ,pj)]δt/h̄

}

=
1√

g(x0) (2πh̄)N/2

∫ (N−1∏
j=1

dxj

){
N−1∏
j=0

dpj

[
g(xj)

g(xj+1)

]1/4
ei[pj ẋj−Hpx(xj ,pj)]δt/h̄

}

=
1

[g(x)g(x0)]
1/4

(2πh̄)N/2

∫ (N−1∏
j=1

dxj

){
N−1∏
j=0

dpj e
i[pj ẋj−Hpx(xj ,pj)]δt/h̄

}
.

(20.313)
Thus, the phase-space path integral becomes

Kpx(x, t;x0, t0) =
1

[g(x)g(x0)]
1/4

(2πh̄)N/2

∫ (N−1∏
j=1

dxj

){
N−1∏
j=0

dpj exp
[
iδt

h̄

[
pj ẋj −Hpx(xj , pj)

]]}

=: [g(x)g(x0)]
−1/4

∫
DxDp exp

[
i

h̄

∫ t

t0

dt
[
pẋ−Hpx(x, p)

]]
(phase-space propagator for Hpx) (20.314)

in discrete and continuous notations.
We can proceed by working out the momentum integrals in Eq. (20.314), recalling that we are working

with eigenvalues and thus there is no longer any concern about ordering. The result of each momentum
integral is the same as in Eq. (20.19), if we replace m with mg(xj),∫

dpj exp
[
iδt

h̄

(
pj ẋj −Hpx(xj , pj)

)]
=

√
mg(xj)

iδt
eiL(xj ,ẋj)δt/h̄ (20.315)

in terms of the Lagrangian (20.196). Thus, we obtain the propagator

Kpx(x, t;x0, t0) = [g(x)g(x0)]
−1/4

( m

i2πh̄δt

)N/2
∫ (N−1∏

j=1

dxj

){
N−1∏
j=0

√
g(xj) exp

[
iδt

h̄
L(xj , ẋj)

]}
(propagator for Hpx) (20.316)

for the p-x-ordered Hamiltonian.
On the other hand, in view of Eq. (20.309), we can instead compute the propagator for the Hamiltonian

H4(x, p) by replacing Hpx(x, p) −→ H4(x, p) = Hpx(x, p)−V4(x)− ih̄pg′/2mg2 in the propagator (20.314):

K(x, t;x0, t0) =
1

[g(x0)g(x)]
1/4

(2πh̄)N/2

∫ (N−1∏
j=1

dxj

)

×

{
N−1∏
j=0

dpj exp
[
iδt

h̄

(
pj ẋj −Hpx(xj , pj) + V4(xj) + ih̄pj

g′

2mg2

)]}
.

(20.317)
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The result is the same as for the Kpx propagator, then, but with a modified velocity and potential:

K(x, t;x0, t0) = [g(x)g(x0)]
−1/4

( m

i2πh̄δt

)N/2
∫ (N−1∏

j=1

dxj

)

×

{
N−1∏
j=0

√
g(xj) exp

[
iδt

h̄
L

(
xj , ẋj + ih̄

g′(xj)

2mg2(xj)

)
+
iδt

h̄
V4(xj)

]}
.

(20.318)
Expanding out the Lagrangian, we have

L

(
xj , ẋj + ih̄

g′(xj)

2mg2(xj)

)
=
m

2
g(xj)

(
ẋj + ih̄

g′(xj)

2mg2(xj)

)2

− V (xj)

=
m

2
g(xj) ẋ

2
j − V (xj) + ih̄

g′(xj)

2g2(xj)
ẋj −

h̄2g′2

8mg3

= L(xj , ẋj) + ih̄
g′(xj)

2g2(xj)
ẋj −

h̄2g′2

8mg3
,

(20.319)

and so the propagator becomes

K(x, t;x0, t0) = [g(x)g(x0)]
−1/4

( m

i2πh̄δt

)N/2
∫ (N−1∏

j=1

dxj

)

×

{
N−1∏
j=0

√
g(xj) exp

[
iδt

h̄

(
L(xj , ẋj) + V4(xj)−

h̄2g′2

8mg3

)
− g′(xj)

2g2(xj)
δxj

]}
.

(20.320)
From Eq. (20.289) we have

N−1∏
j=0

exp
[
− g
′(xj)

2g(xj)
δxj

]
=

[
g(x0)

g(x)

]1/2 N−1∏
j=0

exp
[
iδt

h̄

(
h̄2(gg′′ − g′2)

4mg3

)]
, (20.321)

and using this to replace the δxj term in the exponential, we find

K(x, t;x0, t0) = g−3/4(x) g1/4(x0)
( m

i2πh̄δt

)N/2
∫ (N−1∏

j=1

dxj

)

×

{
N−1∏
j=0

√
g(xj) exp

[
iδt

h̄

(
L(xj , ẋj) + V4(xj) +

h̄2(gg′′ − g′2)
4mg3

− h̄2g′2

8mg3

)]}
.

(20.322)
From Eq. (20.236) we had

V4(x, p) := −
h̄2(gg′′ − 2g′2)

8mg3
− h̄2g′2

32mg3
, (20.323)

so the propagator finally becomes

K(x, t;x0, t0) = g−3/4(x) g1/4(x0)
( m

i2πh̄δt

)N/2
∫ (N−1∏

j=1

dxj

)

×

{
N−1∏
j=0

√
g(xj) exp

[
iδt

h̄

(
L(xj , ẋj) +

h̄2(gg′′ − g′2)
8mg3

− h̄2g′2

32mg3

)]}
.

(pre-point propagator for H4) (20.324)
This exactly matches the pre-point (corresponding to integration in the Itō sense) propagator (20.268) that
we derived by the point transformation, with the same effective potential (20.269). Again, this corresponds
to the Hamiltonian H4(x, p), and follows in the operator formalism by first reordering this Hamiltonian in
anti-standard (p-x) form, and then introducing momentum identities to derive the path integral.
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20.4.3.2 Anticipating Calculus and x-p Ordering

By contrast, if we have a Hamiltonian Hxp(x, p) that is ‘‘x-p’’-ordered or in standard ordering,

Hxp(x, p) =
1

2mg(x)
p2 + V (x),

(variable-mass Hamiltonian, anticipating ordering) (20.325)
with all x’s to the left, all p’s to the right, then we can modify Eqs. (20.311) to become

〈x2|e−iHxpδt/h̄|x1〉 =
∫
dp1 〈x2|e−iHxpδt/h̄|p1〉〈p1|x1〉

=

∫
dp1 〈x2|p1〉〈p1|x1〉e−iHxp(x2,p1)δt/h̄

=
1

2πh̄[g(x2)g(x1)]1/4

∫
dp1 e

ip1(x2−x1)/h̄e−iHxp(x2,p1)δt/h̄

=
1

2πh̄[g(x2)g(x1)]1/4

∫
dp1 e

i[p1ẋ1−Hxp(x2,p1)]δt/h̄,

(20.326)

with the difference being that H(x, p) is now evaluated at the final point x2 in the interval [x1, x2].
The path integral has the same form (20.28) as for p-x ordering, but now in the integration, the x in

the Hamiltonian is evaluated at the final time in each time interval [t, t+dt]. In the imaginary-time diffusion
picture, this again corresponds to integrating with respect to diffusive (Wiener) paths, where the integrand
is always evaluated at the final point of each time interval, which is called anticipating calculus. Thus,
for diffusive path integrals, x-p ordering leads naturally to anticipating calculus.

The rest of the derivation carries through in the same way, and for example we obtain the post-point
propagator

K(x, t;x0, t0) = g1/4(x) g−3/4(x0)
( m

i2πh̄δt

)N/2
∫ (N−1∏

j=1

dxj

)

×

{
N−1∏
j=0

√
g(xj+1) exp

[
iδt

h̄

(
L(xj+1, ẋj) +

h̄2(gg′′ − g′2)
8mg3

− h̄2g′2

32mg3

)]}
.

(post-point propagator for H4) (20.327)
in place of the pre-point form (20.324), essentially by interchanging xj ←→ xj+1 in the integrand and
prefactor.

20.4.3.3 Stratonovich Calculus and Weyl Ordering

Perhaps the most useful ordering of the Hamiltonian to consider is Weyl (symmetrized) ordering (see Sec-
tion 4.3.5). We can write the Weyl-ordered version of the Hamiltonian (20.194) or (20.195) as

HW(x, p) =

(
p

1

2mg(x)
p

)
W

+ V (x),

(variable-mass Hamiltonian, Weyl ordering) (20.328)
where the subscript denotes Weyl ordering. To relate this form to other orderings, we can take advantage of
the product rule for Weyl correspondence (4.121)

A(x, p) = B

(
x− h̄

2i
∂p, p+

h̄

2i
∂x

)
C(x, p) = C

(
x+

h̄

2i
∂p, p−

h̄

2i
∂x

)
B(x, p) (20.329)
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for an operator product Â = B̂Ĉ. Applying this rule twice,

p̂
1

g(x̂)
p̂←→

(
p+

h̄

2i
∂x

)(
p− h̄

2i
∂x

)
1

g(x)

= p
1

g(x)
p+

h̄2

4

(
1

g

)′′
= p

1

g(x)
p− h̄2(gg′′ − 2g′2)

4g3

←→
(
p̂

1

g(x̂)
p̂

)
W

− h̄2(gg′′ − 2g′2)

4g3

(20.330)

where arrows denote Weyl correpondence between classical functions and operators, and we are being careful
for the moment to mark operators with hats. That is, we can write

H(x, p) = HW(x, p) + VW(x), (20.331)
where the effective ordering potential to switch between product and Weyl orderings is

VW(x) := − h̄
2(gg′′ − 2g′2)

8mg3
. (20.332)

Then using Eqs. (20.235) and (20.236), we can also relate the Weyl and Laplace–Beltrami Hamiltonians via

HW(x, p) = H(x, p)− VW(x)

= H4(x, p) + V4(x, p)− VW(x)

= H4(x, p)−
h̄2g′2

32mg3
,

(20.333)

so that the ordering potential here is simpler than either V4 or VW.
Now suppose we construct the propagator for the Weyl-ordered Hamiltonian by HW(x, p). In adapting

Eqs. (20.311) to this case, it is not obvious where to insert the momentum identity, but there is a trick we
can use to make this simple.22 Recall that in terms of the characteristic operator (4.92),

M̂(πx, πp) = ei(πxx̂+πpp̂)/h̄. (20.334)
an arbitrary Weyl-ordered operator, for example the Hamiltonian, is obtained from the classical function
from the Weyl correspondence (4.97)

ĤW(x̂, p̂) =
1

(2πh̄)2

∫ ∞
−∞

dπx

∫ ∞
−∞

dπp

∫ ∞
−∞

dx

∫ ∞
−∞

dp HW(x, p) M̂(πx, πp) e
−i(πxx+πpp)/h̄, (20.335)

(Note that we are again being careful for the moment about distinguishing classical variables from oper-
ators.) In this representation, the only operator-dependence in the Hamiltonian comes in the form of the
characteristic operator. Consider the analogous matrix element of the characteristic operator:

〈x2|M̂(πx, πp)|x1〉 = 〈x2|ei(πxx̂+πpp̂)/h̄|x1〉

= 〈x2|eiπxx̂/2h̄eiπpp̂/h̄eiπxx̂/2h̄|x1〉

=

∫
dp1 〈x2|eiπxx̂/2h̄|p1〉〈p1|eiπpp̂/h̄eiπxx̂/2h̄|x1〉

=

∫
dp1 〈x2|p1〉〈p1|x1〉eiπxx2/2h̄eiπpp1/h̄eiπxx1/2h̄

=
1

2πh̄[g(x2)g(x1)]1/4

∫
dp1 e

ip1(x2−x1)/h̄eiπxx2/2h̄eiπpp1/h̄eiπxx1/2h̄

=
1

2πh̄[g(x2)g(x1)]1/4

∫
dp1 e

ip1ẋ1δt/h̄eiπx(x1+x2)/2h̄eiπpp1/h̄,

(20.336)

22see, e.g., Christian Grosche, ‘‘An Introduction into the Feynman Path Integral,’’ arXiv.org preprint (arXiv: hep-
th/9302097v1).

http://arxiv.org/abs/hep-th/9302097v1
http://arxiv.org/abs/hep-th/9302097v1
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where we have used a symmetric splitting, similar to Eq. (4.101), which is exact here, because the argument
of the exponential is linear in x and p. Then the similar matrix element of the Hamiltonian becomes

〈x2|ĤW(x̂, p̂)|x1〉 =
1

(2πh̄)2

∫
dπx

∫
dπp

∫
dx

∫
dp HW(x, p) 〈x2|M̂(πx, πp)|x1〉 e−i(πxx+πpp)/h̄

=
1

(2πh̄)3[g(x2)g(x1)]1/4

∫
dp1 e

ip1ẋ1δt/h̄

×
∫
dπx

∫
dπp

∫
dx

∫
dpHW(x, p) eiπx(x1+x2)/2h̄eiπpp1/h̄e−i(πxx+πpp)/h̄

=
1

2πh̄[g(x2)g(x1)]1/4

∫
dp2 e

ip1ẋ1δt/h̄

∫
dx

∫
dp HW(x, p) δ

(
x− x1 + x2

2

)
δ(p− p1)

=
1

2πh̄[g(x2)g(x1)]1/4

∫
dp2 e

ip1ẋ1δt/h̄HW(x̄1, p1),

(20.337)
where as before we have defined the midpoint

x̄j :=
xj+1 + xj

2
. (20.338)

Now since
e−iHδt/h̄ = 1− iH

h̄
δt+O(δt2), (20.339)

with the second-order contributions negligible, the same argument applies to matrix elements of the mini-
evolution operators, and thus Eqs. (20.337) become

〈x2|e−iHWδt/h̄|x1〉 =
1

2πh̄[g(x2)g(x1)]1/4

∫
dp1 e

i[p1ẋ1−HW(x̄1,p1)]δt/h̄. (20.340)

Again proceeding to collect all the matrix elements as we did before to derive the phase-space path integral
(20.313), we have

KW(x, t;x0, t0) =
1

(2πh̄)N/2

∫ (N−1∏
j=1

√
g(xj) dxj

){
N−1∏
j=0

dpj
1

[g(xj+1)g(xj)]1/4
ei[pj ẋj−HW(x̄j ,pj)]δt/h̄

}

=
1√

g(x0) (2πh̄)N/2

∫ (N−1∏
j=1

dxj

){
N−1∏
j=0

dpj

[
g(xj)

g(xj+1)

]1/4
ei[pj ẋj−HW(x̄j ,pj)]δt/h̄

}

=
1

[g(x)g(x0)]
1/4

(2πh̄)N/2

∫ (N−1∏
j=1

dxj

){
N−1∏
j=0

dpj e
i[pj ẋj−HW(x̄j ,pj)]δt/h̄

}
.

(20.341)
Thus, the phase-space path integral becomes

KW(x, t;x0, t0) =
1

[g(x)g(x0)]
1/4

(2πh̄)N/2

∫ (N−1∏
j=1

dxj

){
N−1∏
j=0

dpj exp
[
iδt

h̄

[
pj ẋj −HW(x̄j , pj)

]]}

=: [g(x)g(x0)]
−1/4

∫
DxDp exp

[
i

h̄

∫ t

t0

dt
[
pẋ−HW(x̄, p)

]]
(phase-space propagator for Weyl-ordered Hamiltonian) (20.342)

in discrete and continuous notations. Now the path integral appears with the position in H(x, p) evaluated
at the middle time t+ dt/2 in the integration interval [t, t+ dt]. Thus, Weyl ordering leads naturally to
Stratonovich calculus in the sense of a diffusive path integral. We have indicated the spatial dependence
in the Hamiltonian by x̄ to emphasize this, and again, HW(x, p) here is the classical Hamiltonian obtained
from the Weyl-ordered Hamiltonian by replacing position and momentum operators by eigenvalues. This
ordering is convenient, as Stratonovich integration proceeds according to the rules of ‘‘normal’’ calculus, and
the integral is explicitly symmetric under time-reversal.
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Proceeding to the Lagrangian form of the path integral by carrying out the momentum integrals, we
can again note that the result of each momentum integral is the same as in Eq. (20.19), if we replace m with
mg(x̄j), ∫

dpj exp
[
iδt

h̄

(
pj ẋj −HW(x̄j , pj)

)]
=

√
mg(x̄j)

iδt
eiL(x̄j ,ẋj)δt/h̄ (20.343)

in terms of the Lagrangian (20.196). Thus, we obtain the propagator

KW(x, t;x0, t0) = [g(x)g(x0)]
−1/4

( m

i2πh̄δt

)N/2
∫ (N−1∏

j=1

dxj

){
N−1∏
j=0

√
g(x̄j) exp

[
iδt

h̄
L(x̄j , ẋj)

]}
(propagator for Weyl-ordered Hamiltonian) (20.344)

for the Weyl-ordered Hamiltonian HW(x, p).
If we instead want the propagator corresponding to H4(x, p), we can use relation (20.333) to make

the substitution HW −→ H4 = HW + h̄2g′2/32mg3 in the path integral (20.342). As such, the modification
is much easier here than in the Itō-ordered case, and we directly obtain the propagator

K(x, t;x0, t0) = [g(x)g(x0)]
−1/4

( m

i2πh̄δt

)N/2
∫ (N−1∏

j=1

dxj

)

×

{
N−1∏
j=0

√
g(x̄j) exp

[
iδt

h̄

(
L(x̄j , ẋj)−

h̄2g′2

32mg3

)]}
.

(propagator for H4(x, p)) (20.345)
This propagator is the same as the propagator (20.257) that we obtained by expanding the short-time action
about the midpoint in the coordinate-transformation derivation.

20.4.3.4 Symmetrized Ordering

Note that the Weyl ordering is different from the other obvious symmetric choice, that of symmetric order-
ing:

H{xp} :=
Hpx +Hxp

2
=

1

4m

[
p2,

1

g(x)

]
+

+ V (x).

(Hamiltonian for symmetrized ordering) (20.346)
Here we used the Itō and anticipating orderings from Eqs. (20.325) and (20.307), respectively. In this
case, the Hamiltonian corresponding to the matrix element (20.311) is evaluated at each endpoint and then
averaged, as we will see shortly. This is closer to Stratonovich calculus than either Itō or anticipating, in
that it focuses on the middle of the interval (by averaging the endpoints).

To derive the path integral for this ordering, we will follow the procedure in Section 20.4.3.1. The
propagator still has the form of Eq. (20.310), but upon inserting momentum identities, we have matrix
elements

〈x2|e−iH{xp}δt/h̄|x1〉 = 〈x2|e−iHxpδt/2h̄e−iHpxδt/2h̄|x1〉

=

∫
dp1 〈x2|e−iHxpδt/2h̄|p1〉〈p1|e−iHpxδt/2h̄|x1〉

=

∫
dp1 〈x2|p1〉e−iH(x2,p1)δt/2h̄e−iH(x1,p1)δt/2h̄〈p1|x1〉

=
1

2πh̄[g(x2)g(x1)]1/4

∫
dp1 e

i{p1ẋ1−[H(x1,p1)+H(x2,p1)]/2}δt/h̄,

(20.347)

where the equalities here are only up to O(δt). The derivation then carries through as in the Itō case through
the Hamiltonian path integral (20.314). Then carrying out the momentum integrals, the idea is the same as
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in Eq. (20.315), but g(xj) is replaced by(
1

2g(xj)
+

1

2g(xj+1)

)−1
=

2g(xj)g(xj+1)

g(xj) + g(xj+1)
, (20.348)

so that (20.315) becomes in this case∫
dpj exp

[
iδt

h̄

(
pj ẋj −Hpx(xj , pj)

)]
=

√
m[Mg−1(xj)]−1

iδt
ei{m[Mg−1(xj)]

−1ẋ 2
j −MV (xj)}δt/h̄, (20.349)

where we have introduced the averaging operator on the time lattice:

Mf(xj) :=
f(xj) + f(xj+1)

2
. (20.350)

Thus, we obtain the propagator

K{xp}(x, t;x0, t0) = [g(x)g(x0)]
−1/4

( m

i2πh̄δt

)N/2
∫ (N−1∏

j=1

dxj

)

×

{
N−1∏
j=0

√
[Mg−1(xj)]−1 exp

[
iδt

h̄

(m
2
[Mg−1(xj)]

−1ẋ 2
j −MV (xj)

)]}
(propagator for symmetrized Hamiltonian) (20.351)

for the symmetrized Hamiltonian (20.346).
Note that we can also rewrite this path integral in terms of the midpoint

x̄j :=
xj+1 + xj

2
, (20.352)

using the expansions

g(xj) = g(x̄j)−
g′(x̄j)

2
δxj +

g′′(x̄j)

8
δx 2
j

g(xj+1) = g(x̄j) +
g′(x̄j)

2
δxj +

g′′(x̄j)

8
δx 2
j .

(20.353)

Thus, we will need

[Mg−1(xj)]
−1 = g(x̄j) +

(
gg′′ − 2g′2

8g

)
δx 2
j +

g′2g′′

32g2
δx 4
j , (20.354)

up to fourth order, where all instances of g on the right-hand side are evaluated at the midpoint. Expanding
the parts of the path integral that need it,√

[Mg−1(xj)]−1 exp
[
iδt

h̄

(m
2
[Mg−1(xj)]

−1ẋ 2
j

)]
=
√
g(x̄j) exp

[
iδt

h̄

(m
2
g(x̄j)ẋ

2
j

)]
×
(
1 +

gg′′ − 2g′2

16g2
δx2 + im

gg′′ − 2g′2

16h̄g

δx4

δt

)
=
√
g(x̄j) exp

[
iδt

h̄

(m
2
g(x̄j)ẋ

2
j

)]
×
(
1 + ih̄

gg′′ − 2g′2

16mg3
δt− 3ih̄

gg′′ − 2g′2

16mg3
δt

)
=
√
g(x̄j) exp

[
iδt

h̄

(m
2
g(x̄j)ẋ

2
j

)](
1− ih̄ gg

′′ − 2g′2

8mg3
δt

)
,

(20.355)
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where we used the replacements (20.273) and consistently expanded to order δt. Thus, in midpoint form,
the propagator (20.351) becomes

K{xp}(x, t;x0, t0) = [g(x)g(x0)]
−1/4

( m

i2πh̄δt

)N/2
∫ (N−1∏

j=1

dxj

)

×

{
N−1∏
j=0

√
g(x̄j) exp

[
iδt

h̄

(
m

2
g(x̄j)ẋ

2
j − V (x̄j)−

h̄2(gg′′ − 2g′2)

8mg3

)]}
,

(propagator for symmetrized Hamiltonian, midpoint form) (20.356)
where we have also noted that MV (xj) can be replaced by V (x̄j) at order δt.

To compare with other Hamiltonians, we can consider reordering the original Hamiltonian (20.362) in
symmetrized form, using

p
1

g(x)
p =

1

2

(
p2

1

g
+

1

g
p2
)
+
ih̄

2

[
p,− g

′

g2

]
=

1

2

(
p2

1

g
+

1

g
p2
)
− h̄2

2

gg′′ − 2g′2

g3
, (20.357)

so that
H(x, p) = H{xp} −

h̄2(gg′′ − 2g′2)

4mg3
. (20.358)

Then with Eqs. (20.235) and (20.236), we can compare the Laplace–Beltrami ordering to the symmetrized
form as

H4(x, p) = H(x, p) +
h̄2(gg′′ − 2g′2)

8mg3
+

h̄2g′2

32mg3
= H{xp} −

h̄2(gg′′ − 2g′2)

8mg3
+

h̄2g′2

32mg3
. (20.359)

Then putting in the extra terms as correction potentials in the propagator (20.316), we can obtain the
propagator for H4(x, p) as

K(x, t;x0, t0) = [g(x)g(x0)]
−1/4

( m

i2πh̄δt

)N/2
∫ (N−1∏

j=1

dxj

)

×

{
N−1∏
j=0

√
g(x̄j) exp

[
iδt

h̄

(
L(x̄j , ẋj)−

h̄2g′2

32mg3

)]}
.

(symmetrized propagator for H4(x, p)) (20.360)
Note that this is identical to the propagator (20.345) that we derived in Weyl ordering. Thus, in terms
of stochastic differential equations, both orderings generate trajectories that correspond to Stratonovich
calculus.

20.4.3.5 Product Ordering

Yet another symmetric-type ordering for the Hamiltonian (20.194) is called product ordering, and the
product-ordered analogue of the model Hamiltonian is

Hgpg :=
1√
g(x)

p2

2m

1√
g(x)

+ V (x).

(Hamiltonian for symmetrized ordering) (20.361)
We will leave it as an exercise to derive the propagator for this Hamiltonian and for the Laplace–Beltrami
Hamiltonian H4(x, p) (see Problem 20.1). However, the upshot is that, once written in midpoint form, the
latter propagator is identical to the version derived in Weyl and symmetrized orderings. This conclusion
also holds for more general path integrals in curved spacetime.23

23C. Grosche and F. Steiner, Handbook of Feynman Path Integrals (Springer, 1998), p. 170.
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20.4.3.6 Equivalence Classes of Orderings

An important conclusion from the above path integrals is that although we can define several path integrals
that treat the beginning and end time slices (xj and xj+1) symmetrically, they end up generating identical
path integrals when written in terms of the midpoint x̄j , and thus all correspond to Stratonovich calculus
with the same effective potential. Because of the need to Taylor-expand the path integral to fourth order
in δx, it seems as if there are many more possible path integrals than choices for stochastic calculus (where
we only expand to second order). However, we see that different path integrals that correspond to the same
calculus turn out to be equivalent. That is, there is really only one path integral for each calculus, but many
possible ways to write it down.

20.4.4 Normalizing the Weyl-Ordered Path Integral

Now we want to return to our original model Hamiltonian (20.194) for a variable mass,

H(x, p) = p
1

2mg(x)
p+ V (x),

(20.362)
(variable-mass Hamiltonian)

and consider how to develop a normalized path integral for Monte–Carlo calculations in the sense of Sec-
tion 20.3.1. In previous sections, we considered propagators for the Hamiltonian in Laplace–Beltrami form
H4(x, p), but we need the propagators for H(x, p). From Eq. (20.235), we only need to add the ordering
correction V4(x, p) from Eq. (20.236) to the potential V (x) in the propagator. Hence, from Eqs. (20.257),
(20.258), and (20.259), or from Eq. (20.345), we have the propagator

Kpgp(x, t;x0, t0) = [g(x)g(x0)]
−1/4

( m

i2πh̄δt

)N/2
∫ (N−1∏

j=1

dxj

)

×

{
N−1∏
j=0

√
g(x̄j) exp

[
iδt

h̄

(
m

2
g(x̄j) ẋ

2
j − V (x̄j) +

h̄2(gg′′ − 2g′2)

8mg3

)]}

= [g(x)g(x0)]
−1/4

∫
D
[
x
√
g(x̄)

]
exp

[
i

h̄

∫ t

t0

dt

(
m

2
g(x̄) ẋ2 − V (x̄) +

h̄2(gg′′ − 2g′2)

8mg3

)]
(midpoint path integral) (20.363)

for the Hamiltonian (20.362) in midpoint form, in both discrete and continuous notations. To have a better-
defined problem to normalize in Monte-Carlo form, we will calculated the partition function for the same
Hamiltonian. Using Eq. (20.220), we can write the partition function as

Zpgp =

∫
dx0

∫
dx
√
g(x) δ(x− x0)Kpgp(x,−ih̄β;x0, 0)

=

∫
dx0

∫
dx δ(x− x0)

( m

i2πh̄δt

)N/2
∫ (N−1∏

j=1

dxj

)

×

{
N−1∏
j=0

√
g(x̄j) exp

[
iδt

h̄

(
m

2
g(x̄j) ẋ

2
j − V (x̄j) +

h̄2(gg′′ − 2g′2)

8mg3

)]}
,

(20.364)

where we are still writing imaginary time in terms of t, rather than β, for the moment. Unfortunately,
due to the presence of g(x̄j), the normalization procedures of Sections 20.3.1–20.3.1.2 do not directly apply
here (i.e., the integrals are not Gaussian). However, we can make things simpler by rescaling time on a
path-dependent basis. That is, we change to time t′, where

dt = dt′ g[x̄(t)].
(20.365)

(temporal rescaling for path integral)
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The path integral transformed thusly is

Zpgp =

∫
dx0

∫
dx δ(x− x0)

( m

i2πh̄

)N/2
∫ (N−1∏

j=1

dxj

)

×

{
N−1∏
j=0

1√
δt′j

exp
[
iδt′j
h̄

(
m

2
ẋ 2
j − g(x̄j)V (x̄j) +

h̄2(gg′′ − 2g′2)

8mg2

)]}
,

(20.366)

where the increments δt′j in the new variable are no longer uniform. This is still a source of inconvenience, so
rather than choose the time slices to be uniformly spaced in t, we will choose them (again, in a path-dependent
way) to be uniformly spaced in t′, so that

Zpgp =

∫
dx0

∫
dx δ(x− x0)

( m

i2πh̄δt′

)N/2
∫ (N−1∏

j=1

dxj

)

×

{
N−1∏
j=0

exp
[
iδt′

h̄

(
m

2
ẋ 2
j − g(xj)V (xj) +

h̄2(gg′′ − 2g′2)

8mg2

)]}
.

(20.367)

This has the form of a path integral in flat space, with a potential and effective potential modified by a
factor of g(xj). Note that in the potentials, we have switched from the midpoint to the prepoint, since for
a flat-space path integral (additive noise), we need not make such distinctions. Now switching from t′ to
−ih̄β, we have

Zpgp =

∫
dx0

∫
dx δ(x− x0)

(
m

2πh̄δβ̃

)N/2 ∫ (N−1∏
j=1

dxj

)

×

{
N−1∏
j=0

exp

[
−δβ̃
h̄

(
m

2
(∂β̃xj)

2 + g(xj)V (xj)−
h̄2(gg′′ − 2g′2)

8mg2

)]}
,

(20.368)

in analogy to Eq. (20.133), and we are still using β̃ := h̄β. Then proceeding with the normalization as in
Eq. (20.146), we can write down the normalized form

Zpgp =

√
m

2πh̄2β

∫
dx0

〈〈
exp

[
− 1

h̄

∫ h̄β

0

dβ̃

(
g(x)V (x)− h̄2(gg′′ − 2g′2)

8mg2

)]〉〉
x(β̃)=x0+

√
h̄/mBh̄β(β̃)

.

(normalized partition function) (20.369)
Note that due to the time rescaling, the paths here are (scaled and translated) Brownian bridges, just as in
a flat-space path integral.

In reviewing this derivation, an obvious question arises: why choose Weyl ordering? We could, of
course, have picked any other ordering. Choosing symmetrized or product orderings would lead to the same
result, as we have seen. However, Itō or anticipating orderings would have led to prepoint or postpoint path
integrals, with different effective potentials. The time rescaling would proceed [but with, e.g., g(xj) instead
of g(x̄j)], and once in flat space, the distinction between prepoint, midpoint, and postpoint is lost, and yet
we are stuck with a different potential.

The resolution to this apparent problem is to note that it is only in a Stratonovich-type path integral
that the normalization turns out to be simple. The reason is that, in the language of SDEs, it is only
in the Stratonovich case with no drift that a temporal rescaling preserves the closure of loops (Brownian
bridges). Itō SDEs, for example, do not in general preserve loop closure, even when equivalent to a driftless
Stratonovich SDE (see Section 17.7.4.3). In terms of the path integral, this would mean that in any other
ordering or expansion point, the temporal rescaling would upset the path closure, and thus there would
be an extra normalization contribution due to the delta function that enforces the path closure. In any
Stratonovich path integral, we don’t have to worry about computing any such contribution.
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20.4.4.1 A Similar Path Integral

As an additional example of a normalized path integral, consider the alternate ‘‘Hamiltonian’’

H∂g∂(x, p) := −h̄2∂x
1

2mg(x)
∂x + V (x).

(20.370)
(variable-mass ‘‘Hamiltonian’’)

Superficially, this appears to be the same as the Hamiltonian (20.362) for which we just developed the
normalized path integral. However, it is not, due to the space-dependent mass. Applying the momentum
operator from Eq. (20.226), we readily see that

H∂g∂(x, p) := g1/4(x) p
1

2mg(x)
p

1

g1/4(x)
+ V (x),

(variable-mass ‘‘Hamiltonian’’) (20.371)
which is somewhat odd, as this Hamiltonian is not even Hermitian. Then rearranging the kinetic term,

g1/4(x) p
1

g(x)
p

1

g1/4(x)
= p

1

g3/4
p

1

g1/4
+ ih̄

g′

g7/4
p

1

4g1/4

= p
1

g
p+ ih̄p

g′

4g2
+ ih̄

g′

4g7/4
p

1

g1/4

= p
1

g
p+ ih̄p

g′

4g2
+ ih̄

g′

4g2
p− h̄ g′2

16g3

= p
1

g
p+ ih̄p

g′

2g2
− h̄2(gg′′ − 2g′2)

4g3
− h̄2g′2

16g3
.

(20.372)

where again we used the commutator [f(x), p] = ih̄f ′, which still holds with the variable mass. Then relating
this Hamiltonian to the original model Hamiltonian (20.362), we have

H∂g∂(x, p) = H(x, p) + ih̄p
g′

4mg2
− h̄2(gg′′ − 2g′2)

8mg3
− h̄2g′2

32mg3
. (20.373)

Relative to the propagator (20.363) for H(x, p), the last two terms here become extra potential terms. The
second term here leads to an extra velocity term. To handle this, we can revisit the development of the path
integral in Section 20.4.3.1, where a similar potential term −ih̄pg′/2mg2 arose. From Eq. (20.320), we can
see that this potential will contribute an extra potential h̄2g′2/32mg3. From Eq. (20.321), we see that there
is an additional potential −h̄2(gg′′−g′2)/16mg3, as well as an overall factor [g(x)/g(x0)]1/4. Collecting these
parts and adapting Eq. (20.363), we find the propagator

K∂g∂(x, t;x0, t0) =
1√
g(x0)

( m

i2πh̄δt

)N/2
∫ (N−1∏

j=1

dxj

)

×

{
N−1∏
j=0

√
g(x̄j) exp

[
iδt

h̄

(
m

2
g(x̄j) ẋ

2
j − V (x̄j) +

h̄2(2gg′′ − 3g′2)

8mg3

)]}
.

(midpoint path integral) (20.374)
We can then adapt the derivation of the partition function (20.369), with the result

Z∂g∂ =

√
m

2πh̄2β

∫
dx0

〈〈
exp

[
− 1

h̄

∫ h̄β

0

dβ̃

(
g(x)V (x)− h̄2(2gg′′ − 3g′2)

8mg2

)]〉〉
x(β̃)=x0+

√
h̄/mBh̄β(β̃)

.

(normalized partition function) (20.375)
Note that the effective potential is different than in the partition function (20.369). Note also that the path
integral and effective potential are perfectly well-defined, despite the odd nature of the Hamiltonian (20.371).



20.5 Exercises 959

20.5 Exercises

Problem 20.1
(a) Derive the propagator for the Hamiltonian (20.361)

Hgpg :=
1√
g(x)

p2

2m

1√
g(x)

+ V (x). (20.376)

(b) Convert the path integral from (a) to midpoint form.
(c) Use the path integral from (b) to derive a product-form path integral for the Laplace–Beltrami
Hamiltonian H4(x, p), and show that it is equivalent to the analogous path integral derived from Weyl
and symmetrized orderings.





Chapter 21

Path-Integral Calculation of Casimir
Energies

21.1 Scalar Theory

So far, in Chapters 13 and 14, we have developed two methods for computing atom–surface interactions:
explicit mode summation with dipole-approximation atom–field coupling (with the assumption of perfectly
conducting boundaries), and the more general Green-tensor formalism, which can handle dielectrics. Both
of these approaches are difficult when the geometry of the surface is not highly symmetric, and it is useful
to develop methods amenable to numerical computation in such cases.

Here we will develop the path-integral, or world-line method for computing more general Casimir
forces (including forces between macroscopic bodies, not just the Casimir–Polder effect). The original for-
mulation of this method1 is for the scalar field, which is unphysical, but a simple way to introduce the
method. The method amounts to a Monte–Carlo solution of a path integral, and is thus quite different from
the approaches we have covered up to now. In evaluating the path integrals, we will make extensive use of
the results on stochastic processes that we have developed in Chapter 17.

21.1.1 Quantum Scalar Field

We will take the scalar field φ(r) to be defined by the Lagrangian

L =
h̄2

2

∫
ddr

[
(∂tφ)

2 − c2(∇φ)2 − m2c4

h̄2
φ2
]

(21.1)

in d spatial dimensions, which includes coupling to a mass m (for the analogous mass coupling in the
electromagnetic field, see Problem 8.16). Note that we are in mks units, where φ2 has dimensions of inverse
volume, and h̄/mc is the Compton length. The Lagrangian thus has overall dimensions of square energy. As
a model for interactions with material bodies, we can consider a space-dependent mass,

m(r) = m0 + δm(r), (21.2)

where m0 is the ‘‘asymptotic’’ value of the mass function, representing the mass of the field, and the deviation
δm(r) models the effects of the material bodies. Then as

m2(r) = m 2
0 + 2m0δm(r) + δm2(r), (21.3)

1Holger Gies, Kurt Langfeld, and Laurent Moyaerts, ‘‘Casimir effect on the worldline,’’ Journal of High Energy Physics
06, 018 (2003) (doi: 10.1088/1126-6708/2003/06/018). For an overview of preceding work on world lines, see Christian
Schubert, ‘‘An Introduction to the Worldline Technique for Quantum Field Theory Calculations,’’ Acta Physica Polonica
B 27, 3965 (1996), arXiv.org preprint (arXiv: hep-th/9610108v2); C. Schubert, ‘‘Perturbative quantum field theory in the
string-inspired formalism,’’ Physics Reports 355, 73 (2001) (doi: 10.1016/S0370-1573(01)00013-8), arXiv.org preprint (arXiv:
hep-th/0101036v2).

http://dx.doi.org/10.1088/1126-6708/2003/06/018
http://arxiv.org/abs/hep-th/9610108v2
http://dx.doi.org/10.1016/S0370-1573(01)00013-8
http://arxiv.org/abs/hep-th/0101036v2
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we can define a background ‘‘potential’’ function V (r) such that

V (r) := 1

2

[
2m0δm(r) + δm2(r)

]
c4, (21.4)

which also has dimensions of squared energy. In this case, we can write the Lagrangian as

L =
1

2

∫
d3r

[
h̄2(∂tφ)

2 − h̄2c2(∇φ)2 −m 2
0 c

4φ2 − 2V (r)φ2
]
,

(model scalar-field Lagrangian) (21.5)
Again, the potential will ultimately represent the macroscopic bodies of the Casimir effect, but there is no
simple correspondence to the usual ε(r) of the electromagnetic field.

The conjugate momentum to φ is

π(r) := δL

δφ̇
= h̄2∂tφ(r). (21.6)

Thus, the Hamiltonian is

H = πφ̇− L

=
1

2

∫
d3r

[
π2

h̄2
+ h̄2c2(∇φ)2 +m 2

0 c
4φ2 + 2V (r)φ2

]
.

(21.7)

Hamilton’s equations give the first-order-in-time evolution in terms of the two coupled fields φ and π,

∂tφ = π/h̄2

∂tπ = h̄2c2∇2φ−m 2
0 c

4φ− 2V (r)φ,
(21.8)

while after decoupling these equations, we find the inhomogeneous wave equation(
∇2 − 1

c2
∂ 2
t

)
φ =

(
m 2

0 c
2

h̄2
+

2

h̄2c2
V (r)

)
φ

(21.9)
(scalar-field wave equation)

for uncoupled but second-order-in-time evolution.
In quantum mechanics, we simply regard the conjugate π(r) and φ(r) fields to be operators. That is,

envision a harmonic oscillator at each r representing the amplitude of the field there. Then the operator φ(r)
acts as the operator x ∝ (a+ a†) for that particular oscillator (but note that this x refers to the temporal part
of the field, giving the local, time-dependent amplitude). Correspondingly, π(r) acts as the local conjugate
(quadrature) operator p ∝ (a− a†) at that point in space. (More on this in Section 21.1.4.2.)

Normally we will take the background mass m0 to be zero for a massless scalar field, but we can note
here that we can simply absorb any nonzero mass into an overall constant offset in V (r). Henceforth, we
will not write an explicit mass m0, although the treatment here can cover massive scalar fields as well.

21.1.2 Partition Function

We ultimately want the energy associated with the various configurations of V (r), which is specified by the
Hamiltonian. A general way to get at the energy is to consider the partition function,

Z := Tr
[
e−βH

]
. (21.10)

where β := 1/kBT for temperature T and Boltzmann constant kB. Expressing this in terms of the basis |n〉
of energy eigenstates (of energy En),

Z =
∑
n

〈n|e−βH |n〉 =
∑
n

e−βEn . (21.11)
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Recall that according to the Boltzmann distribution in statistical mechanics, each term here represents the
relative probability of occupying state |n〉, and the partition function is the sum of these relative probabilities,
and thus gives the proper probability normalization. That is, the probability of occupying state |n〉 is
e−βEn/Z. Then the energy expectation value is

E ≡〈H〉 =
∑
n

e−βEn

Z
En = − 1

Z
∂β
∑
n

e−βEn = − 1

Z
∂βZ (21.12)

or
E = −∂β logZ. (21.13)

(energy in terms of partition function)
Thus, we will seek to compute logZ, and thereby compute the Casimir energy.

Generally speaking, the Casimir energy is the energy associated with the vacuum (i.e., the effect is
due not to real photons, but rather only to virtual photons). In the zero-temperature limit, the vacuum is
occupied with unit probability, which we can see from the partition function, where the ground-state-energy
term dominates the other ones as β −→∞:

lim
β→∞

Z = e−βE0 . (21.14)

Thus, differentiating the partition function directly yields the ground-state energy. Of course, we can also
derive temperature-dependent corrections to the ground-state energy with this method.

21.1.2.1 Free Energy

When we consider finite-temperature effects (e.g., in Section 21.1.6), rather than considering the energy E,
we will need to compute the Helmholtz free energy

F := E − TS, (21.15)
(Helmholtz free energy)

where T is the temperature and S is the entropy. To see why, recall the first law of thermodynamics,

dE = dQ− dW, (21.16)

which gives the small change in internal energy E in terms of the a small heat dQ transferred to the system
and the work dW done by the system (commonly written P dV in terms of pressure and volume). Since the
entropy change is dS = dQ/T , we can rewrite the first law as

−dW = dE − T dS = dF , (21.17)

where we assume the differential dF to be at constant temperature. Thus, at constant temperature, we can
interpret the free energy F as the relevant Casimir potential, as its change represents the work involved in
rearranging the material bodies. (We use −dW here as the work done on the system by rearranging the
bodies, rather than the work dW done by the system.) If we regard the work as being due to moving one of
the bodies through a small displacement dr against a force F, we have

dW = F · dr, (21.18)

and thus
F = −∇F . (21.19)

(force and free energy)

That is, the thermodynamic force on the body (at constant temperature) is given by the gradient of the free
energy, taken with respect to a coordinate that represents the position of the body.

To put F in terms of the partition function, we can begin with

E = F + TS = F − T ∂F
∂T

, (21.20)



964 Chapter 21. Path-Integral Calculation of Casimir Energies

where the temperature derivative is taken with no work (e.g., constant volume). Then

E = −T 2∂T

(
F
T

)
, (21.21)

and using Eq. (21.13), with (−1/kT 2)∂β = ∂T ,

F = −kBT logZ = − 1

β
logZ.

(free energy in terms of partition function) (21.22)
Note that in the zero-temperature limit, we can see from Eq. (21.14) that

lim
β→∞

logZ = −βE0, (21.23)

and thus for zero temperature, both F and E give the ground-state energy E0. That E and F coincide at
T = 0 is also obvious from the definition (21.15).

21.1.2.2 Partition-Function Renormalization

As we have seen, the Casimir energy is divergent, and must be renormalized by subtracting away the energy
without coupling between the bodies. We will revisit this issue later when discussing particular examples,
but for now we note that we will need a subtraction of the form

E − E0 = −∂β log Z

Z0
,

(21.24)
(renormalized Casimir energy)

where E0 represents the field, for example, with V (r) = 0 or any other appropriate reference configuration of
the field. The main point here is that overall factors in the partition function (such as normalization factors)
will cancel in renormalization, and so we are free to drop such factors along the way without changing the
final result. Of course, a similar renormalization applies to the free energy in the case of nonzero temperature.

21.1.3 Path Integral of the Quantum Field

Now it is convenient to introduce a basis of eigenstates of the field operator φ, which must sum to the
identity: ∫

dφ |φ〉〈φ| = 1. (21.25)

The labels φ(r) for these states correspond to something like the set of all classical fields of a localized
excitation, of all possible amplitudes. We can then write the partition-function trace in (21.10) in this basis:

Z =

∫
dφ 〈φ|e−βH |φ〉. (21.26)

Note that in the notation here, a volume integration is implied,∫
dφ ≡

∫
ddr dφ(r), (21.27)

where d is the number of spatial dimensions (i.e., normally d = 3), to obtain a scalar integration result. Now
if we split β into N pieces ∆β := β/N , we can insert identities in between each of the split exponential
factors:

Z =

∫
dφ 〈φ|e−∆βH

[∫
dφN−1|φN−1〉〈φN−1|

]
· · · e−∆βH

[∫
dφ2|φ2〉〈φ2|

]
e−∆βH

[∫
dφ1|φ1〉〈φ1|

]
e−∆βH |φ〉

=

∫
dφ 〈φ|


N−1∏
j=1

∫
dφj

[
e−∆βH |φj〉〈φj |

] e−∆βH |φ〉.

(21.28)
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This is the same procedure that we used for the quantum-mechanical path integral in Section 20.1.1, but
generalized to the quantum-field case. Then if we take

φ0 ≡ φN ≡ φ, (21.29)

in analogy to the endpoint identification (20.128), we can rewrite the partition function as

Z =

∫ N∏
j=1

dφj 〈φj |e−∆βH |φj−1〉. (21.30)

Introducing the shorthand for the path-integral volume element

Dφ :=

N∏
j=1

dφj =

N∏
j=0

dφj δ(φN − φ0),
(21.31)

(field path-integration element)

we then have

Z =

∫
Dφ

N∏
j=1

〈φj |e−∆βH |φj−1〉,
(21.32)

(field path integral)

where the path integral is periodic due to the identification |φN 〉 ≡ |φ0〉.

21.1.3.1 Momentum Projectors and Imaginary Time

The path integral (21.32) that we have written down so far can be interpreted as something like the propa-
gation of the field state through many small increments ∆β in imaginary time. This observation motivates
the next step in the calculation. An exponential evolution operator generates first-order evolution in time,
but the scalar-field evolution, as we have seen, is second-order in time, or first-order if we consider coupling
to the conjugate π field. This is also a sensible step since the Hamiltonian, and thus the evolution operator,
involves both fields. Now we write out the evolution operator explicitly using Eq. (21.7) (with m0 = 0):

e−∆βH = exp
[
−∆β

2

∫
d3r

π2

h̄2

]
exp

[
−∆β

2

∫
d3r
[
h̄2c2(∇φ)2 + 2V (r)φ2

]]
+O(∆β2). (21.33)

Notice that we have split the exponential into the conjugate parts; we are assuming the limit of vanishingly
small ∆β, so we can ignore the higher-order corrections here. Concentrating on a single factor in Eq. (21.32),
we can insert the identity in terms of the basis of momentum-field eigenstates |π〉 for each such factor:

〈φj |e−∆βH |φj−1〉

=

∫
dπj〈φj |πj〉〈πj |e−∆βH |φj−1〉

=

∫
dπj〈φj |πj〉〈πj | exp

[
−∆β

2h̄2

∫
d3r π2

]
exp

[
−∆β

2

∫
d3r
[
h̄2c2(∇φ)2 + 2V (r)φ2

]]
|φj−1〉

=

∫
dπj〈φj |πj〉〈πj |φj−1〉 exp

[
−∆β

2h̄2

∫
d3r π 2

j

]
exp

[
−∆β

2

∫
d3r
[
h̄2c2(∇φj−1)2 + 2V (r)φ 2

j−1

]]
.

(21.34)
Note that the φj−1 in the potential term could be just as written in terms of any combination of φj and φj−1.
The inner products correspond to inner products of conjugate-variable eigenstates, e.g., 〈x|p〉 = eipx/h̄/

√
2πh̄,

so

〈φj |e−∆βH |φj−1〉

∝
∫
dπj exp

[∫
d3r

(
i

h̄
πj(φj − φj−1)−

∆β

2h̄2
π2
j

)]
exp

[
−∆β

2

∫
d3r
[
h̄2c2(∇φj−1)2 + 2V (r)φ 2

j−1

]]
.

(21.35)
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Focusing on the momentum-dependent factor, we can carry out the momentum integral explicitly. First we
complete the square,∫

dπj exp
[∫

d3r

(
i

h̄
πj(φj − φj−1)−

∆β

2ε0
π2
j

)]
=

∫
dπj exp

[
−∆β

2h̄2

∫
d3r

(
πj − i

h̄

∆β
(φj − φj−1)

)2
]

exp
[
−1

2

∫
d3r

(φj − φj−1)2

∆β

]
,

(21.36)

again keeping only terms to order ∆β in splitting the exponential. We can evaluate the Gaussian integral
in analogy to ∫ ∞+iη

−∞+iη

exp
(
−αx2

)
dx =

∫ ∞
−∞

exp
(
−αx2

)
dx =

√
π

α
(Re[α] > 0), (21.37)

since shifting the contour in the imaginary direction in the complex plane does not affect the integral’s value
(due to analyticity of the Gaussian). The πj integral thus gives an overall factor that is independent of the
fields, so we can drop it from the partition function. We can return the remaining quadratic factor, merging
it into the remaining exponential in Eq. (21.35):

〈φj |e−∆βH |φj−1〉∝ exp
[
−∆β

2

∫
d3r

(
(φj − φj−1)2

∆β2
+ h̄2c2(∇φj−1)2 + 2V (r)φ 2

j−1

)]
. (21.38)

Now the partition function (21.32) contains the product of many such factors. Taking the limit ∆β −→ dβ,
and taking β̃ := h̄cβ to be the ‘‘Boltzmann length,’’

Z =

∫
Dφ exp

[
− 1

2h̄c

∫
dβ̃ d3r

(
h̄2c2(∂β̃φ)

2 + h̄2c2(∇φ)2 + 2V (r)φ2
)]
.

(field path integral, β-integral form) (21.39)
Here, we have defined the derivative corresponding to the (j − 1) field:

∂β̃φj−1 :=
φj − φj−1

∆β̃
. (21.40)

There is no other dependence on φ in the kinetic term, so there is no concern with ordering or a ‘‘space’’-
dependent mass.

Note that the partition function now has the form

Z =

∫
Dφ exp

[
i

h̄

∫
dtL(φ, ∂tφ)

]
t−→−iβ̃/c

, (21.41)

where L is the Lagrangian (21.5). This has the form of the (coherent) path-integral propagator, but with
the imaginary-time replacement t → −iβ̃/c = −ih̄β, which converts the unitary-evolution integral into a
diffusive path integral. This is the Wick rotation of the path integral, referring to the effective change
from a Minkowski to Euclidian metric via the change in minus sign of the temporal term in the quadratic
form of the Lagrangian.

21.1.4 Reduction of the Hilbert Space

Because we are dealing with a linear system (i.e., a quadratic Hamiltonian), we can simplify the above path
integral greatly. This is fortunate, as a path integral with field integration variables is not necessarily an
easy thing to handle.

21.1.4.1 Evaluation of the Gaussian Functional Integral

First, note that we have an exponentiated quadratic form in the partition function,

Z =

∫
Dφ exp

[
− 1

2h̄c

∫
dβ̃ d3r φ(r, β̃)

(
−h̄2c2∂ 2

β̃
− h̄2c2∇2 + 2V (r)

)
φ(r, β̃)

]
, (21.42)
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where we have integrated by parts in the derivative terms. We thus have a (functional) Gaussian integral,
which we can always do. To do this, we note that the functional integral is the extension of the finite-
dimensional Gaussian integral,∫

dz1 · · · dzN exp
[
−1

2
zα
(
S−1

)
αβ
zβ

]
= (2π)N/2

√
det(Sαβ). (21.43)

Here, Sαβ =〈zαzβ〉, where the expectation value is taken with respect to the normalized Gaussian function,
and we can always assume the matrix in such a quadratic form to be symmetric. Thus, it is diagonalized by
an orthogonal transformation, and making this transformation, the integral is of the form∫

dz1 · · · dzN exp

[
−1

2

∑
α

z 2
α

σ 2
α

]
= (2π)N/2

N∏
α=1

σα, (21.44)

where the σ 2
α are the eigenvalues of Sαβ , and we have carried out the N independent Gaussian integrals.

The eigenvalue product then just becomes the determinant.
Applying this argument to the functional case, we drop the constant factors and thus write

Z =

√
det
(
c2
(
−h̄2∂ 2

β̃
− h̄2∇2

)
+ 2V

)−1
, (21.45)

or
logZ = −1

2
log det

(
c2
(
−h̄2∂ 2

β̃
− h̄2∇2

)
+ 2V

)
. (21.46)

Also noting that for any symmetric matrix A,

log det A = Tr log A, (21.47)

(which is clear in the diagonal case, where the log of the eigenvalue product is the sum of the eigenvalue
logarithms, and follows in the general case by an orthogonal transformation), we can finally write

logZ = −1

2
Tr log

(
c2
(
−h̄2∂ 2

β̃
− h̄2∇2

)
+ 2V

)
.

(trace-log form of partition function) (21.48)
Thus we have resolved the functional integral into an evaluation of the trace (or equivalently, determinant)
of an operator. Recall that in dropping overall factors from Z, this expression is only meaningful in the
context of renormalization. Note that it is common in field theory to use units where h̄ = c = 1, and not to
bother with the factor of 2 in the potential term, where we would find

logZ = −1

2
Tr log

(
−∂ 2

β̃
−∇2 + V

)
. (21.49)

We would obtain this same form by removing a factor h̄2c2 from the log, and absorbing the factor 2/h̄2c2

into the potential (whereupon it would gain the dimensions of inverse squared length). However, we will
keep the units as written in (21.48) to better connect to the relativistic particle, and the utility of the factor
of 2 will become apparent soon.

Now, observe that the operator in Eq. (21.48) is just the (scaled) operator for the wave equation (21.9),(
∂ 2
t

c2
−∇2 +

2

h̄2c2
V (r)

)
φ(r, t) = 0, (21.50)

but under the same thermal-time replacement t −→ iβ̃/c = ih̄β:(
−∂ 2

β̃
−∇2 +

2

h̄2c2
V (r)

)
φ(r, β̃) = 0. (21.51)
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The (classical) Green function G(r, t; r′, t′) for the scalar field is defined to be the solution of the wave
equation corresponding to a perturbation localized to the spacetime point (r′, t′):(

h̄2∂ 2
t − h̄

2c2∇2 + 2V
)
G(r, t; r′, t′) = δ3(r− r′)δ(t− t′).

(scalar-field Green function) (21.52)
Note that G can be defined up to an arbitrary factor, and we have made one particular choice here. We can
think of G(r, t; r′, t′) as a matrix element of an operator G, expressed in a basis of space-time states |r, t〉,
so that the defining equation for the Green operator is(

h̄2∂ 2
t − h̄

2c2∇2 + 2V
)
G = 1, (21.53)

or
G =

1

h̄2∂ 2
t − h̄

2c2∇2 + 2V
. (21.54)

Thus, in terms of the Green function, the partition function (21.48) can be written

logZ =
1

2
Tr log G̃,

(Green-function form of partition function) (21.55)
where

G̃ = G|t−→iβ̃/c (21.56)
is the imaginary-time Green operator.

21.1.4.2 Digression: Second Quantization and Mode Summation

In computing Casimir energies, at zero temperature we are just summing the zero-point energies of all
the field modes, or rather the differences in the zero-point energies when comparing different boundary
configurations. Here we will connect our expressions thus far to the mode-summation picture to gain some
intuition into what we are doing.

To begin, though, we will be more precise about the quantum field modes by explicitly quantizing the
scalar field. The time and space dependence of the scalar wave equation (21.9) are separable if we take

φ(r, t) =
[
φ(r) e−iωt + H.c.

]
, (21.57)

which gives the Helmholtz-like equation[
−∇2 +

2

h̄2c2
V (r)

]
fj(r) =

ω 2
j

c2
fj(r), (21.58)

where we use j as a mode index, the eigenvalue of the jth mode is ω 2
j /c

2, and we label the mode functions
by fj , normalized so that ∫

d3r |fj(r)|2 = 1. (21.59)

This is the normal-mode decomposition of the scalar field. We can quantize the normal modes by changing
the time dependence e−iωt of the mode to an annihilation operator, so that we obtain the quantized normal-
mode operators

φj =
1√
2h̄ωj

[fj(r) aj + H.c.] , (21.60)
(quantum normal-mode fields)

where we have chosen the overall constant to make the Hamiltonian come out nicely below. The quantized
conjugate normal-mode operators are given by (21.6) as

πj = −ih̄
√
h̄ωj
2

[fj(r) aj −H.c.] ,

(quantum normal-mode momentum fields) (21.61)
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with second-quantized field operators

φ =
∑
j

φj , π =
∑
j

πj .
(21.62)

(quantized field operators)

Then noting that the eigenvalue equation (21.58) implies

φj

[
−∇2 +

2

h̄2c2
V (r)

]
φj =

ω 2
j

c2
φ 2
j , (21.63)

we can put the mode operators (21.62) into the Hamiltonian (21.7) to obtain

H =
1

2

∫
ddr

[
π2

h̄2
+ φ

(
− h̄2c2∇2 + 2V (r)

)
φ

]
=

1

2

∑
j

∫
ddr

[
π 2
j

h̄2
+ h̄2c2φj

(
−∇2 +

2

h̄2c2
V 2(r)

)
φj

]

=
1

2

∑
j

∫
ddr

[
π 2
j

h̄2
+ h̄2ω 2

j φ
2
j

]
=

1

2

∑
j

∫
ddr h̄ωj

[
a†jaj + aja

†
j

]
|fj(r)|2

=
1

2

∑
j

h̄ωj

[
2a†jaj + 1

]
,

(21.64)

or finally,

H =
∑
j

h̄ωj

[
a†jaj +

1

2

]
, (21.65)

which is a sum of harmonic oscillators for each normal mode. In deriving this, we used the fact that only
terms like a†jaj and aja

†
j could contribute to the Hamiltonian, simplifying the algebra, and that [a, a†] = 1

for a harmonic oscillator. In particular, at zero temperature, the field is in the vacuum state, and the field
energy is

E = 〈0|H|0〉 =
∑
j

h̄ωj
2
,

(mode summation for vacuum energy) (21.66)
which is the sum of all zero-point energies of the (classical) normal modes. (Again, this quantity is obviously
divergent, and must be regularized by computing the difference in this quantity between two configurations.)
Alternately, we can leave the spatial integration in (21.64), to write the Hamiltonian as

H =
∑
j

∫
ddr |fj(r)|2 h̄ωj

[
a†jaj +

1

2

]
, (21.67)

where the integrand represents an energy density of the field. We can define an energy density at zero
temperature as the vacuum expectation value of the integrand, or

E (r) =
∑
j

h̄ωj
2
|fj(r)|2 ,

(mode summation for vacuum energy density) (21.68)
which is again a sum over zero-point energies, weighted by the local value of the corresponding (squared)
normalized mode function. The energy density here can provide an intuitive way to think about Casimir–
Polder effects, where an atom ‘‘samples’’ the local energy density of the field, which has some spatial
dependence due to the combination of all the mode functions.
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21.1.4.3 Digression Part II: Mode Summation of the Functional Determinant

Recall from Eq. (21.45) or (21.55) that we have a partition function that is basically the determinant of the
Green operator:

Z =
√

det G̃. (21.69)

In terms of the eigenvalues λj of G̃, this becomes

Z =

√∏
j

λj , (21.70)

and then the logarithm changes this into an eigenvalue sum:

logZ =
1

2

∑
j

logλj . (21.71)

In the zero-temperature limit, the zero-point energy is proportional to logZ, as we see from Eq. (21.14).
However, here we have a sum of logarithms of eigenvalues, while the energy mode sum (21.66) is a sum of
(square roots of) eigenvalues, without the same logarithm. It is not so obvious that we are still doing the
same mode summation, so we will work out the determinant directly in terms of its eigenvalues to recover
the former mode sum.

The key here, of course, is that the eigenvalues ωj of the wave operator are not the same as the
eigenvalues of the Green operator. We will work with the inverse Green operator in imaginary time,

G̃−1 ∝ −∂ 2
β̃
−∇2 +

2

h̄2c2
V, (21.72)

which has the form of the wave operator in Eq. (21.58), but with the extra, imaginary-time dimension β̃.
This is a free, scalar wave in this dimension (in the sense of not coupling to the potential V ), but is bounded
in extent from 0 to h̄β, with periodic boundary conditions, as we will justify in more detail in Section 21.1.6.
Thus, denoting the eigenvalues of G̃ by λn,j , we can write (up to a constant factor)

c2

λn,j
=

(
2πn

h̄β

)2

+ ω 2
j , (21.73)

where the first term on the right-hand side gives the squared frequency that respects the periodic boundary
conditions (where n ∈ Z), and the second term comes from Eq. (21.58). Then using these eigenvalues in
Eq. (21.70), we have

Z =

∞∏
n=−∞

∏
j

[(
2πn

h̄β

)2

+ ω 2
j

]−1/2
, (21.74)

where we are dropping overall factors of c. Noting that the function is even in n, we can combine the negative
and positive n in the product to find

Z =
∏
j

1

ωj

∞∏
n=1

[(
2πn

h̄β

)2

+ ω 2
j

]−1
. (21.75)

In working with the eigenvalues of the Green operator (21.72) with the extra dimension, we expect there to
be many more eigenvalues than we had from the wave operator, an expectation that is of course confirmed
by the extra mode index n here. Therefore, this quantity should be even more divergent than the mode
sum we seek. We will be careful to normalize against the free extra dimension, or in other words we will
normalize the partition function by the partition function of the inverse Green operator −∂ 2

β̃
to mitigate the
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effects of the extra degree of freedom here. Thus, we will work with

Z

Z(−∂ 2
β̃
)
=
∏
j

1

ωj

∞∏
n=1

(
2πn

h̄β

)2

(
2πn

h̄β

)2

+ ω 2
j

=
∏
j

[
ωj

∞∏
n=1

1 +

(
h̄ωjβ

2πn

)2
]−1

, (21.76)

noting that we exclude the zero-eigenvalue mode that would otherwise cause problems in the sum. Using
the product identity

sinh z = z

∞∏
j=1

[
1 +

(
z

πj

)2
]
, (21.77)

we find
Z

Z(−∂ 2
β̃
)
=
∏
j

[
2

h̄β
sinh

(
h̄ωjβ

2

)]−1
. (21.78)

Then using 1/ sinhx = 2/(ex − e−x) = 2e−x/(1− e−2x), the partition function becomes

Z

Z(−∂ 2
β̃
)
=
∏
j

h̄β

[
e−h̄ωjβ/2

1− e−h̄ωjβ

]
. (21.79)

The bracketed quantity here is the standard form of the partition function for a quantum harmonic oscillator
of frequency ωj , and the overall factors of h̄β correspond to overall energy offsets that are discarded in
renormalization. Dropping factors of 2/h̄β and computing the log of the partition function, we find

log Z

Z(−∂ 2
β̃
)
= −

∑
j

log sinh
(
h̄ωjβ

2

)
. (21.80)

Using ∂x log sinhx = cothx, we can then differentiate the log of the partition function to find the energy:

E = −∂β log Z

Z(−∂ 2
β̃
)
=
∑
j

h̄ωj
2

coth
(
h̄ωjβ

2

)
.

(mode-summation energy, thermal state) (21.81)
In the zero-temperature limit, we use limx→∞ cothx = 1 to obtain

E0 =
∑
j

h̄ωj
2
, (21.82)

which is the same mode sum that we obtained in Eq. (21.66). Eq. (21.81) then gives the generalization of
this mode-sum energy for finite temperatures.

21.1.4.4 Integral Representation of the Logarithm

Now to continue with the path-integral construction, we implement a transformation2 that allows us to
transform the partition function into another path integral. We can write the integral identity

G̃ =

∫ ∞
0

dT exp
(
−T
G̃

)
(21.83)

2This transformation was used, e.g., by Julian Schwinger, ‘‘On Gauge Invariance and Vacuum Polarization,’’ Physical Review
82, 664 (1951) (doi: 10.1103/PhysRev.82.664). Thus, T is often called the Schwinger proper time or the Fock–Schwinger
proper time, after the earlier work of V. Fock, Proper time in classical and quantum mechanics Physikalische Zeitschrift der
Sowjetunion 12, 404 (1937), reprinted in Selected Works: V. A. Fock, L. D. Faddev, L. A. Khalfin, and I. V. Komarov, Eds.
(Chapman & Hall, 2004), p. 421 (doi: 10.1201/9780203643204.ch10b).

http://dx.doi.org/10.1103/PhysRev.82.664
http://dx.doi.org/10.1201/9780203643204.ch10b
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for the Green operator, and then consider the variation of the inverse, δ(G̃−1), using this integral form:

δ(G̃−1)G̃ = δ(G̃−1)

∫ ∞
0

dT exp
(
−T
G̃

)
= −δ

[∫ ∞
0

dT
T

exp
(
−T
G̃

)]
. (21.84)

It is worth emphasizing here that we are regarding G̃−1 as the ‘‘independent variable’’ here of the variation.
The left-hand side is the same as δ log(G̃−1) = −δ log G̃, so removing the variations, we have

log G̃ =

∫ ∞
0

dT
T

exp
(
−T
G̃

)
. (21.85)

The partition function (21.55) then becomes

logZ =
1

2

∫ ∞
0

dT
T

Tr
[
exp
(
−T
G̃

)]
. (21.86)

Technically, this integral is divergent at T = 0, but this divergence is cured if we consider any difference
between two such integrals, as we can see:

lim
ε−→0

[∫ ∞
ε

dT
T
e−AT −

∫ ∞
ε

dT
T
e−BT

]
= − log A

B
. (21.87)

Here, note that the subtraction removes the singularity at T = 0, and the result follows from applying
Eq. (21.85). In terms of the partition function (21.86), this means it is now time to explicitly renormalize
it, as we discussed in Section 21.1.2.2:

log Z

Z0
=

1

2

∫ ∞
0

dT
T

Tr
[
exp
(
−T
G̃

)
− exp

(
− T
G̃0

)]
. (21.88)

Here, Z0 and G̃0 are respectively the partition and Green functions corresponding to a background potential
V0. Writing out the Green function explicitly,

log Z

Z0
=

1

2

∫ ∞
0

dT
T

Tr
{

exp
[
−T

(
c2
(
−h̄2∂ 2

β̃
− h̄2∇2

)
+ 2V

)]
− exp

[
−T

(
c2
(
−h̄2∂ 2

β̃
− h̄2∇2

)
+ 2V0

)]}
.

(renormalized partition function, four-dimensional form) (21.89)
The choice of V0 depends on the context of the problem, but could correspond to the scalar-field mass or
even V0 = 0. (In the case of multiple interacting objects, the background potential typically corresponds to
moving all objects to arbitrarily large separation.)

To simplify this expression for logZ somewhat before proceeding, we can rescale T −→ 2T /h̄2c2, with
the result

logZ =
1

2

∫ ∞
0

dT
T

Tr
{

exp
[
−T

(
−1

2
∂ 2
β̃
− 1

2
∇2 +

V

h̄2c2

)]}
.

(partition function, four-dimensional form, rescaled Green operator) (21.90)
To keep the expressions simple, we are suppressing the renormalization term, with the understanding that
the resulting expressions only make sense as a difference between comparable material configurations.

We can now carry out the β̃ integral as follows. First, we note that we can express the trace above in
terms of the space-time basis |r, β̃〉, e.g., we can write

logZ =
1

2

∫
d3r dβ̃

∫ ∞
0

dT
T
〈r, β̃|

{
exp
[
−T

(
−1

2
∂ 2
β̃
− 1

2
∇2 + Ṽ

)]}
|r, β̃〉, (21.91)
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where Ṽ is shorthand for V /h̄2c2. If we focus on the β̃-dependent factor, we have a Gaussian integral,∫ h̄cβ

0

dβ̃ 〈β̃| exp
(
T
2
∂ 2
β̃

)
|β̃〉 =

∫ h̄cβ

0

dβ̃

∫
dξ 〈β̃| exp

(
T
2
∂ 2
β̃

)
|ξ〉〈ξ|β̃〉

=

∫ h̄cβ

0

dβ̃

∫
dξ exp

(
− T
2h̄2

ξ2
)
|〈β̃|ξ〉|2

=
1

2πh̄

∫
dξ exp

(
− T
2h̄2

ξ2
)∫ h̄cβ

0

dβ̃

=
h̄cβ

2πh̄

√
2πh̄2

T

=
h̄cβ√
2πT

,

(21.92)

where we have introduced the conjugate ‘‘frequency’’ ξj to β̃j , and we have again used the one-dimensional,
normalized plane-wave state 〈x|p〉 = eipx/h̄/

√
2πh̄. Then we have the simplified expression

logZ =
h̄cβ√
8π

∫ ∞
0

dT
T 3/2

Tr
{

exp
[
−T

(
−1

2
∇2 + Ṽ

)]}
,

(unrenormalized partition function, three-dimensional form) (21.93)
or using Eq. (21.24) to obtain the energy, we have

E = − h̄c√
8π

∫ ∞
0

dT
T 3/2

Tr
{

exp
[
−T

(
−1

2
∇2 + Ṽ

)]}
,

(unrenormalized scalar-field Casimir energy, three-dimensional form) (21.94)
where now the trace is only over the spatial states. Again, this expression for the energy must be renormalized
by comparison between two sensible configurations to obtain a finite and physically relevant result.

21.1.4.5 Particle Path Integral

Now the idea is to repeat the path-integration construction of Section 21.1.3, but with ordinary coordinate
states. This, of course, follows closely the procedure in Section 20.1. First, we continue the trace in terms
of the spatial basis |r〉:

E = − h̄c√
8π

∫
d3r

∫ ∞
0

dT
T 3/2

〈r|
{

exp
[
−T

(
−1

2
∇2 + Ṽ

)]}
|r〉. (21.95)

Dividing the ‘‘proper-time’’ variable T into N small bits, and inserting space-time identities, we have∫
d3r 〈r| exp

[
−T

(
−1

2
∇2 + Ṽ

)]
|r〉 =

∫
d3r 〈r|


N−1∏
j=1

∫
d3rj

[
e−∆T (−∇2/2+Ṽ )|rj〉〈rj |

] e−∆T (−∇2/2+Ṽ )|r〉

=

∫ N∏
j=1

d3rj 〈rj | exp
[
−∆T

(
−1

2
∇2 + Ṽ

)]
|rj−1〉

=

∫
r(T )=r(0)

Dr
N∏
j=1

〈rj | exp
[
−∆T

(
−1

2
∇2 + Ṽ

)]
|rj−1〉,

(21.96)
where we are again using the notation

r0 ≡ rN ≡ r, (21.97)
and

Dr :=

N∏
j=1

ddrj =

N∏
j=0

ddrj δ
d(rN − r0).

(21.98)
(path-integration element)
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Now in each matrix element, we can split the exponential by dropping a negligible, O(∆T 2) term, and then
insert a momentum-basis identity:

〈rj | exp
[
−∆T

(
−1

2
∇2 + Ṽ

)]
|rj−1〉 = 〈rj |e∆T ∇

2/2e−∆T Ṽ |rj−1〉

=

∫
ddpj 〈rj |pj〉〈pj |e∆T ∇

2/2e−∆T Ṽ (rj−1)|rj−1〉

=

∫
ddpj〈rj |pj〉〈pj |e−∆T p

2
j /2h̄2

e−∆T Ṽ (rj−1)|rj−1〉

=
1

(2πh̄)d

∫
ddpj e

ipj ·(rj−rj−1)/h̄e−∆T p
2
j /2h̄2

e−∆T Ṽ (rj−1).

(21.99)

Here, we have introduced the conjugate momentum pj to rj , and we have also introduced the number d of
spatial dimensions (i.e., typically d = 3). Completing the squares and carrying out the Gaussian integrals
(recalling that imaginary parts of the integration variable can be shifted away),

〈rj | exp
[
−1

2
∆T

(
−∇2 + Ṽ

)]
|rj−1〉

=
1

(2πh̄)d

∫
ddpj e

ipj ·(rj−rj−1)/h̄−∆T p 2
j /2h̄2

e−∆T Ṽ (rj−1)

=
1

(2πh̄)d

∫
ddpj e

−(∆T /2h̄2)[pj−i(rj−rj−1)h̄/∆T ]2e−(rj−rj−1)
2/2∆T e−∆T Ṽ (rj−1)

=
1

(2πh̄)d

∫
ddpj e

−(∆T /2h̄2)p 2
j e−(rj−rj−1)

2/2∆T −∆T Ṽ (rj−1)

=
1

(2π∆T )d/2 exp

{
−∆T

[
1

2

(
rj − rj−1

∆T

)2

+ Ṽ (rj−1)
]}

,

(21.100)

where we have ignored O(∆T 2) terms. Then assembling all the factors in Eq. (21.96),∫
ddr 〈r| exp

[
−T

(
−1

2
∇2 + Ṽ

)]
|r〉

=
1

(2π∆T )Nd/2

∫
r(T )=r(0)

Dr
N∏
j=1

exp

{
−∆T

[
1

2

(
rj − rj−1

∆T

)2

+ Ṽ (rj−1)
]}

=
1

(2π∆T )Nd/2

∫
r(T )=r(0)

Dr exp

[
−
∫ T
0

dτ

(
(∂τr)2

2
+ Ṽ (r)

)]
.

(21.101)

As in the field path integral, the exponentiated integral is a shorthand for the product of many close-to-unity
exponential factors. The choice here of rj−1 (instead of rj , or some combination) is of course not unique, and
as we know from Section 20.4, the time-slicing choice here corresponds to a particular choice of stochastic
calculus (here, Itō calculus). This turns out to be of no consequence for this problem, because there is no
curvature or space-dependent mass—all the explicit space dependence here is in the potential. It is, however,
a more important distinction in the electromagnetic case.

Then, for the sake of completeness, we can write out the Casimir energy (21.95) as

E = − h̄c√
8π

∫ ∞
0

dT
T 3/2

η(T )
∫

r(T )=r(0)

Dr(τ) exp

[
−
∫ T
0

dτ

(
(∂τr)2

2
+
V (r)
h̄2c2

)]
,

(scalar-field Casimir energy (unrenormalized)) (21.102)
where we have renamed the divergent factor η(T ) = (2π∆T )−Nd/2, and it is important to remember that this
expression is only sensible after renormalization by subtracting the analogous background energy in terms
of V0. Notice that the T and τ (proper-time) variables that we have introduced in fact have dimensions of
squared length.



21.1 Scalar Theory 975

21.1.4.6 Monte-Carlo Integration and Stochastic “Loops”

Now we convert this integral into a Monte-Carlo average, suitable for evaluation on a computer. We motivate
the basic idea as follows (as in Section 20.3.1): suppose f(x) is a normalized, nonnegative (probability)
distribution; then we may rewrite an integral involving f(x) as an expectation value,∫

dx f(x) g(x) =
〈〈
g(x)

〉〉
f(x)

, (21.103)

where the double-bracket expectation value is an average over the distribution f(x). Computationally, this
allows us to throw random deviates xn, chosen from the distribution f(x), and simply average the values
g(xn) to obtain an estimate for the integral.

In the integral (21.102), we would like to choose the factor

exp

[
−
∫ T
0

dτ
(∂τr)2

2

]
(21.104)

as the probability distribution. To normalize it, we note the equivalence∫
d3r 〈r| exp

[
T
2
∇2

]
|r〉 = η(T )

∫
r(T )=r(0)

Dr exp

[
−
∫ T
0

dτ
(∂τr)2

2

]
, (21.105)

which follows from Eq. (21.101) by removing the potential. Thus, we can work out the normalization of this
factor, following the procedure of Eq. (21.92):

〈r| exp
[
T
2
∇2

]
|r〉 =

∫
ddp 〈r| exp

[
T
2
∇2

]
|p〉〈p|r〉

=

∫
ddp exp

[
− T
2h̄2

p2
]
|〈r|p〉|2

=
1

(2πh̄)d

∫
ddp exp

[
− T
2h̄2

p2
]

=
1

(2πh̄)d

(
2πh̄2

T

)d/2

=
1

(2πT )d/2 .

(21.106)

Note that we have not computed the remaining integral with respect to r, which would cause this result
to diverge; this could be interpretated as something like the energy density at any point may be finite, but
the total background energy diverges, as we expect. Recalling that this is the same integration variable as
r0 = rN in the path integral, we can then identify the normalization∫

D′r exp

[
−
∫ T
0

dτ
(∂τr)2

2

]
=

1

η(T )
〈r| exp

[
T
2
∇2

]
|r〉 = 1

η(T )(2πT )d/2 (21.107)

and again, we are only integrating over all the intermediate path coordinates:

D′r =

N−1∏
j=1

ddrj . (21.108)

Thus, to convert to a Monte-Carlo average, we should replace this part of the integral with an expectation
value over this distribution, and tack on the factor on the right-hand side of Eq. (21.106) to compensate for
the normalization of the probability distribution. Thus, Eq. (21.102) becomes

E = − h̄c

2(2π)D/2

∫ ∞
0

dT
T 1+D/2

∫
ddx0

〈〈
exp

[
− 1

h̄2c2

∫ T
0

dτ V [x(τ)]
]〉〉

x(τ)

,

(scalar-field Casimir energy, Monte-Carlo form) (21.109)
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where we have introduced the total number of spacetime dimensions D := 1+d (i.e., such that typically D =
4; recall that we normalized the timelike dimension separately, but in contributes to the overall normalization
in the same way as the spacelike dimensions). We have also changed the remaining integration over r to x0.
Here, the expectation value is taken over functions x(τ) chosen according to the (unnormalized) Gaussian
probability density

exp

[
−
∫ T
0

dτ
(∂τx)2

2
,

]
(21.110)

subject to the closure condition x(0) = x(T ) = x0. Recall that this is shorthand for the discrete version,
where points in 3N -dimensional Cartesian space are chosen according to the Gaussian probability density
for the increments

N∏
j=1

exp

[
− (xj − xj−1)

2∆T

2
]
, (21.111)

again where x0 = xN = r is the beginning and termination point of the ‘‘path’’ here, which is also the spatial
integration variable in (21.102).

Now let’s take a closer look at the interpretations of Eqs. (21.102) and (21.109). To simplify the
discussion, we’ll also take V = 0 for the moment. In Eq. (21.102), we have a many-dimensional spatial
integral (Nd dimensions, in the limit of large N), where the integrand has Gaussian velocity-weighting
factors of the form

exp
[
(xj − xj−1)2

2∆T

]
. (21.112)

Thus, successive positions (separated by ∆T in ‘‘time’’) in the discrete form of the parameterized many-
dimensional coordinate x(τ) must be close together—of the order of

√
∆T or less—otherwise the contribution

of that particular point x(τ) to the integral is negligible. As such, only a very small fraction of all possible
x(τ)—essentially, those that correspond to continuous paths in the large-N limit—can possible contribute
to the integral.

In Eq. (21.109), the idea is to make the integral much easier to evaluate. We focus only on those paths
that whose amplitudes are not destroyed by the factor (21.112), by using precisely these factors to determine
which paths to choose (at random). The coordinates rj and rj−1 [equivalently, r(τ) and r(τ −∆T )] are
separated by a random distance of variance ∆T (in each direction). Because the first and last points in this
stochastic path are identical, and this is a stochastic ‘‘loop.’’ The path is a continuous random walk, where
the components of x(τ) have the form

x(τ) = x0 +
√
T B

( τ
T

)
, (21.113)

with B(t) a vector Brownian bridge, having scalar Brownian bridges Bj(t) as its d components. Recall
from Section 17.7 that Brownian bridges are the continuous limits of Gaussian random walks that return to
their initial point, B(1) = B(0). The paths x(τ) themselves are the world lines in this quantum-Monte-
Carlo calculation, being parameterized by the ‘‘proper time’’ T . In any case, for the evaluation of the Casimir
energy in Eq. (21.109), we must still weight each path according to the Gaussian potential factor for both
the configuration potential V (r) and the background potential V0(r). Rather than discuss these abstractly,
we will illustrate the calculation of Casimir potentials in this formalism with a couple of simple examples.

21.1.5 Analytic Evaluation of Scalar Casimir Energies

21.1.5.1 Strong-Coupling Limit: Atom–Plane Interaction

To compute the Casimir–Polder interaction of an atom with a conducting plane, we will first note that this
theory does not incorporate dispersion, so we will stick to a perfectly conducting plane, and we will not expect
to get the crossover from z−3 to z−4 behavior, as this requires dispersion of the atom (frequency-dependent
polarizability). Also, to compute the interaction with the perfectly conducting plane, we will consider the
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‘‘strong-coupling limit’’ of V (r) −→∞ at any location of the conducting body (V (r) = 0 elsewhere outside
the body). For concreteness, we may write

V (r) = χΘ(z − d), (21.114)

where the coupling parameter χ −→ ∞, Θ(x) is the Heaviside function, the boundary of the plane is given
by z = d, and the atom is situated at the origin so that d is also the atom–mirror separation.

d

Recall [see Eq. (1.60)] that the dipole potential for an atom interacting via its induced dipole moment
with an electric field has the form Vdipole = −(1/2)α0E

2, where α0 is the dc polarizability. Again, we are
ignoring dispersion here, so we are implicitly assuming that the atomic polarizability satisfies α(ω) = α0. In
this case, we do not have a steady field, so we should interpret the squared electric field as an expectation
value in the vacuum [as we did in Section 13.6 for the atomic dipole moment in the near-field Casimir–Polder
potential; see also the discussion leading up to Eq. (13.201)]:

Vdipole = −1

2
α0

〈
E2
〉
. (21.115)

Now we must connect this expression to the Casimir energy in Eq. (21.109). First, note that the vacuum
energy density of the electromagnetic field at any particular point has the similar form

E (r) = ε0
〈
E2(r)

〉
. (21.116)

We can compare this expression to the energy density that we can deduce from Eq. (21.109), by noting that
the spatial integral represents an energy integrated over the energy density, and also taking the renormal-
ization to be against vacuum, V0(r) = 0:

E (r)− E0(r) =
h̄c

8π2

∫ ∞
0

dT
T 3

〈〈
1− exp

[
−
∫ T
0

dτ Ṽ [x(τ)]
]〉〉

x(τ)

. (21.117)

As usual, we take x(0) = x(τ) = r, which we in turn take to be the origin, where the atom is located.
Combining the above three expressions, we can then write

Vdipole = − h̄cα0

16π2ε0

∫ ∞
0

dT
T 3

〈〈
1− exp

[
−
∫ T
0

dτ Ṽ [x(τ)]
]〉〉

x(τ)

(21.118)

for the world-line form of the Casimir–Polder potential. In this form, the potential is completely general,
specified in terms of an arbitrary potential V (r) and an atomic location r as the source point for the paths.

Actually, in the above argument for the interpreting the spatial integrand of the total energy (21.109)
as the energy density, we should be more careful: there are many other functions whose integral could add
up to the right energy. To see this more directly, note that we can trace through the whole derivation again,
starting with a Lagrangian density L (r) that samples the fields at only one point in space,

L =

∫
d3rL (r), (21.119)

and then carrying through the derivation with L instead of L. We can fix the Lagrangian density uniquely
by starting with a partition-function ‘‘density’’ analogous to Eq. (21.10),

Z(r) := Tr
[
e−βH (r) d3r

]
, (21.120)

where H (r) is the Hamiltonian density, defined by

H =:

∫
d3rH (r). (21.121)
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The conjugate fields are defined with respect to the full Hamiltonian H, as the fields must respect global
boundary conditions. Note that we can decompose the total partition function into the partition density by
writing out the trace,

Z =
∑
n

〈n|e−βH |n〉

=
∑
n

〈n| exp
(
−β
∫
d3rH (r)

)
|n〉

=
∑
n

〈n|
∏

r
exp

(
−βH (r) d3r

)
|n〉

=
∏

r

∑
n

〈n| exp
(
−βH (r) d3r

)
|n〉,

(21.122)

where the product is over all points in space (as the integral is a sum over all points in space), and the last
step follows by inserting identities of the form

∑
n′ |n′〉〈n′| in terms of energy eigenstates. Then we have

logZ =

∫
d3r logZ(r), (21.123)

where we have dropped an additive constant (log d3r) on the right-hand side. Because we logZ to compute
the energy, we see that the energy density simply integrates to the total energy, in terms of the logarithms of
the corresponding partition functions. Furthermore, Z(r) clearly only represents the field energy at a single
point r, so it produces the proper energy density. Everything in the derivation then carries through with∫
dβ̃ d3r replaced by

∫
dβ̃ up through Eq. (21.42). At this point, the functional determinants and traces

refer only to β̃, and no longer to r. Thus, the expression of the trace in Eq. (21.91) in terms of a Euclidean
space-time integral is just a time (β̃) integral, and the result in deriving the path integral is just the spatial
integrand of (21.109), as desired. That is to say, the spatial integral in the total energy (21.109) is exactly
the spatial integral that appears in the Hamiltonian (21.7).

Coming back to the planar-mirror case, this expression is extremely simple to interpret in the strong-
coupling limit. If the path touches the surface, then the argument in the exponential of Eq. (21.117)
diverges negatively, so the exponential vanishes, and the overall contribution of that path to the expectation
value is unity. Otherwise, the contribution of a non-touching path simply vanishes (as a direct result of
renormalization, since these paths instead contribute to the Lamb shift). Then the z-coordinate of the path
is the only one relevant to the calculation, and we must only keep track if its maximum excursion sup[z(τ)]
takes it past z = d. We can write this as an average over Heaviside functions of the paths as

Vdipole = − h̄cα0

16π2ε0

∫ ∞
0

dT
T 3

〈〈
Θ
{

sup[z(τ)]− d
}〉〉

x(τ)

= − h̄cα0

16π2ε0

∫ ∞
0

dT
T 3

〈〈
Θ
{√
T sup[B(t)]− d

}〉〉
B(t)

,

(21.124)

where we have transformed to the scale-independent, standard Brownian bridge B(t), and t = τ/T ∈ [0, 1].
Thus, we see that the renormalization simply cuts off the lower (divergent) end of the integral. To evaluate
this analytically, we will implement the cutoff separately for each path:

Vdipole = − h̄α0

16π2ε0

〈〈∫ ∞
d2/ sup2[B(t)]

dT
T 3

〉〉
B(t)

= − h̄cα0

32π2ε0

〈〈(
sup2[B(t)]

d2

)2〉〉
B(t)

= − h̄cα0

32π2ε0d4

〈〈
{sup[B(t)]}4

〉〉
B(t)

.

(21.125)
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In scaling out the path sizes, we see that the z−4 scaling of the Casimir–Polder force is built into the path
scale and the T −3 dependence of the integral. The path statistics enter here simply to give an overall
constant factor. As it turns out, the maximum, one-sided excursion x = sup[B(t)] (over t ∈ [0, 1]) has a
well-defined probability density [Eq. (17.383)]:

f(x) = 4xe−2x
2

(x ≥ 0). (21.126)

The fourth moment of this distribution is 1/2 [from Eq. (17.385)]. Putting in this value for the fourth
moment, we find the scalar result

Vdipole = − h̄cα0

64πε0πd4
= − 3h̄cα0

(4πε0)8πd4

(
1

6

)
,

(Casimir–Polder potential, perfectly conducting plane, scalar result) (21.127)
The asymptotic expression for the electromagnetic field in the limit of large z was [see Eq. (13.60)]

VCP = − h̄cα0

(4πε0)8πd4
,

(Casimir–Polder potential, perfectly conducting plane, far-field electromagnetic result) (21.128)
which is the same except for the factor of 1/6. Again, since we are ignoring dispersion, it is most sensible to
compare to the far-field result, where only the dc atomic polarizability contributes. While the scalar result
does not quite agree with the electromagnetic Casimir–Polder potential, the scalar result does reproduce
the contribution of only the TE modes to the total potential; the factor of 1/6 here is the same factor that
appears in Eq. (13.181). This is sensible, since TE modes at a planar surface behave as scalar waves, since the
polarization is the same for the incident, reflected, and transmitted waves, and effectively the polarization
drops out of the calculation. By contrast, the polarization is different for the same three components of TM
waves, and the scalar result does not capture this extra complexity.

21.1.5.2 Strong-Coupling Limit: Atomic Interaction with Two Planes

Next, we consider the slightly more complicated case of an atom interacting with two parallel, conducting
planes. The atom is situated at z = 0, with the barriers at z = −a and z = L− a.

L

a

We consider only the case of the atom between the two planes, as if the atom is not in between them, the
potential is simply the one-plane potential due to the nearer surface.

To evaluate the potential here, we need the probability that a stochastic path touches either surface.
This is equivalent to the problem of calculating the escape probability of a Brownian bridge outside the interval
defined by [−a, L−a]. We have already calculated this before, and the result for a standard Brownian bridge
is [Eq. (17.415)]

Pescape = e−2a
2

+

∞∑
j=1

[
e−2(jL−a)

2

+ e−2(jL+a)
2

− 2e−2j
2L2
]
. (21.129)

However, we have paths x(τ), which by their definition are equivalent to Brownian bridges B2T (t) running
in time from 0 to 2T , for which the escape probability is given by scaling all squared lengths by this ‘‘time
interval’’:

Pescape(T ) = e−2a
2/T +

∞∑
j=1

[
e−2(jL−a)

2/T + e−2(jL+a)
2/T − 2e−2j

2L2/T
]
. (21.130)
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This is precisely the path average in Eq. (21.118), since the path average is of a function that is unity
whenever the bridge escapes (touches either plane), and 0 otherwise. Thus, Eq. (21.118) becomes

Vdipole = − h̄cα0

16π2ε0

∫ ∞
0

dT
T 3

e−2a2/T +

∞∑
j=1

(
e−2(jL−a)

2/T + e−2(jL+a)
2/T − 2e−2j

2L2/T
) , (21.131)

and using the integral result ∫ ∞
0

dx
e−a/x

x3
=

1

a2
, (21.132)

we finally have

Vdipole = − h̄cα0

64π2ε0

 1

a4
+

∞∑
j=1

(
1

(jL− a)4
+

1

(jL+ a)4
− 2

j4L4

)
(Casimir–Polder potential between two conducting planes) (21.133)

Note that the first term here agrees with the single-plate result (21.127), while the other terms represent
‘‘reflected images’’ due to the other mirror; all the other terms vanish in the single-plane limit L −→ ∞.
Note also that this result is invariant under the replacement a −→ L− a, as it must be. The a-independent
term here technically doesn’t influence the atomic potential, and can be dropped in the renormalization,
though we will keep it here for illustrative purposes. Also, note the similarity of the summation structure to
the frequency and lifetime shifts of a Lorentz atom between two parallel, planar conductors (Problem 1.3).

Finally, note that we can use the summation formula
∞∑
j=1

1

(j + x)4
=
ψ(3)(1 + x)

6
, (21.134)

where ψ(n)(x) is a polygamma function, which is the nth derivative of the digamma function ψ(x) := ∂xΓ(x)
[and Γ(x) is the gamma function], along with the limiting value ψ(3)(1) = 6ζ(4) = π4/15. The summation
formula follows by differentiating the series formula3

ψ(1 + x) = −γ +

∞∑
j=1

x

j(j + x)
= −γ +

∞∑
j=1

(
1

j
− 1

j + x

)
(21.135)

(which technically is invalid when x is a negative integer, but this won’t be a problem here). Thus, we have

Vdipole = − h̄cα0

64π2ε0

[
1

a4
− π4

45L4
+

1

6L4

[
ψ(3)(1− a/L) + ψ(3)(1 + a/L)

]]
(Casimir–Polder potential between two conducting planes) (21.136)

as an analytic form for the potential of an atom between two planes, within scalar theory. Again, the L−4
term only contributes an overall offset to the atomic potential, and can be dropped.

21.1.5.3 Strong-Coupling Limit: Plane–Plane Interaction

As a final example we evaluate directly the Casimir interaction between two parallel planes separated by
distance L, this time without any atom involved.

L

3Milton Abramowitz and Irene A. Stegun, Handbook of Mathematical Functions (Dover, 1965), p. 259, Eq. (6.3.16).
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To do this, we return to Eq. (21.109) for the (unrenormalized) Casimir energy. As a reference, we wish
to reference the absolute energy such that the Casimir energy vanishes as L −→ ∞. Thus, we will take
V (x) to refer to the two parallel planes separated by L, and V0(x) to refer to the two parallel planes with
arbitrarily large separation. As before, the expectation value of each exponential in Eq. (21.109) is equivalent
to 1−Ptouch, where Ptouch is the probability of the path x(τ) to touch the surface defined by the appropriate
potential function V (x). But we have to be careful when computing the touch probabilities here. The touch
probability for V (x) is straightforward: Ptouch refers to the probability to touch either plate. However, the
touch probability for V0(x) is a bit trickier. Since we are counting the case of widely separated plates, we
must count all the touch probabilities that are equivalent to the touching path in the V (x) case. Each path
that touches V (x) should be compared with two background paths: one that is ‘‘near’’ each of the now
widely separated plates. Thus, the path average with renormalization in Eq. (21.109) is[

1− Ptouch[V (x)]
]
−
[
1− Ptouch[V0(x)]

]
= Ptouch[V0(x)]− Ptouch[V (x)]

= P (touch 1) + P (touch 2)− P (touch 1 ∨ touch 2)

= P (touch 1 ∧ touch 2).

(21.137)

That is, we only count paths that touch both planes; paths that touch only one plane (or neither plane)
are dropped after renormalization. With the global minus sign in the Casimir energy, the overall energy is
negative in this renormalization scheme (leading to an attractive two-body force).

Now we will work out the relevant probabilities and compute the energy in two parts, representing
the exterior and interior of the pair of planes. First, the exterior. Consider a point a exterior to the pair
of planes. The probability for a path starting and ending at a to touch both planes is just the probability
to touch the more distant plane, which is a distance L + a away. The probability for a standard Brownian
bridge to cross a boundary a distance d away is [Eq. (17.380)]

Pcross(d) = e−2d
2

. (21.138)

Again, we are effectively considering Brownian bridges over a time interval T , so the probability for the path
x(τ) to touch the more distant surface is given by scaling d2 down by T , and then letting d −→ L+ a:

P (touch 1 ∧ touch 2) = e−(L+a)
2/T . (21.139)

The energy associated with the exterior then is just Eq. (21.109), integrated over the extent of each exterior
region. These are equivalent, so we just count twice the result for a single region:

(E − E0)exterior

A
= − h̄c

8π2

∫ ∞
0

dT
T 3

[
2

∫ ∞
0

da e−2(L+a)
2/T
]

= − h̄c

16π2

∫ ∞
0

da
1

(L+ a)4

= − h̄c

32π2L3

(
2

3

)
.

(21.140)

We again used the integral (21.132) to evaluate the T integral. Also, we only integrated one dimension out
of the full volume integral in Eq. (21.109), dividing by the cross-sectional area A in lieu of performing the
(divergent) transverse integrals. Note that while this appears to be a contribution from the ‘‘exterior’’ of
the two planes, this is really an artifact of the renormalization. In the exterior region, the contributions
in Eqs. (21.137) for touching the near plane and for touching either plane exactly cancel. The leftover is
the contribution for touching the far plane, which is a contribution from subtracting one of the one-body
energies. This can be viewed as an interior contribution, but from when the planes are far apart.

For the interior contribution, we need the probability for a path to touch both surfaces. However, it is
easier to use the probability to touch either surface, since that is the escape probability that we used above,
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Eq. (21.129). Choosing an interior point a distance a away from the two surfaces, the escape probability for
x(τ) is precisely what we used before for the atom between two planes, Eq. (21.130). Thus, what we need is

P (touch 1 ∧ touch 2) = P (touch 1) + P (touch 2)− P (touch 1 ∨ touch 2)

= e−2a
2/T + e−2(L−a)

2/T

− e−2a
2/T −

∞∑
j=1

[
e−2(jL−a)

2/T + e−2(jL+a)
2/T − 2e−2j

2L2/T
]

= e−2(L−a)
2/T −

∞∑
j=1

[
e−2(jL−a)

2/T + e−2(jL+a)
2/T − 2e−2j

2L2/T
]
.

(21.141)

Here we have again used the single-barrier crossing probability for a Brownian bridge by rescaling the
distance in Eq. (21.138) appropriately. Putting this probability in for the expectation value in Eq. (21.109)
and integrating over the interior of the two planes,

(E − E0)interior

A
= − h̄

8π2c3

∫ ∞
0

dT
T 3

∫ L

0

da

e−2(L−a)2/T −
∞∑
j=1

[
e−2(jL−a)

2/T + e−2(jL+a)
2/T − 2e−2j

2L2/T
].

(21.142)
Again carrying out the T integral first,

(E − E0)interior

A
= − h̄c

32π2

∫ L

0

da

 1

(L− a)4
−
∞∑
j=1

[
1

(jL− a)4
+

1

(jL+ a)4
− 2

j4L4

]
=

h̄c

32π2

∫ L

0

da


∞∑
j=2

1

(jL− a)4
+

∞∑
j=1

[
1

(jL+ a)4
− 2

j4L4

]
=

h̄c

32π2

 1

3L3

∞∑
j=2

(
1

(j − 1)3
− 1

j3

)
+

∞∑
j=1

[
1

3L3

(
1

j3
− 1

(j + 1)3

)
− 2

j4L3

]
=

h̄c

32π2L3

∞∑
j=1

[
2

3

(
1

j3
− 1

(j + 1)3

)
− 2

j4

]
.

(21.143)

Here, note that the sums over 1/j3 and 1/(j + 1)3 are equivalent, except that the second sum is missing a
term of unity. We have already found that the sum over 1/j4 is π4/90. Thus,

(E − E0)interior

A
=

h̄c

32π2L3

(
2

3
− π4

45

)
. (21.144)

Then we obtain the total energy by adding Eqs. (21.144) and (21.140). The common 2/3 term cancels out,
leaving only the π4/45 term, with the result

E − E0

A
= − π2h̄c

1440L3
.

(Casimir energy density of two conducting planes, scalar result) (21.145)
Note that this energy appears as an offset in the atom–two-planes potential (21.136). This result is exactly
half of the true Casimir energy for two conducting planes,4

E − E0

A
= − π2h̄c

720L3
,

(Casimir energy density of two conducting planes, electromagnetic result) (21.146)
suggesting that the two polarizations of the electromagnetic field in this geometry act as two independent
scalar fields.

4H. B. G. Casimir, ‘‘On the attraction between two perfectly conducting plates,’’ Proceedings of the Koninklijke Nederlandse
Akademie van Wetenschappen 51, 793 (1948).
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21.1.6 World Lines at Finite Temperature

Thus far, we have focused on the zero-temperature limit of the scalar Casimir effect. However, it is not
difficult to adapt this theory to the case of nonzero temperature.5 To do this, we return to the partition-
function expression (21.91), and again focus on the β̃-dependent factor, but convert it into a path integral
rather than simply evaluating it as in Eq. (21.92). First, letting ∆T = h̄β/N , with β̃0 ≡ β̃N ≡ β̃,∫ h̄β

0

dβ̃ 〈β̃| exp
(
T ∂ 2

β̃

)
|β̃〉 =

∫ h̄β

0

dβ̃ 〈β̃|


N−1∏
j=1

∫
dβ̃j

[
e
∆T ∂ 2

β̃ |β̃j〉〈β̃j |
] e

∆T ∂ 2
β̃ |β̃〉

=

∫ N∏
j=1

dβ̃ 〈β̃j |e∆T ∂
2
β̃ |β̃j−1〉

=

∫
β̃(T )=β̃(0)

Dβ̃

N∏
j=1

〈β̃j |e∆T ∂
2
β̃ |β̃j−1〉.

(21.147)

Here we must be somewhat careful with the integration limits. While the endpoint β̃ spans 0 to h̄cβ, the
other β̃j are unrestricted. Since they are merely intermediate coordinates we may define as we wish, and
in particular we want to be able to introduce the usual momentum eigenstates (plane waves) for these
coordinates. Again, in each matrix element, we can insert a momentum-basis identity, where ξj is conjugate
to β̃j , and then complete the square and carry out the Gaussian integral:

〈β̃j |e∆T ∂
2
β̃ |β̃j−1〉 =

∫
dξj 〈β̃j |ξj〉〈ξj |e∆T ∂

2
β̃ |β̃j−1〉

=

∫
dξj 〈β̃j |ξj〉〈ξj |e−∆T ξ

2
j /h̄2

|β̃j−1〉

=
1

2πh̄

∫
dξj e

iξj(β̃j−β̃j−1)/h̄e−∆T ξ
2
j /h̄2

=
1

2πh̄

∫
dξj e

−(∆T /h̄2)[ξj−i(β̃j−β̃j−1)h̄/2∆T ]2e−(β̃j−β̃j−1)
2/4∆T

=
1√

4π∆T
exp

[
− (β̃j − β̃j−1)2

4∆T 2

]
.

(21.148)

Again, we should be a bit careful here, as technically this procedure doesn’t work for the conjugate momentum
to β̃N , because it has a discrete spectrum, corresponding to a bounded ‘‘time.’’ We can fix this by introducing
|ξN−1〉 again for this last matrix element, and obtain the equivalent result. Now putting this matrix element
back into Eq. (21.147),∫ h̄cβ

0

dβ̃ 〈β̃| exp
(
T ∂ 2

β̃

)
|β̃〉 = 1

(4π∆T )N/2

∫
β̃(T )=β̃(0)

Dβ̃

N∏
j=1

exp

[
− (β̃j − β̃j−1)2

4∆T 2

]

=
1

(4π∆T )N/2

∫
β̃(T )=β̃(0)

Dβ̃ exp

[
−
∫ T
0

dτ
(∂τ β̃)

2

4

] (21.149)

As we computed in Eq. (21.92) or in Eq. (21.106), the normalization factor for this path integral is∫ h̄cβ

0

dβ̃ 〈β̃| exp
(
T ∂ 2

β̃

)
|β̃〉 = h̄cβ√

4πT
. (21.150)

Then we have shown that the path average in β̃ is normalized such that(
h̄cβ√
4πT

)−1
1

(4π∆T )N/2

∫
β̃(T )=β̃(0)

Dβ̃ exp

[
−
∫ T
0

dτ
(∂τ β̃)

2

4

]
= 1, (21.151)

5Klaus Klingmüller and Holger Gies, ‘‘Geothermal Casimir phenomena,’’ Journal of Physics A: Mathematical and Theoretical
41, 164042 (2008) (doi: 10.1088/1751-8113/41/16/164042).

http://dx.doi.org/10.1088/1751-8113/41/16/164042


984 Chapter 21. Path-Integral Calculation of Casimir Energies

and so, in switching to a path average, we are making the replacement∫ h̄cβ

0

dβ̃ 〈β̃| exp
(
T ∂ 2

β̃

)
|β̃〉 −→ h̄cβ√

4πT

〈 〉
β̃(τ)

. (21.152)

After differentiating logZ with respect to β to get the energy, the factor of β here disappears, and we obtain
the same expression as before, Eq. (21.109), but with a different interpretation: the path average is now
with respect to four-dimensional paths, where the fourth dimension is the β̃-direction (‘‘time’’ direction).
Of course, the potential doesn’t couple to this dimension, so we will evaluate it separately from the three
spatial dimensions.

To evaluate the time-dimension path integral, first we should return to the β̃ integral, as for example in
Eq. (21.150). Recall that β̃ entered as the ‘‘imaginary time’’ in the partition function (21.39), running from
β̃ = 0 to h̄β. The dependence on β̃ comes in via the fields φ(r, β̃), where the endpoint constraint (21.29)
reads

φ(r, β̃ = h̄β) = φ(r, β̃ = 0). (21.153)

Since the only dependence on β̃ is periodic with period h̄cβ, we may take β̃ itself to be a periodic coordinate,
with period h̄cβ. This helps us to make sense of the path integral in Eq. (21.150), where recall that the
intermediate steps in the path integral are defined on an unbounded (aperiodic) coordinate. Thus it is
possible for a path beginning at some β̃ to wander out of [0, h̄β] as τ −→ T , but the next-to-last and last
points must be close [O(

√
∆T )] together. This can still work if the path reconnects to an ‘‘image’’ of β̃

at β̃ + nh̄cβ, for some integer n. Ultimately, this is equivalent to having paths on a cylindrical manifold,
where the β̃ direction is periodic, and the spatial dimensions are extended. Then paths can either reconnect
directly to the same spot, as in the spatial dimensions, or reconnect by winding around the β̃-direction.
In the zero-temperature limit, the extent of the β̃-direction becomes arbitrarily large, reducing space to an
extended four-dimensional manifold.

Now from what we know about Brownian bridges (Section 17.7), any bridge B(t) can be ‘‘deformed’’
to connect the point 0 to the point c by introducing a constant drift. The relative probability of the deformed
bridge, or the weight of the deformed bridge compared to the standard bridge, is

P [W (1) = c]

P [W (1) = 0]
=
e−c

2/2 dc/
√
2π

e−02/2 dc/
√
2π

= e−c
2/2. (21.154)

However, we are considering paths that are pinned at time 2T rather than 1, so we really should consider

P [W (2T ) = c]

P [W (2T ) = 0]
= e−c

2/4T . (21.155)

Thus, if we normalize to the zero-temperature case, we can count all possible paths with winding num-
ber n, and weight them by this factor, with c −→ nh̄cβ. We will then include the many more possible
paths in the nonzero-temperature case, but organized by winding number, with each set mapped onto the
zero-temperature paths, and weighted explicitly. Then the path average is only with respect to the zero-
temperature paths, and except for these probability weights, the β̃ part of the path integral goes away. Thus,
the path-average expression (21.156) for the (unrenormalized) Casimir energy becomes

E = − h̄c

32π2

∫ ∞
0

dT
T 3

( ∞∑
n=−∞

e−n
2h̄2c2β2/4T

)∫
d3r

〈
exp

[
−
∫ T
0

dτ Ṽ [x(τ)]
]〉

,

(scalar-field Casimir energy, nonzero temperature) (21.156)
where we have not written the renormalization term to keep the expression (relatively) simple, and the
new factor is the sum over all winding numbers. Note that this reduces to the zero-temperature case when
β −→∞, so that only the n = 0 term survives, and the sum is replaced by unity.
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21.1.6.1 Example: Temperature-Dependent Atom–Planar-Conductor Potential

With temperature dependence, we can similarly adapt the atom–surface potential (21.118) to read

Vdipole = − h̄cα0

64π2ε0

∫ ∞
0

dT
T 3

( ∞∑
n=−∞

e−n
2h̄2c2β2/4T

)〈
1− exp

[
−
∫ T
0

dτ Ṽ [x(τ)]
]〉

x(τ)

. (21.157)

We will evaluate this for a planar surface in the strong-coupling limit, where the atom–surface distance is d.
Again, the path average here is the probability of a Brownian bridge pinned at time 2T to touch the surface,
which is exp(−d2/T ), as we argued in Eq. (21.139). Thus,

Vdipole = − h̄cα0

64π2ε0

∫ ∞
0

dT
T 3

∞∑
n=−∞

e−n
2h̄2c2β2/4T e−d

2/T

= − h̄cα0

64π2ε0

∫ ∞
0

dT
T 3

∞∑
n=−∞

e−(n
2h̄2c2β2+4d2)/4T

= − h̄cα0

64π2ε0d4

∞∑
n=−∞

1

(1 + n2h̄2c2β2/4d2)2

= − h̄cα0

64π2ε0d4

(
2πd

h̄cβ

)
coth

(
2πd

h̄cβ

)
,

(21.158)

where we have again used the integral formula (21.132). Writing out the explicit temperature, our result is

Vdipole = − h̄cα0

(4πε0)16πd4

(
2πdkBT

h̄c

)
coth

(
2πdkBT

h̄c

)
.

(atom–surface potential, nonzero T , scalar result) (21.159)
As T −→ 0, this expression reduces to the former result (21.127), since limx→0 x cothx = 1. As T −→∞ we
use limx→∞ cothx = 1 to obtain

Vdipole = − kBTα0

(4πε0)8d3

(atom–surface potential, high T , scalar result) (21.160)
Interestingly, this is half of the electromagnetic result (14.336), rather than 1/6 as in the zero-temperature
limit.

21.2 Worldlines and the Relativistic Scalar Particle

To wrap up the worldline calculation of Casimir energies of scalar particles, we will review some of the
general theory of classical and quantum scalar particles. This will clarify some aspects of the form of the
worldline path integral, as well as the ‘‘worldline’’ nomenclature for the partition-function path integral.

21.2.1 Action

In general relativity, the trajectories of point particles correspond to geodesic motion. In flat space, we will
take this to mean that the proper time

τ =

∫
dτ (21.161)

is extremized, where in one spatial dimension,

(dτ)2 = (dt)2 − (dx/c)2. (21.162)
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Note that τ is defined up to an arbitrary constant, unless the integral is taken between two events, in which
case we interpret τ as a proper-time interval. This is the same as the space-time interval s up to a factor
of c. Thus,

τ =

∫ √
dt2 − dx2/c2 =

∫
dt

√
1− ẋ2

c2
. (21.163)

(Usually, this geodesic principle is given in terms of the space-time interval ds, where ds2 = −dτ2, in which
case |ds2| enters under the square root to maintain a real integrand for ‘‘timelike’’ particle motion.) We will
then take the action for the relativistic particle to be

S = α

∫
dt

√
1− ẋ2

c2
, (21.164)

where α is some constant (with units of energy) yet to be determined. In addition, we can add in a background
potential V (x, t) by tacking it on as in the nonrelativistic action:6

S =

∫
dt

[
α

√
1− ẋ2

c2
− V (x, t)

]
. (21.165)

We can then identify the bracketed quantity as the Lagrangian L(x, ẋ). Computing the conjugate momentum,

p =
∂L

∂ẋ
= −α

(
1− ẋ2

c2

)−1/2
ẋ

c2
. (21.166)

For this to coincide with the usual relativistic momentum, we should choose α = −mc2, and thus

p =
mẋ√

1− ẋ2/c2
. (21.167)

The Euler–Lagrange equation
∂L

∂x
− d

dt

∂L

∂ẋ
= 0 (21.168)

then simply yields
ṗ = −∂V

∂x
, (21.169)

as we expect in the nonrelativistic limit.
Turning to the Hamiltonian, we obtain

H(x, p) = pẋ− L

= pẋ+mc2
√

1− ẋ2

c2
+ V (x, t)

=
1

mc2

√
1− ẋ2

c2

(
p2c2 +m2c4

)
+ V (x, t).

(21.170)

Solving Eq. (21.167) for ẋ gives
ẋ2

c2
=

p2c2

p2c2 +m2c4
, (21.171)

or
1− ẋ2

c2
=

m2c4

p2c2 +m2c4
, (21.172)

6Herbert Goldstein, Charles Poole, and John Safko, Classical Mechanics, 3rd ed. (Addison Wesley, 2001), Section 7.9, p. 312.



21.2 Worldlines and the Relativistic Scalar Particle 987

so that the Hamiltonian (21.170) becomes

H(x, p) =
√
p2c2 +m2c4 + V (x, t),

(21.173)
(relativistic-particle Hamiltonian)

which is the usual expression for the relativistic energy, with an external potential included. Then to
summarize, we have the relativistic action and Lagrangian

S[x] =

∫
dtL(x, ẋ)

L(x, ẋ) = −mc2
√

1− ẋ2

c2
− V (x, t).

(relativistic-particle Lagrangian and action) (21.174)
Note that if T denotes the particle kinetic energy, then we can deduce T from the Hamiltonian by subtracting
the rest mass mc2 and the potential:

T =
√
p2c2 +m2c4 −mc2. (21.175)

(relativistic-particle kinetic energy)

Note that expanding to order p2 gives the usual nonrelativistic result T = p2/2m. This amounts to assuming
the Hamiltonian is of the form

H(x, p) = T (p) + V (x) +mc2,
(21.176)

(relativistic-particle Hamiltonian)
which is a constant of the motion if V does not depend explicitly on time. This then amounts to a definition
for T . Also, if we take the Hamiltonian H(x, p) = E to be constant, in the free-particle (V = 0) case,
Eq. (21.173) becomes

E2 − p2c2 = mc2,
(21.177)

(mass-shell condition)
which is called the mass-shell condition. This appears as a constraint on the momentum, so in the
one-dimensional case, the momentum is not an independent variable.

In the relativistic case, note that the Lagrangian (21.174) is not of the form T − V . However, if we
define

T̃ = −mc2
√
1− ẋ2

c2
= − m2c4√

p2c2 +m2c4
, (21.178)

then L = T̃ − V , which is as close as we will get to the ‘‘standard’’ nonrelativistic form for the Lagrangian.

21.2.2 Reparameterization Independence

Right now, the action (21.174) is parameterized in terms of the local-time coordinate t. We can also write
it in terms of the proper-time parameter as

S[x, t] = −mc2
∫
dτ

[√( dt
dτ

)2
− 1

c2

(dx
dτ

)2
− dt

dτ
V (x, t)

]
. (21.179)

In this form, we see that the action has a particular property. If we introduce a (bijective) function λ(τ)
that acts as a rescaled time (possibly rescaled in a nonlinear way), then using

dλ =
(dλ
dτ

)
dτ, (21.180)

the action has the same form:

S[x, t] = −mc2
∫
dλ

[√( dt
dλ

)2
− 1

c2

(dx
dλ

)2
− dt

dλ
V (x, t)

]
. (21.181)
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The point is that the action is invariant under arbitrary rescaling of the time parameter, or that it is
reparameterization-independent.

Reparameterization independence is an important concept in relativity. The idea is that the action S
should characterize the world line of a particle—the set of all space-time events occupied by the particle.
Recall that space-time events are observer-independent, and thus manifestly independent of any coordinate
system used to describe them. The world line itself is thus a geometric object, independent of a particular
choice of coordinate system. Since the world line fully determines the action (and vice versa), the action
should also be described only in terms of the world-line geometry, and it should not include any ‘‘artifacts’’
introduced by a coordinate system. Hence the importance of reparameterization independence.

In this sense, reparameterization we have something like a gauge freedom: choosing different proper-
time-like parameters are analogous to different gauge choices that lead to the same physical quantities (i.e.,
the world line). We will see the significance of this soon when we treat this gauge invariance explicitly in
the action.

21.2.3 Quadratic Action

The action (21.174) and Hamiltonian (21.173) are perfectly valid, and we have seen that the action has
the advantage of being independent of the world-line parameterization. However, the obvious feature is the
square root, which becomes awkward in some calculations, particularly when carrying the Hamiltonian over
to quantum mechanics. Now, using a proper-time parameterization, we will seek to write down a variational
principle that is more similar to the nonrelativistic case, hiding the awkward square root. We will begin by
replacing Eq. (21.164) with the action principle

S = α

∫
dτ = α

∫
dt2 − dx2/c2

dτ2
dτ = α

∫ [(
dt

dτ

)2
− 1

c2

(
dx

dτ

)2]
dτ = α

∫ [
ṫ2 − ẋ2

c2

]
dτ (21.182)

where we are explicitly maintaining the action integral in terms of the proper time τ instead of the local
time t, and α is again an undetermined (and potentially a different) constant parameter, with dimensions of
energy. Then, while we will refrain for the moment from introducing a background potential V (x), we will
introduce an energy offset of mc2/2, with the form of a potential energy, whose purpose will become clear
later:

S =

∫ [
α

(
ṫ2 − ẋ2

c2

)
− 1

2
mc2

]
dτ. (21.183)

The momentum conjugate to the spatial coordinate x is

px =
∂L

∂ẋ
= −2α

c2
ẋ = −2α

c2
dx

dτ
, (21.184)

while the momentum conjugate to the local time is

pt =
∂L

∂ṫ
= 2αṫ = 2α

dt

dτ
. (21.185)

For the spatial momentum to coincide with the usual relativistic momentum px = m(dx/dτ), we then require

α = −mc
2

2
. (21.186)

Then the conjugate momenta are
px = m

dx

dτ
, pt = −mc2

dt

dτ
. (21.187)

The Euler–Lagrange equation for the action (21.183) then gives

d2t

dτ2
= 0,

d2x

dτ2
= 0.

(21.188)
(Euler–Lagrange equations)
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The two equations together imply straight world lines. The first equation in particular relates local time and
proper time. In particular, it states that dt/dτ = a for some constant a. Then inverting this and writing
dτ =

√
dt2 − dx2/c2, we find 1/a =

√
1− ẋ2/c2, and thus

dτ = dt

√
1− ẋ2

c2
. (21.189)

This is the usual relation between local and proper time. However, this came from inserting the definition
(21.162) of the proper time, not from the dynamical equation.

The Hamiltonian in this case is

H = pxẋ+ ptṫ− L

= pxẋ+ ptṫ−
m

2
ẋ2 +

mc2

2
ṫ2 +

mc2

2
,

(21.190)

or in canonical coordinates,

H(x, t, px, pt; τ) =
p 2
x

2m
− p 2

t

2mc2
+
mc2

2
. (21.191)

Using the conjugate momenta (21.187) and (21.189), we can see that

p 2
x

2m
− p 2

t

2mc2
= −mc

2

2
, (21.192)

and thus
H(x, t, px, pt; τ) = 0. (21.193)

In the absence of the external potential, the Hamiltonian always has the value H = 0, which is characteristic
of the ‘‘extended’’ phase space (including the temporal degree of freedom and the proper time as the new
time). This is the reason for introducing the −mc2/2 in the Lagrangian; otherwise the Hamiltonian could
have some other (arbitrary) constant value.

Then to summarize the action and Lagrangian here (after dropping the external potential), we have

S[x] =

∫
dτ L(x, t, ẋ, ṫ; τ)

L(x, t, ẋ, ṫ; τ) =
1

2
mẋ2 − 1

2
mc2ṫ2 − 1

2
mc2,

(relativistic-particle Lagrangian and action, proper-time parameterization) (21.194)
with Hamiltonian

H(x, t, px, pt; τ) =
p 2
x

2m
− p 2

t

2mc2
+
mc2

2
.

(Hamiltonian, proper-time parameterization) (21.195)
For this action principle, the parameterization can be changed, but an alternate parameter λ will only work
as a parameter for the Euler–Lagrange equations, provided λ = aτ + b for some constants a and b. We can
see this by writing out

d2x

dλ2
=

d

dλ

dx

dλ
=
dτ

dλ

d

dτ

dτ

dλ

dx

dτ
=
d2x

dτ2
, (21.196)

where the final equality only holds if dτ/dλ is constant. In this case λ is called an affine parameter.7
Note that had we introduced a background-potential term of the form

∫
dτ V (x) [or

∫
dt V (x), as in

the square-root action (21.174)], in the action (21.183), we would have arrived at the odd-looking result
H = V (x) in place of the null-value Hamiltonian (21.193). This says that introducing a potential in this way
is somewhat unnatural—remember that if the Hamiltonian contains no explicit reference to a time parameter,
then the Hamiltonian is a constant of the motion. We will see shortly how to introduce a potential in a way
consistent with the simpler result H = 0.

7The actions (21.174) and (21.194) impose different requirements on reparameterizations in the free-particle case; in particular
the former allows any parameterization, while the latter admits only affine parameters. For more details, see Charles W. Misner,
Kip S. Thorne, and John Archibald Wheeler, Gravitation (W. H. Freeman, 1973), p. 322, Boxes 13.2 and 13.3.
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21.2.3.1 Massless-Particle World Lines

While the action (21.194) works fine for massive relativistic particles, it is problematic when it comes to
massless particles. [Note that the first action (21.174) is similarly problematic for massless particles.] This
is due both to the presence of the mass in the kinetic-energy terms, as well as the parameterization by the
proper time (the change in proper time is always zero along a light cone). We can cure this by letting
τ −→ mτ/c2 in the action integral. This amounts to parameterizing the paths by λ = c2τ/m, which remains
well-defined in the limit m −→ 0. In this case, the action becomes

S[x] =

∫
dλLm(x, t, ẋ, ṫ;λ),

(21.197)
(reparameterized action)

where we are defining the rescaled Lagrangian

Lm(x, t, ẋ, ṫ;λ) :=
1

2c2
ẋ2 − 1

2
ṫ2 − m2c4

2
,

(reparameterized Lagrangian) (21.198)
and ẋ and ṫ now refer to derivatives with respect to λ. The rescaled version Hamiltonian (21.191) is then

Hm(x, t, px, pt;λ) =
p 2
x c

2

2
− p 2

t

2
+
m2c4

2
,

(reparameterized Hamiltonian) (21.199)
where px = ẋ/2c2 and pt = −ṫ/2. Everything here is well-defined as m −→ 0. Note, though, that both
Hamiltonian and Lagrangian here have dimensions of square energy. Note that from Eq. (21.193), we still
have Hm = 0, and the Hamilton and Euler-Lagrange equations are equivalent to the ones before, but the
Hamilton equations have a slightly different form, owing to different canonical momenta,

px =
1

c2
dx

dτ
, pt =

dt

dτ
. (21.200)

which are equivalent to the former momenta (21.187) under the same rescaling.

21.2.3.2 Variable-Mass Potential

With this rescaled Hamiltonian, we can introduce an external potential by regarding the mass as a space-
dependent quantity. If we allow the mass to vary in space, separating constant and variable components
via

m(x) = m0 + δm(x), (21.201)
then we may assign the space-dependent part to a potential via

V (x) :=
1

2

[
2m0δm(x) + δm2(x)

]
c4, (21.202)

which again has dimensions of squared energy. Then the Hamiltonian (21.199) becomes

Hm(x, t, px, pt;λ) =
p 2
x c

2

2
− p 2

t

2
+
m 2

0 c
4

2
+ V (x),

(reparameterized Hamiltonian with variable-mass potential) (21.203)
and the Lagrangian (21.198) becomes

Lm(x, t, ẋ, ṫ;λ) =
1

2c2
ẋ2 − 1

2
ṫ2 − m 2

0 c
4

2
− V (x).

(reparameterized Lagrangian) (21.204)
Now both have a suitable potential that keeps a constant (null) value of the Hamiltonian. Note that in
implementing the mass rescaling of the proper time to obtain these functions, in the case of a space-dependent
mass, the reparameterization had to be done on a trajectory-dependent basis.
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Then the new Hamilton equations are

dpx
dτ

= −∂V
∂x

,
dpt
dτ

= 0, (21.205)

where the first equation gives the force law, which is slightly different from the earlier law (21.169), due to
a difference in factor of dt/dτ , and in the background mass m0 not entering the force law here.

21.2.4 Constrained Action

Now, informed by our attempts above, let’s rederive a quadratic action for the relativistic particle, but
now keeping both a sensible m −→ 0 limit, and making sure the action is (generally) independent under
reparameterizations. Thus, let’s first start with a Lagrangian of the form (21.204),

L(x, t, ẋ, ṫ; τ) =
1

2c2
ẋ2 − 1

2
ṫ2 − m2c4

2
, (21.206)

and corresponding action

S[x, t] =
1

2

∫
dτ

[
1

c2

(
dx

dτ

)2
−
(
dt

dτ

)2
−m2c4

]
. (21.207)

For simplicity, we are temporarily ignoring the external potential (i.e., lumping it into the mass m). Again,
the problem that we saw is that this action is not generally reparameterization-independent: it is only
independent under affine parameter changes. To see this, if we introduce a new time parameter λ = λ(τ),
such that dλ = (dλ/dτ) dτ =: λ̇ dτ , and λ̇(d/dλ) = (d/dτ), then we have

S[x, t] =
1

2

∫
dλ

λ̇

[
λ̇2

c2

(
dx

dλ

)2
− λ̇2

(
dt

dλ

)2
−m2c4

]
=

1

2

∫
dλ

[
λ̇

c2

(
dx

dλ

)2
− λ̇
(
dt

dλ

)2
− 1

λ̇
m2c4

]
. (21.208)

Note that this has the same form as before only if λ̇ = 1, which is a stronger requirement than λ being
an affine parameter. More generally, to preserve the form of the action, we can introduce an ‘‘einbein’’
function e(τ) in the action, so that it reads

S[x, t, e] =
1

2

∫
dτ

[
1

ec2

(
dx

dτ

)2
− 1

e

(
dt

dτ

)2
− em2c4

]
.

(relativistic-particle action with einbein) (21.209)
Now recalling that a time reparameterization is basically a gauge freedom, the ‘‘gauge transformation’’ here
is that we are switching from τ to λ(τ) as the parameter, and to keep the form of the action, we must make
the simultaneous parameter and einbein replacements

τ −→ λ(τ), e(τ) −→ eλ[λ(τ)] := e(τ)

(
dλ

dτ

)−1
,

(21.210)
(gauge freedom)

under which the form of the action is explicitly invariant.
As far as the action (21.209) is concerned, now e appears as an extra variable, but note that the action

is explicitly independent of ė, which signals the presence of a constraint (i.e., the gauge freedom). The
Euler-Lagrange equation for e gives

δS

δe
= − ẋ2

e2c2
+
ṫ2

e2
−m2c4 = 0, (21.211)

which reduces to the constraint equation

ẋ2

c2
− ṫ2 + e2m2c4 = 0. (21.212)
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That is, on any given world line, e is determined by the coordinates along the world line (in particular, the
velocities). Solving for e,

e =

√
ṫ2 − ẋ2/c2
mc2

, (21.213)

and putting this into the action (21.209)

S[x, t, e] = −mc2
∫
dτ

√
ṫ2 − ẋ2/c2. (21.214)

This is identical to the first (square-root) action (21.174), with V = 0.
To get a bit more intuition for the constraint (21.212), first note that the conjugate momenta from the

action (21.209) are

px =
ẋ

ec2
, pt = −

ṫ

e
. (21.215)

Then we can write Eq. (21.212) as

p 2
t − p 2

x c
2 = m2c4,

(21.216)
(mass-shell condition)

which is known as the mass-shell condition. From the form of the Hamiltonian (21.173) with V = 0, we
usually identify p2c2 +m2c4 with the square of the relativistic energy E, as in Eq. (21.177), in which case
we have the more familiar form

E2 − p 2
x c

2 = m2c4
(21.217)

(mass-shell condition)

for the mass-shell condition. In any case this acts as a constraint on pt, showing that it is not independent
from px.

21.2.4.1 Gauge Fixing

From this discussion, it seems that we may just as well ‘‘gauge fix’’ the einbein at e = 1 and ignore it in the
development of the action, which is essentially what we did in the first quadratic action that we developed in
Section 21.2.3. That is, what do we get by introducing the einbein e? The reason is the necessity of having
the constraint (21.216), which comes from the gauge freedom of e. This is analogous to electromagnetism,
in which it is fine to fix a particular gauge, but we must also make sure to implement Gauss’ law as a
constraint—a constraint that arose from the gauge freedom of electromagnetic.

To see that we don’t naturally get the constraint (21.216), from the gauge-fixed theory, consider the
Euler–Lagrange equations corresponding to the action (21.209). First, the x equation gives

d

dτ

(
1

e

dx

dτ

)
= 0, (21.218)

and with the momentum px in (21.215),
dpx
dτ

= 0. (21.219)

Similarly, for the temporal momentum,
dpt
dτ

= 0. (21.220)

This implies that px and pt are constants of the motion, and thus that the combination p 2
t − p 2

x c
2 from

Eq. (21.216) is constant. However, it does not tell us what that constant is; that comes only from an explicit
treatment of the gauge freedom. In the gauge-fixed version, this value must be supplied as extra information,
in the form of an initial value for this constant of the motion. This can also come in the form of assuming a
proper-time parameterization, as we did in Section 21.2.3.
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21.2.4.2 Terminology

Finally, before continuing, it’s worth noting why e is called an ‘‘einbein.’’ The reason is that under the
reparameterization τ −→ λ, the coordinates transform like scalars:

xµ(τ) = x̃µ(λ). (21.221)

However, from Eq. (21.210), the einbein transforms as

e(τ) dτ = ẽ(λ) dλ, (21.222)

where the twiddles indicate the λ parameterization. Then e transforms like a one-form (i.e., it transforms
covariantly) in one dimension, hence the name ‘‘einbein.’’

21.2.4.3 Variable-Mass Potential

We can now introduce a variable-mass potential, as in the gauge-fixed treatment of Section 21.2.3.2. Thus
again if

m(x) = m0 + δm(x), (21.223)

and we associate the space-dependent part of the mass with a potential,

V (x) :=
1

2

[
2m0δm(x) + δm2(x)

]
c4, (21.224)

then we obtain the action

S[x, t, e] =

∫
dτ L(x, t, e; τ)

L(x, t, e; τ) =
1

2ec2

(
dx

dτ

)2
− 1

2e

(
dt

dτ

)2
− em 2

0 c
4

2
− eV (x).

(relativistic-particle action with einbein and variable mass) (21.225)
Note that in doing this, we still obey the mass-shell constraint (21.216), and we do not have any awkward
results with a nonconstant Hamiltonian value as we saw in Section section:relativistic-ptte-quadratic-action.

Now let’s work out the Euler–Lagrange equations. The equation for the local time is the same as in
the constant-mass case, Eq. (21.220). The x equation is more interesting, however. Writing out the result
for ∂L/∂x− (d/dτ)∂L/∂ẋ = 0,

d

dτ

(
1

ec2
dx

dτ

)
= −edV (x)

dx
. (21.226)

Using the momentum px in Eqs. (21.215), we can write this out compactly in the form

dpx
dτ

= −edV (x)

dx
. (21.227)

We can also write out the equation of motion in a more explicit, but less compact form, by writing out (but
not gauge-fixing) the einbein. Using the value (21.213) for e in the form

e =

√
(dt/dτ)2 − (dx/dτ)2/c2

mc2
=
dt

dτ

√
1− (dx/dt)2/c2

mc2
, (21.228)

which is still valid provided we interpret m as the space-dependent mass, we find

d

dt

(
m(dx/dt)√

1− (dx/dt)2/c2

)
= −

√
1− (dx/dt)2/c2

mc2
dV (x)

dx
. (21.229)

Note that the left-hand side here is the same as in the analogous result for the square-root action with external
potential, Eq. (21.169). However, the potential couples in slightly differently. There is a factor of mc2 on
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the right-hand side, which makes the dimensions come out correctly. Also, there is a Lorentz-contraction
factor on the right-hand side, which amounts to the same factor dt/dτ that appears in the square-root action
(21.179). Not to mention, the mass here is space-dependent, so a better analogous expression may be to put
the momentum on the left-hand side in terms of the mass offset m0:

d

dt

(
m0(dx/dt)√

1− (dx/dt)2/c2

)
= −

√
1− (dx/dt)2/c2

[m2(x)/m0]c2
dV (x)

dx
. (21.230)

This puts all the spatial dependence of the force on the right-hand side. In principle, then, we can choose
a mass function m(x) to emulate whatever mass and force law we like in the square-root-action equation of
motion, Eq. (21.169).

Note that in this form of the action, any external potential we tack on in a parameterization-
independent way (i.e., that includes a factor of e) has the form of a space-dependent mass. Again, the
nonconstant Hamiltonian value as we saw in Section 21.2.3 shows that introducing an external potential in
a form that does not modulate the mass introduces problems.

21.2.5 Klein–Gordon Equation

The Klein–Gordon equation is the wave equation corresponding to the relativistic particle. The motiva-
tion for the Klein–Gordon equation starts8 with the relativistic energy

E =
√
p2c2 +m2c4. (21.231)

If we take this to be the Hamiltonian, apply the usual Schrödinger equation via ih̄∂t ≡ H with the momentum
identification p ≡ −ih̄∂x (in one dimension), then we obtain

ih̄∂tφ =

√
−h̄2c2∂ 2

x +m2c4 φ. (21.232)

However, the square root here is awkward, as its Taylor expansion implies the presence of derivatives at all
orders, and thus an inconveniently nonlocal wave equation.

The Klein–Gordon alternative is to try the square of the identification ih̄∂t ≡ H, which gives −h̄2∂ 2
t ≡

H2. The corresponding wave equation is(
∂ 2
x −

1

c2
∂ 2
t

)
φ =

(
mc

h̄

)2
φ,

(21.233)
(Klein–Gordon equation)

after a bit of rearrangement. This is the Klein–Gordon equation. The cost of getting rid of the square root
is to introduce negative-energy solutions of the form E = −

√
p2c2 +m2c4. These have the interpretation of

solutions propagating backwards in time (or equivalently, antiparticles). Again, we can add in a background
potential V (x), (

∂ 2
x −

1

c2
∂ 2
t

)
φ =

(
m0c

h̄

)2
φ+

2

h̄2c2
V (x)φ,

(Klein–Gordon equation, with background potential) (21.234)
by regarding the mass m(x) to be space-dependent.

21.2.6 Path Integral

One approach to developing the path integral for the Klein–Gordon equation (21.233) is to start with the
action (21.174) corresponding to the relativistic particle, and assume that the nonrelativistic form (20.24)

K(x, t;x0, t0) =

∫
Dx exp

[
i

h̄

∫ t

t0

dtL(x, ẋ)

]
=

∫
Dx exp

[
i

h̄

∫ t

t0

dt S[x]

]
(21.235)

8James D. Bjorken and Sidney D. Drell, Relativistic Quantum Mechanics (McGraw–Hill, 1964), Chapter 1.
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for the propagator carries over. Unfortunately, the square root in the action here is again problematic, and
leads to non-Gaussian integrals. It is possible to pursue this, and obtain an explicit expression for the short-
time propagator in terms of a Bessel function.9 Whether one chooses to go this way or to simply object to
the use of the exponentiated action for this propagator,10 clearly this is not the ‘‘world-line’’ path integral
that we seek here.

21.2.6.1 Proper-Time Path Integral

An alternate approach to the path-integral quantization of the Klein–Gordon equation is due to Feynman.11

Suppose that we introduce an auxiliary ‘‘energy’’ parameter E in in the Klein–Gordon equation (21.233),(
− h̄2c2

2
∂ 2
x +

h̄2

2
∂ 2
t

)
φ+

m 2
0 c

4

2
φ+ V (x)φ = Eφ, (21.236)

such that we recover the original equation by setting E = 0. (Note that the mass m0 can also take the role
of E, but introducing the extra parameter allows us to leave the effective Hamiltonian for the Klein–Gordon
equation intact.) Then defining the ‘‘E-rotating’’ wave function by

ϕ := φ e−iET , (21.237)

we can write the Klein–Gordon equation in terms of this variable as

i∂T ϕ =

(
− h̄2c2

2
∂ 2
x +

h̄2

2
∂ 2
t

)
ϕ+

m 2
0 c

4

2
ϕ+ V (x)ϕ. (21.238)

This has the form of the Schrödinger equation with ‘‘time’’ T (which has dimensions of inverse-squared
energy), which acts something like a ‘‘proper time’’ with respect to the other space-time coordinates (x, t).
In the solution of this form of the equation, ϕ(x, t; T ) contains contributions from all values of E. Since the
equation is linear in the wave function, we can write the solution as a superposition

ϕ(x, t; T ) = 1

2π

∫ ∞
−∞

dE ϕ̃(x, t;E) e−iET , (21.239)

where we are interested only in the E = 0 component of solution ϕ̃(x, t;E = 0), which corresponds to the
solution of the original equation (21.233). We can obtain the component for any E by a simple Fourier
projection:

φ(x, t) =

∫ ∞
−∞

dT ϕ(x, t; T ) eiET . (21.240)

The case E = 0 becomes the simple integral

φ(x, t) =

∫ ∞
−∞

dT ϕ(x, t; T ), (21.241)

which we can easily verify by

φ(x, t) =
1

2π

∫ ∞
−∞

dT
∫ ∞
−∞

dE ϕ̃(x, t;E) e−iET =

∫ ∞
−∞

dE ϕ̃(x, t;E) δ(E) = ϕ̃(x, t;E = 0). (21.242)

Thus, by solving the extended equation (21.238), we can in principle obtain the propagator for the Klein–
Gordon equation (21.233).

9Ian H. Redmount and Wai–Mo Suen, ‘‘Path integration in relativistic quantum mechanics,’’ International Journal of Modern
Physics A 8, 1629 (1993) (doi: 10.1142/S0217751X93000667), arXiv.org preprint (arXiv: gr-qc/9210019).

10for a rather critical account, see Arlen Anderson, ‘‘Use of exp(iS[x]) in the sum over histories,’’ Physical Review D 49, 4049
(1994) (doi: 10.1103/PhysRevD.49.4049).

11R. P. Feynman, ‘‘Mathematical Formulation of the Quantum Theory of Electromagnetic Interaction,’’ Physical Review 80,
440 (1950) (doi: 10.1103/PhysRev.80.440); L. S. Schulman, Techniques and Applications of Path Integration (Wiley, 1981),
Chapter 25.

http://dx.doi.org/10.1142/S0217751X93000667
http://arxiv.org/abs/gr-qc/9210019
http://dx.doi.org/10.1103/PhysRevD.49.4049
http://dx.doi.org/10.1103/PhysRev.80.440
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To do this, we will be careful and use the language of Green functions and resolvent operators from
Chapter 15. First, defining the effective Hamiltonian for the Klein–Gordon equation as

H = − h̄
2c2

2
∂ 2
x +

h̄2

2
∂ 2
t +

m 2
0 c

4

2
+ V (x), (21.243)

then the extended Klein–Gordon equation (21.236) becomes

Hφ = Eφ. (21.244)

This has the form of a time-independent Schrödinger equation, which defines a retarded, energy-domain
Green operator (resolvent operator) via [see Eq. (15.7)]

(E −H + i0+)G̃+
T (E) = 1. (21.245)

The tilde here emphasizes that the Green operator is in energy space, and the T subscript is a reminder that
this is a Green operator for the extended Hamiltonian. Similarly, Eq. (21.238) is the time-domain version of
the extended Schrödinger equation, which we may rewrite as

i∂T ϕ = Hϕ. (21.246)

This as well defines the retarded Green function (in proper time) via [Eq. (15.14)]

(i∂T −H)G+
T (T , 0) = iδ(T ). (21.247)

These two Green functions are related via the integral [Eq. (15.8)]

G+
T (E) =

1

i

∫ ∞
0

dT ei(E+i0+)T /h̄G+
T (T , 0), (21.248)

which for E = 0 becomes
G̃+
T (E = 0) =

1

i

∫ ∞
0

dT G+
T (T , 0). (21.249)

Now the propagator for the Klein–Gordon equation should satisfy Eq. (21.234) with a delta-function term
added. Specifically, upon rescaling, we can write this as(

− h̄
2

2
∂ 2
t +

h̄2c2

2
∂ 2
x −

m 2
0 c

4

2
− V (x)

)
G+(t, t0) = iδ(t− t0),

(defining relation for Klein–Gordon propagator) (21.250)
in analogy with Eq. (21.247). Since the operator on the left-hand side is −H, by comparison with (21.245),
we have

G+(t, t0) = i〈t|G̃+
T (E = 0)|t0〉. (21.251)

Combination with Eq. (21.249) and writing out the position matrix elements gives the propagator for t ≥ t0:

K(x, t;x0, t0) =

∫ ∞
0

dT 〈x, t|G+
T (T , 0)|x0, t0〉. (21.252)

The matrix element on the right-hand side is the propagator for the extended Klein–Gordon equation
(21.238). Since this is formally a Schrödinger equation, we can write this in terms of the standard non-
relativistic propagator. Adapted to this case from Eq. (20.24), the extended propagator for this solution
reads

KT (x, t, T ;x0, t0, 0) =
∫
Dx(τ) exp

[
i

∫ T
0

dτ

(
ẋ2

2c2
− ṫ2

2
− m 2

0 c
4

2
− V (x)

)]
, (21.253)
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where the Dx refers to integration over (x, t). Notice that the integrand in the exponential is just the
Lagrangian Lm(x, t, ẋ, ṫ;λ = τ) from Eq. (21.204). Thus, we finally have

K(x, t;x0, t0) =

∫ ∞
0

dT
∫ (x,t)

(x0,t0)

Dx(τ) exp

[
i

∫ T
0

dτ

(
ẋ2

2c2
− ṫ2

2
− m 2

0 c
4

2
− V (x)

)]

=

∫ ∞
0

dT
∫ (x,t)

(x0,t0)

Dx(τ) exp

[
i

∫ T
0

dτ Lm(x, t, ẋ, ṫ; τ)

]
(world-line Klein–Gordon propagator) (21.254)

as the ‘‘world-line’’ path integral form for the Klein–Gordon equation.12

Essentially, this is a path integral over world lines that travel from (x0, t0) to (x, t) in proper time T ;
then, we integrate over all possible proper times T . In a more ‘‘string-inspired’’ approach, the world-line
parameter T plays the role of a constraint, and the integral form here is effectively a particular choice of
gauge.13

21.2.6.2 Imaginary Time

Imagining that we are to do statistical mechanics for the relativistic particle, by analogy with the nonrela-
tivistic case, we can consider the propagator in imaginary (local) time:

K(x,−ih̄β;x, 0) =
∫ ∞
0

dT
∫ (x,−ih̄β)

(x0,0)

Dx exp

[
i

∫ T
0

dτ

(
(∂τx)

2

2c2
+

(∂τ β̃)
2

2
− m 2

0 c
4

2
− V (x)

)]
. (21.255)

Here, β̃ := h̄β as usual. Further, going to imaginary proper time via the Wick rotation τ −→ −iτ and
T −→ −iT ,

K̃(x,−ih̄β;x, 0) = −i
∫ ∞
0

dT
∫ (x,−ih̄β)

(x0,0)

Dx exp

[
−
∫ T
0

dτ

(
(∂τx)

2

2c2
+

(∂τ β̃)
2

2
+
m 2

0 c
4

2
+ V (x)

)]
. (21.256)

Note, however, that we cannot directly associate this with the partition function for the relativistic particle
simply by tracing over x, because this identification was based on the analogy of the nonrelativistic evolution
operator with the partition function. In particular, in imaginary (local and proper) times t −→ −it and
τ −→ −iτ , what appears is the Hamiltonian

Hm(x, t, px, pt; τ) =
p 2
x c

2

2
+
p 2
t

2
+
m 2

0 c
4

2
+ V (x) =

p 2
x c

2

2
+
p 2
t

2
+
m2c4

2
(21.257)

[c.f. Eq. (21.203)]. To evaluate this, we recall that this was a reparameterized form of

H(x, t, px, pt; τ) =
p 2
x

2m
+

p 2
t

2mc2
+
mc2

2
, (21.258)

where the proper-time parameter was scaled by a factor of m/c2, with corresponding changes to the momenta
(which we must restore to find proper factors of the mass that are otherwise hidden). The partition function
corresponding to the imaginary-time propagator is then the trace of exp[−βH(x, t, px, pt; τ)], which might
seem reasonable. However, using the conjugate momenta

px =
1

c

dx

dτ
, pt =

dt

dτ
, (21.259)

12cf. C. Schubert, ‘‘Perturbative quantum field theory in the string-inspired formalism,’’ Physics Reports 355, 73 (2001)
(doi: 10.1016/S0370-1573(01)00013-8), arXiv.org preprint (arXiv: hep-th/0101036v2), especially Eq. (3.10), where the same
propagator is given after evident Wick rotation and change to imaginary times.

13Philip R. Johnson, ‘‘Relativistic Particle Trajectories from Worldline Path Integral Quantization,’’ Proceedings of the 2001
Particle Accelerator Conference, 1781 (2001) (doi: 10.1109/PAC.2001.987181).

http://dx.doi.org/10.1016/S0370-1573(01)00013-8
http://arxiv.org/abs/hep-th/0101036v2
http://dx.doi.org/10.1109/PAC.2001.987181
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and using the conjugate momenta (21.187) and (21.189), we find

p 2
x

2m
+

p 2
t

2mc2
=
p2

m
+
mc2

2
, (21.260)

with p = px the momentum, now referred to the local time. Thus,

H(x, t, px, pt; τ) =
p2

m
+mc2. (21.261)

This means that the parameterized form was

Hm(x, t, px, pt; τ) = p2c2 +m2c4, (21.262)

which is the square of the relativistic energy. This would lead to a partition function with terms of the
form exp(−βE 2

n ), which is not directly useful. Nevertheless, this form of the imaginary-time Green function
enters the world-line path integral for the scalar-field partition function, albeit with a different weighting of
the integral over T .

21.3 Exercises

Problem 21.1
Recalling that the mean energy is given by the partition-function derivative (21.13)

E =〈H〉 = −∂β logZ, (21.263)

show that the second derivative

σ 2
E =

〈
(H −〈H〉)2

〉
= ∂ 2

β logZ (21.264)

gives the variance in the energy.
What does this say about fluctuations in Casimir energies at zero temperature?

Problem 21.2
The inhomogeneous Helmholtz equation[

∇2 + k2 − 2

h̄2c2
V (r)

]
ψ(r) = −f(r), (21.265)

where f(r) is an arbitrary source function and V (r) is an added background-potential function, has a
Green function (resolvent) defined by [see Eq. (14.57), noting that we are ditching the ε0 but keeping
the minus sign] [

−∇2 − k2 + 2

h̄2c2
V (r)

]
G̃(r, r′; k2) = δd(r− r′). (21.266)

(See also Problem 15.2). Show that the retarded Green function has the world-line representation14

G̃+(r, r′; k) = i

∫ ∞
0

dT eik
2T

∫ r′

r
Dx(τ) exp

[
i

∫ T

0

dτ

(
ẋ2

4
− 2

h̄2c2
V (x)

)]
, (21.267)

or with the Wick rotations T −→ −iT and k −→ iκ to the ‘‘Euclidean’’ form,

G̃+(r, r′;−iκ) = 1

2

∫ ∞
0

dT e−T κ
2/2

∫ r′

r
Dx(τ) exp

[
−
∫ T
0

dτ

(
ẋ2

2
+

1

h̄2c2
V (x)

)]
, (21.268)

14Marco Schäfer, Idrish Huet, and Holger Gies, ‘‘Energy-momentum tensors with worldline numerics,’’ International Journal
of Modern Physics Conference Series 14, 511 (2012) (doi: 10.1142/S2010194512007647), arXiv.org preprint (arXiv: quant-
ph/0605180v3).

http://dx.doi.org/10.1142/S2010194512007647
http://arxiv.org/abs/quant-ph/0605180v3
http://arxiv.org/abs/quant-ph/0605180v3
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after also rescaling T by a factor of 2. Both expressions should be interpreted in the renormalized
sense of being compared to a ‘‘background-potential configuration’’ (e.g., with V = 0). Also, write
down a normalized (Monte-Carlo) form of the Euclidean path integral in terms of Brownian bridges.

Problem 21.3
Show that the world-line form of the Casimir–Polder energy (before renormalization)

VCP(r) =
h̄cα0

2(2π)D/2ε0

∫ ∞
0

dT
T 3

〈〈
exp

[
− 1

h̄2c2

∫ T
0

dτ V [x(τ)]
]〉〉

x(τ)

(21.269)

for paths in D spacetime dimensions beginning and ending at r, as is consistent with Eq. (21.118), can
be obtained from the expression

VCP(r) =
h̄α0

2πε0c2

∫ ∞
0

ds s2 G̃+(r, r; is), (21.270)

where G̃+(r, r; is) is the retarded Green function for the Helmholtz equation from Problem 21.2, and
s is an imaginary frequency (ω = is).

Problem 21.4
(a) Starting with the worldline path integral (21.109) for the Casimir energy, and using the calculation
for the strong-coupling Casimir energy between two planar mirrors in Section 21.1.5.3, show that the
following path integral yields the Casimir force per unit area for this configuration:

F

A
= − h̄c

(2π)D/2

∫
dx0

〈〈
Θ
{
−min[x(τ)]

}
d(x0) T D/2

min [x(τ)]

〉〉
x(τ)

. (21.271)

This expression implicitly assumes two mirrors located at x = 0 and x = L, and gives the force on the
x = L mirror. In the expression, d is the number of spatial dimensions, D = d + 1 is the spacetime
dimension, d(x0) is the distance from the path source point x0 to the x = L mirror, and Tmin[x(τ)] is
the smallest value of the path running time T such that the path touches the x = L mirror. Note that
the Heaviside function ‘‘fires’’ when the path x(τ) touches the x = 0 mirror.
(b) How does this expression generalize to arbitrary geometries?





Chapter 22

Electromagnetic Casimir Energies as
Path Integrals

22.1 Scalar Representation of Electromagnetism

The main deficiency in the worldline method in the previous chapter for computing Casimir and Casimir–
Polder energies is that it applies to an artificial field—a massless, scalar field coupled to a background
‘‘potential’’ is not the same thing as the electromagnetic field. The next step in improving the method is
to develop worldline path integrals for scalar representations of elecromagnetism. In propagation problems,
scalar representations often make for good approximations to the vector propagation in the paraxial ap-
proximation, when the polarization does not vary much as the field propagates (as in the propagation of a
well-collimated laser beam). In Casimir-related calculations, we might not expect the scalar approximation
to hold, as fields propagating in all directions are involved. However, there are some situations in which
a scalar treatment is effective: namely when the geometry of space has sufficient symmetry that the two
possible polarizations decouple, in which case the two polarizations can act as independent scalar fields. A
trivial example is in free space. Less trivial examples include the fields at a planar, dielectric interface, which
we treat in more detail below, and a spherical interface (if we take the center of the sphere to define a vector
multipole basis).

22.1.1 Planar Interface: TE polarization

Consider the modes associated with a planar interface between vacuum and a (nondispersive) magnetodi-
electric material (Section 8.9.1), or a more complicated interface with planar symmetry. The case of TE
polarization is diagrammed below. The key observation here is that while the magnetic-field direction varies
between the incident, reflected, and transmitted components, the electric-field direction is the same among
the components.
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e, m

z = 0

y

x

z

qi

qr qt

E0i
(+)

H0i
(+)

E0r
(+)

H0r
(+)

E0t
(+)

H0t
(+)

In particular, we may write the electric field as

E = Ey ŷ. (22.1)

We will then proceed to work with the classical field, where the spatial profile of the classical field carries
over to the quantized case. The electromagnetic Hamiltonian (in noncanonical coordinates) is the total field
energy (as we will justify in Section 22.2.3)

HEM =
1

2

∫
d3r
[
E ·D + H ·B

]
=

1

2

∫
d3r
[
εE2 + µH2

]
, (22.2)

where we are assuming a linear magnetodielectric medium with possibly inhomogeneous permittivity ε(r)
and permeability µ(r).

We will continue by treating the field as if there is a single mode of wave vector k and frequency
ω = ck. In this case we can identify

∇ ≡ ik, ∂t ≡ −iω. (22.3)
In view of the normal-mode decomposition of the electromagnetic field (Section 8.4), there is an implied sum
over all such modes, in which case these identifications are justified in the general case.

Then the Maxwell equation
∇×E = −∂tB (22.4)

becomes
B =

1

ω
k×E, (22.5)

and so
H2 =

1

µ2
B2 =

1

µ2ω2
(k×E)2 =

k2

µ2ω2
E 2
y = − 1

µ2ω2
(∇Ey)2, (22.6)

where we have used the fact that k and E are orthogonal. Then we can write the Hamiltonian (22.2) in
terms of only one component Ey of the field as

HTE =
1

2

∫
d3r

[
εE 2

y −
1

µω2
(∇Ey)2

]
. (22.7)

We would then like to define a scalar potential that satisfies

Ey = iωφ = −∂tφ, (22.8)

so that up to an arbitrary constant (corresponding to a choice of ‘‘zero’’ time), we should define

φ(r, t) := −
∫ t

0

dt′Ey(r, t′).
(22.9)

(TE scalar potential)
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In this case, the Hamiltonian finally becomes

HTE =
1

2

∫
d3r

[
ε(∂tφ)

2 +
1

µ
(∇φ)2

]
.

(22.10)
(scalar TE Hamiltonian)

This is equivalent to the Hamiltonian (22.2) in the sense of producing the same decomposition in normal
modes, restricted to TE-polarized modes. Note that while we have effectively changed a curl to a gradient
in the magnetic-field term, but the relevant boundary condition is still the same. In the vector case, the
component of H parallel to the interface is continuous through the interface. In the scalar case, the normal
derivative ∂zφ is continuous across the interface, which is the same requirement as continuity the normal
component of ∇φ. These are equivalent constraints on the magnetic-field vectors in each case.

Note also that in restricting the electric-field representation to Ey, we have effectively restricted our
analysis to a particular plane of incidence. However, our final Hamiltonian (22.10) does not depend on this
choice, and thus functions as a sum over all planes of incidence.

The (noncanonical) Hamiltonian (22.10) has a scalar momentum field πφ = −ε∂tφ conjugate to φ.
Then the Hamilton equation π̇φ = −δHTE/δφ yields(

ε∂ 2
t −∇ ·

1

µ
∇
)
φ = 0

(22.11)
(TE scalar wave equation)

as the appropriate wave equation for φ.

22.1.2 Planar Interface: TM polarization

For TM polarization, we have a similar situation, but now H acts as the scalar field, while E has a vector
character.

e, m
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Again, we will emphasize this by writing
H = Hy ŷ. (22.12)

Then the Maxwell equation
∇×H = ∂tD (22.13)

becomes
E = − 1

εω
k×H, (22.14)

and so
E2 =

1

ε2ω2
(k×H)2 =

k2

ε2ω2
H 2
y = − 1

ε2ω2
(∇Hy)

2, (22.15)
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where we have used the fact that k and E are orthogonal. Then the Hamiltonian (22.2) becomes

HTM =
1

2

∫
d3r

[
− 1

εω2
(∇Hy)

2 + µH 2
y

]
. (22.16)

Then given the condition
Hy = iωϕ = −∂tϕ, (22.17)

we define the alternate scalar potential

ϕ(r, t) = −
∫ t

0

dt′Hy(r, t′),
(22.18)

(scalar TM field)

so that the Hamiltonian becomes

HTM =
1

2

∫
d3r

[
µ(∂tϕ)

2 +
1

ε
(∇ϕ)2

]
.

(22.19)
(scalar TM Hamiltonian)

This is again equivalent to the Hamiltonian (22.2) in the sense of producing the same mode decomposition,
restricted to TM modes. Notice that this scalar Hamiltonian has the same form as the TE Hamiltonian
(22.10), except that ε and µ are switched, while the scalar field now represents H instead of E. This
symmetry is also apparent in the two Maxwell equations we used, if we write them in the form

∇×E = −µ∂tH
∇×H = ε∂tE.

(22.20)

Here we see that under the combined transformation E −→ H, H −→ −E, ε −→ µ, and µ −→ ε, these two
equations transform into each other.

In analogy with the TE case, the (noncanonical) TM Hamiltonian (22.19) has the scalar momentum
field πϕ = −µ∂tϕ conjugate to ϕ. Then the Hamilton equation π̇ϕ = −δHTM/δϕ yields(

µ∂ 2
t −∇ ·

1

ε
∇
)
ϕ = 0

(22.21)
(TM scalar wave equation)

as the appropriate wave equation for ϕ.

22.2 Interaction Energy

In computing Casimir–Polder potentials, we are considering the interactions of point dielectric particles
with other material bodies. And generally for Casimir potentials, we are considering the variation in the
electromagnetic field energy as a material configuration varies. There are some subtleties here, and so we
will expend a fair amount of effort in carefully considering electromagnetic energies. For example: the
electromagnetic-field energy in the presence of a magnetodielectric material can be written

HEM =
1

2

∫
d3r
(
εE2 + µH2

)
. (22.22)

If we consider an atom to be a localized, weak perturbation (δε, δµ) on the medium, a naïve approach would
be to make the replacements ε −→ ε+ δε and µ −→ µ+ δµ in the Hamiltonian here, in which case we would
obtain interaction-potential terms of the form δεE2 + δµH2. If we interpret the fields as their unperturbed
counterparts, then the first one has the wrong sign for an electric-dipole interaction, while the second one
is (accidentally) correct. A more natural choice for the magnetic-field term, as we will see, is to write the
energy as B2/µ, and if we expanded this, we would again obtain the wrong sign. So let’s be careful and sort
all this out.
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22.2.1 Maxwell Equations in Magnetodielectric Materials

We will begin with the fundamentals: a review the construction of the Maxwell equations in magnetodielectric
media. Although we are proceeding classically, the same considerations will apply to the quantum-mechanical
case. We will start with the vacuum Maxwell equations for the electric and magnetic fields E and B,
respectively, including sources,

∇ ·E =
ρ

ε0
∇ ·B = 0

∇×E = −∂tB
∇×B = µ0ε0∂tE + µ0j,

(22.23)
(Maxwell’s equations with sources)

where the charge density ρ and the current density j satisfy the continuity equation

∂tρ+∇ · j = 0.
(22.24)

(continuity equation)

Now we characterize the response of media via the polarization field P (electric-dipole-moment density) and
the magnetization field M (magnetic-dipole-moment density). We can then introduce the fields D and H
via the constitutive relations

D = ε0E + P

H =
1

µ0
B−M.

(22.25)
(constitutive relations)

We are already at the crucial point. The fields D and H are introduced for convenience, since they will
simplify the representation of the medium response in Maxwell’s equations. The original fields E and B are
the fundamental fields.1

We can then introduce the electric susceptibility χ and the magnetic susceptibility χm for a medium
response,

P = ε0χE
M = χmH,

(22.26)
(linear medium response)

where the susceptibilities are constant for a linear medium, but can also represent nonlinear-medium re-
sponse. Note the asymmetry of the prevailing convention here:2 The polarization is induced by the electric
field E, but by convention the magnetization is ‘‘induced’’ by the introduced field H—rather than what
would seem to be the sensible parallel M = (χm/µ0)B to the dielectric case. With these susceptibilities,
Eqs. (22.25) become

D = ε0(1 + χ)E
µ0(1 + χm)H = B,

(22.27)

and thus defining permittivity ε and permeability µ for the medium by

ε := ε0(1 + χ)

µ := µ0(1 + χm),

(22.28)
(permittivity, permeability)

the constitutive relations become
D = εE
B = µH.

(22.29)
(linear constitutive relations)

1See John David Jackson, Classical Electrodynamics, 3rd ed. (Wiley, 1999), Section 5.8, especially p. 193.
2See David J. Griffiths, Introduction to Electrodynamics, 4th ed. (Prentice Hall, 2013), Section 6.4.1, p. 284.
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Again, notice the asymmetry of the convention: it appears that the electric and magnetic cases are parallel
by comparing ε and µ, and then by E vs. H and D vs. B. This is, in fact, basically the symmetry that we
mentioned before for the Maxwell equations. in Section 22.1.2. However, keep in mind that this is a formal
symmetry, induced by the definitions in the constitutive relations; the fundamental similarity is between E
vs. B.

Now let us apply the constitutive relations (22.25) to the Maxwell equations (22.23), which are still
valid in the presence of magnetodielectric media. We will keep the polarization and magnetization fields
explicit this time, rather than appeal to ε and µ as we did above to highlight an apparent symmetry in the
fields. We will start with the first Maxwell equation,

∇ ·E =
ρtotal

ε0
, (22.30)

where by the total charge label we are emphasizing that the charge density includes any migration of charges
due to the polarization response of the medium. Using the first of Eqs. (22.26), we have

∇ ·D = ρtotal +∇ ·P. (22.31)

We can interpret the last term in terms of a bound charge density

ρP := −∇ ·P (22.32)
(bound charge density)

associated with the charge migration due to the dielectric polarization. Then defining the free charge
density as the part of the total charge not associated with the medium response,

ρfree := ρtotal − ρP,
(22.33)

(free charge density)

we have the new Maxwell equation

∇ ·D = ρfree,
(22.34)

(first Maxwell equation)

in which the medium response has shifted from the charge density to the D field.
Similarly, we can take the fourth Maxwell equation in (22.23)

∇×B = µ0ε0∂tE + µ0jtotal, (22.35)

where again we are using the total current label to emphasize that any medium response here is contained
in the source term, which is now the current density. Using Eqs. (22.26) to eliminate both B and E, we have

∇×H = ∂tD + jtotal − ∂tP−∇×M. (22.36)

We can again interpret the last two terms as current densities due to the response of media to the fields.
The first is a current density associated with charges moving due to a changing polarization,

jP := ∂tP.
(22.37)

(polarization current density)

Note that this current density is due to motion of bound charges, and as it should, it obeys a continuity
equation:

∇ · jP = ∇ · ∂tP = −∂tρP. (22.38)

The last term in Eq. (22.36) represents a bound current density due to the magnetization of the medium:

jM := ∇×M.
(22.39)

(magnetization current density)
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Once again, defining the free current density as the current density not associated with the medium re-
sponse,

jfree := jtotal − jP − jM,
(22.40)

(free current density)

Eq. (22.36) becomes

∇×H = ∂tD + jfree.
(22.41)

(fourth Maxwell equation)

Now using Eqs. (22.34) and (22.41) in place of the corresponding equations in (22.23), we have the usual
Maxwell equations for media:

∇ ·D = ρ

∇ ·B = 0

∇×E = −∂tB
∇×H = ∂tD + j.

(22.42)
(Maxwell’s equations in media)

Here, we have dropped the ‘‘free’’ labels, but it is important to remember that the explicit sources here no
longer include sources associated with medium response. At the risk of belaboring the point, E and B are
the original fields, and are the only fields appearing in the two homogeneous Maxwell equations. The two
introduced fields D and H serve to reorganize the sources, so we only have to explicitly consider free sources.
Note that the symmetry E ←→ −H simultaneously with B ←→ D (and ε ←→ µ, when written explicitly)
of the Maxwell equations is apparent here, but only in the absence of sources.

22.2.2 Interaction Energies for Magnetodielectric Materials: Static Fields

Having developed the Maxwell equations, we will now apply these in dealing with the energies form materials
in static fields, which will be sufficient for many purposes (i.e., as long as we are ignoring dispersion), and
which will serve as relatively simple studies for developing our intuition of electromagnetic energies and
materials.

22.2.2.1 Static-Electric-Field Energies

We begin with the free-space electromagnetic Hamiltonian [Eq. (8.34)]

HEM =
1

2

∫
d3r

(
ε0E

2 +
1

µ0
B2

)
(22.43)

in terms of the fields, which we will take to be the total field energy. Our goal will be to modify this to
encompass the field energy in the presence of magnetodielectric media. First, we will focus on the electric-field
energy,

HE =
ε0
2

∫
d3r E2, (22.44)

and in going to the static, source-free case, since ∇ × E = 0, we can introduce the scalar potential φ such
that

E = −∇φ. (22.45)

Then the energy becomes
HE =

ε0
2

∫
d3r |∇φ|2 = −ε0

2

∫
d3r φ∇2φ (22.46)

after integration by parts. Then using the first Maxwell equation (22.23) in the form of the Poisson equation
∇2φ = −ρ/ε0, the energy becomes

HE =
1

2

∫
d3r φ(r) ρ(r) (22.47)

(energy of static electric field)
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in terms of the potential and charge density.
It is tempting at this point to try translating this result to a dielectric by separating the free and

bound charge densities, ρ = ρfree + ρP, and use Eq. (22.32) to introduce the material polarization. However,
this does not give the correct result, as it only computes the energy associated with assembling the total
(free and bound) charge, but not the energy associated with polarizing the medium. Thus, we instead begin
by considering the effect δHE on the energy due to a small change δρ in the charge density. Starting with
Eq. (22.44), the small variation δE in the electric field due to the change in the charge density

δHE = ε0

∫
d3rE · δE. (22.48)

Then using Eq. (22.45) and integrating by parts,

δHE = ε0

∫
d3r∇φ · ∇δφ = −ε0

∫
d3r φ∇2δφ, (22.49)

and once again using the Poisson equation, we find

δHE =

∫
d3r φ(r) δρ(r). (22.50)

Note that this differs from what we would have gotten from varying ρ in Eq. (22.47) by a factor of two,
because the change in charge modifies both ρ and φ. The interpretation here is that by varying ρ against a
fixed field φ, we are counting the energy due to bringing in charge elements from infinity to assemble ρ(r).
In bringing in each of the charge elements, we must do work against the electromagnetic forces against the
already-assembled charges, and the total work is the energy of the final configuration.

Now using ∇ ·D = ρ, we have

δHE =

∫
d3r φ∇ · δD = −

∫
d3r∇φ · δD =

∫
d3rE · δD. (22.51)

Then if we assume a linear dielectric,
D = εE, (22.52)

with ε independent of E (but may depend on r or even be generalized to a tensor), then

δHE =

∫
d3r εE · δE, (22.53)

and upon integration of the field from 0 to E, we find the electric-field energy in the presence of a dielectric:3

HE =
1

2

∫
d3r εE2 =

1

2

∫
d3rE ·D.

(static-field energy for linear dielectric) (22.54)
The important point here is that this result depends on the assumption of a linear dielectric; more generally,
the relation can be far more complicated.

22.2.2.2 Static-Magnetic-Field Energies

The magnetic case proceeds in analogy to the electric case. We begin with the magnetic part of the electro-
magnetic Hamiltonian [Eq. (8.34)],

HM =
1

2

∫
d3r

1

µ0
B2. (22.55)

3John David Jackson, Classical Electrodynamics, 3rd ed. (Wiley, 1999), Section 4.7, especially p. 165; Julius Adams Stratton,
Electromagnetic Theory (McGraw-Hill, 1941), Sections 2.7-2.8, pp. 104-111.
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Since ∇ ·B = 0, we can introduce the vector potential A such that

B = ∇×A, (22.56)

with the further condition that ∇ ·A = 0, since the longitudinal part of A can’t affect B anyway. Then

HM =
1

2

∫
d3r

1

µ0
(∇×A)2 =

1

2

∫
d3r

1

µ0
A · ∇ ×∇×A (22.57)

where to integrate by parts we used the identity

∇ ·A×∇×A = (∇×A) · (∇×A)−A · ∇ ×∇×A. (22.58)

Using the last Maxwell equation (22.42) in the static limit and with no magnetic media,

∇×∇×A = ∇×B = µ0j, (22.59)

we then have the source-coupling form of the energy

HM =
1

2

∫
d3rA · j (22.60)

(energy of static magnetic field)

in terms of the vector potential and the source current density.
Proceeding along the same lines as before, the change in the energy due to a small change in the

magnetic field is from Eq. (22.55)

δHM =
1

µ0

∫
d3rB · δB

=
1

µ0

∫
d3r (∇×A) · (∇× δA)

=
1

µ0

∫
d3r δA · ∇ ×∇×A

=

∫
d3r δA · j.

(22.61)

Note that we have ended up with a varying field against a fixed current. The interpretation here is as follows:
in order to have a static magnetic field in the presence of a source current, the magnetic field must be brought
up from zero. In doing so, the induced electromotive forces attempt to modify the flow of charge in the source
currents. In order to maintain fixed currents, work must be done against the induced electromotive forces.
The total work done is then the total energy of the configuration. Note that we can alternately hold A
fixed while varying j. However, this corresponds to a fixed magnetic field due to the sources, assembling the
current density by bringing in current-density elements from infinity. This is not a natural interpretation in
the absence of magnetic charge.

Then using the (static) fourth Maxwell equation in the form ∇×H = j to replace the variation in j,

δHM =

∫
d3r δA · ∇ ×H =

∫
d3r (∇× δA) ·H =

∫
d3r δB ·H, (22.62)

where to integrate by parts we used ∇ · (A ×B) = B · (∇×A) −A · (∇×B). Again, assuming a linear
magnetic material (e.g., not a ferromagnetic material), we have

B = µH, (22.63)

with µ independent of H, so then
δHM =

1

µ

∫
d3rB · δB. (22.64)
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and upon integration of the field from 0 to B, we find the magnetic-field energy in the presence of a magnetic
material:4

HM =
1

2

∫
d3r

1

µ
B2 =

1

2

∫
d3rB ·H.

(static-field energy for linear magnetic material) (22.65)
To reiterate the main point, this result depends on the assumption of a linear magnetic material (in particular,
without hysteresis, in which case the energy could depend on the entire history of the magnetic field).

22.2.2.3 Variation of Dielectric Materials

Now a more useful question is: suppose we change the configuration of a dielectric medium by modifying
ε(r). What is the difference in energy between the configurations?5 In answering this question, we should
be careful to specify, what happens to the sources? In this section we will explicitly assume fixed sources
while modifying the dielectric. And we are still working only with static fields and linear dielectrics.

Suppose we have an energy associated with a ‘‘reference’’ dielectric configuration ε1(r),

H
(1)
E =

1

2

∫
d3rE1 ·D1, (22.66)

and a second energy associated with a modified dielectric ε2(r),

H
(2)
E =

1

2

∫
d3rE2 ·D2, (22.67)

again with the same sources in both cases. We then define the ‘‘interaction potential’’ as the difference of
these energies,

VE := H
(2)
E −H(1)

E , (22.68)
and our goal is to find expressions for V . The concept of an interaction potential is meaningful here in the
sense of thinking of the second configuration as introducing a new object into the ‘‘background’’ defined by
the reference configuration. Then V measures the energy associated with introducing the new object.

First, we can write out the potential as

VE =
1

2

∫
d3r
(

E2 ·D2 −E1 ·D1

)
=

1

2

∫
d3r
(

E2 ·D1 −E1 ·D2

)
+

1

2

∫
d3r
(
E2 + E1

)
·
(
D2 −D1

)
.

(22.69)

Then since ∇× (E2 + E1) = 0 for static fields, we can introduce a scalar potential φ such that

E2 + E1 = −∇φ, (22.70)

and so the last integral is proportional to∫
d3r (∇φ) ·

(
D2 −D1

)
= −

∫
d3r φ∇ ·

(
D2 −D1

)
= −

∫
d3r φ

(
ρ2 − ρ1

)
= 0, (22.71)

because we have assumed fixed sources. Thus, the interaction energy is

VE =
1

2

∫
d3r
(

E2 ·D1 −E1 ·D2

)
= −1

2

∫
d3r (ε2 − ε1)E2 ·E1.

(energy difference between dielectric configurations) (22.72)
4John David Jackson, Classical Electrodynamics, 3rd ed. (Wiley, 1999), Section 5.16, p. 212; Julius Adams Stratton, Elec-

tromagnetic Theory (McGraw-Hill, 1941), Section 2.10, p. 112.
5John David Jackson, Classical Electrodynamics, 3rd ed. (Wiley, 1999), Section 4.7, especially p. 167; Julius Adams Stratton,

Electromagnetic Theory (McGraw-Hill, 1941), Section 2.10, p. 112; L. D. Landau and E. M. Lifshitz, Electrodynamics of
Continuous Media (Pergamon, 1960), Section 11, p. 52.
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Note that the integrals here in principle extend over all space, but for a bounded object, the integration need
only extend over the object. The second form highlights the following observation: increasing the dielectric,
and in particular introducing a dielectric object into a vacuum background always decreases the electric-field
energy, provided the sources are fixed.

Suppose that the reference configuration is vacuum, ε1 = ε0. Then ε2 − ε0 = ε0χ, where χ(r) is the
susceptibility of the object, and using P = ε0χE2, the interaction energy becomes

VE = −1

2

∫
d3rP(r) ·E1(r). (22.73)

This is the usual interaction with a polarizable medium, with a factor of 1/2 since the polarization is induced
by the field. In particular, for a point dipole d at r0,

P(r) = d δ3(r− r0), (22.74)

so that the interaction becomes
VE = −1

2
d ·E1(r0). (22.75)

This is the usual expression for the interaction energy of an induced point dipole in a background field E1.

22.2.2.4 Variation of Magnetic Materials

The analogous problem of computing the change in the (static) magnetic-field energy when changing the
(linear) magnetic material proceeds along similar lines to the electric case.6 Again, we will assume fixed
sources—this time, meaning a fixed current density j(r).

As before, suppose we have an energy associated with a reference magnetic-material configuration
µ1(r),

H
(1)
M =

1

2

∫
d3rB1 ·H1, (22.76)

and a second energy associated with a modified configuration µ2(r),

H
(2)
M =

1

2

∫
d3rB2 ·H2, (22.77)

with the same source in both cases. The magnetic interaction potential is now the difference of these energies,

VM := H
(2)
M −H(1)

M . (22.78)

Writing out the potential explicitly,

VM =
1

2

∫
d3r
(

B2 ·H2 −B1 ·H1

)
=

1

2

∫
d3r
(

B2 ·H1 −B1 ·H2

)
+

1

2

∫
d3r
(
B2 + B1

)
·
(
H2 −H1

)
.

(22.79)

Then since ∇ × H = j for static fields, and thus ∇ × (H2 − H1) = 0 for a fixed source current, we can
introduce a scalar potential ϕ such that

H2 −H1 = ∇ϕ, (22.80)

and so the last integral is proportional to∫
d3r (∇ϕ) ·

(
B2 + B1

)
= −

∫
d3r ϕ∇ ·

(
B2 + B1

)
= 0, (22.81)

6John David Jackson, Classical Electrodynamics, 3rd ed. (Wiley, 1999), Section 5.16, especially p. 214; Julius Adams Stratton,
Electromagnetic Theory (McGraw-Hill, 1941), Section 2.17, p. 126.
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because ∇ ·B = 0. Thus, the interaction energy is

VM =
1

2

∫
d3r
(

B2 ·H1 −B1 ·H2

)
=

1

2

∫
d3r (µ2 − µ1)H2 ·H1

=
1

2

∫
d3r

(
1

µ1
− 1

µ2

)
B2 ·B1.

(energy difference between magnetic-material configurations) (22.82)
Again, the integrals here in principle extend over all space, but for a bounded object introduced in the case of
µ2, the integration need only extend over the object. The last two forms highlight the following observation:
increasing the magnetic permeability, and in particular introducing a paramagnetic object (µ2 > µ0) into a
vacuum background material always increases the magnetic energy, provided the sources are fixed. This is
opposite to the dielectric case. Note that everything up to the first of the above three expressions for VM is
the same as the dielectric case with E −→ B and D −→ H. However, it is the asymmetry of the D = εE
and B = µH that causes the energy change to move in the opposite direction.

Again, if we take configuration 1 to be free space (µ1 = µ0), then we can write the interaction energy
as

VM =
1

2

∫
d3r

(
µ2

µ0
− 1

)
H2 ·B1. (22.83)

But since the magnetization is given by M = χmH = (µ2/µ0 − 1)H, we can write

VM =
1

2

∫
d3rM(r) ·B1(r). (22.84)

This is the usual interaction energy of a magnetized body, but with the opposite sign compared to what we
would normally expect, and with a factor of 1/2 that reflects the induced nature of the magnetization. As
in the electric case, a point magnetic dipole m, represented by M(r) = m δ(r− r0), leads to an interaction
energy of (1/2)m ·B1(r0), which again has the opposite sign to the usual dipole energy −m ·B.

22.2.2.5 Interpretation of Minus Signs

The relative minus sign in the electric vs. magnetic interaction energies that we have developed in the last
two sections highlights an important difference between the two cases, and also the importance of being
precise about what ‘‘the energy’’ means.

To illustrate this, let’s return to the dielectric case, but modify the conditions of the sources: rather
than fixing the sources, we will instead consider fixing the potentials on some bounding surfaces,7 e.g., via
conducting electrodes held at fixed voltage by a power supply. In this case, charge is free to migrate in order
to maintain the fixed potentials. To compute the energy here, we will begin by considering a small variation
in the energy (22.47) due to small changes in the potential and current:

δHE =
1

2

∫
d3r
(
δφ(r) ρ(r) + φ(r) δρ(r)

)
. (22.85)

Recall that we previously derived a similar expression, Eq. (22.50)

δHE =

∫
d3r φ(r) δρ(r), (22.86)

in the case where the dielectric was fixed. This implies that if the dielectric is held fixed, then the two terms
in (22.85) are equal (but not in general equal if the dielectric is changed).

To proceed, we will break the change in the dielectric at fixed potential into two steps: first, discon-
nect the electrodes from the power supply and change the dielectric at fixed charge; second, reconnect the

7See John David Jackson, Classical Electrodynamics, 3rd ed. (Wiley, 1999), Section 4.7, especially pp. 168-9.
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electrodes, and allow charge to flow and restore the original potentials (at least on the electrodes). In step
1, δρ = 0, so the energy change is

δH
(1)
E =

1

2

∫
d3r δφ1(r) ρ(r), (22.87)

where δφ1 is the potential change induced by the small dielectric change. We have already computed the
energy change VE for a change in dielectric at fixed charge in Eqs. (22.72). In the second step, the batteries
must undo the effect of the first-step change δφ1, or written otherwise, δφ2 = −δφ1. Thus, the energy change
in this step is

δH
(2)
E =

1

2

∫
d3r
(
δφ2(r) ρ(r) + φ(r) δρ2(r)

)
= −

∫
d3r δφ1(r) ρ(r)

= −2δH(1)
E ,

(22.88)

where we used the observation from above that for a fixed dielectric, the two terms have the same contribu-
tion. Thus, the energy change from the second step is opposite to but double the change in the first, so the
net energy change is −VE, or the same as the fixed-charge potential (22.72) except for a minus sign, so that
in this case, introducing a dielectric object increases the total energy. As an example, these observations
predict that in introducing a dielectric slap between the plates of a charged capacitor, the dielectric should
be sucked into the capacitor if the electrodes are disconnected (maintained at fixed charge), and repelled
from the capacitor if the plates are connected to a power supply. In the latter case, the power supply is also
doing work on the dielectric, which yields the change in sign.8

With the above result, we can now more intuitively interpret the difference in minus sign due to
introducing electric vs. magnetic objects, Eqs. (22.72) vs. (22.82).9 As we saw from the energy variation in
Eqs. (22.61),

δHM =

∫
d3r δA · j. (22.89)

the magnetic-field energy (22.65) includes work done by moving charges (in the source current) against
electromotive forces as the magnetic field is brought up from zero. This is a closer analogy to the dielectric
energy at fixed voltage, which is dominated by the work done by moving charges against the potential. To
see this more explicitly, suppose we calculate the work of the current against the electromotive forces. Using
E = −∂tA, as potential is brought up from zero, the rate of change of the energy from Eq. (22.89) is

∂tHM =

∫
d3r ∂tA · j = −

∫
d3rE · j (22.90)

if the current is fixed. Integrating this over the time over which the potential is ramped to the steady-state
value, the change in energy associated with work done against the electromotive forces is

∆HM =

∫
d3rA · j, (22.91)

where the A here is the steady-state potential. Note that this is twice the value of the magnetic-field energy
(22.60), which led to the magnetic-material energy (22.65). Thus, if we subtract away this contribution to
the energy, we are left with the same interaction energy, but with a negative sign, which is in closer analogy
to the dielectric energy with fixed charges. Thus, the usual magnetic energy density of the form −M ·B (or
equivalently, the dipole energy −m ·B) counts just the energy associated with (permanent) magnetic dipoles
being placed in a magnetic field, after the dipoles have been created and made permanent elsewhere. The
energy we have derived here, (1/2)M · B, has the opposite sign (and a factor of 1/2, due to the linearity
of the magnetic medium), because it additionally counts the energy associated with creating the magnetic
dipoles.

8See David J. Griffiths, Introduction to Electrodynamics, 4th ed. (Prentice Hall, 2013), Section 4.4.4, pp. 202-4.
9The interpretations here are straight out of John David Jackson, Classical Electrodynamics, 3rd ed. (Wiley, 1999), Section

5.16, especially pp. 214-5.
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22.2.2.6 Small Material Perturbations

One awkward feature of the interaction energies Eqs. (22.72) and (22.82) for variations in the electric and
magnetic materials is that the expressions refer to products of fields in the presence of each of two different
configurations. However, there is a useful limit where this complication goes away: that of a small change in
the material. Returning to the dielectric interaction energy (22.72), suppose we set the background dielectric
notation to ε1 = ε, and the perturbed dielectric ε2 = ε + δε, with δε = ε0χobj, where χobj represents the
susceptibility of a weakly polarizable object. Then the interaction potential becomes

VE = −1

2

∫
d3r δεE(ε+ δε) ·E(ε). (22.92)

To lowest order in δε, we can write this solely in terms of the unperturbed field:

VE = −1

2

∫
d3r δεE2(ε) +O(δε2). (22.93)

If we take the small perturbation to be an atom modeled by a point dipole at r0 with (static) polarizability
α0 (i.e., such that d = α0E),

δε(r) = α0δ(r− r0), (22.94)

then the energy becomes
VE = −1

2
α0E

2(r0; ε), (22.95)

where ε(r0) is the background dielectric (e.g., vacuum or a fluid). This is the usual interaction energy for a
linear, induced dipole. It may seem objectionable that we expanded to lowest order in δε, and then set it
to a delta function, which diverges as a ‘‘function.’’ However, it is important to remember that the intent
here is to examine the linear response of the atom by expanding to lowest order in the atomic response α0.
The extent of the atom, in the point-dipole regime, is smaller than any length scale in the field. Really, we
should keep the atomic polarization as a localized but finite distribution, tempered by the small quantity
α0, and then at the end of the day, take the limit as the atom becomes arbitrarily small. Introducing the
delta function is a shortcut for this well-defined procedure.

Note also that in computing the atomic response, we have looked at the effect of a localized perturbation
to ε(r) at r0, to linear order in the perturbation, dropped the perturbation, and replaced it by α0. In the
language of functional differentiation, we have thus shown that

VE(r0) = α0
δHE

δε
(22.96)

is the interaction energy for a point-dipole atom at r0, with static fields and fixed sources.
The same considerations apply to the magnetic-field case. Returning to Eq. (22.82), to lowest order in

a perturbation δµ on a background µ,

VM =
1

2

∫
d3r δµH2(µ) =

1

2

∫
d3r

δµ

µ2
B2(µ). (22.97)

Again, we take the small perturbation to be an atom modeled by a point (magnetic) dipole at r0 with static,
magnetizability β0. Then since m = β0µ0H,10 and M = χmH = (δµ/µ0)H, but also M = m δ(r − r0) =
β0µ0δ(r− r0)H, we have

δµ(r) = β0µ
2
0 δ(r− r0). (22.98)

Note that this differs slightly in form from the electric case (22.94),

δε(r) = α0δ(r− r0), (22.99)
10The convention for the magnetizability induced by H is used, e.g., by John David Jackson, Classical Electrodynamics, 3rd

ed. (Wiley, 1999), p. 423, and is consistent with the way the magnetization is induced via M = χmH. The factor of µ0 gives
β0 dimensions of µ−1

0 times a volume, in analogy with α0 having dimensions of ε0 times a volume.
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which came from comparing P = ε0χE = δεE with P = d δ(r − r0) = α0δ(r − r0)E.11 Then the energy
becomes

VM =
µ 2
0

2µ2(r0)
β0B

2(r0;µ) =
µ 2
0

2
β0H

2(r0;µ), (22.100)

where µ(r0) is the background magnetic material. In the absence of a background material (µ = µ0), this is
the usual interaction for an induced dipole with a magnetic field, −m ·B/2, except without the minus sign
that we would normally expect due to the reasons we covered in the previous section. Thus, we have shown
that for the energy of an atom in a static magnetic field,

VM(r0) = −β0µ 2
0

δHM

δµ
(22.101)

in terms of the functional derivative.

22.2.2.7 Application to Casimir–Polder Potentials

Closely related to the above electrostatic energy shifts is the Casimir–Polder effect, which is of course
what we’re after in all this background material. Note that the Casimir–Polder effect is not a static-field
phenomenon. However, recall that if the atom is far away from the surface compared to any of its transition
wavelengths, the near-dc wavelengths are the only important ones (i.e., we can ignore dispersion), and we
can use the dc properties of the atom. Also, the (effectively dc) sources are quantum-vacuum fluctuations
in the magnetodielectric material, and will act essentially as fixed sources.

In considering the Casimir–Polder force, we will consider some magnetodielectric body (or configuration
of multiple bodies), described by ε(r) and µ(r). The Casimir–Polder energy is defined as the change in the
energy when we introduce an atom (precisely, by bringing it in from infinity), which we can model as a point
particle with (static) polarizability and magnetizability α0 and β0, respectively. Thus, beginning with the
electromagnetic Hamiltonian

HEM =
1

2

∫
d3r
(
εE2 +

1

µ
B2
)
, (22.102)

the idea is to consider small perturbations

ε −→ ε+ δε, µ −→ µ+ δµ, (22.103)

and consider the first-order expansion of the difference in vacuum expectation values (in the quantum case)

VCP =
〈
HEM(ε+ δε, µ+ δµ)

〉
−
〈
HEM(ε, µ)

〉
=

∫
d3r′

[
δ〈HEM〉
δε

δε(r′) + δ〈HEM〉
δµ

δµ(r′)
]
, (22.104)

in terms of the (partial) functional derivatives of the energy. If we take the perturbations to be due to
an atom located at r, where the dimensions of that atom are small compared to other length scales in the
calculation, we can formally replace the (finite but localized) perturbations by delta functions:

δε(r′) = α0δ(r′ − r), δµ(r′) = β0µ0δ(r′ − r). (22.105)

This procedure gives a result for the energy that is lowest-order in terms of the atom’s size. Then the
Casimir–Polder energy becomes

VCP(r) = α0
δ〈HEM〉
δε

+ β0µ
2
0

δ〈HEM〉
δµ

,

(Casimir–Polder potential, no dispersion) (22.106)
where the functional derivatives are to be evaluated at the atomic position (r).

11The expressions (22.98) and (22.99) are consistent with, for example, S. Y. Buhmann, H. Safari, Ho Trung Dung, and D.-G.
Welsch, ‘‘Two-atom van der Waals interaction between polarizable/magnetizable atoms near magnetoelectric bodies,’’ Optics
and Spectroscopy 103, 374 (2007) (doi: 10.1134/S0030400X07090068), Eqs. (6) and (12).

http://dx.doi.org/10.1134/S0030400X07090068
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However, recall that the Casimir effect is generally by considering atomic interactions with vacuum
fields, to leading order via dipole interactions of the form −d ·E and −m ·B. Our static treatment in the past
few sections seems to be consistent with the former but opposite to the latter, as we see in Eq. (22.100). Thus,
it seems like we have a reversed magnetic-field contribution, and it is tempting to take the Casimir–Polder
energy to be

VCP(r) = α0
δ〈HEM〉
δε

− β0µ 2
0

δ〈HEM〉
δµ

(wrong!) (22.107)

So how do we reconcile the Casimir–Polder expression (22.106) with the static-field results? The answer is
that the sign in the magnetic-field case is already built into the result (22.106). Specifically, this equation
gives the energy change for introducing a particle without direct reference to the fields. Thus, the static results
give us intuition as to what will happen to the field energy as we make small changes to the magnetodielectric
material. Specifically, these results suggest that when introducing a purely dielectric vs. purely magnetic
atom into the same background configuration, the sign of the energy change should be different. (The
magnitude is not necessarily the same, as each of the two possible ‘‘atoms’’ couples to different fields.) We
will confirm this intuition in Section 22.11, where we will consider all combinations of purely electric and
magnetic particles and planar surfaces. The result: the potential is attractive if both are dielectric or both
are magnetic; the potential is repelling whenever the two have opposite characters.

22.2.2.8 Functional Derivatives and Expectation Values: A Second Look

The results in the previous section are somewhat counterintuitive at first glance. To see this, let’s set up a
heuristic (but wrong!) calculation of the Casimir–Polder potential. Suppose for simplicity that we have an
atom located outside a dielectric body. A neutral atom interacting with an electric field

VE = −1

2
α0E

2 (22.108)

if we ignore dispersion and model the atom as an electric dipole. This comes from the energy −d · E, with
d = α0E and the factor of 1/2 arises for a dipole induced by the field. For the magnetic-dipole case we can
analogously write

VM = − µ 2
0

2µ2
β0B

2. (22.109)

We have seen these energies in the previous section. Quantum-mechanically, this holds as well. Even though
the field is in the vacuum state, the field fluctuations are captured by the field variance, and we simply
interpret the squared fields as expectation values

VCP = −1

2
α0

〈
E2
〉
− µ 2

0

2µ2
β0
〈
B2
〉
, (22.110)

representing the mean vacuum-induced energy induced by the magnetodielectric body.
Everything we have done is fine so far. What is now tempting is to look at the Hamiltonian (22.102),

and functionally differentiate to obtain

δHEM

δε
=
E2

2
,

δHEM

δµ
= − B

2

2µ2
(wrong!). (22.111)

Now we could solve these for the squared fields, substitute into Eq. (22.110), and arrive at

VCP = −α0

〈
δHEM

δε

〉
+ β0µ

2
0

〈
δHEM

δµ

〉
(wrong!). (22.112)

However, this is wrong, since there is an overall minus sign on the dielectric term compared to the correct
answer (22.106). The problem, to reiterate, is that the fields themselves also depend on ε and µ, so the
variation should also vary the fields. However, their variation is not obvious, and must be established
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from the more careful arguments above, which precisely account for the variation of the fields with the
magnetodielectric configuration.

To take this a bit further: recall Eq. (22.93):

VE = −1

2

∫
d3r δεE2(ε) +O(δε2). (22.113)

This is the interaction energy for a small change in the permittivity, to lowest order. The point is, this
has the opposite sign, compared to naïvely differentiating an energy involving εE2 with respect to ε while
holding E fixed. Evidently, this means that to lowest order, the field variation is

E(ε+ δε) =

(
1− δε

ε

)
E(ε), (22.114)

and this variation in εE2 conspires with the obvious variation of ε to yield the overall minus sign in
Eq. (22.113). However, note that D stays constant under the same variation, to linear order:

D(ε+ δε) = (ε+ δε)E(ε+ δε) = (ε+ δε)

(
1− δε

ε

)
εE(ε) = D(ε). (22.115)

Thus, we can make a naïve version of the argument work out, but only if we rewrite the electromagnetic
energy (22.102) in terms of D and B,

HEM =
1

2

∫
d3r
(D2

ε
+
B2

µ

)
, (22.116)

and then differentiate while holding the fields here fixed. This procedure leads to something more like the
previous result (22.106).

22.2.3 Hamiltonian Structure of Electromagnetism and Linear Materials

Why have we been dealing with static fields when Casimir–Polder potentials arise fundamentally from
vacuum-field fluctuations? Here we will show that the results we have derived for vacuum potentials are
still valid if we relax the assumption of static fields, and in doing so we will review some of the symplectic
structure of the electromagnetic fields with media.

To see how all this comes out of the Hamiltonian structure of the field, we can write the Lagrangian
for the electromagnetic field coupled to matter with (linear) permittivity ε and (linear) permeability µ as

LEM =
1

2

∫
d3r
(

E ·D−B ·H
)
, (22.117)

where as usual the fields are related by

D = ε0E + P = εE, B = µ0(H + M) = µH, (22.118)

for (linear) polarization P and magnetization M. In the Coulomb gauge, E = −∂tA and B = ∇×A, so the
Lagrangian becomes

LEM(A, ∂tA) =
1

2

∫
d3r

[
ε(∂tA)2 − 1

µ
(∇×A)2

]
(electromagnetic Lagrangian with linear material) (22.119)

in terms of the vector potential, which plays the role of the generalized-coordinate field. We can check that
this Lagrangian is sensible by writing out the Euler–Lagrange equation,

δL

δA − ∂t
δL

δ(∂tA)
= 0, (22.120)
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which implies

∇×
(
1

µ
∇×A

)
− ε∂2tA = 0, (22.121)

yielding the Maxwell equation
∇×H = ∂tD, (22.122)

assuming a time-independent (and hence nondispersive) permittivity.
Now to derive the Hamiltonian, we will make the usual transformation. That is, the momentum field

is
Π =

δLEM

δ(∂tA)
= ε∂tA = −εE = −D, (22.123)

in which case we obtain the perturbed Hamiltonian

HEM(Π,A) =

∫
d3rΠ · ∂tA− L

=
1

2

∫
d3r

[
ε(∂tA)2 +

1

µ
(∇×A)2

]
=

1

2

∫
d3r

[
1

ε
Π2 +

1

µ
(∇×A)2

] (22.124)

in terms of canonical coordinate fields. In terms of the electromagnetic fields, we have

HEM =
1

2

∫
d3r
(

E ·D + B ·H
)
,

(22.125)
(electromagnetic Hamiltonian)

which we can identify as the (time-invariant) total energy of the electromagnetic field.

22.2.3.1 Material Perturbations

Then to find the effect on the electrodynamic energy due to a change in material properties ε and µ (or
equivalently, introducing an extra magnetodielectric object), we proceed as in the static case. Referring
to the electromagnetic energy as represented by the Hamiltonian (22.125), we should write down our first
electromagnetic energy for the reference magnetodielectric-material configuration, characterized by ε1(r) and
µ1(r), as

H
(1)
EM =

1

2

∫
d3r
(

E1 ·D1 + B1 ·H1

)
, (22.126)

and a second energy associated with a modified configuration characterized by ε2(r) and µ2(r), as

H
(2)
EM =

1

2

∫
d3r
(

E2 ·D2 + B2 ·H2.
)
, (22.127)

Again, we wish to hold the sources fixed between the two cases. The (dynamical) electromagnetic interaction
potential is now the difference of these energies,

VEM := H
(2)
EM −H(1)

EM . (22.128)

Writing out the potential explicitly,

VEM =
1

2

∫
d3r
(

E2 ·D2 + B2 ·H2

)
− 1

2

∫
d3r
(

E1 ·D1 + B1 ·H1

)
=

1

2

∫
d3r
(

E2 ·D2 −E1 ·D1

)
+

1

2

∫
d3r
(

B2 ·H2 −B1 ·H1

)
.

(22.129)
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Then separating out cross-terms as before,

VEM =
1

2

∫
d3r
(

E2 ·D1 −E1 ·D2

)
+

1

2

∫
d3r
(

B2 ·H1 −B1 ·H2

)
+

1

2

∫
d3r
[(

E2 + E1

)
·
(
D2 −D1

)
+
(
B2 + B1

)
·
(
H2 −H1

)]
.

(22.130)

The first term here has the form of the static-electric interaction energy (22.72), while the second term has
the form of the static-magnetic interaction energy (22.82). The last integral contains two terms that we
showed vanished separately, under the assumption of static fields. We can’t make the same assumption, but
we still wish to show that the last integral vanishes, and we can do this as follows. Noting that we can write
the electric sum field in terms of potentials in the most general way as

E2 + E1 = −∇φ− ∂tA, (22.131)

the first term in the integral has the form

IED =
1

2

∫
d3r
(
E2 + E1

)
·
(
D2 −D1

)
= −1

2

∫
d3r
(
∇φ
)
·
(
D2 −D1

)
− 1

2

∫
d3r
(
∂tA

)
·
(
D2 −D1

)
.

(22.132)

The first integral vanishes after integrating by parts, using ∇ ·D = ρ, and assuming fixed sources. Thus, we
are left with

IED = −1

2

∫
d3r
(
∂tA

)
·
(
D2 −D1

)
. (22.133)

The second part of the last integral in (22.130) has the form

IBH =
1

2

∫
d3r
(
B2 + B1

)
·
(
H2 −H1

)
=

1

2

∫
d3r
(
∇×A

)
·
(
H2 −H1

)
=

1

2

∫
d3rA · ∇ ×

(
H2 −H1

)
=

1

2

∫
d3rA · ∂t

(
D2 −D1

)
,

(22.134)

where we wrote the magnetic sum field in terms of the same vector potential as the electric sum field,
integrated by parts using ∇ · (A × B) = B · (∇ ×A) −A · (∇ × B), and then used the Maxwell equation
∇ × H = ∂tD + j, where the current density drops out because we assume it to be the same in both
configurations. Now the critical point is to assume that a decomposition into normal modes exists; this
is true because we can still assume monochromatic solutions of frequency ω (e.g., right in the Maxwell
equations), which separates the time and space variables of the problem, just as in the vacuum case. In this
case, we can identify ∂t ≡ −iω, and

IED =
iω

2

∫
d3rA ·

(
D2 −D1

)
= −IBH . (22.135)

Thus, the last integral in Eq. (22.130) vanishes for each mode, and we are left with the energy

VEM =
1

2

∫
d3r
(

E2 ·D1 −E1 ·D2

)
+

1

2

∫
d3r
(

B2 ·H1 −B1 ·H2

)
,

(electromagnetic interaction energy between material configurations) (22.136)
which is the same as the electrostatic and magnetostatic results added together. Thus, the intuition from
the static case carries over to full electrodynamics, concerning the opposite signs for a dielectric vs. magnetic
particle interacting with the same magnetodielectric body.
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22.3 Development of the Path Integrals

As usual in the development of path integrals, we will need to start with the Lagrangian. In scalar electro-
magnetism, we have two Lagrangians, one for each of the two (uncoupled) polarizations. For TE polarization,
we have the Hamiltonian (22.10), which arises from the Lagrangian

LTE =
1

2

∫
d3r

[
ε(∂tφ)

2 − 1

µ
(∇φ)2

]
.

(22.137)
(scalar TE Lagrangian)

For the TM polarization, we have from the Hamiltonian (22.19) the Lagrangian

LTM =
1

2

∫
d3r

[
µ(∂tϕ)

2 − 1

ε
(∇ϕ)2

]
.

(22.138)
(scalar TM Lagrangian)

Note in this latter case that this is a Lagrangian that is related to the Hamiltonian solely in terms of the
field ϕ. In terms of the original electromagnetic Hamiltonian, recall that the kinetic and potential terms
swapped roles in switching to the field ϕ.

22.3.1 Gaussian Field Integral

Now we will proceed as in the case of the scalar field coupled to a potential, and we will first do the TE field.
The Wick-rotated partition function is

Z =

∫
Dφ exp

[
i

h̄

∫
dtL(φ, ∂tφ)

]
t−→−iβ̃/c

, (22.139)

where the temperature ‘‘length’’ is β̃ = h̄cβ, which becomes

ZTE =

∫
Dφ exp

[
− 1

2h̄c

∫
dβ̃

∫
d3r

(
c2ε(r)(∂β̃φ)

2 +
1

µ(r) (∇φ)
2

)]
=

∫
Dφ exp

[
−ε0c

2h̄

∫
dβ̃ d3r φ(r, β̃)

(
−ε(r)
ε0

∂ 2
β̃
−∇ · µ0

µ(r)∇
)
φ(r, β̃)

]
∝

√
det
(
−εr∂ 2

β̃
−∇ · 1

µr
∇
)−1 (22.140)

with the Lagrangian (22.137). Here we have introduced the relative permittivity and permeability

εr(r) :=
ε(r)
ε0

, µr(r) :=
µ(r)
µ0

,
(22.141)

(relative permittivity/permeability)

and we have used ε0µ0c
2 = 1. Then

logZTE = −1

2
log det

(
−εr∂ 2

β̃
−∇ · 1

µr
∇
)

= −1

2
Tr log

(
−εr∂ 2

β̃
−∇ · 1

µr
∇
)
,

(trace-log form of partition function, TE) (22.142)
up to an additive constant that disappears in renormalization. The TM case is the same as the TE case,
but with εr ←→ µr.
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22.3.2 Imaginary-Time Green Operator

As an alternate derivation of Eq. (22.142), for the TE polarization, we can start with the wave equation
(22.11), (

ε∂ 2
t −∇ ·

1

µ
∇
)
φ = 0, (22.143)

which defines a Green function via

µ0

(
ε∂ 2
t −∇ ·

1

µ
∇
)
GTE(r, t; r′, t′) = δ3(r− r′)δ(t− t′), (22.144)

where we have introduced an (arbitrary) overall factor of µ0 to define the Green function. This in turn
implies the Green operator

GTE =

(
εr
c2
∂ 2
t −∇ ·

1

µr
∇
)−1

. (22.145)

The imaginary-time Green operator is

G̃TE = GTE|t−→iβ̃/c =
(
−εr∂ 2

β̃
−∇ · 1

µr
∇
)−1

(imaginary-time Green operator) (22.146)
The short-cut partition-function rule is

logZTE =
1

2
Tr log G̃TE,

(Green-operator form of partition function) (22.147)
which is consistent with the result (22.142). The TM scalar wave equation (22.21) is the same as the TE
wave function but with ε←→ µ, so (with the appropriate normalization) the expression for logZTM follows
in the same way, but with εr ←→ µr in the end.12

22.3.3 Rescaling the Green Operator: Coupling to the Potential

Now consider again the TE Green operator (22.146), in particular noting the possibility of space dependence
of εr(r) and µr(r). When we change this partition function into a worldline path integral in the following
section, recall that the Green-operator derivatives will become kinetic-energy terms. The factor µr(r) that
accompanies ∇2 is particularly problematic, because for the worldline particle, the permeability will act as
a space-dependent mass, effectively curving space-time. This drastically complicates the path integral. The
factor εr(r) also introduces a space-dependent mass for the time direction of the worldline particle. While
this technically also induces a nontrivial space-time, it turns out that this will be much easier to deal with.

To deal with this curvature in advance, we can work with rescaled Green operators. Since we will be
computing energies from the log partition function (22.147), it is important to recall that only differences in
energies are physically meaningful (or even finite, in Casimir calculation). This means that we can rescale
G̃ by an arbitrary constant factor, and as long as we are computing energy differences between different
configurations (or ratios of partition functions), the scaling factor will cancel out. Similarly, we can also
rescale G̃ by an arbitrary function. In this case, the function splits off in the determinant, and the functional
determinants cancel in the energy difference (partition-function ratio). What is somewhat less obvious is
that we can rescale G̃ by functions of εr and µr. These are not necessarily the same between the two different
configurations, and so this rescaling requires more careful interpretation. Suppose we are considering the
Casimir effect between two bodies. A sensible comparison would contrast two different configurations of the
same bodies, but translated or rotated slightly (or even possibly deformed). An infinitesimal change would
be the first step in the calculation of the Casimir force, for example. As long as there is the same amount

12Similar expressions for scalar Green operators were used by Julian Schwinger, ‘‘Casimir energy for dielectrics,’’ Proceedings
of the National Academy of Sciences 89, 4091 (1992) (doi: 10.1073/pnas.89.9.4091).

http://dx.doi.org/10.1073/pnas.89.9.4091
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of stuff in the two configurations, the functional determinants of εr and µr are equivalent in both cases,
because they are effectively infinite products of these functions at every position in space, but the order in
the products is not important.

In particular, we would like to define ‘‘flat-space,’’ imaginary-time Green operators by rescaling via

Ḡ−1TE :=
√
µr G̃

−1
TE

√
µr

Ḡ−1TM :=
√
εr G̃

−1
TM

√
εr.

(22.148)
(flat-space Green operators)

Writing these out explicitly,

Ḡ−1TE = −εrµr∂
2
β̃
−√µr∇ ·

1

µr
∇√µr

Ḡ−1TM = −εrµr∂
2
β̃
−
√
εr∇ ·

1

εr
∇
√
εr.

(22.149)

We still have functions of position on the gradient term, but that term is overall ‘‘neutral’’ with respect to
position-dependent functions.13 Using the operator-commutation relation

∂xg(x) = g(x) ∂x + g′(x), (22.150)

we can then write

g∂x
1

g2
∂xg = (∂xg − g′)

1

g2
(g∂x + g′) = ∂ 2

x −
g′2

g2
+

[
∂x,

g′

g

]
= ∂ 2

x − 2
g′2

g2
+
g′′

g
(22.151)

Putting g =
√
h, so that g′ = h′/2

√
h and g′′ = h′′/2

√
h− h′2/4h3/2,

√
h∂x

1

h
∂x
√
h = ∂ 2

x +
h′′

2h
− 3h′2

4h2
. (22.152)

Note that if we put h = f ′, then the last two terms here have the form of a Schwarzian derivative (with a
factor of 1/2). Also noting that ∂x logh = h′/h and ∂ 2

x logh = h′′/h− h′2/h2, we can alternately write

√
h∂x

1

h
∂x
√
h = ∂ 2

x +
1

2
∂ 2
x logh− 1

4

(
∂x logh

)2
= ∂ 2

x + ∂ 2
x log

√
h−

(
∂x log

√
h
)2
. (22.153)

Thus, we may rewrite the Green operators (22.149) as

Ḡ−1TE = −εrµr∂
2
β̃
−∇2 + 2VTE

Ḡ−1TM = −εrµr∂
2
β̃
−∇2 + 2VTM,

(22.154)
(flat-space Green operators)

where we have introduced the material-induced ‘‘potentials’’ (which have dimensions of inverse area)

VTE(r) :=
1

2

[(
∇ log√µr

)2 −∇2 log√µr

]
VTM(r) :=

1

2

[(
∇ log

√
εr
)2 −∇2 log

√
εr

]
.

(22.155)
(matter-induced potentials)

We will now proceed by using these Green operators, which have no space-dependent masses on the ∇2

terms (but replaced by effective potentials), in the trace-log expression (22.147).
13Similar rescalings in path integrals were noted by S. Pasquali, F. Nitti, and A. C. Maggs, ‘‘Numerical methods for fluctuation-

driven interactions between dielectrics,’’ Physical Review E 77, 016705 (2008) (doi: 10.1103/PhysRevE.77.016705).

http://dx.doi.org/10.1103/PhysRevE.77.016705


22.3 Development of the Path Integrals 1023

22.3.4 Worldline Form of the Path Integral

We can then formally change to an integral representation of the logarithm,

logZ =
1

2

∫ ∞
0

dT
T

Tr
[
exp
(
−T
G̃

)]
, (22.156)

with the understanding that this expression is divergent unless renormalized. Also, we are dropping the
polarization label, since this procedure will work for either polarization, given the appropriate choice of
Green operator (22.154). Defining the momentum operators

pβ̃ := −ih̄∂β̃ , p := −ih̄∇, (22.157)

the partition density with (22.146) becomes

logZ =
1

2

∫ ∞
0

dT
T

Tr

{
exp

[
−T

(
εrµr

p 2
β̃

2h̄2
+

p2

2h̄2
+ V

)]}
, (22.158)

where V is the potential (22.155) appropriate to the polarization. Notice that we have inserted a factor of
1/2 in the inverse Green operator here. We can do this because we are free to rescale T in Eq. (22.156) by
an arbitrary factor.

The trace of the exponential factor here has the form of a partition function

Zeff := Tr
[
e−THeff

]
,

(22.159)
(effective partition function, scalar EM)

where T plays the role of the temperature parameter β, and

Heff(pβ̃ ,p, rβ̃ , r) := εr(r)µr(r)
p 2
β̃

2h̄2
+

p2

2h̄2
+ V (r)

(effective Hamiltonian, scalar EM) (22.160)
is the effective particle Hamiltonian for the scalar electromagnetic field coupled to the medium. The total
(log) partition function is then

logZ =
1

2

∫ ∞
0

dT
T

Zeff,

(log partition function, in terms of effective Z) (22.161)
in terms of the effective partition function. Note that there is no ordering ambiguity in this effective
Hamiltonian.

22.3.4.1 Recap: Normalization of the Particle Path Integral

At this point, our task will be to write the effective partition function (22.159) as a Monte-Carlo-type path
integral. To do this, we will recall the corresponding path integral for a standard particle in one dimension of
Hamiltonian H(x, p) = p2/2m+V (x), and then transform our results to the case of the effective Hamiltonian
(22.160). Reviewing our results before in Section 20.3.1, the partition function for the standard particle is

Z =

∫
D̃x δ[x(h̄β)− x0] exp

[
− 1

h̄

∫ h̄β

0

dβ̃
(m
2
(∂β̃x)

2 + V (x)
)]

(22.162)

where the path-integration measure is defined as

D̃x :=

(
m

2πh̄2δβ

)N/2 N∏
j=0

dxj . (22.163)
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Taking the kinetic-energy part of the Lagrangian to define the probability measure, we can write the partition
function as the ensemble average

Z =

∫
dx0

〈〈
δ[x(h̄β)− x0] exp

[
− 1

h̄

∫ h̄β

0

dβ̃ V (x)

]〉〉
, (22.164)

where the average is taken with respect to paths of the form

x(β̃) = x0 +

√
h̄

m
W (β̃), (22.165)

where W (t) is a standard Wiener path. The delta function selects only the paths (of zero measure) that
return to x0 at ‘‘time’’ h̄β, so it is convenient to switch to more appropriate paths. We will thus use the
normalization 〈〈

δ[W (T )]F [W (t)]

〉〉
=

1√
2πT

〈〈
F [BT (t)]

〉〉
, (22.166)

where BT (t) is a Brownian bridge [i.e., equivalent to a standard Wiener path, but conditioned on the endpoint
BT (T ) = 0]. Thus, the path integral (22.164) becomes

Z =

√
m

2πh̄2β

∫
dx0

〈〈
exp

[
− 1

h̄

∫ h̄β

0

dβ̃ V (x)

]〉〉
x(β̃)=x0+

√
h̄/mBh̄β(β̃)

, (22.167)

without the delta function but with Brownian ‘‘loops’’ BT (t) in imaginary time.

22.3.4.2 Normalization of the Worldline Path Integral

Transforming the partition function (22.159) into the form of Eq. (22.162) is a fairly straightforward tran-
scription, with h̄β −→ T and setting m = h̄2 and V −→ h̄V in the exponential. We also lose the distinction
between β and β̃, which also absorbs the 1/h̄ in the exponential. The result of all this is

Zeff =

∫
DxDxβ̃ δ

D−1[x(T )− x0] δ[xβ̃(T )− xβ̃0] exp

[
−
∫ T
0

dτ

(
(∂τxβ̃)

2

2εr(x)µr(x)
+

(∂τx)2

2
+ V (x)

)]
,

(22.168)
and we have the integration measures

D̃xβ̃ :=

(
h̄

2πδT

)N/2
 N∏
j=0

dxβ̃j

 N∏
j=1

[
εr(xj)µr(xj)

]−1/2 , D̃x :=

(
h̄

2πδT

)(D−1)N/2 N∏
j=0

dD−1x. (22.169)

Note that we are writing the expression for D dimensions (D − 1 space dimensions and 1 imaginary-time
dimension). Of course, we only obtain physical results in the case D = 4, but keeping explicit track of D as
a variable allows us to track the origin of various factors, as well as to examine other D values as test cases
(and even use noninteger values for dimensional regularization). Note also that β̃ here ranges from 0 to h̄cβ,
including an extra factor of c compared to the standard particle case to measure the time-like coordinate in
spatial units.

The result here bears some explanation. Note that we had no ordering issues to contend with, as pβ̃
commutes with ε(x). The main difference with the standard result (22.162) is the dependence of the pβ̃
term in the Hamiltonian on εr(r) and µr(r). In the derivation of (22.162), recall that we had to perform
integrations over momenta. Each one of these integrations generated a factor of

√
m. Because of the spatial

dependence of εr(r) and µr(r), this is a bit more complicated. The idea is to then think of fixing the x
coordinates in the path integral, while performing the integrals over the xβ̃ coordinates. Then for these
integrals, εr(x) and µr(x) appear as different (fixed) masses for each of the xβ̃ integrals, and thus they
contribute the extra factors in the measure (22.169), and they still appear in the time-like kinetic-energy
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term in (22.168). The path integral then proceeds just as in the standard-particle case for the space-like
dimensions.

Turning this path integral into ensemble-average form,

Zeff =

∫
dD−1x0

∫ h̄cβ

0

dβ̃

〈〈
δD−1[x(T )− x0] δ[xβ̃(T )− xβ̃0] exp

[
−
∫ T
0

dτ V (x)
]〉〉

x(τ)

, (22.170)

where the (four-dimensional) paths satisfy

x(0) = x0

dxβ̃(τ) =
√
εr[x(τ)]µr[x(τ)] dWβ̃(τ)

dxα(τ) = dWα(τ),

(22.171)

where α here refers to the spatial dimensions, and xβ̃ is the time-like coordinate of the path. Note that the
choice of stochastic calculus is not important here, as the noise is additive. Carrying out the derivative and
accounting for the δ functions,

Zeff =
h̄cβ

(2πT )D/2

∫
dD−1x0

〈〈
〈εrµr〉−1/2x(τ) e

−T〈V 〉x(τ)

〉〉
x(τ)

. (22.172)
(effective Z, scalar EM)

The path average here is defined as

〈g〉x(τ) :=
1

T

∫ T
0

dτ g[x(τ)] (22.173)
(path average)

for a function g of the path, where the time coordinate τ of the path runs from 0 to T . The normalization
factors came from the prefactor on the right-hand side of Eq. (22.166), which was the probability density for
a Wiener path W (t) to end at W (T ) = 0. Generalizing this for each the space dimensions gives a factor of
(2πT )−1/2, since the space-like part of the paths (22.171) are standard Wiener paths. The generalization in
the xβ̃ direction is additionally weighted by the root-mean-square average of the spatial factor in Eq. (22.166),
resulting in the extra path-average factor. We also carried out the β̃ integral, which simply gives an extra
factor of h̄cβ. In this case, the path in the xβ̃ direction is irrelevant, and so we have

x(τ) = x0 + BT (τ)
(22.174)

(stochastic path, scalar EM)

as the (D− 1)-dimensional path, without any variable velocities, and we have switched to Brownian bridges
to enforce the path condition on the paths that replaced the delta functions. Note that while BT (τ) is a
standard Brownian bridge in the sense of being a Wiener process pinned to BT (τ = T ) = 0, by contrast
BT (τ) is a D-dimensional vector Brownian bridge, or D independent bridges bundled together as a single
vector. Thus, the relevant paths are just Brownian bridges displaced to x0.

Together with the expression (22.161) for the (field) log partition function, Eq. (22.172) gives the log
partition function as

logZ =
h̄cβ

2(2π)D/2

∫ ∞
0

dT
T 1+D/2

∫
dD−1x0

〈〈
〈εrµr〉−1/2x(τ) e

−T〈V 〉x(τ)

〉〉
x(τ)

, (22.175)

or using the energy expression
E = −∂β logZ, (22.176)
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we have the energy EEM =〈HEM〉 :

EEM = − h̄c

2(2π)D/2

∫ ∞
0

dT
T 1+D/2

∫
dD−1x0

〈〈
〈εrµr〉−1/2x(τ) e

−T〈V 〉x(τ)

〉〉
x(τ)

.

(Casimir energy, scalar EM) (22.177)
This is the (unrenormalized) ground-state Casimir energy in scalar electromagnetism in D space-time di-
mensions, valid for either TE or TM polarization if we choose the potential V appropriately according to
Eqs. (22.155). Again, because the physical case corresponds to D = 4, the units here only come out correctly
for an energy in D = 4. Since T has the dimensions of squared length, this expression will have dimensions
of energy-length and energy-area in D = 3 and D = 2, respectively.

22.3.4.3 Alternate Derivation of the Normalized Path Integral: Space-Dependent Mass

As an alternative to working with the rescaled Green operators (22.148), we can also work directly with the
‘‘raw’’ TE Green operator (22.146) and its TM counterpart, repeated here:

G̃TE =

(
−εr∂ 2

β̃
−∇ · 1

µr
∇
)−1

G̃TM =

(
−µr∂

2
β̃
−∇ · 1

εr
∇
)−1

.

(22.178)

As we mentioned at the beginning of Section (22.3.3), the factor of µr(r) in the TE operator and the
corresponding factor of εr(r) in the TM operator are problematic, as they represent space-dependent masses,
which require more careful path-integration techniques. Fortunately, we have already done the hard work
for this in Section 20.4.4.1.

Recall that the one-dimensional Hamiltonian (20.370)

H∂g∂(x, p) = −h̄2∂x
1

2mg(x)
∂x + V (x), (22.179)

which has the same form as the space components of the Green operators (22.178), leads to a partition-
function path integral of the form (20.375):

Z∂g∂ =

√
m

2πh̄2β

∫
dx0

〈〈
exp

[
− 1

h̄

∫ h̄β

0

dβ̃

(
g(x)V (x)− h̄2(2gg′′ − 3g′2)

8mg2

)]〉〉
x(β̃)=x0+

√
h̄/mBh̄β(β̃)

.

(22.180)
This followed after converting to the proper curved-space momentum operators and developing the prop-
agator path integral, rescaling time to remove the space dependence from the path-integral measure, and
reorganizing the ordering potentials, which lead to the g-derivative potential terms here. Recall that due
to the temporal scaling, the stochastic paths here are scaled Brownian bridges (i.e., flat-space paths). Now,
noting that the effective ordering potential can be rewritten as

Veff(x) := −
(2gg′′ − 3g′2)

8g2
=

1

2

[(
∂x log

√
g(x)

)2
− ∂ 2

x log
√
g(x)

]
, (22.181)

we will now identify g with µr or εr for the TE and TM cases, respectively. We will also set V (x) = 0 here.
Then we can proceed by making the same identifications as we did before in Section 22.3.4.2. The spatial
dimensions here give the same contributions to the worldline path integral as before, but the potentials
VTE(r) and VTM(r) of Eqs. (22.155) come from the ordering potential [instead of from the rescaling step in
Eqs. (22.148)].

Then the normalization of the imaginary-time dimension also goes through as before, but with one
difference. It would seem from Eqs. (22.178) that the local path variance is scaled by εr[x(t)] or µr[x(t)] for
the TE and TM cases, respectively. [See, e.g., Eqs. (22.171).] However, because we rescaled time by g[x̄(t)]
in Eq. (20.365), the local path variance ends up being scaled by εr[x(t)]µr[x(t)], as before. The end result is
the same path integral (22.172), but with more technical complication in the derivation.
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22.3.5 Worldline Path Integral for Casimir–Polder Potentials

Now if we are interested in the interaction of an atom with a magnetodielectric body (or bodies), we can
adapt the classical result Eq. (22.106) to the present case:,

VCP(r) =
α0

ε0

(
δEEM

δεr

)
+ β0µ0

(
δEEM

δµr

)
,

(22.182)
(Casimir–Polder potential)

where we are ignoring dispersion (of the atom or the bodies), α0 is the (static) polarizability of the atom,
and β0 is the (static) magnetizability. Note that this expression is invariant under the duality transformation
εr ←→ µr, α0/ε0 ←→ β0µ0.14

To evaluate the functional derivatives here, we will first need the partial (functional) derivatives cor-
responding to the first factor in Eq. (22.177),

δ

δεr

∫
dD−1x0 〈εrµr〉−1/2 = −µr

2
〈εrµr〉−3/2

δ

δµr

∫
dD−1x0 〈εrµr〉−1/2 = −εr

2
〈εrµr〉−3/2 .

(22.183)

These derivatives require some explanation. Here we are regarding EEM[εr(r), µr(r)] as a functional of the
relative permittivity and permeability, which are themselves functions over all space. The integration over
all space, as in the Hamiltonian (22.125), reduces these functions to a scalar, and thus define the scalar
nature of the functional. But when we vary a path integral of the form

δ

∫
dD−1x0 〈εrµr〉−1/2 =

∫
dD−1x0

(
− 〈µr δεr〉

2
〈εrµr〉−3/2 −

〈εr δµr〉
2
〈εrµr〉−3/2

)
, (22.184)

we must identify the derivatives via the inner products of the form

δE[εr, µr] =

〈
δE

δεr
, δεr

〉
+

〈
δE

δµr
, δµr

〉
. (22.185)

The integration over x0 is an obvious candidate for the inner product, but in the path integral, it is not so
simple, because εr and µr are now functions of the coordinates x(τ) along the entire path. Thus, the path
average (or, equivalently, an integral along the path time τ) is also necessary to define a scalar result, and
thus a functional, which is the reduction to a scalar by integration over all path averages, where the paths are
rigid translations of a single path. The ensemble average over paths is not necessary here to define the inner
product, as it implements the integration over the intermediate coordinates x1, . . . ,xN−1, whose dependence
on x0 has already been removed by considering the rigid translation of paths. Thus, Eq. (22.184) becomes

δ

∫
dD−1x0 〈εrµr〉−1/2 =

∫
dD−1x0

〈
− µr δεr

2
〈εrµr〉−3/2 −

εr δµr

2
〈εrµr〉−3/2

〉
, (22.186)

from which the derivatives (22.183) follow. A check on the the choice of inner product for the functional
differentiation is that we should be able to set δεr(r) = δ(r − r0) and δµ = 0 to project the functional

14Stefan Yoshi Buhmann and Stefan Scheel, ‘‘Macroscopic Quantum Electrodynamics and Duality,’’ Physical Review Letters
102, 140404 (2009) (doi: 10.1103/PhysRevLett.102.140404); Hassan Safari, Dirk-Gunnar Welsch, Stefan Yoshi Buhmann, and
Stefan Scheel, ‘‘van der Waals potentials of paramagnetic atoms,’’ Physical Review A 78, 062901 (2008) (doi: 10.1103/Phys-
RevA.78.062901).

http://dx.doi.org/10.1103/PhysRevLett.102.140404
http://dx.doi.org/10.1103/PhysRevA.78.062901
http://dx.doi.org/10.1103/PhysRevA.78.062901
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derivative δE/δεr at r0 out of the inner product (22.185). This leads us to evaluate an integral of the form∫
dD−1x0

〈
µr(x) δ(x− r0)

〉
x(t)

=
1

T

∫
dD−1x0

∫ T
0

dτ µr[x(τ)] δ[x(τ)− r0]

=
1

N

∫
dD−1x0

N−1∑
j=0

µr(xj) δ(xj − r0)

=
1

N

∫
dD−1x0

N−1∑
j=0

µr[x0 + (xj − x0)] δ[x0 + (xj − x0)− r0]

=
1

N

N−1∑
j=0

µr(r0)

= µr(r0),

(22.187)

where we switched to the discrete representation of the path average and used the fact that (xj − x0) is
constant for any rigid translation of a particular path. This procedure also leads to the derivatives (22.183).

We will also need functional derivatives corresponding to the exponent (i.e., the potential) of the path
integral. Writing the TM potential from Eqs. (22.155) in the form

VTM =
1

2

[(
∇ log

√
εr
)2 −∇2 log

√
εr

]
=

1

8

(
∇ log εr

)2 − 1

4
∇2 log εr

=
3
(
∇εr

)2
8ε 2r

− ∇
2εr
4εr

,

(22.188)

we can write the partial derivatives for the TM potential as

∂

∂εr
VTM = −

3
(
∇εr

)2
4ε 3r

+
∇2εr
4ε 2r

= −1

4

((
∇εr

)2
ε 3r

+∇2ε−1r

)
=

1

4εr

(
∇2 log εr − 2

(
∇ log εr

)2)
∂

∂∇εr
VTM =

3∇εr
4ε 2r

= −3

4
∇ε−1r =

3

4εr
∇ log εr

∂

∂∇2εr
VTM = − 1

4εr
,

(22.189)

where we used ∂xh−1 = −h′/h2, ∂ 2
x h
−1 = −h′′/h2+2h′2/h3, ∂x logh = −h′/h, and ∂ 2

x logh = h′′/h−h′2/h2,
with similar expressions for the corresponding µr derivatives of the TE potential. Then, recalling that for a
functional of the form

F [x, xt, xtt, . . . ; t] =

∫ t2

t1

f(t, x, xt, xtt) dt, (22.190)

where xt ≡ ∂x/∂t, the functional derivative is [see Eq. (8.12)]

δF

δx
=
∂f

∂x
− d

dt

∂f

∂xt
+
d2

dt2
∂f

∂xtt
. (22.191)

Adapting the functional derivative to the present case, we will need the following derivatives of the partial
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derivatives (22.189),

(
∂

∂εr
VTM

)
P (r) = 1

4εr

(
∇2 log εr − 2

(
∇ log εr

)2)
P (r)

−∇ ·
(

∂

∂∇εr
VTM

)
P (r) = − 3

4εr

(
∇2 log εr −

(
∇ log εr

)2)
P (r)− 3

4εr
(∇ log εr) · ∇P (r)

∇2

(
∂

∂∇2εr
VTM

)
P (r) = 1

4εr

(
∇2 log εr −

(
∇ log εr

)2)
P (r) + 1

2εr
(∇ log εr) · ∇P (r)−

1

4εr
∇2P (r),

(22.192)
where P (r) is an arbitrary function that represents the rest of the integrand. Combining these terms gives

(
∂

∂εr
VTM

)
P (r)−∇ ·

(
∂

∂∇εr
VTM

)
P (r) +∇2

(
∂

∂∇2εr
VTM

)
P (r)

= − 1

4εr

(
∇2 log εr

)
P (r)− 1

4εr
(∇ log εr) · ∇P (r)−

1

4εr
∇2P (r)

= − 1

4εr

[ (
∇2 log εr

)
+ (∇ log εr) · ∇+∇2

]
P (r).

(22.193)

Finally, assembling all the parts from Eqs. (22.183) and (22.193) the functional derivatives of Eq. (22.177)
become

δE(TE)

EM

δεr
=

h̄c

4(2π)D/2

∫ ∞
0

dT
T 1+D/2

〈〈
µr〈εrµr〉−3/2x(τ) e

−T〈VTE〉x(τ)

〉〉
x(τ)

δE(TE)

EM

δµr
=

h̄c

4(2π)D/2

∫ ∞
0

dT
T 1+D/2

×

〈〈
εr〈εrµr〉−3/2x(τ) e

−T〈VTE〉x(τ) − T
2µr

[ (
∇2 logµr

)
+ (∇ logµr) · ∇+∇2

]
〈εrµr〉−1/2x(τ) e

−T〈VTE〉x(τ)

〉〉
x(τ)

,

(22.194)
with analogous expressions for the TM case. Putting these functional derivatives into Eq. (22.182) leads to
the somewhat cumbersome expression

V (TE)

CP (r) = h̄c

4(2π)D/2

∫ ∞
0

dT
T 1+D/2

〈〈(
α0µr

ε0
+ β0µ0εr

)
〈εrµr〉−3/2x(τ) e

−T〈VTE〉x(τ)

− β0µ0T
2µr

[ (
∇2 logµr

)
+ (∇ logµr) · ∇+∇2

]
〈εrµr〉−1/2x(τ) e

−T〈VTE〉x(τ)

〉〉
x(τ)

.

(unrenormalized Casimir–Polder potential, TE polarization) (22.195)
For TM polarization, the expression is essentially the same, but with εr and µr reversed, and correspondingly
with α0/ε0 and β0µ0 reversed. Thus, the resulting TM expression is

V (TM)

CP (r) = h̄c

4(2π)D/2

∫ ∞
0

dT
T 1+D/2

〈〈(
β0µ0εr +

α0µr

ε0

)
〈εrµr〉−3/2x(τ) e

−T〈VTM〉x(τ)

− α0T
2ε0εr

[ (
∇2 log εr

)
+ (∇ log εr) · ∇+∇2

]
〈εrµr〉−1/2x(τ) e

−T〈VTM〉x(τ)

〉〉
x(τ)

.

(unrenormalized Casimir–Polder potential, TM polarization) (22.196)
In the case of a nonmagnetic atom (β0 = 0) and a nonmagnetic material (µr = 1 and VTE = 0), the TE
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expression simplifies drastically:

V (TE)

CP (r) = h̄cα0

4(2π)D/2ε0

∫ ∞
0

dT
T 1+D/2

〈〈
〈εr〉−3/2x(τ)

〉〉
x(τ)

(unrenormalized, nonmagnetic Casimir–Polder potential, TE) (22.197)
If we make the same assumptions in the TM case and further assume ∇εr(r) = 0, so that the atom is in a
region of constant εr (i.e., if the atom is in vacuum outside a dielectric body), then the TM expression also
simplifes, though not quite as much:

V (TM)

CP (r) = h̄cα0

4(2π)D/2ε0

∫ ∞
0

dT
T 1+D/2

〈〈
〈εr〉−3/2x(τ) e

−T〈VTM〉x(τ) − T
2εr
∇2

[
〈εr〉−1/2x(τ) e

−T〈VTM〉x(τ)

]〉〉
x(τ)

=
h̄cα0

4(2π)D/2ε0

∫ ∞
0

dT
T 1+D/2

〈〈(
〈εr〉−1x(τ) −

T
2εr
∇2

)
〈εr〉−1/2x(τ) e

−T〈VTM〉x(τ)

〉〉
x(τ)

.

(unrenormalized, nonmagnetic Casimir–Polder potential, TM) (22.198)
Recall that the magnetic path-integral potential is defined in (22.155) as

VTM(r) :=
1

2

[(
∇ log

√
εr
)2 −∇2 log

√
εr

]
.

(22.199)
(matter-induced potentials)

Also, note that in all these expressions, the paths (22.174) are defined after the functional derivatives such
that

x(τ) = r + BT (τ).
(22.200)

(stochastic path, scalar EM)
That is, the atomic location r in the interaction potential is the beginning and end-point of the paths
(Brownian bridges); the integral over this terminus point was lost in the functional differentiation. Note
that, had we derived analogous expressions to (22.197) and (22.198) for a magnetic atom interacting with a
magnetic surface, we would obtain the same results, but with the following changes: α0 is replaced by β0µ2,
εr is replaced by µr, ε0 is replaced by µ0, TE and TM polarizations are interchanged, and there is an extra
overall minus sign for both polarizations. That is, the geometry dependence would be the same, but the
total force would change sign.

22.3.5.1 Interaction with a Point Particle: Path-Integral View (TE Polarization)

Thus far, we have relied on a rather formal expression (22.182) for the Casimir–Polder potential in terms of
functional derivatives of the energy in path-integral form. To gain a more intuitive view of this interaction,
we can also exhibit this interaction directly in the path integral. To do this, let’s return to the path integral
(22.177), and specialize to the TE, nonmagnetic (µr = 1) energy

E(TE)

EM = − h̄c

2(2π)D/2

∫ ∞
0

dT
T 1+D/2

∫
dD−1x0

〈〈
〈εr〉−1/2x(τ)

〉〉
x(τ)

. (22.201)

Now let’s consider the interaction of a point-dipole atom with a dielectric body (or bodies), which amounts
to separating out the atomic contribution from the permittivity as

εr(x) −→ εr(x) +
α0

ε0
δD−1(x− r), (22.202)

where the atom (of static polarizability α0) is at position r. Making this replacement in the path integral
to obtain the Casimir–Polder potential,

V (TE)

CP (r) = − h̄c

2(2π)D/2

∫ ∞
0

dT
T 1+D/2

∫
dD−1x0

〈〈〈
εr(x) + (α0/ε0) δ

D−1(x− r)
〉−1/2

x(τ)

〉〉
x(τ)

= − h̄c

2(2π)D/2

∫ ∞
0

dT
T 1+D/2

∫
dD−1x0

〈〈[
〈εr(x)〉+

α0

ε0T
℘[x(τ); r]

]−1/2
x(τ)

〉〉
x(τ)

,

(22.203)
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where we have defined the point-occupation time in D − 1 dimensions

℘[y(t′); r] :=
∫ t

0

dt′ δD−1[y(t′)− r] (22.204)

for y(t) at r, assuming that the process y runs from 0 to t. Note that in one dimension, this reduces to
the local time of y, whereas in higher dimensions this statistic has the typical value of zero unless r is the
starting point of the process.

Expanding to lowest order in α0, using (a+ b)−1/2 = a−1/2 − b/2a3/2 +O(b2), we then have

V (TE)

CP (r) = − h̄c

2(2π)D/2

∫ ∞
0

dT
T 1+D/2

∫
dD−1x0

〈〈
〈εr(x)〉−1/2x(τ) −

α0℘[x(τ); r]
2ε0T 〈εr(x)〉3/2x(τ)

〉〉
x(τ)

. (22.205)

The first term disappears when we renormalize against the atom and εr body being separated by an arbitrarily
large distance. The integral renormalized thusly is

V (TE)

CP (r) = h̄c

4(2π)D/2ε0

∫ ∞
0

dT
T 1+D/2

∫
dD−1x0

〈〈
α0℘[x(τ); r]
T 〈εr(x)〉3/2x(τ)

〉〉
x(τ)

. (22.206)

Due to the presence of ℘, only paths x(τ) that intersect r will actually contribute to the path average due
to the presence of ℘ in the integrand. However, any path that passes through r is equivalent to a path
that begins at r, and the path itself defines an equivalence class of paths that are cyclic permutations of
the path in time, starting at different points along the path. For the purposes of the path average over the
permittivity, we will replace all such paths by the equivalent path at r, which is generated with the same
probability as each possible path by virtue of being a path. Thus, we replace the contribution of the path
x(τ) by the contribution of the path xr(τ), which is equivalent except that xr(0) = x(τ) = r,

V (TE)

CP (r) = h̄c

4(2π)D/2ε0

∫ ∞
0

dT
T 1+D/2

∫
dD−1x0

〈〈
α0℘[x(τ); r]
T 〈εr(x)〉3/2xr(τ)

〉〉
xr(τ)

, (22.207)

and by changing the ensemble average to reference xr instead of x, we have effectively dropped the null
contribution of any path that doesn’t pass through r. Then the only part of the integrand that depends on
x0 is the ℘ factor, since this refers to the original path x(τ). By shifting the path, we can carry out this
integral: ∫

dD−1x0 ℘[x(τ); r] =
∫
dD−1x0 ℘[xr(τ);x0] = T . (22.208)

The last equality here follows from integrating the definition (22.204) over all r. [This is essentially the same
argument we used in Eq. (22.187), but here in continuous notation.] Thus, we finally have

V (TE)

CP (r) = h̄cα0

4(2π)D/2ε0

∫ ∞
0

dT
T 1+D/2

〈〈
〈εr〉−3/2xr(τ)

〉〉
xr(τ)

. (22.209)

This is equivalent to the result (22.197) that we derived from functional differentiation.
Note that in this approach, we have perturbed the dielectric permittivity to introduce an atom without

regard for what fields, potentials, or sources to hold fixed, as we discussed at length in Section 22.2. Here,
we have little choice: the fields and sources (the sources being effective sources due to vacuum fluctuations)
are buried in the path integral (22.201), and so we assume that the whatever needs to be fixed is so.
This is justified from our procedure in Section 22.3.5, which was based on the more careful analysis of
electromagnetism.
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22.3.5.2 Interaction with a Point Particle: Path-Integral View (TM Polarization)

In the TM case, we can return to Eq. (22.177) for a nonmagnetic interaction,

E(TM)

EM = − h̄c

2(2π)D/2

∫ ∞
0

dT
T 1+D/2

∫
dD−1x0

〈〈
〈εr〉−1/2x(τ) e

−T〈VTM〉x(τ)

〉〉
x(τ)

, (22.210)

where we now must also deal with the potential defined in (22.155):

VTM(r) :=
1

8

(
∇ log εr

)2 − 1

4
∇2 log εr. (22.211)

Again letting
εr(x) −→ εr(x) +

α0

ε0
δD−1(x− r), (22.212)

we will expand to lowest order in the atomic polarizability. Note that we will simply expand in spite of the
delta function, which only makes sense when the delta function is regularized by a localized function of finite
height. This expansion is more involved than in the TE case, because of the nonlinear functions of εr in the
potential that appear inside the path average. Expanding the potential first, using log(a+ b) + b/a+O(b2),
the potential with the atom separated out is

VTM(x) −→
1

8

(
∇ log εr +

α0

ε0
∇ 1

εr
δD−1(x− r)

)2

− 1

4

(
∇2 log εr +

α0

ε0
∇2 1

εr
δD−1(x− r)

)
. (22.213)

Expanding to lowest order in α0,

VTM(x) −→
1

8

(
∇ log εr

)2 − 1

4
∇2 log εr −

α0

4ε0

[
(∇ log εr) · ∇ −∇2

] 1
εr
δD−1(x− r), (22.214)

gives the original potential plus an atomic interaction term. Thus, the replacement (22.212) in the path
integral (22.210) gives

E(TM)

EM = − h̄c

2(2π)D/2

∫ ∞
0

dT
T 1+D/2

∫
dD−1x0

×

〈〈〈
εr +

α0

ε0
δD−1(x− r)

〉−1/2
x(τ)

e
−T

〈
VTM−(α0/4ε0)[(∇ log εr)·∇−∇2]ε−1

r δD−1(x−r)
〉

x(τ)

〉〉
x(τ)

.

(22.215)
Now expanding to first order in α0, and dropping the zeroth-order component (which disappears in renor-
malization against the configuration sans atom), we obtain

E(TM)

EM = − h̄c

2(2π)D/2

∫ ∞
0

dT
T 1+D/2

∫
dD−1x0

×

〈〈
−
α0

〈
δD−1(x− r)

〉
x(τ)

2ε0〈εr〉3/2x(τ)

e−T〈VTM〉x(τ)

− α0T
4ε0〈εr〉1/2x(τ)

〈[
(∇ log εr) · ∇ −∇2

] 1
εr
δD−1(x− r)

〉
x(τ)

e−T〈VTM〉x(τ)

〉〉
x(τ)

.

(22.216)
Now we can integrate by parts twice on the second term, and note that the path average of the delta function
takes care of the x0-integration as in the last section. The result is

E(TM)

EM =
h̄cα0

2(2π)D/2ε0

∫ ∞
0

dT
T 1+D/2

×

〈〈
〈εr〉−3/2x(τ) e

−T〈VTM〉x(τ) − T
2εr

[
(∇2 log εr) + (∇ log εr) · ∇+∇2

]
〈εr〉−1/2x(τ) e

−T〈VTM〉x(τ)

〉〉
x(τ)

,

(22.217)
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which is equivalent to Eq. (22.196) for µr = 1 and β0 = 0, which we derived by functional differentiation,
and also to Eq. (22.198) if the gradient of εr vanishes at the atomic location.

22.4 Casimir–Polder Potential Near a Dielectric Half-Space

To illustrate the Casimir path integrals we have developed so far, we will evaluate some examples, in particular
for the Casimir–Polder path integrals (22.197) and (22.198) for an atom near a (planar) dielectric half-space.

22.4.1 TE Polarization: Strong Coupling

Let’s begin with a test-drive of the TE path integral (22.197) in a simple regime: a perfectly conducting,
planar surface:

V (TE)

CP (r) = h̄cα0

4(2π)D/2ε0

∫ ∞
0

dT
T 1+D/2

〈〈
〈εr〉−3/2x(τ)

〉〉
x(τ)

. (22.218)

Recall that we must renormalize this by subtracting the same path integral with the atom and surface
separated by an arbitrarily large distance. In this case it suffices to subtract the same integral with εr = 1:

V (TE)

CP (r) = h̄cα0

4(2π)D/2ε0

∫ ∞
0

dT
T 1+D/2

〈〈
〈εr〉−3/2x(τ) − 1

〉〉
x(τ)

. (22.219)

For a perfect conductor, the susceptibility of the surface is very large. If any part of the path touches
the surface, that part will dominate the path average, causing it to diverge, and thus the inverted average
〈εr〉−3/2x(τ) will vanish for any path that touches the surface. With the renormalization term, the quantity in the
ensemble average is 0 for paths not touching the surface, and −1 for paths touching the surface. With the
path average, the ensemble average is −1 times the probability that the paths touch the surface. The relevant
path statistic is the boundary-crossing probability, which for a standard Brownian bridge is [Eq. (17.380)]

Pcross(d) = e−2d
2

, (22.220)

where d is the distance of the boundary from the initial and final point of the bridge. The paths here,
defined in Eq. (22.200), go to time T , so they are effectively ‘‘larger’’ by a factor

√
T . We can adapt the

statistic by setting d = z/
√
T , where z is the distance to the surface. Note that this applies to only one of

the spatial dimensions; the others are irrelevant to the problem except for normalization. Then the path
integral becomes

V (TE)

CP (r) = − h̄cα0

4(2π)D/2ε0

∫ ∞
0

dT
T 1+D/2

Pcross

(
z√
T

)
= − h̄cα0

4(4π)D/2ε0zD

∫ ∞
0

dT
T 1+D/2

Pcross

(
1√
2T

)
= − h̄cα0

4(4π)D/2ε0zD

∫ ∞
0

dT
T 1+D/2

e−1/T ,

(22.221)

where we rescaled T in the second step to remove the z dependence from the crossing probability and to
introduce a factor of 2, and then we inserted the explicit crossing probability. The result is

V (TE)

CP (r) = − Γ(D/2)h̄cα0

4(4π)D/2ε0zD
.

(Casimir–Polder potential, TE strong coupling) (22.222)
Setting D = 4 we obtain

V (TE)

CP (r) = − h̄cα0

64π2ε0z4
= − 3h̄cα0

32π2ε0z4

(
1

6

)
,

(Casimir–Polder potential, TE strong coupling) (22.223)
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which is the standard result for the TE part of the total potential [see Eq. (14.214) and the following
discussion]. We can also write out the result for one-dimensional electromagnetism (D = 2),

V (TE)

CP (r) = − h̄cα0

16πε0z2
, (22.224)

which is not a standard result, but easily verified by mode-summation (Problem 22.9).

22.4.2 TE Polarization: Weak Coupling

Now, in the limit of a rarefied dielectric surface, we can write

εr(r) = 1 + χ(r), (22.225)

and calculate to first order in the susceptibility χ. In this limit, the TE path integral (22.197) becomes

V (TE)

CP (r) = − 3h̄cα0

8(2π)D/2ε0

∫ ∞
0

dT
T 1+D/2

〈〈
〈χ〉x(τ)

〉〉
x(τ)

, (22.226)

where we have already dropped the χ-independent (zeroth-order) term in renormalization. For a dielectric
half-space, we have

χ(z) = χΘ(−z), (22.227)

where the dielectric occupies z < 0 and we will compute the potential for z > 0. The path integral then
becomes

V (TE)

CP (r) = − 3h̄cα0χ

8(2π)D/2ε0

∫ ∞
0

dT
T 1+D/2

〈〈
〈Θ(−z)〉x(τ)

〉〉
x(τ)

. (22.228)

The relevant statistic here is the sojourn time, measuring the time a process y(t) spends beyond a barrier
at d [Eq. (17.499):

Ts[y(t); d] :=

∫ t

0

dt′Θ[y(t′)− d]. (22.229)

Thus, the potential is

V (TE)

CP (r) = − 3h̄cα0χ

8(2π)D/2ε0

∫ ∞
0

dT
T 2+D/2

〈〈
Ts[x(τ); z]

〉〉
x(τ)

, (22.230)

where we have shifted the coordinates such that x(0) = x(τ) = 0, and we have reflected the coordinates in
view of the martingale nature of x(τ). We will again want to transform the sojourn time of x(τ) into the
sojourn time of a standard Brownian bridge, again with τ = tT :

Ts[x(τ); z] =

∫ T
0

dτ Θ[x(τ)− z]

= T
∫ 1

0

dtΘ[x(tT )− z]

= T
∫ 1

0

dtΘ[
√
T B(t)− z]

= T
∫ 1

0

dtΘ

[
B(t)− z√

T

]
= T Ts

[
B(t);

z√
T

]
.

(22.231)
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We then have the potential

V (TE)

CP (r) = − 3h̄cα0χ

8(2π)D/2ε0

∫ ∞
0

dT
T 1+D/2

〈〈
Ts

[
B(t);

z√
T

]〉〉
B(t)

= − 3h̄cα0χ

8(4π)D/2ε0zD

∫ ∞
0

dT
T 1+D/2

〈〈
Ts

[
B(t);

1√
2T

]〉〉
B(t)

,

(22.232)

where we have scaled away z in the integral by letting T −→ 2z2T . The mean sojourn time for a standard
Brownian bridge is given by [Eq. (17.588)]

〈〈
Ts[B(t); d]

〉〉
=
e−2d

2

2
−
√
π

2
d erfc

[√
2 d
]
, (22.233)

and so

V (TE)

CP (r) = − 3h̄cα0χ

16(4π)D/2ε0zD

∫ ∞
0

dT
T 1+D/2

[
e−1/T −

√
π

T
erfc

(
1√
T

)]
. (22.234)

Carrying out the integral, the result is

V (TE)

CP (r) = − 3Γ(D/2)h̄cα0χ

16(D + 1)(4π)D/2ε0zD
.

(Casimir–Polder potential, TE weak coupling) (22.235)
Putting D = 4, we find the result

V (TE)

CP (r) = − 3h̄cα0

32π2ε0z4

( χ
40

)
.

(Casimir–Polder potential, TE weak coupling) (22.236)
This is the standard result for the TE part of the total potential in this regime [see Eq. (14.214) and the
following discussion]. Again, the alternate one-dimensional (D = 2) case is

V (TE)

CP (r) = − h̄cα0χ

64πε0z2
, (22.237)

as can be verified by mode-summation (Problem 22.8).

22.4.3 TE Polarization: General Coupling

Using basically the same methods, in the TE case at least, we can derive the potential for an atom interacting
with a dielectric half-space of arbitrary (dispersionless) susceptibility χ. Returning to the TE path integral
(22.197) after renormalization,

V (TE)

CP (r) = h̄cα0

4(2π)D/2ε0

∫ ∞
0

dT
T 1+D/2

〈〈
〈εr〉−3/2x(τ) − 1

〉〉
x(τ)

, (22.238)

In this case, we can write the path average for the permittivity as

〈εr〉x(τ) =〈1 + χ〉x(τ) = 1 + χTs

[
B(τ);

z√
T

]
, (22.239)

in terms of the sojourn time for the path, which represents the fraction of the path inside the dielectric,
which is a distance z from the atom, and we have rescaled the paths into standard Brownian bridges. Then
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the potential in terms of the sojourn time is

V (TE)

CP (r) = h̄cα0

4(2π)D/2ε0

∫ ∞
0

dT
T 1+D/2

〈〈(
1 + χTs

[
B(τ);

z√
T

])−3/2
− 1

〉〉
B(τ)

= − h̄cα0

4(4π)D/2ε0zD

∫ ∞
0

dT
T 1+D/2

〈〈
1−

(
1 + χTs

[
B(τ);

1√
2T

])−3/2〉〉
B(τ)

,

(22.240)

To compute the path average here, we will write

〈〈
1− (1 + χTs)

α
〉〉

=

∫ 1

0

dx [1− (1 + χx)α] fTs(x)

=

∫ 1

0

dx [1− (1 + χx)α]

[√
4(1− x)
πxT

e−1/(1−x)T +

(
1− 2

T

)
e−1/T erfc

(√
x

(1− x)T

)]
,

(22.241)

where we are integrating against the probability density for the standard Brownian bridge from Eq. (17.584),

fTs(x) =
[
1− e−2d

2
]
δ(x− 0+) +

√
8d2(1− x)

πx
e−2d

2/(1−x) + (1− 4d2) e−2d
2

erfc

(√
2d2x

1− x

)
, (22.242)

with d = 1/
√
2T . Then computing the T integral for D = 4,∫ ∞

0

dT
T 3

〈〈
1− (1 + χTs)

α
〉〉

=

∫ 1

0

dx [1− (1 + χx)α]

∫ ∞
0

dT
T 3

[√
4(1− x)
πxT

e−1/(1−x)T +

(
1− 2

T

)
e−1/T erfc

(√
x

(1− x)T

)]

=

∫ 1

0

dx [1− (1 + χx)α]

[
3(1−

√
x)2

2
√
x

]
(22.243)

which for α = −3/2 becomes∫ ∞
0

dT
T 3

〈〈
1− (1 + χTs)

−3/2
〉〉

= 1 +
6

χ
− 3
√
1 + χ

χ
−

3 sinh−1√χ
χ3/2

. (22.244)

Putting this into Eq. (22.240) with D = 4,

V (TE)

CP (r) = − 3h̄cα0

32π2ε0z4

(
1

6
+

1

χ
−
√
1 + χ

2χ
−

sinh−1√χ
2χ3/2

)
.

(Casimir–Polder potential, TE) (22.245)
The parenthetic quantity is ηTE from the Green-tensor treatment in the full electromagnetic case [Eq. (14.214)],
and the rest of the result is the strong-coupling result from full electromagnetism. This factor is χ/40 and
1/6 for small and large χ, respectively, demonstrating the consistency with the weak-coupling calculation
(22.236) and the strong-coupling version (22.223).

22.4.4 TM Polarization: Strong Coupling

To begin, a disclaimer: in this section we will do something wrong, for illustrative purposes. The idea is
to now switch to the TM path integral, which is substantially more complicated due to the presence of a
divergent potential. It’s important to be careful with this potential in order to avoid trouble.
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For the TM path integral, evaluated near a planar dielectric interface, we return to Eq. (22.198),

V (TM)

CP (r) = h̄cα0

4(2π)D/2ε0

∫ ∞
0

dT
T 1+D/2

〈〈(
〈εr〉−1x(τ) −

T
2εr
∇2

)
〈εr〉−1/2x(τ) e

−T〈VTM〉x(τ)

〉〉
x(τ)

. (22.246)

We will assume the atom at position r to be outside the dielectric body, in which case we can set εr(r) = 1:

V (TM)

CP (r) = h̄cα0

4(2π)D/2ε0

∫ ∞
0

dT
T 1+D/2

〈〈(
〈εr〉−1x(τ) −

T
2
∇2

)
〈εr〉−1/2x(τ) e

−T〈VTM〉x(τ)

〉〉
x(τ)

. (22.247)

There are two main, extra complications here that we didn’t have in the TE case: the potential and the
derivative. The derivative will be easy to handle, but let’s first take a closer look at the potential.

From Eq. (22.155) the potential is

VTM(r) =
1

2

[(
∇ log

√
εr
)2 −∇2 log

√
εr

]
. (22.248)

If the dielectric has susceptibility χ, then we can write the permittivity as

εr(z) = 1 + χΘ(z) (22.249)

for a vacuum–dielectric interface, if the dielectric occupies z > 0 (we choose this convention to keep the signs
simple). Then putting this into the potential, we have a rather divergent mess:

VTM(r) =
1

2

[(
log
√

1 + χ
)2
δ2(z)−

(
log
√

1 + χ
)
δ′(z)

]
. (22.250)

The first term is divergent in the path average of any nonvanishing path (with unit probability). This is not
terribly problematic, because it means that any path touching the surface, the (unrenormalized) contribution
of that path vanishes, which is precisely what should happen in the strong-coupling limit. However, this
shouldn’t happen for arbitrary χ, which is where we are at the moment, so this term is problematic. The
second term in the potential is also problematic: the derivative of the delta function picks out the derivative
of the path in the path average, which is divergent (either positive or negative) [see the local-time derivative
in Eq. (17.660) and the following discussion]. Here, if the overall term swings large and positive, the result
is the same as for the second term. If it swings large and negative, then problems can happen, as now the
exponential factor can become arbitrarily large.

But let’s ignore these problems for the moment and try to work with the potential in the strong-
coupling limit. To do this, we will assume that, for sufficiently large χ, that the second term in the potential
dominates the first, because asymptotically log2 χ� logχ. This only really makes sense if we regularize the
delta functions, replacing them with corresponding narrow and sharply (but finitely) peaked functions. To
proceed, we need to evaluate (renormalized) path integrals of the form

I(D,α; r) =
∫ ∞
0

dT
T 1+D/2

〈〈
〈εr〉−αx(τ) e

−T〈VTM〉x(τ) − 1

〉〉
x(τ)

. (22.251)

The first term in the path average vanishes whenever the path touches the surface, which is a distance z
away. Thus, we are back to the crossing probability as in Section 22.4.1. Using the Brownian-bridge crossing
probability of e−2d2 , and then setting d = z/

√
T as before, we have

I(D,α; r) = −
∫ ∞
0

dT
T 1+D/2

Pcross

(
z√
T

)
= −2−D/2z−D

∫ ∞
0

dT
T 1+D/2

Pcross

(
1√
2T

)
= −2−D/2z−D

∫ ∞
0

dT
T 1+D/2

e−1/T

= −2−D/2z−D Γ(D/2).

(22.252)
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Then writing Eq. (22.247) in terms of this integral as

V (TM)

CP (r) = h̄cα0

4(2π)D/2ε0

[
I(D, 3/2; z)− 1

2
∂ 2
z I(D − 2, 1/2; z)

]
= − h̄cα0

4(4π)D/2ε0

[
z−D Γ(D/2)− ∂ 2

z z
−(D−2) Γ[(D − 2)/2]

]
= − h̄cα0

4(4π)D/2ε0zD

[
Γ(D/2)− (D − 2)(D − 1)Γ[(D − 2)/2]

]
.

(22.253)

Simplifying the last factor, we find

V (TM)

CP (r) = − (3− 2D)Γ(D/2)h̄cα0

4(4π)D/2ε0zD
.

(Casimir–Polder potential, TM strong coupling) (22.254)
Note that we were a bit slippery here with the derivative. The derivative nominally operates on the atomic
position, but this is equivalent to letting it operate on the atom-surface distance. Equivalently, we could
also fix the atom and let the derivative operator work on the surface position.

In the case D = 4, we have

V (TM)

CP (r) = 5h̄cα0

64π2ε0z4
=

3h̄cα0

32π2ε0z4

(
5

6

)
(wrong!), (22.255)

which is the standard result for the TM part of the total potential [see Eq. (14.214) and the following
discussion], except for an overall sign, as this potential should be negative (attractive). Note that in 1D
electromagnetism (D = 2), Eq. (22.254) becomes

V (TM)

CP (r) = h̄cα0

16πε0z2
(wrong!), (22.256)

which should be identical to the TE result (22.224): in 1D, all waves are normally incident, so the distinction
between TE and TM waves is irrelevant. However, we are again off by an overall sign.

What happened? The flaw is in dropping the logχ term in the potential compared to the log2 χ term,
which is invalid even in the limit χ −→∞. It is the balance of the two terms in the potential that is critical
in obtaining a sensible answer (though we will see in the next section that one of these terms can be dropped
for small χ). We will see this minus sign showing up later in Section 22.8.6.1 when we treat the TM potential
properly in the limit of large χ.

22.4.4.1 Fluctuations and the Interface Potential

Now that we see how the strong-coupling limit works here (or doesn’t work, as it were), we can wax a bit
philosophical. It was the first (δ2) term in the potential (22.250) that produced the strong-coupling limit
(albeit with the wrong sign), and evidently the second (δ′) term is the one that produces deviations from
it. We will see in the next calculation that for small χ, the first (δ2) term is ignorable, and the second (δ′)
term yields the correct result. In intermediate regimes, it is the interplay of these two terms that conspire
to give the correct result. As we have seen, it is even true in the strong-coupling regime that this interplay
must hold, since the two terms must conspire to produce an overall minus sign, compared to what we would
expect for only the (δ2) term.

In terms of this interplay, one can intuitively think of a path touching an interface with some inter-
mediate χ. The second term will always attempt to make the potential large and positive, trying to bring
about the strong-coupling result. The first term can swing either way as the path crosses the surface, so most
of the time the strong-coupling result will indeed happen. Recall that in the unrenormalized path integral,
the strong-coupling result is simply a null integrand. However, it may happen that as the path crosses the
surface, the total potential will swing large and negative. In this case, rather than having a null contribu-
tion, the integrand can be huge. The relative rarity of these events tempers their large contribution, and the
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resulting average, while incorporating large fluctuations, converges to the correct intermediate result. Note
that the T integral rescales the paths, so even for a particular path, this outer integral already averages over
all these possibilities as different parts of the path are in contact with the interface.

22.4.5 TM Polarization: Weak Coupling

In the case of weak coupling, we can linearizing and then regularize the path integral (although technically
the regularization should come before the linearization). In this case, we again have the potential

VTM(r) =
1

2

[(
∇ log

√
εr
)2 −∇2 log

√
εr

]
. (22.257)

with permittivity
εr(z) = 1 + χΘ(z), (22.258)

so that
VTM(r) =

1

2

[(
log
√

1 + χ
)2
δ2(z)−

(
log
√

1 + χ
)
δ′(z)

]
, (22.259)

but now in the limit of small χ. Expanding to first order in χ, we can discard the first term and obtain

VTM(r) = −
χ

4
δ′(z) = −χ

4
∂ 2
z Θ(z). (22.260)

Note that by rewriting the derivative of the delta function in terms of the Heaviside function, we are already
implementing our regularization strategy for the divergent potential (which is the only way in which an
expansion like this could possibly make sense). Now in the path integral (22.247),

V (TM)

CP (r) = h̄cα0

4(2π)D/2ε0

∫ ∞
0

dT
T 1+D/2

〈〈(
〈εr〉−1x(τ) −

T
2
∇2

)
〈εr〉−1/2x(τ) e

−T〈VTM〉x(τ)

〉〉
x(τ)

, (22.261)

we can insert the potential and permittivity, and expand to first order in χ. The result is

V (TM)

CP (r) = h̄cα0χ

4(2π)D/2ε0

∫ ∞
0

dT
T 1+D/2

〈〈(
− 3

2
+
T
2
∂ 2
z −
T 2

8
∂ 4
z

)
〈Θ(z)〉x(τ)

〉〉
x(τ)

(22.262)

after renormalization against vacuum. Identifying the path average as the sojourn time for x(τ) starting a
distance z away from the surface, or equivalently a standard Brownian bridge sojourning a distance z/

√
T

from the surface [see Eqs. (22.231) and the associated discussion], we have

V (TM)

CP (r) = − h̄cα0χ

4(2π)D/2ε0

∫ ∞
0

dT
T 1+D/2

〈〈(
3

2
− T

2
∂ 2
z +
T 2

8
∂ 4
z

)
Ts

[
B(t);

z√
T

]〉〉
B(t)

= − h̄cα0χ

4(4π)D/2ε0

∫ ∞
0

dT
T 1+D/2

〈〈(
3

2
− T ∂ 2

z +
T 2

2
∂ 4
z

)
Ts

[
B(t);

z√
2T

]〉〉
B(t)

.

(22.263)

Here, we have integrals to evaluate of the form

I(D,α; z) = ∂ αz

∫ ∞
0

dT
T 1+D/2

〈〈
Ts

[
B(t);

z√
2T

]〉〉
B(t)

. (22.264)

We have already computed the integral here, back in the solution to Eq. (22.234), so

I(D,α; z) = ∂ αz
Γ(D/2)

(D + 1) zD
= (−1)α Γ(D/2)Γ(D + α)

2(D + 1)Γ(D) zD+α
. (22.265)
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Note here that one of the cases we need is I(0, 4, z) = 12/z2, which must be done carefully by dimensional
regularization, as we will see. For example, if the differentiation is performed naïvely here, by setting D = 0
too soon, for example, a spurious null result would obtain. The correct (dimensionally regularized) procedure
is to do the differentiation before fixing D, and then taking the limit D −→ 0.

Now writing Eq. (22.262) in terms of this integral as

V (TM)

CP (r) = − h̄cα0χ

4(4π)D/2ε0

(
3

2
I(D, 0; z)− I(D − 2, 2; z) +

1

2
I(D − 4, 4; z)

)
= − h̄cα0χ

4(4π)D/2ε0zD

(
3Γ(D/2)

4(D + 1)
− Γ[(D − 2)/2] Γ(D)

2(D − 1)Γ(D − 2)
+

Γ[(D − 4)/2] Γ(D)

4(D − 3)Γ(D − 4)

)
.

(22.266)

Simplifying the last factor, the result is

V (TM)

CP (r) = − h̄cα0χ

4(4π)D/2ε0zD

(
[4D(D − 1)− 5]Γ(D/2)

4(D + 1)

)
.

(Casimir–Polder potential, TM weak coupling) (22.267)
For D = 4, the last factor is 43/20, and we have

V (TM)

CP (r) = − 3h̄cα0χ

32π2ε0z4

(
43

120

)
.

(Casimir–Polder potential, TM weak coupling) (22.268)
This is the standard result in the small-χ regime for the TM part of the total potential [see Eq. (14.214) and
the following discussion]. For D = 2, the last factor is 1/4, and so

V (TM)

CP (r) = − h̄cα0χ

64πε0z2
. (22.269)

This is equivalent to the TE result (22.237), as it should be in 1D electromagnetism, where the distinction
between the polarizations is lost.

Evidently, in obtaining results that are not quite correct, we have played fast and loose with the
divergent potential. Although it should in principle be possible to regularize the potential, in the limit where
a sharp interface is a good idealization, the behavior of the potential path average is a violent one, swinging
between zero and a large positive value. What we are seeing here is that in a perturbative treatment that
misses this behavior, the predictions aren’t correct.

22.5 Fresnel Reflection Coefficients

In applying the method that follows, we will repeatedly encounter expressions involving the Fresnel reflection
coefficients at a dielectric interface, but in a somewhat disguised form. Thus, we will have a short digression
and develop some expressions that will greatly simplify algebra and interpretation in later calculations.

22.5.1 TE Reflection Coefficient: Vacuum–Dielectric Interface

The Fresnel reflection coefficient for TE polarization is given by15

rTE(θ1) =
n1 cos θ1 − n2 cos θ2
n1 cos θ1 + n2 cos θ2

, (22.270)

where the incident angle is θ1 from the medium of index n1 into the medium of index n2, and we have Snell’s
law,

n1 sin θ1 = n2 sin θ2, (22.271)
which determines the angle θ2 in the transmitting medium in terms of θ1.

15Daniel A. Steck, Classical and Modern Optics (2006), Chapter 9, available online at http://steck.us/teaching/. Note
that rTE ≡ rS.

http://steck.us/teaching/
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22.5.1.1 Vacuum-Side Reflection (TE)

For a vacuum–dielectric interface (incident from the vacuum side), we can put n1 = 1 and n 2
2 = 1+χ, where

χ is the susceptibility of the medium, to obtain

rTE(θ1) =
cos θ1 −

√
1 + χ cos θ2

cos θ1 +
√
1 + χ cos θ2

=
cos θ1 −

√
(1 + χ)(1− sin2 θ2)

cos θ1 +
√

(1 + χ)(1− sin2 θ2)

=
cos θ1 −

√
1 + χ− sin2 θ1

cos θ1 +
√

1 + χ− sin2 θ1

=
cos θ1 −

√
χ+ cos2 θ1

cos θ1 +
√
χ+ cos2 θ1

.

(22.272)

Now suppose introduce the shorthand notation

λ = cos2 θ1. (22.273)

Then the reflection coefficient becomes

rTE(λ;χ) =

√
λ−
√
λ+ χ√

λ+
√
λ+ χ

.

(TE reflection coefficient, vacuum side) (22.274)
Note that we are explicitly indicating the dependence on the medium parameter χ and the angle parameter
λ.

22.5.1.2 Dielectric-Side Reflection (TE)

If a wave is incident from the dielectric side, the reflection coefficient takes on a somewhat different form.
The general form (22.270) still applies, but we now take n2 = 1 and n 2

1 = 1 + χ:

rTE(θ1) =

√
1 + χ cos θ1 − cos θ2√
1 + χ cos θ1 + cos θ2

=

√
1 + χ cos θ1 −

√
1− sin2 θ2

√
1 + χ cos θ1 +

√
1− sin2 θ2

=

√
1 + χ cos θ1 −

√
1− (1 + χ) sin2 θ1

√
1 + χ cos θ1 +

√
1− (1 + χ) sin2 θ1

=

√
1 + χ cos θ1 −

√
(1 + χ) cos2 θ1 − χ√

1 + χ cos θ1 +
√
(1 + χ) cos2 θ1 − χ

.

(22.275)

Again identifying λ with cos2 θ1, we can then write

r′TE(λ;χ) =

√
λ(1 + χ)−

√
λ(1 + χ)− χ√

λ(1 + χ) +
√
λ(1 + χ)− χ

,

(TE reflection coefficient, dielectric side) (22.276)
where the prime indicates that the sense of the reflection is from the dielectric side, compared to the vacuum-
side coefficient in Eq. (22.274). Note that for the same incidence angles on each side, these two expressions
should be equivalent up to a minus sign. However, the forms here are different because λ refers to different
angles in each case.
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22.5.2 TM Reflection Coefficient: Vacuum–Dielectric Interface

The reflection coefficient for TM polarization takes only a slightly different form: 16

rTM(θ1) =
n1 cos θ2 − n2 cos θ1
n1 cos θ2 + n2 cos θ1

. (22.277)

Again, we will work out what this looks like if we replace cos2 θ1 with λ, for a wave incident on either side.

22.5.2.1 Vacuum-Side Reflection (TM)

For incidence from the vacuum side we again put we can put n1 = 1 and n 2
2 = 1 + χ to obtain

rTM(θ1) =
cos θ2 −

√
1 + χ cos θ1

cos θ2 +
√
1 + χ cos θ1

=

√
1− sin2 θ1 −

√
1 + χ cos θ1√

1− sin2 θ2 +
√
1 + χ cos θ1

=

√
1 + χ− sin2 θ1 − (1 + χ) cos θ1√
1 + χ− sin2 θ1 + (1 + χ) cos θ1

=

√
χ+ cos2 θ1 − (1 + χ) cos θ1√
χ+ cos2 θ1 + (1 + χ) cos θ1

.

(22.278)

With λ = cos2 θ1, we can write

rTM(λ;χ) =

√
λ+ χ−

√
λ(1 + χ)

√
λ+ χ+

√
λ(1 + χ)

,

(TM reflection coefficient, vacuum side) (22.279)
for a the reflection coefficient of a TM vacuum-incident wave.

22.5.2.2 Dielectric-Side Reflection (TM)

From the dielectric side, we take n2 = 1 and n 2
1 = 1 + χ, and obtain

rTM(θ1) =

√
1 + χ cos θ2 − cos θ1√
1 + χ cos θ2 + cos θ1

=

√
(1 + χ)(1− sin2 θ2)− cos θ1√
(1 + χ)(1− sin2 θ2) + cos θ1

=

√
(1 + χ)(1− sin2 θ2)− cos θ1√
(1 + χ)(1− sin2 θ2) + cos θ1

=

√
(1 + χ)[1− (1 + χ) sin2 θ1]− cos θ1√
(1 + χ)[1− (1 + χ) sin2 θ1] + cos θ1

=

√
(1 + χ)[1− (1 + χ)(1− cos2 θ1)]− cos θ1√
(1 + χ)[1− (1 + χ)(1− cos2 θ1)] + cos θ1

=

√
(1 + χ)[(1 + χ) cos2 θ1 − χ]− cos θ1√
(1 + χ)[(1 + χ) cos2 θ1 − χ] + cos θ1

.

(22.280)

16Daniel A. Steck, Classical and Modern Optics (2006), Chapter 9, available online at http://steck.us/teaching/. Note
that rTM ≡ rP in the notation there. Note also that the convention here is that rTM = +1 if the reflected wave is in phase with
the incident wave, while the opposite-sign convention is common. In particular, this means that rTE = rTM at normal incidence
onto the same interface.

http://steck.us/teaching/
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Thus, we can write

r′TM(λ;χ) =

√
(1 + χ)[(1 + χ)λ− χ]−

√
λ√

(1 + χ)[(1 + χ)λ− χ] +
√
λ
,

(TM reflection coefficient, vacuum side) (22.281)
where again the prime denotes incidence from the dielectric side.

22.6 Laplace–Mellin Method for Evaluating Path Integrals

In the solutions we have gotten so far, we have required probability densities for path statistics to evaluate
the path integrals. In the TM case, the path integral is complicated by the presence of multiple statistics
(path average of the potential and a function of the sojourn time), so in these cases we would need the joint
density of path statistics, which are hard to come by in closed form. In the strong-coupling TM limit, we
were able to reduce the problem to something manageable, so that we didn’t need a complicated statistic.
In the weak-coupling TM limit we were also able to simplify the path integral, but not without running
into problems. All this motivates a more general method for evaluating path integrals that does not rely on
specific probability densities for path statistics. We will begin by introducing some useful transforms and
general integral relations.

22.6.1 Laplace and Mellin Transforms

For a function f(t), recall that we can define the Laplace transform by

L [f ](s) ≡ F (s) :=
∫ ∞
0

dt e−stf(t).
(22.282)

(Laplace transform)

We can also define the Mellin transform via

M [f ](z) ≡ F(z) :=

∫ ∞
0

dt tz−1f(t) =

∫ ∞
0

dt

t1−z
f(t).

(22.283)
(Mellin transform)

These transforms obviously are only defined whenever the integrals converge. However, when they are
sensible, the Mellin transform is invertible in the same sense as the Laplace transform, although it is somewhat
more obscure.

Suppose that you have a Laplace transform of a function, but you want the Mellin transform. Obviously
you could invert the Laplace transform and then stick the result into the Mellin integral. But what if the
original function is not readily available? Here we will show that you can obtain the Mellin transform directly
from the Laplace transform by computing a Mellin transform of the Laplace transform itself :17

M [f ](z) =
1

Γ(1− z)
M
[
L [f ]

]
(1− z).

(Laplace–Mellin conversion formula) (22.284)
In more direct notation, we can also write this as

F(z) =
1

Γ(1− z)

∫ ∞
0

ds s−zF (s).
(22.285)

(Laplace–Mellin conversion formula)

Here,

Γ(z) =

∫ ∞
0

dt tz−1e−t = M
[
e−t
]
(z) (22.286)

17J. S. Lew, ‘‘On Some Relations between the Laplace and Mellin transforms,’’ IBM Journal of Research and Development
19, 582 (1975) (doi: 10.1147/rd.196.0582).

http://dx.doi.org/10.1147/rd.196.0582
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is the usual gamma function.
To show this, we begin by writing out the Mellin transform of the Laplace transform F (s) explicitly:

M
[
L [f ]

]
(z) = M

[
F
]
(z) =

∫ ∞
0

ds sz−1F (s) =

∫ ∞
0

ds sz−1
∫ ∞
0

dt e−stf(t). (22.287)

Then changing z to 1− z,

M
[
L [f ]

]
(1− z) =

∫ ∞
0

ds s−z
∫ ∞
0

dt e−stf(t). (22.288)

Changing the order of integration gives

M
[
L [f ]

]
(1− z) =

∫ ∞
0

dt f(t)

∫ ∞
0

ds s−z e−st, (22.289)

and scaling s −→ s/t,

M
[
L [f ]

]
(1− z) =

∫ ∞
0

dt tz−1f(t)

∫ ∞
0

ds s−z e−s. (22.290)

Using

Γ(1− z) =
∫ ∞
0

ds s−ze−s, (22.291)

and recognizing the remaining t integral as F(z), we have

M
[
L [f ]

]
(1− z) = M [f ](z)Γ(1− z), (22.292)

which is the result we wanted.
Note that we relied on a coordinate transformation that is ill-defined at the limits of integration. The

integrations should really be taken between finite limits a and b, where 0 < a < b, and then the limits a −→ 0
and b −→∞ should be taken at the end.

22.6.2 Laplace Transform and Inverse Moments

Recall that the Laplace transform of a probability density f(x)〈〈
e−sx

〉〉
=

∫ ∞
0

ds e−sxf(x) = L [f ](s) (22.293)

acts as a moment-generating function, where the moments arise via differentiation:〈〈
xn
〉〉

= (−1)n ∂ ns
〈〈
e−sx

〉〉∣∣∣
s=0

. (22.294)

It is also possible (and useful) to use the moment-generating function for shifted, inverse moments,18

1

Γ(α)

∫ ∞
0

ds sα−1e−sβ
〈〈
e−sx

〉〉
=

〈〈
1

(x+ β)α

〉〉
,

(shifted-inverse moment formula) (22.295)
which holds for any α and β where the integrals make sense (α is not necessarily an integer).

To show this, first we start with Eq. (22.284), setting z = 1− α:

M [f ](1− α) = 1

Γ(α)
M
[
L [f ]

]
(α). (22.296)

18For this and other related formulae, see Edward B. Rockower, ‘‘Integral Identities for Random Variables,’’ The American
Statistician 42, 68 (1988) (doi: 10.1080/00031305.1988.10475526).

http://dx.doi.org/10.1080/00031305.1988.10475526
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Writing out the Mellin-transform integrals from the definition (22.283),∫ ∞
0

dxx−αf(x) =
1

Γ(α)

∫ ∞
0

ds sα−1L [f ](s). (22.297)

Then writing out the Laplace transform as an expectation value,∫ ∞
0

dxx−αf(x) =
1

Γ(α)

∫ ∞
0

ds sα−1
〈〈
e−sx

〉〉
. (22.298)

Finally, changing variables via x −→ x+ β and identifying the left-hand side as an expectation value gives
the desired result.

22.6.3 Feynman–Kac Formula: Review

The third ingredient we will need in this method is the Feynman–Kac formula (Section 17.11). Recall that
the Feynman–Kac formula states that the distribution f(x, t) of solutions to stochastic differential equations
can be written both as the solution of a diffusion-type PDE and as an ensemble average over stochastic
trajectories. In particular, we will be interested in the steady-state solution f(x) ≡ f(x, t −→ ∞) for
time-independent damping and driving functions, in which case the Feynman–Kac formula for exponentially
stopped paths with stopping rate λ [from Eqs. (17.438) and (17.440)] is

f(x) =

∫ ∞
0

dt

〈〈
g[x+W (t)] exp

(
−λt− s

∫ t

0

dt′ V [x+W (t′)]

)〉〉
,

(Feynman–Kac formula) (22.299)
where the function f(x) also satisfies the ODE

f ′′(x) = 2
[
λ+ sV (x)

]
f(x)− 2g(x).

(22.300)
(PDE for Feynman–Kac formula)

By choosing the functions V (x) and g(x) appropriately, we can derive various statistics about Wiener paths
and Brownian bridges (see Section 17.12.1 and following sections). The basic idea is to obtain an analytic
solution to the ODE (22.300). Then observing that the right-hand side of Eq. (22.299) has the form of a
double Laplace transform in the variables λ and s, the idea is to invert the Laplace transforms, thereby
obtaining the desired probability density for a statistic (the density here is hidden in the ensemble average).
Choosing V (x) = Θ(x), for example, gives the sojourn-time statistic, and V (x) = δ(x) gives the local time.
Choosing g(x) = 1 gives statistics for Wiener paths, while choosing g(x) = Θ(x) or eikx give access to
statistics for Brownian bridges. Many variations on this theme are possible.19

22.6.4 Application to Worldline Path Integrals

The point of all this is to apply these pieces to evaluating worldline path integrals, schematically of the form

I =

∫ ∞
0

dT
T 1+D/2

〈〈
〈γ〉−αBT (τ) e

−T〈V〉BT (τ)

〉〉
BT (τ)

, (22.301)

where we have shifted away the center x0 of the paths, and γ(x) and V(x) are some scalar functions of
position. Then the general strategy is:

1. Design a related path integral of the form (22.299), where V must reflect both sγ (where s is an
auxiliary parameter) and V. Choose g(x) to pin the path W (t) to 0 at T .

19A. N. Borodin and I. A. Ibragimov, Limit Theorems for Functionals of Random Walks (Proceedings of the Steklov Institute
of Mathematics, vol. 195) (American Mathematical Society, 1995).
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2. Solve the ODE (22.300) to obtain a solution to the path integral (22.299).

3. Use the Mellin-transform formula (22.284) to change the λ Laplace transform into the T integral.

4. Use the inverse-moment formula (22.295) (with β = 0) to convert the s Laplace transform to install
the 〈γ〉−αBT (τ) factor.

The details vary with the details of the path integrals, so we will move on to solving some path integrals.

22.7 TE Casimir–Polder Path Integral: Dielectric Interface

As a first example, we will apply this method to the TE path integral for the Casimir–Polder potential in
Eq. (22.238),

V (TE)

CP (r) = h̄cα0

4(2π)D/2ε0

∫ ∞
0

dT
T 1+D/2

〈〈
〈εr〉−3/2x(τ) − 1

〉〉
x(τ)

, (22.302)

for a vacuum–dielectric interface.

22.7.1 Feynman–Kac Formula

Since the path integral involves the path average of εr in one dimension, the relevant statistic is the sojourn
time at distance d:

Ts[y(t); d] :=

∫ t

0

dt′Θ[y(t′)− d]. (22.303)

We have already set up the Feynman–Kac formula to obtain the relevant path integral with exponential
stopping. The form that we desire is Eq. (17.563)

L(λ, s; d) :=

∫ ∞
0

dt√
t
e−λt

〈〈
exp (−sTs[Bt; d])

〉〉
=

√
π

λ

[
1− e−2

√
2λ d

(√
λ+ s−

√
λ

√
λ+ s+

√
λ

)]

=

√
π

λ

[
1 + rTE(λ; s) e

−2
√
2λ d
]
,

(sojourn-time solution to Feynman–Kac formula) (22.304)
where we are using the TE reflection coefficient (22.274):

rTE(λ;χ) =

√
λ−
√
λ+ χ√

λ+
√
λ+ χ

. (22.305)

Again, Eq. (22.304) is equivalently a formula for the iterated Laplace transform of the sojourn time for
Brownian bridges pinned to 0 at time t.

As a complete illustration of the general method for solving worldline path integrals, we will briefly
review the derivation of this result. Beginning with Eq. (22.299), we will take V (x) = sΘ(x− d) to put the
sojourn time in the exponential, and we will take g(x) = eikx to (later) pin the Wiener path W (t) = 0 to
select only Brownian bridges. Further, we will only write down the path integral at x = 0, which is the only
point we will need:

f(0) =

∫ ∞
0

dt

〈〈
eikW (t) exp

(
−λt− s

∫ t

0

dt′Θ[W (t′)− d]
)〉〉

=

∫ ∞
0

dt e−λt

〈〈
eikW (t) exp (−sTs[W (t); d])

〉〉
.

(22.306)

From Eq. (22.300), we can obtain an expression for f(0) by solving the ODE

f ′′(x) = 2
[
λ+ sΘ(x− d)

]
f(x)− 2eikx. (22.307)
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The equation is easy to solve piecewise, and the result is [Eq. (17.556)]

f(x) =


Ae−

√
2(λ+s) x +

2eikx

2(λ+ s) + k2
(x > d)

Be
√
2λx +

2eikx

2λ+ k2
(x < d).

(22.308)

Requiring continuity of the solution and its derivative yield the coefficients [Eq. (17.557)]

A =
2
√
2 s
(√

2λ− ik
)
e
√

2(λ+s) d+ikd

(2λ+ k2)[2(λ+ s) + k2]
(√

λ+
√
λ+ s

) , B = −
2
√
2 s
(√

2(λ+ s) + ik
)
e−
√
2λ d+ikd

(2λ+ k2)[2(λ+ s) + k2]
(√

λ+
√
λ+ s

) ,
(22.309)

completing the Feynman–Kac-formula solution.
Now to complete the pinning of the solution W (t). Integrating the solution (22.306) over k introduces

a delta function of the path W at the end-time t:

1

2π

∫ ∞
−∞

dk f(0) =

∫ ∞
0

dt e−λt

〈〈
δ[W (t)] exp (−sTs[W (t); d])

〉〉
. (22.310)

Then using the path-integral relation [Eq. (17.561)]〈〈
δ[W (t)]F [W (t′)]

〉〉
=

1√
2πt

〈〈
F [Bt(t

′)]

〉〉
, (22.311)

where F is a functional and Bt(t
′) is a Brownian bridge pinned to 0 at t′ = t, we then have

1√
2π

∫ ∞
−∞

dk f(0) =

∫ ∞
0

dt√
t
e−λt

〈〈
exp (−sTs[Bt; d])

〉〉
, (22.312)

which is the integral form we desire in Eq. (22.302).
What remains is to evaluate the integral of the solution f(0) to the diffusion ODE. If we assume d > 0,

corresponding to the case of a Casimir–Polder potential for an atom outside the dielectric, then Eq. (22.308)
becomes

f(0) = B +
2

2λ+ k2
, (22.313)

and thus, with B as in Eq. (22.309), we obtain the solution [see Eq. (17.563)]

1√
2π

∫ ∞
−∞

dk f(0) =
1√
2π

∫ ∞
−∞

dk

(
B +

2

2λ+ k2

)
=

√
π

λ

[
1− e−2

√
2λ d

(√
λ+ s−

√
λ

√
λ+ s+

√
λ

)]
.

(22.314)

This is the right-hand side of our desired result (22.302).

22.7.2 Mellin Transform

Now we can use the Mellin-Laplace-transform conversion formula (22.284) to compute the integral

ID(s; d) =

∫ ∞
0

dT
T 1+D/2

〈〈
e−sTs[BT ;d] − 1

〉〉
, (22.315)

where BT (t) is a Brownian bridge pinned to 0 at time T . First, we rewrite the integral in Eq. (22.304) as

L(λ, s; d) =

∫ ∞
0

dT
T 1/2

e−λT
〈〈

exp {−sTs[BT ]}
〉〉

=

√
π

λ

[
1 + rTE(λ; s) e

−2
√
2λ d
]
. (22.316)
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We then adapt Eq. (22.284) with 1− z = (1 +D/2)− 1/2 = (D + 1)/2, or z = (1−D)/2, to read

ID(s; d) =
1

Γ
[
(D + 1)/2

] ∫ ∞
0

dλλ(D−1)/2
[
L(λ, s; d)− L(λ, 0; d)

]
=

√
π

Γ
[
(D + 1)/2

] ∫ ∞
0

dλλD/2−1rTE(λ; s) e
−2
√
2λ d.

(22.317)

Note that we can also regard this Laplace–Mellin transformation as being an example of the integral formula∫ ∞
0

dλλ(D−1)/2 e−λT =
Γ[(D + 1)/2]

T (D+1)/2
. (22.318)

This transformation formally takes care of the first Laplace transform (in λ). Note that the path integral
(22.315) that we computed here has the form of a potential-coupled scalar field, where the potential has the
form of a step function in one direction.

However, this isn’t quite the integral that we want for the dielectric interface. The reason is that the
path integral (22.302) contains the path average of εr. If we take the the path terminus r to be the origin
and the interface to be at distance z, then, considering 1D paths, the path average is

〈εr〉BT
= 1 + χ

Ts[BT ; z]

T
= T −1

(
T + χTs[BT ; z]

)
(22.319)

in terms of the sojourn time Ts[BT ; d] of Brownian bridges BT . Thus, we need the potential in our path
integral here to involve this functional. Note that we can adapt Eq. (22.316) for this purpose by letting
s −→ sχ and then λ −→ λ+ s, so that

L(λ+ s, sχ; z) =

∫ ∞
0

dT
T 1/2

e−λT
〈〈
e−s(T +χTs[BT ])

〉〉
=

√
π

λ+ s

[
1 + rTE(λ+ s; sχ) e−2

√
2(λ+s) z

]
.

(22.320)

This allows us to compute the alternate integral, analogous to (22.315),

ĨD(s, χ; z) =

∫ ∞
0

dT
T 1+D/2

〈〈
e−s(T +χTs[BT ;z]) − e−sT

〉〉
, (22.321)

using the same procedure as for (22.317):

ĨD(s, χ; z) =
1

Γ
[
(D + 1)/2

] ∫ ∞
0

dλλ(D−1)/2
[
L(λ+ s, sχ; z)− L(λ+ s, 0; z)

]
=

√
π

Γ
[
(D + 1)/2

] ∫ ∞
0

dλ
λ(D−1)/2√
λ+ s

rTE(λ+ s; sχ) e−2
√

2(λ+s) z.
(22.322)

The motivation for this form of the integral isn’t completely clear at this point, but the main idea is that it
contains the relevant functional for the problem.

22.7.3 Inverse Moments

Now going back to the original path integral (22.302), we see that for a dielectric interface we need to evaluate
a path integral of the form

ID,α(z) :=
∫ ∞
0

dT
T 1+D/2

〈〈
1

(1 + χTs[BT ; z]/T )α
− 1

〉〉
, (22.323)

where χ ≥ 0 is the dielectric susceptibility, z is the distance from the vacuum–dielectric interface to the atom
(which is on the vacuum side).
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The slightly more useful form of Eq. (22.323) is

ID,α(z) =
∫ ∞
0

dT
T 1+D/2−α

〈〈
1

(T + χTs[BT ; z])
α − T −α

〉〉
, (22.324)

which will allow us to more easily use the results of the previous section. Now using Eq. (22.295) with β = 0,

1

Γ(α)

∫ ∞
0

ds sα−1
〈〈
e−sx

〉〉
=

〈〈
1

xα

〉〉
, (22.325)

and comparing this to Eq. (22.321), we see that

ID,α(z) =
1

Γ(α)

∫ ∞
0

ds sα−1ĨD−2α(z). (22.326)

Putting in the result (22.322) for ĨD(z),

ID,α(z) =
√
π

Γ(α)Γ
[
(D + 1)/2− α

] ∫ ∞
0

ds sα−1
∫ ∞
0

dλ
λ(D−1)/2−α√

λ+ s
rTE(λ+ s; sχ) e−2

√
2(λ+s) z. (22.327)

Now we just need to simplify this. Scaling out the distance dependence by letting λ −→ λ/8z2 and s −→
s/8z2,

ID,α(z) =
√
π

23D/2Γ(α)Γ
[
(D + 1)/2− α

]
zD

∫ ∞
0

ds sα−1
∫ ∞
0

dλλ(D−1)/2−α
e−
√
λ+s

√
λ+ s

rTE(λ+ s; sχ), (22.328)

where we have used the property of the reflection coefficient (22.274) that it is invariant if both parameters
are scaled in the same way. Then letting λ −→ λ− s,

ID,α(z) =
√
π

23D/2Γ(α)Γ
[
(D + 1)/2− α

]
zD

∫ ∞
0

ds sα−1
∫ ∞
s

dλ (λ− s)(D−1)/2−α e
−
√
λ

√
λ
rTE(λ; sχ), (22.329)

and then letting λ −→ λs,

ID,α(z) =
√
π

23D/2Γ(α)Γ
[
(D + 1)/2− α

]
zD

∫ ∞
0

ds sD/2−1
∫ ∞
1

dλ (λ− 1)(D−1)/2−α
e−
√
λs

√
λ

rTE(λ;χ)

=

√
π

23D/2Γ(α)Γ
[
(D + 1)/2− α

]
zD

∫ ∞
1

dλ
(λ− 1)(D−1)/2−α rTE(λ;χ)√

λ

∫ ∞
0

ds sD/2−1 e−
√
λs,

(22.330)

where we again used rTE(sλ; sχ) = rTE(λ;χ). The integral over s has the value 2Γ(D)λ−D/2, so

ID,α(z) =
√
πΓ(D)

23D/2−1Γ(α)Γ
[
(D + 1)/2− α

]
zD

∫ ∞
1

dλ (λ− 1)(D−1)/2−αλ−(D+1)/2 rTE(λ;χ). (22.331)

This is as far as we can go without being more explicit about α and D.

22.7.4 Result: 3D Electromagnetism

Now comparing the original path integral (22.302) with the integral (22.323), we see that for the vacuum–
dielectric interface we may write

V (TE)

CP (z) =
h̄cα0

4(2π)D/2ε0
ID,3/2(z). (22.332)



1050 Chapter 22. Electromagnetic Casimir Energies as Path Integrals

With the result (22.331), this becomes

V (TE)

CP (z) =
Γ(D)h̄cα0

23D/2(2π)D/2Γ
[
D/2− 1

]
ε0zD

∫ ∞
1

dλ (λ− 1)D/2−2λ−(D+1)/2 rTE(λ;χ). (22.333)

Now using the duplication formula for the gamma function20

Γ(2z) = (2π)−1/222z−1/2Γ(z)Γ(z + 1/2), (22.334)

and setting z = D/2, we have the useful result
√
πΓ(D)

Γ(D/2)
= 2D−1Γ[(D + 1)/2]. (22.335)

Along with zΓ(z) = Γ(z + 1), we then have the marginally simpler form

V (TE)

CP (z) =
(D − 2)Γ

[
(D + 1)/2

]
h̄cα0

4(4π)D/2
√
πε0zD

∫ ∞
1

dλ (λ− 1)D/2−2λ−(D+1)/2 rTE(λ;χ),

(TE Casimir–Polder potential) (22.336)
where again

rTE(λ;χ) =

√
λ−
√
λ+ χ√

λ+
√
λ+ χ

. (22.337)

For D = 4, we have

V (TE)

CP (z) = − 3h̄cα0

128π2ε0z4

∫ ∞
1

dλλ−5/2

(√
λ+ χ−

√
λ

√
λ+ χ+

√
λ

)
, (22.338)

and evaluating the remaining integral, we find

V (TE)

CP (z) = − 3h̄cα0

32π2ε0z4

(
1

6
+

1

χ
−
√
1 + χ

2χ
−

sinh−1√χ
2χ3/2

)
.

(TE Casimir–Polder potential) (22.339)
This matches the earlier result (22.245) that we obtained using the explicit probability density for the sojourn
time.

22.7.5 Result: 1D Electromagnetism

In the case of 1D electromagnetism (D = 2), the result (22.336) is a bit tricky, as the integrand has a pole
at λ = 1, and the factor Γ(D − 2) vanishes at D = 2. Consequently, we will need to be careful, and we will
handle the removable singularity here via dimensional regularization, letting D −→ 2+ only after we remove
the divergences. We begin by putting in D = 2 wherever it is not objectionable to do so:

V (TE)

CP (z) =
(D − 2)h̄cα0

32πε0z2

∫ ∞
1

dλ (λ− 1)D/2−2λ−3/2 rTE(λ;χ). (22.340)

Integrating by parts, we have

V (TE)

CP (z) =
(D − 2)h̄cα0(

D/2− 1
)
32πε0z2

[
(λ− 1)D/2−1λ−3/2 rTE(λ;χ)

]∞
1

− (D − 2)h̄cα0(
D/2− 1

)
32πε0z2

∫ ∞
1

dλ (λ− 1)D/2−1∂λ

[
λ−3/2 rTE(λ;χ)

]
.

(22.341)

20Milton Abramowitz and Irene A. Stegun, Handbook of Mathematical Functions (Dover, 1965), p. 256, Eq. (6.1.18).
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Since D > 2, the boundary terms vanish at both the lower limit (due to the λ− 1 factor) and upper limits
(since the integrand, except for the D-dependent factor, decays asymptotically more quickly than λ−3/2, and
we are assuming D is close to 2). Also, canceling the (D − 2) terms,

V (TE)

CP (z) = − h̄cα0

16πΓε0z2

∫ ∞
1

dλ (λ− 1)D/2−1∂λ

[
λ−3/2 rTE(λ;χ)

]
. (22.342)

Now the expression is regular at D = 2, so we will take D −→ 2+:

V (TE)

CP (z) = − h̄cα0

16πε0z2

∫ ∞
1

dλ ∂λ

[
λ−3/2 rTE(λ;χ)

]
. (22.343)

The remaining integration is easy, and so

V (TE)

CP (z) =
h̄cα0

16πε0z2
rTE(1;χ) = −

h̄cα0

16πε0z2

(√
1 + χ− 1√
1 + χ+ 1

)
,

(TE Casimir–Polder potential, D = 2) (22.344)
since only the lower limit stays. Note that the reflection coefficient is the normal-incidence (λ = 1) coefficient,
and that the potential is overall negative because of the sign of the coefficient. Also the reflection coefficinet
here approaches −1 as χ −→ ∞, so this result is consistent with our earlier strong-coupling calculation
(22.224). For small χ, rTE ≈ −χ/4, and so our result here is also consistent with the weak-coupling result
(22.269).

To see that this result is consistent with the earlier calculations of Section 22.4.3, note that the analogue
of Eq. (22.243) for D = 2 is∫ ∞

0

dT
T 2

〈〈
1− (1 + χTs)

−3/2
〉〉

=

∫ 1

0

dx [1− (1 + χx)−3/2]

∫ ∞
0

dT
T 2

[√
4(1− x)
πxT

e−1/(1−x)T +

(
1− 2

T

)
e−1/T erfc

(√
x

(1− x)T

)]

=

∫ 1

0

dx [1− (1 + χx)−3/2]

[
1√
x
− 1

]
=

√
1 + χ− 1√
1 + χ+ 1

.

(22.345)
Combining this with Eq. (22.240) for D = 2 gives

V (TE)

CP (r) = − h̄cα0

16πε0z2

∫ ∞
0

dT
T 2

〈〈
1−

(
1 + χTs

[
B(t);

1√
2T

])−3/2〉〉
B(t)

= − h̄cα0

16πε0z2

(√
1 + χ− 1√
1 + χ+ 1

)
.

(22.346)

Thus, we obtain the same result with that method.

22.8 Evaluation of the TM Interface Potential

Recall from Sections 22.4.4 and 22.4.5 that the TM potential in the case of a dielectric,

VTM(r) =
1

2

[(
∇ log

√
εr
)2 −∇2 log

√
εr

]
, (22.347)

becomes singular and difficult to work with for a dielectric interface. Here, we will demonstrate how to
work with this potential for an arbitrary dielectric susceptibility. To keep things simple, we will work with
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a one-dimensional geometry and work with a simple model path integral that involves only this potential
(and hence will have no obvious physical interpretation).

Going to one dimension, the potential (22.347) becomes

VTM(z) =
1

2

[(
∂z log

√
εr(z)

)2
− ∂ 2

z log
√
εr(z)

]
. (22.348)

We want to consider the simple case of a planar interface, where

εr(z) = 1 + χΘ(z − d) (22.349)

where the interface is at z = d, and separates vacuum (z < d) and a dielectric of susceptibility χ (for z > d).
In this case the potential becomes

VTM(z) =
1

2

[(
log
√
1 + χ

)2
δ2(z − d)−

(
log
√
1 + χ

)
δ′(z − d)

]
, (22.350)

which is, again, a rather singular potential to be stuck with.

22.8.1 Regularized TM Potential

As a regularized form of this potential, let us take the logarithm of the permittivity to ramp linearly over a
transition length a,

log
√
εr(z) =


0 (z < d)

(z − d) Ξ
a

(d < z < d+ a)

Ξ (z > d+ a),

(22.351)

where we have introduced the coupling parameter

Ξ := log
√

1 + χ.

(dielectric coupling parameter for TM potential) (22.352)
It is not yet obvious, but the explicit form of the function

tanhΞ =
χ

2 + χ

(22.353)
(path-integral coupling)

will be useful in what follows, as this is what will appear in the resulting path integrals.
In this case, the regularized potential (22.348) becomes

VTM(z) =
Ξ2

2a2
1[d,d+a](z) +

Ξ

2a

[
δ[z − (d+ a)]− δ(z − d)

]
,

(regularized TM dielectric potential) (22.354)
where 1A(x) is the indicator function for the set A (i.e., the function is unity if x ∈ A and zero otherwise).
Note that this potential ‘‘converges’’ to the singular potential (22.350) as a −→ 0. (The convergence here
is in the sense of any delta-function limit: the limit should only be taken after appropriate integrations
have taken place that do away with the singularities.) Thus, a path integral over Brownian bridges Bt(t′)
involving this potential requires consideration of the regularized interface functional

M[Bt; d,Ξ, a] :=

∫ t

0

dt′ VTM

[
Bt(t

′)
]

=
Ξ

2a

∫ t

0

dt′
{
Ξ

a
1[d,d+a]

[
Bt(t

′)
]
+ δ
[
Bt(t

′)− (d+ a)
]
− δ
[
Bt(t

′)− d
]}

=
Ξ

2a

{
Ξ

a
Ts

(
Bt; [d, d+ a]

)
+ `
(
Bt; d+ a

)
− `
(
Bt; d

)}
.

(regularized interface functional) (22.355)
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In the last expression here, we have replaced the integral of the three terms with the sojourn time Ts of Bt
in the interval [d, d+ a]

Ts[y;A] :=
∫ t

0

dt′ 1A[y(t
′)] (22.356)

(this generalizes the sojourn time across a boundary, as in Section 17.12), and the local time of the process
Bt at d and d+ a (Section 17.13):

`[y; a] :=

∫ t

0

dt′ δ
[
y(t′)− a

]
. (22.357)

The regularized interface functional is, of course, interesting as a route to evaluating path integrals involving
the interface functional, which we will define via

N[Bt; d,Ξ] := lim
a→0

M[Bt; d,Ξ, a]

=
Ξ

2

∫ t

0

dt′
{
Ξ δ2

[
Bt(t

′)− d
]
− δ′

[
Bt(t

′)− d
]}
.

(22.358)
(interface functional)

Again, any calculations for N will need to involve M, only then taking the defined limit when possible
without causing problems.

22.8.2 Model Path Integral

Now having defined the interface functional, we will evaluate the model path integral

L(λ; d,Ξ) :=

∫ ∞
0

dt√
t
e−λt

〈〈
exp

(
−N[Bt; d,Ξ]

)〉〉
Bt

(22.359)

to demonstrate the TM potential and gain some intuition. Of course, to do this, we will need to consider
the regularized path integral

LR(λ, s; d,Ξ, a) :=

∫ ∞
0

dt√
t
e−λt

〈〈
exp

(
− sM[Bt; d,Ξ, a]

)〉〉
Bt

, (22.360)

and then take the limit a −→ 0. We have also introduced the parameter s to highlight the delicate interaction
of the δ2 and δ′ parts of the interface functional; as it turns out, that the a −→ 0 limit will only lead to
sensible results if s = 1.

22.8.3 Feynman–Kac Formula

22.8.3.1 Setup

To work out the path integral (22.360), we start with the ODE part of the FK formula (22.300),

f ′′(x) = 2
[
λ+ sV (x)

]
f(x)− 2g(x), (22.361)

choosing the potential
V (x) = σ′1[d,d+a](x) + σδ(x− d− a)− σδ(x− d), (22.362)

where
σ := s

Ξ

2a
, σ′ := s

Ξ2

2a2
. (22.363)

In this case, we will also take g(x) = eikx to pinW (t) = 0. [For an alternate choice for g(x), see Problem 22.13.
For x < d or x > d+ a, the ODE is

f ′′ = 2λf − 2eikx, (22.364)
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with general solutions

f(x) = α+e
√
2λx + α−e

−
√
2λx +

eikx

λ+ k2/2
(22.365)

for coefficients α± to be determined in each region. On the other hand, for d < x < d+ a, the ODE is

f ′′ = 2(λ+ σ′)f − 2eikx, (22.366)

f(x) = α+e
√

2(λ+σ′) x + α−e
−
√

2(λ+σ′) x +
eikx

λ+ σ′ + k2/2
(22.367)

for coefficients α± to be determined. Picking the bounded solutions in each domain, we have the solution

f(x) =



Ae−
√
2λx +

eikx

λ+ k2/2
(x > d+ a)

Be−
√

2(λ+σ′) x + Ce
√

2(λ+σ′) x +
eikx

λ+ σ′ + k2/2
(d < x < d+ a)

De
√
2λx +

eikx

λ+ k2/2
(x < d),

(22.368)

for undetermined constants A, B, C, and D.

22.8.3.2 Boundary Matching

Demanding continuity of f(x) at x = d+ a and x = d gives the conditions

Ae−
√
2λ(d+a) +

eik(d+a)

λ+ k2/2
= Be−

√
2(λ+σ′)(d+a) + Ce

√
2(λ+σ′)(d+a)

+
eik(d+a)

λ+ σ′ + k2/2

Be−
√

2(λ+σ′) d + Ce
√

2(λ+σ′) d +
eikd

λ+ σ′ + k2/2
= De

√
2λ d +

eikd

λ+ k2/2
.

(22.369)

The δ functions in the ODE say that the derivative f ′(x) should jump by 2σf(d + a) at x = d + a and
−2σf(d) at x = d, so that

−
√
2λAe−

√
2λ(d+a) +

ikeik(d+a)

λ+ k2/2

− 2σ

(
Ae−

√
2λ(d+a) +

eik(d+a)

λ+ k2/2

)
= −

√
2(λ+ σ′)Be−

√
2(λ+σ′)(d+a)

+
√
2(λ+ σ′)Ce

√
2(λ+σ′)(d+a) +

ikeik(d+a)

λ+ σ′ + k2/2

−
√

2(λ+ σ′)Be−
√

2(λ+σ′) d

+
√
2(λ+ σ′)Ce

√
2(λ+σ′) d

+
ikeik(d+a)

λ+ σ′ + k2/2
=
√
2λDe

√
2λ d +

ikeikd

λ+ k2/2
− 2σ

(
De
√
2λ d +

eikd

λ+ k2/2

)
,

(22.370)

or that is, f ′(d+ a+ 0+)− 2σf(d+ a+ 0+) = f ′(d+ a− 0+) and f ′(d+ 0+) = f ′(d− 0+)− 2σf(d− 0+).
Since we are only in interested in f(0), we only need solution of these four equations for the coefficient D.
As it turns out, this expression is cumbersome, but it is somewhat less so after integration over k:

1

2π

∫ ∞
−∞

dkD = − 1√
2λ


(
2σ2 − σ′ + 2

√
2λσ

)
sinh

[
a
√
2(λ+ σ′)

]
e−2
√
2λ d

(2σ2 − σ′ − 2λ) sinh
[
a
√

2(λ+ σ′)
]
− 2
√
λ(λ+ σ′) cosh

[
a
√
2(λ+ σ′)

]
 .

(22.371)



22.8 Evaluation of the TM Interface Potential 1055

Then note that
f(0) =

1

λ+ k2/2
+D, (22.372)

and since we want to calculate

LR(λ, s; d,Ξ, a) =
1√
2π

∫ ∞
−∞

dk f(0) =

∫ ∞
0

dt√
t
e−λt

〈〈
exp

(
− sM[Bt; d,Ξ, a]

)〉〉
, (22.373)

from the FK formula (22.299), we can use the integral formula

1√
2π

∫ ∞
−∞

dk
e−ikc

λ+ k2/2
=

√
π

λ
e−
√
2λ|c| (22.374)

to find

LR(λ, s; d,Ξ, a) =

√
π

λ

 1−

(
2σ2 − σ′ + 2

√
2λσ

)
sinh

[
a
√

2(λ+ σ′)
]
e−2
√
2λ d

(2σ2 − σ′ − 2λ) sinh
[
a
√
2(λ+ σ′)

]
− 2
√
λ(λ+ σ′) cosh

[
a
√
2(λ+ σ′)

]
 ,

(22.375)
which is our basic result for the regularized model integral (22.360).

22.8.3.3 Overall Scaling of the Potential

Now we turn to the dependence of this result on the parameter s. Recall that we have used the notation
(22.363)

σ := s
Ξ

2a
, σ′ := s

Ξ2

2a2
(22.376)

to render the expression a bit more compact. In the case of s = 1,

2σ2 − σ′ = s(s− 1)
Ξ2

2a2
= 0, (22.377)

and so

LR(λ, s; d,Ξ, a) =

√
π

λ

 1 +

√
2λσ sinh

[
a
√
2(λ+ σ′)

]
e−2
√
2λ d

λ sinh
[
a
√

2(λ+ σ′)
]
+
√
λ(λ+ σ′) cosh

[
a
√

2(λ+ σ′)
]
 . (22.378)

This is important in analyzing the subsequent limit a −→ 0, where the 2σ2− σ′ terms in the numerator and
denominator would dominate the other terms, leading to the Ξ-independent result

L(λ, s; d,Ξ, a) =

√
π

λ

(
1− e−2

√
2λ d
)
, (22.379)

This result is characteristic of a ‘‘strong-coupling’’ result. For example this is equivalent to the path-integral
result (22.316) from the TE case, in the limit s −→ ∞. This shows that s = 1 is a special choice, inducing
the right balance between local and occupation times to produce a nontrivial limit. This also shows that VTM

(alternately, N) is not a potential in the usual sense (for example, doubling it does not double the ‘‘energy’’);
rather its function is to enforce a boundary condition at the interface, which has an arbitrarily large ‘‘cost’’
in terms of the energy.

22.8.3.4 Sharp-Interface Limit

Then in the limit a −→ 0,
a
√
2(λ+ σ′) =

√
(2a2λ+ sΞ2) −→

√
sΞ = Ξ (22.380)
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for s = 1, and so the path-integral result for M (22.378) goes over to the path integral for N,

L(λ, s; d,Ξ) = lim
a−→0

LR(λ, s; d,Ξ, a) =

√
π

λ

(
1 + tanh(Ξ) e−2

√
2λ d
)
,

(model TM path-integral result) (22.381)
which is a nontrivial result. As Ξ −→ 0, this reduces to

L(λ, s; d,Ξ, a) −→
√
π

λ
, (22.382)

which is reasonable, as it is the same as the d −→∞ decoupling limit. For small Ξ, the result is

L(λ) =

√
π

λ

(
1 + Ξ e−2

√
2λ d
)
. (22.383)

On the other hand, as Ξ −→∞, this reduces to

L(λ) =

√
π

λ

(
1 + e−2

√
2λ d
)
, (22.384)

which is also a reasonable result, in the sense of avoiding pathologies and depending sensibly on d.

22.8.4 Weak-Coupling Expansion

As a check for the small-Ξ limit, we can keep only the first-order terms in Ξ in the potential (22.358),

N[Bt; d,Ξ] = lim
a→0

M[Bt; d,Ξ, a]

= lim
a→0

Ξ

2a

∫ t

0

dt′
{
δ
[
Bt(t

′)− (d+ a)
]
− δ
[
Bt(t

′)− d
]}

= −Ξ

2

∫ t

0

dt′ δ′
[
Bt(t

′)− d
]

= −∂ 2
d

Ξ

2

∫ t

0

dt′Θ
[
Bt(t

′)− d
]
.

(22.385)

In this regime, the path integral (22.359) becomes

L(λ; d,Ξ) =

∫ ∞
0

dt√
t
e−λt

〈〈
exp

(
−N[Bt; d,Ξ]

)〉〉
Bt

=

∫ ∞
0

dt e−λt
〈〈

1−N[Bt; d,Ξ]

〉〉
Bt

=

∫ ∞
0

dt√
t
e−λt

〈〈
1 + ∂ 2

d

Ξ

2

∫ t

0

dt′Θ
[
Bt(t

′)− d
]〉〉

Bt

=

∫ ∞
0

dt√
t
e−λt

[
1 + ∂ 2

d

Ξ

2

〈〈
Ts[Bt; d]

〉〉]
,

(22.386)

where we have written this now as an integral over the first moment of the sojourn time. We can use the
expression (17.588), generalized to pinning at time t,〈〈

Ts[Bt, d]
〉〉

= t

(
e−2d

2/t

2
−
√
πd2

2t
erfc

[√
2d2

t

])
, (22.387)

and then evaluate the integral, with the result

L(λ; d,Ξ) =

√
π

λ

(
1 +

Ξ

2
∂ 2
d

e−2
√
2λ d

4λ

)
=

√
π

λ

(
1 + Ξ e−2

√
2λ d

)
.

(22.388)
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This agrees with the earlier small-Ξ calculation (22.383). Note that there are no issues with obtaining the
wrong sign in the expanded integral here.

22.8.5 Transfer-Layer Formalism

Now that we see that the a −→ 0 limit is well-defined (at least for s = 1), it makes sense to simplify the
derivation of Section 22.8.3 to take this limit as early as possible, and to thereby do it ‘‘once and for all.’’
First, we will consider the homogeneous case g(x) = 0, and modify this later to include the pinning delta
function. Then for x < d or x > d+ a we are considering the homogeneous ODE

f ′′ = 2λf, (22.389)

and thus referring back to the function f(x) defined in Eq. (22.368), we should instead work with the solution

f(x) =


Ae−

√
2λx (x > d+ a)

Be−
√

2(λ+σ′) x + Ce
√

2(λ+σ′) x (d < x < d+ a)

De
√
2λx (x < d).

(22.390)

We can then rewrite the boundary conditions (22.369) demanding continuity of f(x) at x = d+ a and x = d
as

f(d+ a+ 0+) = Be−
√

2(λ+σ′)(d+a) + Ce
√

2(λ+σ′)(d+a)

Be−
√

2(λ+σ′) d + Ce
√

2(λ+σ′) d = f(d− 0+),
(22.391)

and we can rewrite the boundary conditions (22.370) for f ′(x) as

f ′(d+ a+ 0+)− 2σf(d+ a+ 0+) = −
√
2(λ+ σ′)Be−

√
2(λ+σ′)(d+a)

+
√

2(λ+ σ′)Ce
√

2(λ+σ′)(d+a)

−
√
2(λ+ σ′)Be−

√
2(λ+σ′) d +

√
2(λ+ σ′)Ce

√
2(λ+σ′) d = f ′(d− 0+)− 2σf(d− 0+),

(22.392)

or that is, f ′(d+a+0+)−2σf(d+a+0+) = f ′(d+a−0+) and f ′(d+0+) = f ′(d−0+)−2σf(d−0+). Then
solving these four equations for f(d− 0+) and f ′(d− 0+), while eliminating B and C, then substituting in

σ := s
Ξ

2a
, σ′ := s

Ξ2

2a2
, (22.393)

then setting s = 1 and taking the limit a −→ 0, we find the remarkably simple result that the interface
functional defines a discontinuity in the solution f(x) according to

f(d+ 0+) = e−Ξf(d− 0+)

f ′(d+ 0+) = eΞf ′(d− 0+).

(TM boundary condition in FK solution) (22.394)
These boundary conditions replace the usual continuity conditions at the interface.

For example, suppose we apply this boundary condition to

f(x) =


Ae−

√
2λx (x > d)

Be−
√
2λx + Ce

√
2λx (0 < x < d)

De
√
2λx (x < d).

(22.395)
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which is an alternative to the choice (22.368), but we are applying the new boundary condition at x = d, and
the boundary condition of a delta function of amplitude −2 at x = 0, since we are now choosing g(x) = δ(x)
to pin W (t) = 0. Then the boundary conditions (22.394) at x = d read

Ae−
√
2λ deΞ = Be−

√
2λ d + Ce

√
2λ d

−
√
2λAe−

√
2λ de−Ξ = −

√
2λBe−

√
2λ d +

√
2λCe

√
2λ d,

(22.396)

and the boundary conditions at x = 0 read

D = B + C
√
2λD − 2 = −

√
2λB +

√
2λC.

(22.397)

Solving for D gives
D =

1√
2λ

(
1 + tanh(Ξ) e−2

√
2λ d
)
, (22.398)

and since
L(λ) =

√
2πf(0) =

√
2πD =

√
π

λ

(
1 + tanh(Ξ) e−2

√
2λ d
)
, (22.399)

we have recovered the result (22.381), but now by directly applying the interface boundary conditions
(22.394).

Note that we can also apply these boundary conditions in the g(x) = eikx calculation. We set this up
with the solution function

f(x) =


Ae−

√
2λx +

eikx

λ+ k2/2
(x > d)

Be
√
2λx +

eikx

λ+ k2/2
(x < d),

(22.400)

which is basically the solution (22.368), but with no ‘‘middle’’ region d < x < d + a. The analysis of the
thin boundary layer still applies, since the inhomogeneous part of the solution is ignorable in that region.
The two boundary conditions (22.394) at x = d then read

Ae−
√
2λ d +

eikd

λ+ k2/2
=

(
Be
√
2λ d +

eikd

λ+ k2/2

)
e−Ξ

−
√
2λAe−

√
2λ d +

ikeikd

λ+ k2/2
=

(√
2λBe

√
2λ d +

ikeikd

λ+ k2/2

)
eΞ,

(22.401)

and solving for B gives

B =

(√
2λ− ikeΞ

) (
eΞ − 1

)
eikd−

√
2λ d

(λ+ k2/2)
√
2λ (e2Ξ + 1)

. (22.402)

Then using

L(λ, s; d,Ξ) =
1√
2π

∫ ∞
−∞

dk f(0) =
1√
2π

∫ ∞
−∞

dk

(
1

λ+ k2/2
+B

)
, (22.403)

we again recover the result (22.381), but with considerably less effort.

22.8.6 Mellin Transform

To continue an example with the TM interface potential, we will compute the path integral

ID(z,Ξ) =

∫ ∞
0

dT
T 1+D/2

〈〈
e−N[BT ;z,Ξ] − 1

〉〉
BT

. (22.404)
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This has the form of the TM path integral (22.247), but simplified to only the exponential factor, as a ‘‘warm
up’’ to doing the full path integral.

Here we will follow the same method as in Section 22.7.2. Beginning with Eq. (22.381),

L(λ, s; z,Ξ) =

√
π

λ

(
1 + tanh(Ξ) e−2

√
2λ z
)
, (22.405)

we then use Eq. (22.284) in the form

ID(z) =
1

Γ
[
(D + 1)/2

] ∫ ∞
0

dλλ(D−1)/2
[
L(λ, s; z)− L(λ, 0; z)

]
=

√
π tanhΞ

Γ
[
(D + 1)/2

] ∫ ∞
0

dλλD/2−1e−2
√
2λ z,

(22.406)

or evaluating the last integral, we have

ID(z) =

√
πΓ(D) tanhΞ

23D/2−1Γ
[
(D + 1)/2

]
zD

. (22.407)

Using Eq. (22.335) in the form √
πΓ(D)

Γ[(D + 1)/2]
= 2D−1Γ(D/2). (22.408)

we have

ID(z) =
Γ(D/2) tanhΞ

2D/2 zD
=

Γ(D/2)

2D/2 zD

(
χ

2 + χ

)
,

(22.409)
(model TM path integral)

as the result for our model TM path integral, where we have used Eq. (22.353) to connect the result back to
the susceptibility χ.

22.8.6.1 Comparison to Strong-Coupling

It is useful to compare this result with the strong-coupling limit of physical path integrals. For example,
we can take the TE strong-coupling result (22.222), and remove the prefactor in the expression (22.219) to
obtain the analogous result

I(TE)

D (r) = lim
χ→∞

∫ ∞
0

dT
T 1+D/2

〈〈
〈εr〉−3/2x(τ) − 1

〉〉
x(τ)

= −Γ(D/2)

2D/2zD
.

(22.410)

Note that this is a generic result, occurring whenever there is a strong effect on a path touching the dielectric
interface. For example, the sojourn-time path integral (22.315),

ID(z) =

∫ ∞
0

dT
T 1+D/2

〈〈
e−sTs[BT ;z] − 1

〉〉
, (22.411)

has the form of a Casimir–Polder path integral for a massless scalar field coupled to a potential step, where
s governs the ‘‘strength’’ of the potential. The result (22.317) for this path integral was

ID(z) = −
√
π

Γ
[
(D + 1)/2

] ∫ ∞
0

dλλD/2−1e−2
√
2λ z

(√
λ+ s−

√
λ

√
λ+ s+

√
λ

)
. (22.412)

In the limit s −→∞, this becomes

ID(z) = −
√
π

Γ
[
(D + 1)/2

] ∫ ∞
0

dλλD/2−1e−2
√
2λ z

= −
√
πΓ(D)

23D/2−1Γ
[
(D + 1)/2

]
zD

,
(22.413)
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which after applying Eq. (22.408) is equivalent to Eq. (22.410).
Thus, we will compare the TM model path integral (22.409) to the strong-coupling result (22.410). The

factor (− tanhΞ) appearing in (22.409) is an ‘‘efficiency factor’’ multiplying the expected strong-coupling
limit, and note that the sign is opposite to what one might expect for an efficiency. This is because while
most of the potential is positive, there is a negative component, which when exponentiated can spike to
large, positive values, thus yielding a positive result even after subtracting away the z −→∞ part (normally,
a negative potential keeps the exponential less than one, and when subtracting one, the result is strictly
negative).

In the limit Ξ −→∞ (equivalently, χ −→∞), this integral is equivalent to the strong-coupling result,
except for the overall minus sign. This explains the sign discrepancy that we found in Section 22.4.4 when
we tried to cheat to obtain the strong-coupling result by considering only the δ2 part of the potential. There,
we obtained the ‘‘usual’’ strong-coupling result, which is wrong by an overall sign compared to the ‘‘correct’’
result we are getting here.

22.8.7 Generalization for Open Bridges

A useful generalization of the path integral in Eqs. (22.359) and (22.381) is to change the path from ‘‘loop’’
Brownian bridges Bt(t′) to bridges Bt(0→c)(t′) pinned at 0 and some other point c. In particular, our goal
will be to compute the interface path integral

N (d,Ξ, t, c) :=

〈〈
e−N[Bt(0→c);d,Ξ]

〉〉
Bt(0→c)

,
(22.414)

(interface path integral)

which is useful in numerically evaluating path integrals with the interface potential.

22.8.7.1 Feynman–Kac Formula

To start, we will derive an expression for the path integral

L(λ; d,Ξ, c) :=

∫ ∞
0

dt e−λt
e−c

2/2t

√
t

〈〈
exp

(
−N[Bt(0→c); d,Ξ]

)〉〉
Bt(0→c)

, (22.415)

where again Bt(0→c)(t
′) is a Wiener process (Brownian bridge) pinned to c at time t′ = t [i.e., Bt(t) = c],

and the interface functional N here is defined as

N[Bt; d,Ξ, c] := lim
a→0

Ξ

2a

∫ t

0

dt′
{
Ξ

a
1[d,d+a]

[
Bt(0→c)(t

′)
]
+ δ
[
Bt(0→c)(t

′)− (d+ a)
]
− δ
[
Bt(0→c)(t

′)− d
]}

= lim
a→0

Ξ

2a

{
Ξ

a
Ts

(
Bt(0→c); [d, d+ a]

)
+ `
(
Bt(0→c); d+ a

)
− `
(
Bt(0→c); d

)}
(d > 0, Ξ ≥ 0),

(22.416)
in analogy to the path case in Eqs. (22.355) and (22.358). The path integral here generalizes the integral
(22.359) for path bridges.

In solving this problem, we will employ the transfer-layer formalism in the limit a −→ 0, embodied by
the boundary conditions (22.394), and generalize the derivation of the c = 0 case, starting with the solution
function (22.400)

f(x) =


Ae−

√
2λx +

eik(x−c)

λ+ k2/2
(x > d)

Be
√
2λx +

eik(x−c)

λ+ k2/2
(x < d),

(22.417)
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where we are taking g(x) = eik(x−c) in the Feynman–Kac formula, and we are excluding the ‘‘middle’’ region
d < x < d+ a. The two boundary conditions (22.394) at x = d then read

Ae−
√
2λ d +

eik(d−c)

λ+ k2/2
=

(
Be
√
2λ d +

eik(d−c)

λ+ k2/2

)
e−Ξ

−
√
2λAe−

√
2λ d +

ikeik(d−c)

λ+ k2/2
=

(√
2λBe

√
2λ d +

ikeik(d−c)

λ+ k2/2

)
eΞ,

(22.418)

and solving for B gives

B =

(√
2λ− ikeΞ

) (
eΞ − 1

)
eik(d−c)−

√
2λ d

(λ+ k2/2)
√
2λ (e2Ξ + 1)

. (22.419)

Then using

L(λ; d,Ξ, c) =
1√
2π

∫ ∞
−∞

dk f(0) =
1√
2π

∫ ∞
−∞

dk

(
e−ikc

λ+ k2/2
+B

)
, (22.420)

we obtain

L(λ; d,Ξ, c) =

√
π

λ

(
e−
√
2λ |c| +

(
1− e−Ξ

) [
sgn(d− c) + e−Ξ

]
1 + e−2Ξ

e−
√
2λ(d+|c−d|)

)
. (22.421)

Throughout, we have assumed d > 0, so we can also write this as

L(λ; d,Ξ, c) =

√
π

λ

(
e−
√
2λ |c| +

(
1− e−Ξ

) [
sgn(d− c) + e−Ξ

]
1 + e−2Ξ

e−
√
2λ(|d|+|c−d|)

)
. (22.422)

The absolute value we introduced here is important in maintaining the choice of bounded solution when we
generalize to d < 0. An equivalent result also arises if we make the simultaneous replacement d −→ −d,
c −→ −c, and Ξ −→ −Ξ, given the reflection symmetry of the problem (which reverses the ‘‘direction of
crossing’’ through the boundary, hence the change in Ξ),

L(λ;−d,−Ξ,−c) =
√
π

λ

(
e−
√
2λ |c| +

(
1− eΞ

) [
−sgn(d− c) + eΞ

]
1 + e2Ξ

e−
√
2λ(|d|+|c−d|)

)
, (22.423)

so in general, we have

L(λ; d,Ξ, c) =

√
π

λ

(
e−
√
2λ |c| +

(
1− e−sgn(d)Ξ) [sgn(d) sgn(d− c) + e−sgn(d)Ξ]

1 + e−sgn(d)2Ξ e−
√
2λ(|d|+|c−d|)

)

=

√
π

λ

(
e−
√
2λ |c| +

sinh(Ξ/2)
[
sgn(d− c) esgn(d)Ξ/2 + sgn(d) e−sgn(d)Ξ/2

]
cosh(Ξ)

e−
√
2λ(|d|+|c−d|)

)
,

(22.424)
which is now valid for any c and d (positive or negative)

22.8.7.2 Inversion of the Laplace Transform

Now to compute the path integral (22.414), we must invert the Laplace transform in Eq. (22.415). Using
the inverse Laplace transform

L −1
[√

π

λ
e−
√
2λα

]
(t) =

1√
t
e−α

2/2t, (22.425)

we have

L −1
[
L(λ; d,Ξ, c)

]
(t) =

e−c
2/2t

√
t

+

(
sinh(Ξ/2)

[
sgn(d− c) esgn(d)Ξ/2 + sgn(d) e−sgn(d)Ξ/2

]
cosh(Ξ)

)
e−(|d|+|c−d|)

2/2t

√
t

.

(22.426)
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Equating this with the inverse transform of Eq. (22.415),

L −1
[
L(λ; d,Ξ, c)

]
(t) =

e−c
2/2t

√
t

〈〈
exp

(
−N[Bt(0→c); d,Ξ]

)〉〉
Bt(0→c)

, (22.427)

we then find

N (d,Ξ, t, c) = 1 +
sinh(Ξ/2)

[
sgn(d− c) esgn(d)Ξ/2 + sgn(d) e−sgn(d)Ξ/2

]
cosh(Ξ)

e
[
c2−(|d|+|c−d|)2

]
/2t

(interface path integral) (22.428)
as our desired result for the path integral defined in Eq. (22.414). Note that the exponential factor in the
second term is unity if d is between 0 and c (i.e., if the path endpoints straddle the boundary), and is the
boundary-crossing probability exp[2d(c− d)/t] = exp[−2|d(d− c)|/t] otherwise (irrespective of the signs of c
and d). The Ξ-dependent factor reduces to sech (Ξ)−1 again if d is between 0 and c (i.e., a boundary-crossing
path), in which case N (d,Ξ, t, c) = sech (Ξ); this factor is sgn(d) tanh(Ξ) otherwise. Thus, the second term
is restricted to the range (−1, 1), and so the functional (22.428) is strictly positive, as it should be, from the
definition (22.414).

The expression for N (d,Ξ, t, c) has the interpretation of representing probabilities for reflection and
transmission at the interface. We can see this by letting d −→ 0, so that the crossing probability reduces to
unity, being careful to maintain the sign of d. In this case, we may write

N (0−,Ξ, t, c) =

tN (Ξ) (c > 0)

1 + rN (Ξ) (c < 0)

N (0+,Ξ, t, c) =

1− rN (Ξ) (c > 0)

tN (Ξ) (c < 0),

(interface path integral, starting at interface) (22.429)
where the effective reflection and transmission coefficients are

rN (Ξ) = tanhΞ =
χ

2 + χ

tN (Ξ) = sechΞ =
2
√
1 + χ

2 + χ
.

(reflection/transmission coefficients for interface path integral) (22.430)
The interpretation here is as follows. Suppose we follow a (Wiener) stochastic path until it just bumps
into the interface. The probability density for the path position x after a time t later is then given by the
Gaussian measure exp[−(x−d)2/2t]/

√
2πt, multiplied by the appropriate factor in Eq. (22.429) for each side

of the interface. An enhancement of probability on one side compared to the other is exactly what we expect
from a reflection/transmission process at an interface. However, since sech2x + tanh2 x = 1, it is not the
case that rN + tN = 1; in fact, rN + tN ≥ 1, with equality only achieved for χ = 0 or in the limit χ −→∞.
Rather, the coefficients satisfy the ‘‘probability-conservation relation’’ r 2N + t 2N = 1. Thus, each ‘‘collision’’
of the path with the interface does not conserve the path amplitude. Of course, we do not necessarily require
this, since the path integral must only reproduce some correct value on average. However, it is interesting
to note that for a closed Brownian bridge, which must have an equal number of crossings in either direction,
and thus transmission factors contribute only in powers of t 2N . On the other hand, evidently any power of
rN may arise. In the limit where χ −→ ∞, we have rN −→ 1 and tN −→ 0, indicating perfect reflection
(and amplitude conservation on the left-hand side of the interface). Note that for finite χ, in evaluating the
TM potential, there are also losses on the right-hand side of the interface associated with the 〈χ〉−α factor
in the Casimir path integral that compensate for the extra probability generated on each reflection.
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22.8.8 Assembling Closed Bridges

The path integral (22.414), which takes on the value given in Eq. (22.428), is an average of an exponential
functional over a Brownian bridge pinned from 0 to c in time t. Thus, if we split the Brownian bridge into
two temporal ‘‘segments’’ (0, t/2) and (t/2, t), then note that the exponential factors, and by construction
we should be able to recover the original result by summing over all possible values of the Brownian bridge at
time t/2, with the appropriate weight. Specifically, we are saying that by construction N (d,Ξ, t, c) satisfies

N (d,Ξ, t, 0) =

∫ ∞
−∞

dcN (d,Ξ, t/2, c)N (d− c,Ξ, t/2,−c) fG(c; 0, t/4), (22.431)

where
fG(x;µ, σ

2) :=
1√
2πσ

e−(x−µ)
2/2σ2

. (22.432)

is the normal (Gaussian) probability density. Recall that from our analysis of finite-bridge generation
[Eq. (17.310)], we can generate an (N + 1)-point standard Brownian bridge (i.e., pinned to zero at t = 1) of
points B0, . . . BN , where B0 = BN = 0, by using the forward recurrence

B0 = BN = 0

Bn = zn

√
N − n

N(N − n+ 1)
+

(
N − n

N − n+ 1

)
Bn−1.

(22.433)

where zn (from n = 1, . . . , N − 1) are standard normal random numbers (zero mean, unit variance). The
variance t/4 for the density of c follows from the distribution of B1 for the case N = 2.

As a numerical example, the plot below shows the integrand of Eq. (22.431) for three values of Ξ, with
d = 0.5 and t = 1.

Xo=o0.001

Xo=o1

Xo=o1000

c

-5 5-4 -3 -2 -1 0 1 2 3 4

in
te
g
ra
n
d

2

0

1

Note the discontinuity at c = d in the integrand, where the source point of the Brownian bridge just touches
the ‘‘dielectric surface.’’ The values of the integral in the three cases are 1.00061 (Ξ = 0.001), 1.46193
(Ξ = 1), and 1.60653 (Ξ = 1000). The main feature to note in the plot is that for small Ξ, the integrand is
well-approximated by the Gaussian factor, with increasingly large deviations above and below the Gaussian
as Ξ increases. The impact of this observation is as follows. Suppose we evaluate the integral in a Monte-
Carlo fashion, by choosing random values of c according to the Gaussian factor fG(c; 0, t/4), and averaging
the values taken on by the rest of the integrand for each chosen c. This would be fairly simple at small Ξ, but
at large Ξ, this introduces relatively large fluctuations in the integrand value, and thus slowed convergence.

Of course, the slow convergence gets dramatically worse if we put in many intermediate integrals,
developing a path integral. For example, the generalization of (22.431) for two intermediate points is

N (d,Ξ, t, 0) =

∫
dc1 dc2N (d,Ξ, t/3, c1)N (d−c1,Ξ, t/3, c2−c1)N (d−c2,Ξ, t/3,−c2) f1(c1)f2(c2), (22.434)
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where from Eqs. (22.433), we have

fn(cn) = fG(cn; ξncn−1, ξn∆t), (22.435)

since the cn corresponds to a particular value for Bn, and in this case N = 3. We are also here using the
usual notations

∆t :=
t

N
, ξn :=

N − n
N − n+ 1

. (22.436)

Note the recursive nature of the definition here, such that successive integrations have the form of convolu-
tions.

For the general case of N − 1 intermediate points, this generalizes to

N (d,Ξ, t, 0) =

∫
dc1 · · · dcN−1N (d− cN−1,Ξ,∆t, cN − cN−1)

N−1∏
j=1

N (d− cj−1,Ξ,∆t, cj − cj−1) fj(cj),

(path integral for TM potential) (22.437)
where c0 = cN = 0. Again, whenever Ξ is large and there is significant ‘‘overlap’’ of the integral with
the TM boundary at d, the N factor will have large variation. For large N , there will be many such
factors, leading to large fluctuations of the path-integral samples (with c-paths), and thus poor convergence,
becoming increasingly worse for large N . Of course, this is an artifact of choosing the product of all fj(cj)
as the path-integral measure, when really we should absorb the fluctuations into the path measure to the
greatest extent we can. In particular, we should define the ‘‘tempered’’ path-step distributions

f̄j(cj) := ηjN (d− cj−1,Ξ,∆t, cj − cj−1) fj(cj), (22.438)

where we have introduced the normalization factors ηj , defined by

η−1j :=

∫ ∞
−∞

dcj N (d− cj−1,Ξ,∆t, cj − cj−1) fj(cj)

=

∫ ∞
−∞

dcj N (d− cj−1,Ξ,∆t, cj − cj−1) fG(cj ; ξjcj−1, ξj∆t)

=

∫ ∞
−∞

dxN (d− cj−1,Ξ,∆t, x) fG[x; (ξj − 1)cj−1, ξj∆t].

(22.439)

This has the analytic solution

η−1j =
cosh2(Ξ/2)

coshΞ
+ sgn(d− cj−1)

sinh2(Ξ/2)

coshΞ
erf

(
d− ξjcj−1√

2ξj∆t

)

+
tanhΞ

2

[
sgn(d− cj−1)− erf

(
(2ξj − 1)d− ξjcj−1√

2ξj∆t

)]
e2(ξj−1)d(d−cj−1)/∆t

ξj :=
N − j

N − j + 1
,

(22.440)

at least for cj−1 6= d, since this factor has a discontinuity at cj−1 = d. The precise value cj−1 = d doesn’t
really matter for integration, but it is sensible to define the function at this point to have the mean of the
values for cj−1 = d + 0±. Note again that all these are defined recursively in terms of the previous point
cj−1 of the path. Thus, we have the tempered form of the path integral (22.437):

N (d,Ξ, t, 0) =

∫ ∞
−∞

dc1 · · · dcN−1N (d− cN−1,Ξ,∆t, cN − cN−1)
N−1∏
j=1

η−1j f̄j(cj). (22.441)

Then taking the product of the f̄j(cj) as the path measure, the tempered path integral becomes

N (d,Ξ, t, 0) =

〈〈
N (d− c̄N−1,Ξ,∆t, c̄N − c̄N−1)

N−1∏
j=1

η−1j

〉〉
c̄(t′)

(22.442)



22.9 TM Casimir–Polder Path Integral: Dielectric Interface 1065

in Monte-Carlo form, which behaves much better than the Gaussian path integral (as the ηj factors are
essentially smoothed versions of the N distributions), but at the expense of more complicated paths. Note
in this last expression that we have switched the path to the c̄ notation to emphasize that this path is
generated by the f̄ path measure.

22.9 TM Casimir–Polder Path Integral: Dielectric Interface

To apply the method for handling the interface functional in the previous section, we will evaluate the TM
path integral (22.247)

V (TM)

CP (r) = h̄cα0

4(2π)D/2ε0

∫ ∞
0

dT
T 1+D/2

〈〈(
〈εr〉−1x(τ) −

T
2
∇2

)
〈εr〉−1/2x(τ) e

−T〈VTM〉x(τ)

〉〉
x(τ)

(22.443)

for a planar, vacuum–dielectric interface. The derivation here will parallel the TE treatment in Section 22.7,
but with additions from the TM-potential treatment in Section 22.8.

22.9.1 Feynman–Kac Formula

We will begin by deriving an expression for the path integral

L(λ, s; d,Ξ) :=

∫ ∞
0

dt√
t
e−λt

〈〈
exp

(
−N[Bt; d,Ξ]− sTs[Bt; d]

)〉〉
Bt

, (22.444)

where Bt(t′) is a Wiener process (Brownian bridge) pinned to 0 at time t′ = t [i.e., Bt(t) = 0], Ts is the
sojourn time, and the functional N is as defined in Eq. (22.358). This generalizes the corresponding TE
expression (22.304) by introducing the interface functional at the boundary.

In working out this integral, we will employ the transfer-layer formalism of Section 22.8.5 (in the
sharp-interface limit a −→ 0), embodied by the boundary conditions (22.394). We will thus generalize the
derivation of the s = 0 case from Eq. (22.359) to (22.381). We start with the generalization of the solution
function (22.400),

f(x) =


Ae−

√
2(λ+s) x +

eikx

λ+ s+ k2/2
(x > d)

Be
√
2λx +

eikx

λ+ k2/2
(x < d),

(22.445)

which modifies the denominator in the x > d region to account for the sojourn time. Again, we are taking
g(x) = eikx in the Feynman–Kac formula to change the Wiener path into a closed bridge. This is the same as
the setup for the sojourn-time calculation [cf. Eq. (17.556)], except that we will apply the modified boundary
conditions (22.394) instead of simple continuity of the function and the derivative.

The two boundary conditions (22.394) at x = d then read

Ae−
√

2(λ+s) d +
eikd

λ+ s+ k2/2
=

(
Be
√
2λ d +

eikd

λ+ k2/2

)
e−Ξ

−
√
2(λ+ s)Ae−

√
2(λ+s) d +

ikeikd

λ+ s+ k2/2
=

(√
2λBe

√
2λ d +

ikeikd

λ+ k2/2

)
eΞ,

(22.446)

and solving for B gives

B = e−
√
2λ d+ikd

eΞ (λ+ k2/2
) (√

λ+ s+ ik/
√
2
)
−
(
λ+ s+ k2/2

) (√
λ+ s+ ike2Ξ/

√
2
)

(λ+ k2/2) (λ+ s+ k2/2)
(√

λ+ s+ e2Ξ
√
λ
)

 . (22.447)

Then using

L(λ, s; d,Ξ) =
1√
2π

∫ ∞
−∞

dk f(0) =
1√
2π

∫ ∞
−∞

dk

(
1

λ+ k2/2
+B

)
, (22.448)
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we obtain

L(λ, s; d,Ξ) =

√
π

λ

[
1− e−2

√
2λ d

(√
λ+ s− e2Ξ

√
λ

√
λ+ s+ e2Ξ

√
λ

)]

=

√
π

λ

[
1 + e−2

√
2λ d r(λ; s,Ξ)

]
,

(22.449)

where we are using the shorthand

r(λ; s,Ξ) :=
e2Ξ
√
λ−
√
λ+ s

e2Ξ
√
λ+
√
λ+ s

, (22.450)

which will later become the usual TM reflection coefficient. Notice the similarity here of Eq. (22.449) to
Eq. (22.304), to which it reduces as Ξ −→ 0.

22.9.2 Mellin Transform

Now we want to use the Mellin-Laplace-transform conversion formula (22.284) to compute the path integral

ĨD(s,Ξ; z) :=

∫ ∞
0

dT
T 1+D/2

〈〈
e−N[BT ;z,Ξ]−s(T+χTs[BT ;z]) − e−sT

〉〉
, (22.451)

in analogy to the TE integral (22.321). To do this, we rewrite (22.449) by replacing t with T , let s −→ sχ
and then let λ −→ λ+ s:

L(λ+ s, sχ; d,Ξ) =

∫ ∞
0

dT√
T
e−λT

〈〈
e−s(T+χTs[BT ])

〉〉
=

√
π

λ+ s

[
1 + e−2

√
2λ d r(λ+ s; sχ,Ξ)

]
,

(22.452)

as in Eq. (22.320). Then we can transform this result using Eq. (22.284),

ĨD(s, χ; z) =
1

Γ
[
(D + 1)/2

] ∫ ∞
0

dλλ(D−1)/2
[
L(λ+ s, sχ; z)− L(λ+ s, 0; z)

]
=

√
π

Γ
[
(D + 1)/2

] ∫ ∞
0

dλ
λ(D−1)/2√
λ+ s

e−2
√

2(λ+s) z r(λ+ s; sχ,Ξ),
(22.453)

as in Eq. (22.322). Notice that our procedure here parallels exactly the TE calculation, except for the
reflection coefficient, which has includes two factors of e2Ξ compared to rTE(λ + s; sχ). Recall that Ξ is
determined completely by χ [Eq. (22.352)], so we won’t need to note the dependence of the result on Ξ. (As
far as the derivation was concerned, they were independent parameters, but we are now identifying them as
being related.)

22.9.3 Inverse Moments

In converting the result (22.453) into the worldline path-integral result, the calculation here continues to
closely parallel that of Section 22.7.3. We thus require the TM version of the TE integral (22.323), which is

ID,α(z) :=
∫ ∞
0

dT
T 1+D/2

〈〈
e−N[BT ;z,Ξ]

(1 + χTs[BT ; z]/T )α
− 1

〉〉
. (22.454)

To do this, we apply the inverse-moment formula (22.295) to Eq. (22.453). Again, the functional form of the
integral here is essentially the same as what leads to the result (22.331), except for the (constant) factors of
exp(2Ξ) = 1 + χ. Thus, all the same algebra applies, with the modified result

ID,α(z) =
√
πΓ(D)

23D/2−1Γ(α)Γ
[
(D + 1)/2− α

]
zD

∫ ∞
1

dλ (λ− 1)(D−1)/2−αλ−(D+1)/2 r(λ;χ,Ξ)

= −
√
πΓ(D)

23D/2−1Γ(α)Γ
[
(D + 1)/2− α

]
zD

∫ ∞
1

dλ (λ− 1)(D−1)/2−αλ−(D+1)/2 rTM(λ;χ),

(22.455)
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where we used

r(λ;χ,Ξ) =

√
λ(1 + χ)−

√
λ+ χ√

λ(1 + χ) +
√
λ+ χ

= −rTM(λ;χ), (22.456)

with rTM(λ;χ) being the usual Fresnel coefficient for TM polarization, as defined in Eq. (22.279). Again, to
proceed, we will need to choose specific values of α and D, and to obtain Casimir–Polder energies, we will
need to consider combinations of these integrals with different values of α and D.

22.9.4 Result: 3D Electromagnetism

Comparing the TM path integral (22.443) for the Casimir–Polder potential

V (TM)

CP (r) = h̄cα0

4(2π)D/2ε0

∫ ∞
0

dT
T 1+D/2

〈〈(
〈εr〉−1x(τ) −

T
2
∇2

)
〈εr〉−1/2x(τ) e

−T〈VTM〉x(τ)

〉〉
x(τ)

(22.457)

to the integral definition (22.454), we see that we can write the (renormalized) TM potential as

V (TM)

CP (z) =
h̄cα0

4(2π)D/2ε0

(
ID,3/2(z)−

1

2
∂ 2
z ID−2,1/2(z)

)
(22.458)

for an atom at a distance z from a planar dielectric interface.
Thus, to begin, we will need

ID,3/2(z) = −
Γ(D)

23D/2−2Γ(D/2− 1)zD

∫ ∞
1

dλ (λ− 1)D/2−2λ−(D+1)/2 rTM(λ;χ)

= −
(D/2− 1)Γ

[
(D + 1)/2

]
2D/2−1√πzD

∫ ∞
1

dλ (λ− 1)D/2−2λ−(D+1)/2 rTM(λ;χ),

(22.459)

where we used the duplication formula in the form (22.335),
√
πΓ(D)

Γ(D/2)
= 2D−1Γ[(D + 1)/2], (22.460)

which we can rewrite as
Γ(D)

Γ(D/2− 1)
=

2D−1(D/2− 1)Γ[(D + 1)/2]√
π

. (22.461)

Similarly, we will need

ID−2,1/2(z) = −
Γ(D − 2)

23D/2−4Γ(D/2− 1)zD−2

∫ ∞
1

dλ (λ− 1)D/2−2λ−(D−1)/2 rTM(λ;χ), (22.462)

to obtain the differentiated form

∂ 2
z ID−2,1/2(z) = −

Γ(D)

23D/2−4Γ(D/2− 1)zD

∫ ∞
1

dλ (λ− 1)D/2−2λ−(D−1)/2 rTM(λ;χ)

= −
(D/2− 1)Γ

[
(D + 1)/2

]
2D/2−3√πzD

∫ ∞
1

dλ (λ− 1)D/2−2λ−(D−1)/2 rTM(λ;χ).

(22.463)

Thus, we have the combination

ID,3/2(z)−
1

2
∂ 2
z ID−2,1/2(z) = −

(D/2− 1)Γ
[
(D + 1)/2

]
2D/2−1√πzD

∫ ∞
1

dλ (λ− 1)D/2−2λ−(D+1)/2(1− 2λ) rTM(λ;χ),

(22.464)
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and hence the potential from (22.458):

V (TM)

CP (z) =
(D − 2)Γ

[
(D + 1)/2

]
h̄cα0

4(4π)D/2
√
πε0zD

∫ ∞
1

dλ (λ− 1)D/2−2λ−(D+1)/2(2λ− 1) rTM(λ;χ).

(TM Casimir–Polder potential) (22.465)
Recall that from from Eq. (22.279),

rTM(λ;χ) =

√
λ+ χ−

√
λ(1 + χ)

√
λ+ χ+

√
λ(1 + χ)

. (22.466)

This is the analogue of the TE potential (22.336).
In 3D electromagnetism (D = 4), the result (22.465) becomes

V (TM)

CP (z) =
3h̄cα0

128π2ε0z4

∫ ∞
1

dλλ−5/2(2λ− 1)

(√
λ+ χ−

√
λ(1 + χ)

√
λ+ χ+

√
λ(1 + χ)

)
. (22.467)

This integral is equivalent to the one that comes out of the Green-tensor analysis of the atom–wall problem
[see Eq. (14.210); the variable change ξ =

√
λ (and thus dλ = 2ξ dξ) yields twice the second term in the

integral]. Adapting the solution there, we have

V (TM)

CP (z) = − 3h̄cα0

32π2ε0z4

[
7

6
+ χ+

2− (1 + χ)
√
1 + χ

2χ
−

sinh−1√χ
2χ3/2

[
1 + χ+ 2(1 + χ)χ2

]
+

(1 + χ)2√
2 + χ

(
sinh−1

√
1 + χ− sinh−1 1√

1 + χ

)]
.

(TM Casimir–Polder potential) (22.468)
The bracketed quantity has asymptotes 43χ/120 for small χ and 5/6 for large χ, and acts as an ‘‘efficiency’’
ηTM for the TM energy compared to the full-electromagnetism, perfect-conductor result [see Eq. (14.214)].
The small-χ result agrees with our earlier calculation (22.268). The large-χ result also agrees with our naïve
strong-coupling result (22.255), except of course for the overall sign.

22.9.4.1 Digression: Derivative-Free Path Integrals

Although we have shown that we can evaluate the path integral (22.457) without problem, from a numerical
point of view the presence of derivatives is a nuisance, as they tend to amplify numerical and statistical
fluctations. Thus, we will spend a bit of time deriving alternative path integrals for the TM polarization
without any such derivatives. One obvious approach is to start, as we have already noted, that the derivative
with respect to the atomic position is a derivative with respect to the coordinate of the interface, up to a
minus sign. But varying the distance to the surface is has a similar effect to varying the total path time T ,
because it varies the portion of the path that ‘‘contacts’’ the interface. Because a Brownian bridge running
from 0 to T has an extent that scales as

√
T , we expect the path average in the integrand of the T integral

to depend on d and T only via the combination d/
√
T . This is explicitly the case, for example, for the

sojourn time that appears explicitly in the TE path integral as well as the TM case [see, e.g., Eq. (22.231)].
Thus, consider a derivative with respect to the atom–surface distance d of such an integrand, which we can
write schematically as

∂df

(
d√
T

)
=

1√
T
f ′
(

d√
T

)
. (22.469)

The analogous T derivative reads

∂T f

(
d√
T

)
= − d

23/2
f ′
(

d√
T

)
. (22.470)

Comparing these two expressions, we may then identify

∂d ≡ −
2T
d
∂T (22.471)
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whenever operating on such an integrand. Then in general, we have an integrand with an operator of the
form

T−D/2∂ 2
d = −T−D/2∂d

2T
d
∂T

= −2T−D/2∂d
T
d3

(d2∂T )

= −2T−(1+D)/2∂d
T 3/2

d3
(d2∂T )

= 4T−(1+D)/2 T
d
∂T
T 3/2

d3
(d2∂T )

=
4

d2
T−(D−1)/2∂T T 3/2∂T ,

(22.472)

where note that we were careful to ensure the variables to the right only appeared in the combination
d/
√
T before changing the derivative variable. Now we can integrate by parts twice under the T integral to

eliminate the derivatives:
T−D/2∂ 2

d =
2(D − 1)

d2
T−(D+1)/2T 3/2∂T

=
2(D − 1)

d2
T 1−D/2∂T

=
(D − 1)(D − 2)

d2
T−D/2.

(22.473)

Under this substitution, the path integral (22.457) becomes

V (TM)

CP (r) = h̄cα0

4(2π)D/2ε0

∫ ∞
0

dT
T 1+D/2

〈〈(
〈εr〉−1x(τ) −

T (D − 1)(D − 2)

d2

)
〈εr〉−1/2x(τ) e

−T〈VTM〉x(τ)

〉〉
x(τ)

.

(TM path integral, derivative-free) (22.474)
Note, however, that while we have eliminated the derivatives, we have had to explicitly introduce the atom–
surface distance d. While this is fine for the single-planar-interface calculation, it does not obviously gener-
alize to more general geometries.

A better path integral without an explicit distance results if we start from Eq. (22.455),

ID,1/2(z) = −
Γ(D)

23D/2−1Γ(D/2)zD

∫ ∞
1

dλ (λ− 1)D/2−1λ−(D+1)/2 rTM(λ;χ)

= − Γ(D)

23D/2−1(D/2− 1)Γ(D/2− 1)zD

∫ ∞
1

dλ (λ− 1)D/2−1λ−(D+1)/2 rTM(λ;χ),

(22.475)

which we can rewrite as

(D/2− 1) ID,1/2(z) = −
Γ(D)

23D/2−1Γ(D/2− 1)zD

∫ ∞
1

dλ (λ− 1) (λ− 1)D/2−2λ−(D+1)/2 rTM(λ;χ)

= − Γ(D)

23D/2−1Γ(D/2− 1)zD

∫ ∞
1

dλ (λ− 1)D/2−2λ−(D−1)/2 rTM(λ;χ)

+
Γ(D)

23D/2−1Γ(D/2− 1)zD

∫ ∞
1

dλ (λ− 1)D/2−2λ−(D+1)/2 rTM(λ;χ)

=
1

8
∂ 2
z ID−2,1/2(z)−

1

2
ID,3/2(z),

(22.476)

after comparison with Eqs. (22.459) and (22.463). Rearranging, we have

1

2
∂ 2
z ID−2,1/2(z) = 2(D − 2) ID,1/2(z) + 2ID,3/2(z). (22.477)
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Then we can eliminate the derivative term in Eq. (22.458), which becomes

V (TM)

CP (z) = − h̄cα0

4(2π)D/2ε0

(
ID,3/2(z) + 2(D − 2) ID,1/2(z)

)
. (22.478)

Evidently, we may rewrite Eq. (22.457) in derivative-free form as

V (TM)

CP (r) = − h̄cα0

4(2π)D/2ε0

∫ ∞
0

dT
T 1+D/2

〈〈(
〈εr〉−3/2x(τ) + 2(D − 2)〈εr〉−1/2x(τ)

)
e−T〈VTM〉x(τ)

〉〉
x(τ)

.

(TM path integral, derivative- and distance-free) (22.479)
Tracing the algebra for the ID,α(z) back to Eq. (22.327), we can see that the replacements for the derivatives
∂ 2
z (the factor of 4(D − 2) on the second term, and the inverted minus sign on the first term) ultimately

came from the derivative changing the power of (λ+ s) in the integrand, due to the exponential factor that
involved z. This type of factor is generic in Casimir–Polder calculations, so we expect this result to hold even
in the general case of multiple objects [for two surfaces, for example, see the TE two-plane Casimir–Polder
calculation, Eq. (22.619)].

22.9.5 Result: 1D Electromagnetism

For D = 2, the Casimir–Polder potential has a removable singularity as in the TE case (Section 22.7.5),
which we will again remove via dimensional regularization. The procedure is the same as before. First
setting D = 2 in Eq. (22.465) in all places where there won’t be any problems, and keeping D > 2 elsewhere,

V (TM)

CP (z) =
(D − 2)h̄cα0

32πε0z2

∫ ∞
1

dλ (λ− 1)D/2−2λ−3/2(2λ− 1) rTM(λ;χ). (22.480)

Integrating by parts gives

V (TM)

CP (z) =
(D − 2)h̄cα0(

D/2− 1
)
32πε0z2

[
(λ− 1)D/2−1λ−3/2(2λ− 1) rTM(λ;χ)

]∞
1

− (D − 2)h̄cα0(
D/2− 1

)
32πε0z2

∫ ∞
1

dλ (λ− 1)D/2−1∂λ

[
λ−3/2(2λ− 1) rTM(λ;χ)

]
.

(22.481)

Again, since D > 2, the boundary terms vanish at both the lower limit (due to the λ− 1 factor) and upper
limits (provided D is not much larger than 2). The expression is now regular at D = 2, and takes the form

V (TM)

CP (z) = − h̄cα0

16πε0z2

∫ ∞
1

dλ ∂λ

[
λ−3/2(2λ− 1) rTM(λ;χ)

]
. (22.482)

Now we can evaluate the integral. The result evaluated at the upper limit vanishes. Therefore, we find

V (TM)

CP (z) =
h̄cα0

16πε0z2
rTM(1;χ) = −

h̄cα0

16πε0z2

(√
1 + χ− 1√
1 + χ+ 1

)
,

(TM Casimir–Polder potential, D = 2) (22.483)
where we used

rTM(1;χ) =

√
1 + χ− (1 + χ)√
1 + χ+ (1 + χ)

=
1−
√
1 + χ

1 +
√
1 + χ

= rTE(1;χ), (22.484)

which follows from Eqs. (22.274) and (22.279). This agrees with the TE result (22.344), as it should, since
in 1D electromagnetism (where all waves are effectively at normal incidence), there should be no distinction
between the two polarizations.
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22.9.6 Casimir–Polder Potential: Full Electromagnetism

Now that we have worked out the TM Casimir–Polder path integral, after doing the same for the TE case
quite a while back in Section 22.7.4, we will wrap up this discussion by briefly summarizing the combined
results of both sections to obtain the Casimir–Polder potential in full electromagnetism, especially in the
mainly relevant case of 3D electromagnetism. First, combining Eqs. (22.336) and Eqs. (22.465), we see that
we can write the total potential as

VCP(z) =
(D − 2)Γ

[
(D + 1)/2

]
h̄cα0

4(4π)D/2
√
πε0zD

∫ ∞
1

dλ (λ− 1)D/2−2λ−(D+1)/2
[
rTE(λ;χ) + (2λ− 1) rTM(λ;χ)

]
,

(Casimir–Polder potential) (22.485)
where the reflection coefficients are defined in Eqs. (22.274) and (22.279). We see here that the contributions
add in the form of combined reflection coefficients, with an extra factor of (2λ− 1) in the TM case. Recall
that, in terms of a mode sum, this is a geometric factor: for a dielectric particle interacting with the electric
field, the TE field behaves as a scalar (the electric field is always parallel to the planar interface) while it
behaves as a vector in the TM case, so that the geometric factor is related to the dot product of the incident
and reflected wave vectors for vacuum-incident modes.

In the (D = 4) case of 3D electromagnetism, we can summarize the results from Eqs. (22.339) and
(22.468) as potentials

V (TE)

CP (z) = − 3h̄cα0

32π2ε0z4
ηTE(χ), V (TM)

CP (z) = − 3h̄cα0

32π2ε0z4
ηTM(χ),

(TE and TM Casimir–Polder potentials) (22.486)
where we have defined ‘‘efficiencies’’ relative to the strong-coupling (χ −→∞) case of [cf. Eq. (14.214)]

ηTE(χ) :=
1

6
+

1

χ
−
√
1 + χ

2χ
−

sinh−1√χ
2χ3/2

ηTM(χ) :=
7

6
+ χ+

2− (1 + χ)
√
1 + χ

2χ
−

sinh−1√χ
2χ3/2

[
1 + χ+ 2(1 + χ)χ2

]
+

(1 + χ)2√
2 + χ

(
sinh−1

√
1 + χ− sinh−1 1√

1 + χ

)
.

(TE and TM Casimir–Polder efficiencies) (22.487)
We have already discussed the asymptotic behaviors of these efficiencies in Sections 22.7.4 and 22.9.4.

In the full-electromagnetism case, we can thus most compactly combine the individual efficiencies

η(χ) := ηTE(χ) + ηTM(χ), (22.488)

in which case the full potential is

VCP(z) = −
3h̄cα0

32π2ε0z4
η(χ).

(TE + TM Casimir–Polder potential) (22.489)
Written out explicitly, the full efficiency is [cf. Eq. (14.212)]

η(χ) =
4

3
+ χ+

4− (2 + χ)
√
1 + χ

2χ
−

sinh−1√χ
2χ3/2

[
2 + χ+ 2(1 + χ)χ2

]
+

(1 + χ)2√
2 + χ

(
sinh−1

√
1 + χ− sinh−1 1√

1 + χ

)
.

(TE + TM Casimir–Polder efficiency) (22.490)
This efficiency is asymptotically 23χ/60 for small χ, and for large χ, η(χ) −→ 1 (which of course was the
point of the definition).
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22.10 Casimir–Polder Potentials Within Media

A relatively straightforward generalization of the above results is to compute the Casimir–Polder potential
for an atom near a dielectric interface, but with the atom within the dielectric. This is a model for an atom
in a gas near an interface, or an atom in a liquid near a bubble.

22.10.1 TE Polarization

22.10.1.1 Feynman–Kac Formula

For TE polarization, we return to the path integral (22.197):

V (TE)

CP (r) = h̄cα0

4(2π)D/2ε0

∫ ∞
0

dT
T 1+D/2

〈〈
〈εr〉−3/2x(τ)

〉〉
x(τ)

. (22.491)

The calculation parallels the calculation with the atom in vacuum of Section 22.7. The first difference is
that in the Feynman–Kac solution (22.308), we should choose the solution for x > d to put the atom inside
the dielectric. Then instead of Eq. (22.314), we have

L(λ, s; d) =
1√
2π

∫ ∞
−∞

dk f(0)

=
1√
2π

∫ ∞
−∞

dk

(
A+

2

2(λ+ s) + k2

)
=

√
π

λ+ s

[
1 + e2

√
2(λ+s) d

(√
λ+ s−

√
λ

√
λ+ s+

√
λ

)]

=

√
π

λ+ s

[
1− e2

√
2(λ+s) d rTE(λ; s)

]
,

(22.492)

where we are using the reflection coefficient (22.274) incident from the vacuum side, even though we are
considering a particle on the dielectric side (although the sign of the reflection coefficient differs, as we
expect for the dielectric side). The reason for this will become more clear shortly. Note that the result here
can be obtained from the previous result (22.314) by formally interchanging λ and λ+ s, and changing the
sign of d.

22.10.1.2 Mellin Transform

Proceeding in analogy to Section 22.7.2, we can use the replacements s −→ sχ and λ −→ λ+ s to write

L(λ+ s, sχ; d) =

∫ ∞
0

dT
T 1/2

e−λT
〈〈
e−s(T +χTs[BT ])

〉〉
=

√
π

λ+ s(1 + χ)

[
1− e2

√
2[λ+s(1+χ)] d rTE(λ+ s; sχ)

]
.

(22.493)

We will use this to compute the integral

ĨD(s, χ; z) :=

∫ ∞
0

dT
T 1+D/2

〈〈
e−s(T +χTs[BT ;z]) − e−s(T +χTs[BT ;z→∞])

〉〉
, (22.494)

which is the counterpart to Eq. (22.321). Note that here, we are renormalizing by subtracting the limit of
large distance z = −d > 0 from the interface. In the previous case, this was equivalent to setting χ = 0,
but this time the ‘‘background’’ case is an atom in a uniform dielectric. Using the same procedure as for
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(22.317), we can write

ĨD(s, χ; z) =
1

Γ
[
(D + 1)/2

] ∫ ∞
0

dλλ(D−1)/2
[
L(λ+ s, sχ; z)− L(λ+ s, sχ; z →∞)

]
= −

√
π

Γ
[
(D + 1)/2

] ∫ ∞
0

dλ
λ(D−1)/2√
λ+ s(1 + χ)

rTE(λ+ s; sχ) e−2
√

2[λ+s(1+χ)] z.
(22.495)

Again, this is the same as the atom-in-vacuum case so far, except for the factors of (1 + χ).

22.10.1.3 Inverse Moments

Now for the dielectric-interface path integral, the integral that we need to compute is of the form

ID,α(z) :=
∫ ∞
0

dT
T 1+D/2

〈〈
1

(1 + χTs[BT ; z]/T )α
− 1

(1 + χ)α

〉〉
, (22.496)

in analogy to Eq. (22.323). Note that the renormalization here is different, as appropriate for a particle on
the dielectric side of the interface. This cuts off the divergence at T , where the paths become arbitrarily
small, and so Ts[BT ; z] = T on the dielectric side. Rearranging this expression to be more compatible with
Eq. (22.495),

ID,α(z) =
∫ ∞
0

dT
T 1+D/2−α

〈〈
1

(T + χTs[BT ; z])
α −

1

(1 + χ)αT α

〉〉
. (22.497)

Then using (22.326),

ID,α(z) =
1

Γ(α)

∫ ∞
0

ds sα−1ĨD−2α(z), (22.498)

with Eq. (22.495) this becomes

ID,α(z) = −
√
π

Γ(α)Γ
[
(D + 1)/2− α

] ∫ ∞
0

ds sα−1
∫ ∞
0

dλ
λ(D−1)/2−α√
λ+ s(1 + χ)

rTE(λ+ s; sχ) e−2
√

2[λ+s(1+χ)] z,

(22.499)
as in Eq. (22.327). Simplifying as before by letting λ −→ λ/8z2 and s −→ s/8z2, then letting λ −→ λ− s,
and then letting λ −→ λs,

ID,α(z) = −
√
π

23D/2Γ(α)Γ
[
(D + 1)/2− α

]
zD

∫ ∞
1

dλ
(λ− 1)(D−1)/2−α rTE(λ;χ)√

λ+ χ

∫ ∞
0

ds sD/2−1 e−
√
s(λ+χ),

(22.500)
which compares to Eq. (22.330). Then letting λ −→ λ− χ,

ID,α(z) = −
√
π

23D/2Γ(α)Γ
[
(D + 1)/2− α

]
zD

×
∫ ∞
1+χ

dλ
[λ− (1 + χ)](D−1)/2−α rTE(λ− χ;χ)√

λ

∫ ∞
0

ds sD/2−1 e−
√
λs,

(22.501)

In the next step, we will let λ −→ (1 + χ)λ, and we note that

rTE[λ(1 + χ)− χ;χ] =
√
λ(1 + χ)− χ−

√
λ(1 + χ)√

λ(1 + χ)− χ+
√
λ(1 + χ)

= −r′TE(λ;χ), (22.502)

where we used Eqs. (22.274) and (22.276), and we see that we are switching via the natural transformations
of the problem from the vacuum-side to the dielectric-side reflection coefficient. Thus with λ −→ (1 + χ)λ
in Eq. (22.501), we have

ID,α(z) =
√
π(1 + χ)D/2−α

23D/2Γ(α)Γ
[
(D + 1)/2− α

]
zD

∫ ∞
1

dλ
(λ− 1)(D−1)/2−α r′TE(λ;χ)√

λ

∫ ∞
0

ds sD/2−1 e−
√
λ(1+χ)s.

(22.503)
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The integral over s now has the value 2Γ(D)[λ(1 + χ)]−D/2, so

ID,α(z) =
√
πΓ(D)

23D/2−1Γ(α)Γ
[
(D + 1)/2− α

]
(1 + χ)αzD

∫ ∞
1

dλ (λ− 1)(D−1)/2−αλ−(D+1)/2 r′TE(λ;χ). (22.504)

as in Eq. (22.331). Note, in fact, that the only differences here compared to Eq. (22.331) are the replacement
of rTE with r′TE and the factor of (1 + χ)−α. Now we will proceed by being more specific about α and D.

22.10.1.4 Result: 3D Electromagnetism

Now since the Casimir–Polder path integral (22.302) contains the integral (22.496) after renormalization, we
have

V (TE)

CP (z) =
h̄cα0

4(2π)D/2ε0
ID,3/2(z), (22.505)

just as in Eq. (22.332). With the result (22.331), this becomes

V (TE)

CP (z) =
Γ(D)h̄cα0

23D/2(2π)D/2Γ
[
D/2− 1

]
ε0(1 + χ)3/2zD

∫ ∞
1

dλ (λ− 1)D/2−2λ−(D+1)/2 r′TE(λ;χ). (22.506)

With Eq. (22.335), this result simplifies to

V (TE)

CP (z) =
(D − 2)Γ

[
(D + 1)/2

]
h̄cα0

4(4π)D/2
√
πε0(1 + χ)3/2zD

∫ ∞
1

dλ (λ− 1)D/2−2λ−(D+1)/2 r′TE(λ;χ),

(TE Casimir–Polder potential, dielectric side) (22.507)
where again [Eq. (22.276)]

r′TE(λ;χ) =

√
λ(1 + χ)−

√
λ(1 + χ)− χ√

λ(1 + χ) +
√
λ(1 + χ)− χ

. (22.508)

Notice again that this potential has the same form as the vacuum-side potential, except for the factor
(1 + χ)−3/2, and the dielectric-side reflection coefficient r′TE appears in place of the vacuum-side version
rTE.21

For D = 4, we have

V (TE)

CP (z) =
3h̄cα0

128π2ε0(1 + χ)3/2z4

∫ ∞
1

dλλ−5/2

(√
λ(1 + χ)−

√
λ(1 + χ)− χ√

λ(1 + χ) +
√
λ(1 + χ)− χ

)
, (22.509)

and evaluating the remaining integral, we find

V (TE)

CP (z) =
3h̄cα0

32π2ε0z4

(
5

6
+

1

χ
−
√
1 + χ

2χ
− (1 + χ)3/2

2χ3/2
tan−1√χ

)
(1 + χ)−3/2.

(TE Casimir–Polder potential, dielectric side) (22.510)
The χ-dependent factor here is strictly positive. Thus the force here is repulsive, unlike the vacuum-side
potential (22.339). For small χ, the χ-dependent factor is χ/40, which is the same as the vacuum-side case
(except for the overall minus sign). However, as χ −→∞, the potential here decays to 0 as (5/6−π/4)χ−3/2,
which is quite different to the vacuum-side case where the χ-dependent part levels off at 1/6.

21See Fei Zhou and Larry Spruch, ‘‘van der Waals and retardation (Casimir) interactions of an electron or an atom with
multilayered walls,’’ Physical Review A 52, 297 (1995), Eq. (4.55) (doi: 10.1103/PhysRevA.52.297).

http://dx.doi.org/10.1103/PhysRevA.52.297
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22.10.1.5 Result: 1D Electromagnetism

In the case of 1D electromagnetism (D = 2), the procedure is the same as in Section 22.10.1.5, with the
result

V (TE)

CP (z) =
h̄cα0

16πε0z2
r′TE(1;χ) (1 + χ)−3/2 =

h̄cα0

16πε0z2

(√
1 + χ− 1√
1 + χ+ 1

)
(1 + χ)−3/2.

(TE Casimir–Polder potential, D = 2, dielectric side) (22.511)
Again, this has the same form as the vacuum-side expression (22.344), except for the overall sign and the
factor (1 + χ)−3/2.

22.10.2 TM Polarization

For the TM case of the Casimir–Polder potential for an atom on the dielectric side of the interface, we return
to the path integral (22.198),

V (TM)

CP (r) = h̄cα0

4(2π)D/2ε0

∫ ∞
0

dT
T 1+D/2

〈〈
〈εr〉−3/2x(τ) e

−T〈VTM〉x(τ) − T
2εr
∇2

[
〈εr〉−1/2x(τ) e

−T〈VTM〉x(τ)

]〉〉
x(τ)

,

(22.512)
which is more general than the path integral (22.247) that we used in the vacuum-side calculation.

22.10.2.1 Feynman–Kac Formula

The derivation parallels that of the vacuum-side case in Section 22.9. The first difference is that we need
the solution to the A coefficient from Eqs. (22.446):

A = e
√

2(λ+s) d+ikd

e−Ξ (λ+ s+ k2/2
) (√

λ− ik/
√
2
)
−
(
λ+ k2/2

) (√
λ− ike−2Ξ/

√
2
)

(λ+ k2/2) (λ+ s+ k2/2)
(
e−2Ξ

√
λ+ s+

√
λ
)

 . (22.513)

Then from the form of the solution f(x) in Eq. (22.445), we need the function

L(λ, s; d,Ξ) =
1√
2π

∫ ∞
−∞

dk f(0)

=
1√
2π

∫ ∞
−∞

dk

(
1

λ+ s+ k2/2
+A

)
=

√
π

λ+ s

[
1 + e2

√
2(λ+s) d

(√
λ+ s− e2Ξ

√
λ

√
λ+ s+ e2Ξ

√
λ

)]

=

√
π

λ+ s

[
1− e2

√
2(λ+s) d r(λ; s,Ξ)

]
,

(22.514)

where L(λ, s; d,Ξ) is defined by Eq. (22.444). This result is in analogy to (22.449), but d < 0 here. We are
also using the notation (22.450)

r(λ; s,Ξ) :=
e2Ξ
√
λ−
√
λ+ s

e2Ξ
√
λ+
√
λ+ s

. (22.515)

22.10.2.2 Mellin Transform

The next step is to compute the path integral

ĨD(s,Ξ; z) :=

∫ ∞
0

dT
T 1+D/2

〈〈
e−N[BT ;z,Ξ]−s(T+χTs[BT ;z]) − e−s(T+χTs[BT ;z→∞])

〉〉
, (22.516)
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which parallels (22.451), but with the more appropriate renormalization for this case. The result, as in
Eq. (22.453), is

ĨD(s, χ; z) =
1

Γ
[
(D + 1)/2

] ∫ ∞
0

dλλ(D−1)/2
[
L(λ+ s, sχ; z)− L(λ+ s, sχ; z →∞)

]
= −

√
π

Γ
[
(D + 1)/2

] ∫ ∞
0

dλ
λ(D−1)/2√
λ+ s(1 + χ)

e−2
√

2[λ+s(1+χ)] z r(λ+ s; sχ,Ξ),
(22.517)

where we are now taking z = −d.

22.10.2.3 Inverse Moments

Next, we compute the integral (22.454),

ID,α(z) :=
∫ ∞
0

dT
T 1+D/2

〈〈
e−N[BT ;z,Ξ]

(1 + χTs[BT ; z]/T )α
− 1

(1 + χ)α

〉〉
, (22.518)

but modified here for a distant-interface renormalization. To do this, we take the inverse-moment formula
(22.295), in the form of Eq. (22.326),

ID,α(z) =
1

Γ(α)

∫ ∞
0

ds sα−1ĨD−2α(z). (22.519)

and apply it to Eq. (22.517):

ID,α(z) = −
√
π

Γ(α)Γ
[
(D + 1)/2− α

] ∫ ∞
0

ds sα−1
∫ ∞
0

dλ
λ(D−1)/2−α√
λ+ s(1 + χ)

e−2
√

2[λ+s(1+χ)] z r(λ+ s; sχ,Ξ).

(22.520)
Now absorbing a factor of

√
8z2 into λ and s, letting λ −→ λ− s, and then λ −→ λs,

ID,α(z) = −
√
π

23D/2Γ(α)Γ
[
(D + 1)/2− α

]
zD

∫ ∞
1

dλ
(λ− 1)(D−1)/2−α√

λ+ χ
r(λ;χ,Ξ)

∫ ∞
0

ds sD/2−1 e−
√
s(λ+χ).

(22.521)
Using Eq. (22.456) to eliminate r in favor of the TM reflection coefficient,

ID,α(z) =
√
π

23D/2Γ(α)Γ
[
(D + 1)/2− α

]
zD

∫ ∞
1

dλ
(λ− 1)(D−1)/2−α√

λ+ χ
rTM(λ;χ)

∫ ∞
0

ds sD/2−1 e−
√
s(λ+χ),

(22.522)
and then letting λ −→ λ− χ,

ID,α(z) =
√
π

23D/2Γ(α)Γ
[
(D + 1)/2− α

]
zD

×
∫ ∞
1+χ

dλ
[λ− (1 + χ)](D−1)/2−α√

λ
rTM(λ− χ;χ)

∫ ∞
0

ds sD/2−1 e−
√
sλ.

(22.523)

Then letting λ −→ (1 + χ)λ,

ID,α(z) = −
√
π(1 + χ)D/2−α

23D/2Γ(α)Γ
[
(D + 1)/2− α

]
zD

∫ ∞
1

dλ
(λ− 1)(D−1)/2−α r′TM(λ;χ)√

λ

∫ ∞
0

ds sD/2−1 e−
√
sλ(1+χ),

(22.524)
where we switched to the dielectric-side reflection coefficient using

rTM[λ(1 + χ)− χ;χ] =
√
λ−

√
(1 + χ)[(1 + χ)λ− χ]√

λ+
√

(1 + χ)[(1 + χ)λ− χ]
− r′TM(λ;χ), (22.525)
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which follows from Eqs. (22.279) and (22.281). The integral over s again has the value 2Γ(D)[λ(1 + χ)]−D/2,
so

ID,α(z) = −
√
πΓ(D)

23D/2−1Γ(α)Γ
[
(D + 1)/2− α

]
(1 + χ)αzD

∫ ∞
1

dλ (λ− 1)(D−1)/2−αλ−(D+1)/2 r′TM(λ;χ).

(22.526)
This is the analogue of Eq. (22.504) in the TE dielectric-side case, or Eq. (22.455) in the TM vacuum-side
case.

22.10.2.4 Result: 3D Electromagnetism

Now to evaluate the path integral (22.512) for the Casimir–Polder potential, we see from the definition
(22.518) that we can write the potential as

V (TM)

CP (z) =
h̄cα0

4(2π)D/2ε0

(
ID,3/2(z)−

1

2εr
∂ 2
z ID−2,1/2(z)

)
(22.527)

for an atom at a distance z from a planar dielectric interface, on the dielectric side. Notice the factor of
εr = 1 + χ (evaluated at the atomic position) that occurs in the second term here, which was absent from
the vacuum-side expression (22.458).

Then we can take the special case of Eq. (22.526):

ID,3/2(z) = −
Γ(D)

23D/2−2Γ(D/2− 1)(1 + χ)3/2zD

∫ ∞
1

dλ (λ− 1)D/2−2λ−(D+1)/2 r′TM(λ;χ)

= −
(D/2− 1)Γ

[
(D + 1)/2

]
23D/2−1√π(1 + χ)3/2zD

∫ ∞
1

dλ (λ− 1)D/2−2λ−(D+1)/2 r′TM(λ;χ),

(22.528)

where we used Eq. (22.461) to transform the gamma functions. Similarly,

∂ 2
z ID−2,1/2(z) = −

Γ(D)

23D/2−4Γ(D/2− 1)(1 + χ)1/2zD

∫ ∞
1

dλ (λ− 1)D/2−2λ−(D−1)/2 r′TM(λ;χ)

= −
(D/2− 1)Γ

[
(D + 1)/2

]
2D/2−3√π(1 + χ)1/2zD

∫ ∞
1

dλ (λ− 1)D/2−2λ−(D−1)/2 r′TM(λ;χ).

(22.529)

Thus, we have the combination

ID,3/2(z)−
1

2εr
∂ 2
z ID−2,1/2(z) = −

(D/2− 1)Γ
[
(D + 1)/2

]
2D/2−1√π(1 + χ)3/2zD

∫ ∞
1

dλ (λ− 1)D/2−2λ(1−D)/2(1− 2λ) r′TM(λ;χ),

(22.530)
in analogy to Eq. (22.464). Then from Eq. (22.527), we have the potential

V (TM)

CP (z) =
(D − 2)Γ

[
(D + 1)/2

]
h̄cα0

4(4π)D/2
√
πε0(1 + χ)3/2zD

∫ ∞
1

dλ (λ− 1)D/2−2λ−(D+1)/2(2λ− 1) r′TM(λ;χ)

(TM Casimir–Polder potential, dielectric side) (22.531)
where from Eq. (22.281),

r′TM(λ;χ) =

√
(1 + χ)[(1 + χ)λ− χ]−

√
λ√

(1 + χ)[(1 + χ)λ− χ] +
√
λ
. (22.532)

This is the analogue of the TM vacuum-side potential (22.465), having the same form except for the factor
(1 + χ)−3/2 and the appropriately modified reflection coefficient (the same changes that occurred in the TE
case).

For D = 4, this becomes

V (TM)

CP (z) =
3h̄cα0

128π2ε0(1 + χ)3/2z4

∫ ∞
1

dλλ−5/2(2λ− 1)

(√
(1 + χ)[(1 + χ)λ− χ]−

√
λ√

(1 + χ)[(1 + χ)λ− χ] +
√
λ

)
. (22.533)
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Evaluating the integral, we have

V (TM)

CP (z) =
3h̄cα0

32π2ε0z4

[
5

6
+

2−
√
1 + χ

2χ(1 + χ)
− 1 + χ(2 + 3χ)

2χ3/2(1 + χ)3/2
tan−1√χ

+
1

(1 + χ)3/2
√
2 + χ

(
tanh−1

√
1 + χ

2 + χ
− coth−1

√
2 + χ

)]
(1 + χ)−3/2.

(TM Casimir–Polder potential, dielectric side) (22.534)
For small χ, the χ-dependent factor is 43χ/120, as in the vacuum-side case (except for the overall minus
sign). For large χ, this again drops to zero as (5/6)χ−3/2, unlike the vacuum-side case, which levels off to
5/6.

22.10.2.5 Casimir–Polder Efficiencies

In analogy to the vacuum-side analysis of Section 22.9.6, we will combine and summarize the TM and TE
results of our calculations above for the dielectric-side Casimir–Polder potentials, and rewrite our results in
terms of efficiencies relative to the strong-coupling result. First, the combined Casimir–Polder potential on
the dielectric side of the interface is, from Eqs. (22.507) and (22.531),

V (TE)

CP (z) =
(D − 2)Γ

[
(D + 1)/2

]
h̄cα0

4(4π)D/2
√
πε0(1 + χ)3/2zD

∫ ∞
1

dλ (λ− 1)D/2−2λ−(D+1)/2
[
r′TE(λ;χ) + (2λ− 1) r′TM(λ;χ)

]
.

(TE + TM Casimir–Polder potential, dielectric side) (22.535)
as in the vacuum-side result (22.485), the total involves the combination of reflection coefficients, with a ge-
ometric factor on the TM coefficient. The dielectric-side Fresnel coefficients here are defined in Eqs. (22.276)
and (22.281).

Specializing to the (D = 4) case of 3D electromagnetism, we can summarize the results from Eqs. (22.510)
and (22.534) as potentials

V (TE)

CP (z) =
3h̄cα0

32π2ε0z4
η′TE(χ), V (TM)

CP (z) =
3h̄cα0

32π2ε0z4
η′TM(χ).

(TE and TM Casimir–Polder potentials, dielectric side) (22.536)
Note that we are comparing to the vacuum-side, strong coupling limit, but without the minus sign, so that
the efficiencies are positive (and, as it turns out, they will never achieve unity, even when combined). We
are using primes to notate the efficiencies here, compared to the vacuum-side efficiencies (22.487), to denote
that these efficiencies quantify the dielectric-side potentials. Explicitly, the efficiencies are

η′TE(χ) := (1 + χ)−3/2
(
5

6
+

1

χ
−
√
1 + χ

2χ
− (1 + χ)3/2

2χ3/2
tan−1

√
x

)
η′TM(χ) := (1 + χ)−3/2

[
5

6
+

2−
√
1 + χ

2χ(1 + χ)
− 1 + χ(2 + 3χ)

2χ3/2(1 + χ)3/2
tan−1√χ

+
1

(1 + χ)3/2
√
2 + χ

(
tanh−1

√
1 + χ

2 + χ
− coth−1

√
2 + χ

)]
.

(TE and TM Casimir–Polder efficiencies, dielectric side) (22.537)
as can be read off directly from Eqs. (22.510) and (22.534). We have already discussed the asymptotic
behaviors of these efficiencies in Sections 22.10.1.4 and 22.10.2.4, and it is worth reiterating that η′TE > 0
and η′TM > 0 for all χ ≥ 0.

In the full-electromagnetism case, we can then combine the individual efficiencies

η′(χ) := η′TE(χ) + η′TM(χ),

(full Casimir–Polder efficiency, dielectric side) (22.538)
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in which case the full potential is

VCP(z) =
3h̄cα0

32π2ε0z4
η′(χ).

(TE + TM Casimir–Polder potential, dielectric side.) (22.539)
Since η′(χ) here is fairly cumbersome, we won’t bother to write it out here. The efficiency is asymptotically
23χ/60 for small χ, just as in the vacuum-side case, and for large χ, η′(χ) scales as (5/3− π/4)χ−3/2.

Plotting the ‘‘inside’’ (dielectric-side) efficiency η′(χ) from Eq. (22.538) along with the ‘‘outside’’
(vacuum-side) efficiency η(χ) from Eq. (22.490), we see the matching at small χ, but a dramatic difference
in scaling at large χ, reflecting a sort of ‘‘screening’’ of the interface by the dielectric.
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We are also displaying the asymptotes for the curves for small and large χ.
Plotting the individual TE and TM components for the ‘‘inside’’ (dielectric-side) efficiencies [Eq. (22.537)]

and the ‘‘outside’’ (vacuum-side) efficiencies [Eq. (22.487)], we can see the relative contributions of each po-
larization.
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The TE polarization contributes relatively little compared to the TM polarization, on either side of the
interface.
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22.11 Electric vs. Magnetic Casimir–Polder Interactions

Recall that the general forms (22.195) and (22.196) for the Casimir–Polder potential encapsulate both electric
and magnetic interactions of particles with surfaces. So far, we have focused on the special case of a dielectric
particle (atom) of polarizability α0, interacting with a dielectric interface, where the dielectric function is
constant in the neighborhood of the particle. This led to the path-integral expressions (22.197) and (22.198)
for the TE and TM energies, respectively. For convencience we reproduce these here:

V (TE)

CP (r) = h̄cα0

4(2π)D/2ε0

∫ ∞
0

dT
T 1+D/2

〈〈
〈εr〉−3/2x(τ)

〉〉
x(τ)

V (TM)

CP (r) = h̄cα0

4(2π)D/2ε0

∫ ∞
0

dT
T 1+D/2

〈〈(
〈εr〉−1x(τ) −

T
2εr
∇2

)
〈εr〉−1/2x(τ) e

−T〈VTM〉x(τ)

〉〉
x(τ)

.

(22.540)

In this section we will briefly review the analogous forms for other combinations of electric and magnetic
interactions, and compare them to this one. The point of this exercise is to gain some more intuition for
the general path integrals and for magnetic interactions in particular. Of course, the dielectric–dielectric
interaction is the most important, since typically atoms and materials with large magnetic responses have
even larger dielectric responses: in atoms, magnetic dipoles are comparable to electric quadrupoles, and in
materials, magnetic materials are typically metallic conductors.

22.11.1 Dielectric Particle, Magnetic Surface

First, let’s consider a dielectric particle (atom) interacting with a purely magnetic surface. We can do this
by setting β0 = 0 and εr = 1 in Eqs. (22.195) and (22.196):

V (TE)

CP (r) = h̄cα0

4(2π)D/2ε0

∫ ∞
0

dT
T 1+D/2

〈〈
µr〈µr〉−3/2x(τ) e

−T〈VTE〉x(τ)

〉〉
x(τ)

V (TM)

CP (r) = h̄cα0

4(2π)D/2ε0

∫ ∞
0

dT
T 1+D/2

〈〈
µr〈µr〉−3/2x(τ) −

T
2
∇2〈µr〉−1/2x(τ)

〉〉
x(τ)

.

(unrenormalized Casimir–Polder potential, magnetic body) (22.541)
We have also set the derivatives of µr to zero at the particle location, as appropriate, for example, for a
particle in vacuum outside a purely magnetic body. Recall that the TE potential here is given by

VTE(r) :=
1

2

[(
∇ log√µr

)2 −∇2 log√µr

]
, (22.542)

as in Eq. (22.155).

22.11.1.1 Weak-Coupling Limit

These path integrals can be evaluated using the same techniques as in the dielectric-particle-dielectric-
surface integrals. As an example, we will consider the weak-coupling limit of a dielectric particle at a planar
vacuum–magnetic interface. That is, if

µr(r) = 1 + χm(r), (22.543)
then we will expand to lowest order in χm. Doing this in the path integrals (22.541), we find

V (TE)

CP (r) = V (TM)

CP (r) = h̄cα0

4(2π)D/2ε0

∫ ∞
0

dT
T 1+D/2

(
−3

2
+
T
4
∇2

)〈〈
〈χm〉x(τ)

〉〉
x(τ)

. (22.544)

after renormalizing against vacuum (χm = 0). To evaluate the two integral terms, we can read off the
dielectric result from Eqs. (22.226) and (22.235) as∫ ∞

0

dT
T 1+D/2

〈〈
〈χm〉x(τ)

〉〉
x(τ)

=
Γ(D/2)χm

(D + 1)2D/2+1zD
, (22.545)
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where the particle-surface distance is z. Using this in the path integrals (22.544),

V (TE)

CP (r) = V (TM)

CP (r) = h̄cα0

4(2π)D/2ε0

(
−3

2

Γ(D/2)χm

(D + 1)2D/2+1zD
+

1

4
∇2 Γ(D/2− 1)χm

(D − 1)2D/2zD−2

)
=

h̄cα0χm

4(2π)D/2ε0zD

(
− 3Γ(D/2)

(D + 1)2D/2+2
+

Γ(D/2− 1)(D − 2)

2D/2+2

)
=

h̄cα0χm

4(2π)D/2ε0zD

(
(2D − 1)Γ(D/2)

(D + 1)2D/2+2

)
=

(2D − 1)Γ(D/2)h̄cα0χm

16(D + 1)(4π)D/2ε0zD
.

(22.546)

For D = 4, the result is

V (TE)

CP (r) = V (TM)

CP (r) = 3h̄cα0

32π2ε0z4

(
7χm

120

)
. (22.547)

This gives a total electromagnetic potential of (7χm/60) times the strong-coupling result, but with an overall
positive result, so the potential in this case is repulsive.22

22.11.2 Magnetic Particle, Magnetic Surface

For a purely magnetic atom interacting with a purely magnetic body, we can take α0 = 0 and εr = 1 in
Eqs. (22.195) and (22.196), with the resulting path integrals

V (TE)

CP (r) = h̄cβ0µ0

4(2π)D/2

∫ ∞
0

dT
T 1+D/2

〈〈(
〈µr〉−1x(τ) −

T
2µr
∇2

)
〈µr〉−1/2x(τ) e

−T〈VTE〉x(τ)

〉〉
x(τ)

V (TM)

CP (r) = h̄cβ0µ0

4(2π)D/2

∫ ∞
0

dT
T 1+D/2

〈〈
〈µr〉−3/2x(τ)

〉〉
x(τ)

,

(unrenormalized Casimir–Polder potential, magnetic particle/magnetic body) (22.548)
where we have set any gradients of µr at this particle location to zero. Note that these are the same as the
dielectric–dielectric path integrals (22.540), with the following changes: α0 −→ β0µ0, ε0 −→ µ0, ε −→ µ,
and the TE and TM integrals have interchanged. Thus, all the calculations for the electric-dipole atom
interacting with a dielectric surface, in Sections 22.4–22.10 apply here with the same changes. In particular,
for a magnetic response equivalent to the electric response, the total (TM+TE) Casimir–Polder potential in
this case is the same as for the dielectric–dielectric case. 23

22.11.3 Magnetic Particle, Dielectric Surface

For a purely magnetic atom interacting with a dielectric body, we can take α0 = 0 and µr = 1 in Eqs. (22.195)
and (22.196), to obtain

V (TE)

CP (r) = h̄cβ0µ0

4(2π)D/2

∫ ∞
0

dT
T 1+D/2

〈〈
εr〈εr〉−3/2x(τ) −

T
2
∇2〈εr〉−1/2x(τ)

〉〉
x(τ)

V (TM)

CP (r) = h̄cβ0µ0

4(2π)D/2

∫ ∞
0

dT
T 1+D/2

〈〈
εr〈εr〉−3/2x(τ) e

−T〈VTM〉x(τ)

〉〉
x(τ)

.

(unrenormalized Casimir–Polder potential, magnetic particle/dielectric body) (22.549)
22cf. S. Y. Buhmann, H. T. Dung, T. Kampf, and D.-G. Welsch, ‘‘Casimir-Polder interaction of atoms with magnetodielectric

bodies,’’ European Physical Journal D 35, 15 (2005), Eq. (99) (doi: 10.1140/epjd/e2005-00044-6).
23See Timothy H. Boyer, ‘‘Van der Waals forces and zero-point energy for dielectric and permeable materials,’’ Physical

Review A 9, 2078 (1974) (doi: 10.1103/PhysRevA.9.2078). See also Stefan Yoshi Buhmann, Dispersion Forces I: Macroscopic
Quantum Electrodynamics and Ground-State Casimir, Casimir–Polder and van der Waals Forces (Springer, 2012). Compare
Eq. (4.134) with µ = 1 with Eq. (4.157) with ε = 1.

http://dx.doi.org/10.1140/epjd/e2005-00044-6
http://dx.doi.org/10.1103/PhysRevA.9.2078
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where we have set any gradients of εr at this particle location to zero. Note that these have the form of the
path integrals for a dielectric particle and a magnetic body as in Eqs. (22.541), but with the TE and TM
polarizations interchanged, and the electric and magnetic matter functions (and parameters) interchanged.
Thus, the weak-coupling result (22.11.1.1) also applies if we replace χm by χ and α0 with β0µ0, giving a
total Casimir–Polder potential from (22.547) of

VCP(r) = V (TE)

CP (r) + V (TM)

CP (r) = 3h̄cβ0µ0

32π2z4

(
7χ

60

)
. (22.550)

That is, for positive χm and β0, this configuration also produces a repulsive potential.24

We can confirm this intuition by considering a mode summation based on the mode diagrams in
Sections 22.1.1 and 22.1.2. Recall that a dielectric particle interacting with the TE modes has path integrals
given in Eqs. (22.540), and the overall negative sign of the (renormalized) potential is set by the Fresnel
reflection coefficients, which are negative for a source outside the dielectric. Further, the vector nature of
the electric field in the TM case is represented by the ∇2 term in the TM path integral.

By contrast, for a magnetic particle interacting with the same modes, note from the TE diagram in
Section 22.1.1 that now the incident and reflected magnetic fields have an opposite orientation compared to
the electric fields, and they also have a vector character, since the field vectors are not parallel unless the
mode is normally incident. Thus, the ∇2 appears in the TE path integral in Eqs. (22.549) here. The overall
minus sign is buried in the path integral, but is reflected in the positive, small-χm result (22.550). From the
TM diagram in Section 22.1.2, we see that the magnetic field takes on a scalar character, and there is another
relative minus sign in the incident vs. reflected fields, compared to the electric-field case. Hence, the ∇2 does
not appear in the TM path integral in Eqs. (22.549) here. However, the TM potential does appear, as it
maintains the proper TM boundary conditions across the interface (thus implementing the proper reflection
coefficient).

22.12 Casimir Potential

As an example of the Casimir interaction between two macroscopic bodies, we will evaluate the path integrals
(22.177) for the two polarizations

E(TE)

EM = − h̄c

2(2π)D/2

∫ ∞
0

dT
T 1+D/2

∫
dD−1x0

〈〈
〈εrµr〉−1/2x(τ) e

−T〈VTE〉x(τ)

〉〉
x(τ)

E(TM)

EM = − h̄c

2(2π)D/2

∫ ∞
0

dT
T 1+D/2

∫
dD−1x0

〈〈
〈εrµr〉−1/2x(τ) e

−T〈VTM〉x(τ)

〉〉
x(τ)

.

(Casimir energy, scalar EM) (22.551)
For convenience, we will reproduce the matter potentials (22.155) for the two polarizations here:

VTE(r) :=
1

2

[(
∇ log√µr

)2 −∇2 log√µr

]
VTM(r) :=

1

2

[(
∇ log

√
εr
)2 −∇2 log

√
εr

]
.

(22.552)
(matter-induced potentials)

24For the equivalence of the dielectric atom–magnetic surface with the magnetic atom–dielectric surface, see Stefan Yoshi
Buhmann, Dispersion Forces I: Macroscopic Quantum Electrodynamics and Ground-State Casimir, Casimir–Polder and van
der Waals Forces (Springer, 2012). In particular, compare Eq. (4.134) with ε = 1 with Eq. (4.157) with µ = 1; note also how
the factors of ε0 and µ0 work out in the prefactors. For more about the repulsive nature of a magnetic atom and a conducting
surface, see H. Haakh, F. Intravaia, C. Henkel, S. Spagnolo, R. Passante, B. Power, and F. Sols, ‘‘Temperature dependence
of the magnetic Casimir-Polder interaction,’’ Physical Review A 80, 062905 (2009) (doi: 10.1103/PhysRevA.80.062905). The
repulsive force between a dielectric body and a permeable body is discussed in Timothy H. Boyer, ‘‘Van der Waals forces and
zero-point energy for dielectric and permeable materials,’’ Physical Review A 9, 2078 (1974) (doi: 10.1103/PhysRevA.9.2078).
See also the online talk at http://cnls.lanl.gov/casimir/PresentationsSF/henkel-sfe.pdf.

http://dx.doi.org/10.1103/PhysRevA.80.062905
http://dx.doi.org/10.1103/PhysRevA.9.2078
http://cnls.lanl.gov/casimir/PresentationsSF/henkel-sfe.pdf
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Of course, the techniques we have used so far for Casimir–Polder potentials will apply here. The main
difference is that here we will need to integrate over the source-point location x0 of the Brownian bridges.

To simplify the calculation, we will take the case of two identical dielectric interfaces (i.e., a vacuum
gap between two dielectric half-spaces) of susceptibility χ, separated by a distance d. Thus, we will set
µr = 1 throughout, which for example sets VTE(r) = 0.

22.12.1 TE Path Integral

For the TE-polarized component, we will then need to evaluate the path integral

E(TE)

EM = − h̄c

2(2π)D/2

∫ ∞
0

dT
T 1+D/2

∫
dD−1x0

〈〈
〈εr〉−1/2x(τ)

〉〉
x(τ)

,

(Casimir energy, scalar EM, TE polarization) (22.553)
where we have taken µr = 1. To evaluate this integral, we will follow the procedure of Section 22.7.

22.12.1.1 Feynman–Kac Formula

We will begin by considering the path integral

L(λ, s; d, d0) :=

∫ ∞
0

dt√
t
e−λt

〈〈
exp

(
− sTds

[
Bt(t

′); d, d0

])〉〉
Bt

, (22.554)

where as usual, Bt(t′) is a Brownian bridge pinned to 0 at time t′ = t [i.e., Bt(t) = 0], and we have defined
the ‘‘double-sojourn time’’

Tds[Bt; d, d0] :=

∫ t

0

dt′ 1(−∞,d0]∪[d0+d,∞)

[
Bt(t

′)
]
, (22.555)

which is the combined time that Bt(t′) spends sojourning in either (−∞, d0] or [d0 + d,∞). Equivalently,
the indicator function here counts the amount of time the bridge spends outside the ‘‘gap’’ [d, d+ d0] (this
interval may or may not include the point 0).

Starting with the Feynman–Kac ODE (22.300), we can obtain an expression for f(0), which will yield
the path integral (22.554) by solving

f ′′(x) = 2
[
λ+ V (x)

]
f(x)− 2eikx, (22.556)

where we have taken g(x) = eikx, and V (x) is the (scaled) occupation function

V (x) = s1(−∞,d0]∪[d0+d,∞)(x). (22.557)

The steady-state solution is given by the Feynman–Kac formula (22.299) with x = 0 as

f(0) =

∫ ∞
0

dt e−λt

〈〈
eikW (t) exp

[
−
∫ t

0

dt′ V
[
W (t′)

]]〉〉
, (22.558)

which we will later integrate over k to obtain the desired path integral.
Then for x < d0 or x > d0 + d, the ODE is

f ′′(x) = 2(λ+ s)f(x)− 2eikx, (22.559)

with general solutions

f(x) = α+e
√

2(λ+s) x + α−e
−
√

2(λ+s) x +
eikx

λ+ s+ k2/2
, (22.560)
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for coefficients α± to be determined in each region. On the other hand, for d0 < x < d0 + d, the ODE is the
same, but with s = 0. Picking the bounded solutions in each domain, we have the solution

f(x) =



Ae−
√

2(λ+s) x +
eikx

λ+ s+ k2/2
(x > d0 + d)

Be−
√
2λx + Ce

√
2λx +

eikx

λ+ k2/2
(d0 < x < d0 + d)

De
√

2(λ+s) x +
eikx

λ+ s+ k2/2
(x < d0),

(22.561)

for undetermined constants A, B, C, and D. Demanding continuity of f(x) at x = d0 + d and x = d0 gives
the conditions

Ae−
√

2(λ+s)(d0+d) +
eik(d0+d)

λ+ s+ k2/2
= Be−

√
2λ(d0+d) + Ce

√
2λ(d0+d) +

eik(d0+d)

λ+ k2/2

Be−
√
2λ d + Ce

√
2λ d0 +

eikd0

λ+ k2/2
= De

√
2(λ+s) d0 +

eikd0

λ+ s+ k2/2
,

(22.562)

respectively, and continuity of the derivatives gives the conditions

−
√
2(λ+ s)Ae−

√
2(λ+s)(d0+d) +

ikeik(d0+d)

λ+ s+ k2/2
= −
√
2λBe−

√
2λ(d0+d) +

√
2λCe

√
2λ(d0+d) +

ikeik(d0+d)

λ+ k2/2

−
√
2λBe−

√
2λ d0 +

√
2λCe

√
2λ d0 +

ikeik(d0+d)

λ+ k2/2
=
√

2(λ+ s)De
√

2(λ+s) d0 +
ikeikd0

λ+ s+ k2/2
.

(22.563)
The solution for the cofficients are fairly complicated, but they simplify somewhat after integration over k:

1

2π

∫ ∞
−∞

dk A =
1√

2(λ+ s)

 s sinh
[
d
√
2λ
]
e2

√
2(λ+s) (d0+d)

(2λ+ s) sinh
[
d
√
2λ
]
+ 2
√
λ(λ+ s) cosh

[
d
√
2λ
]


1

2π

∫ ∞
−∞

dk B =
1

2
√
2λ

 −se√2λ (2d0+d) +
(
2λ+ s− 2

√
λ(λ+ s)

)
e−
√
2λ d

(2λ+ s) sinh
[
d
√
2λ
]
+ 2
√
λ(λ+ s) cosh

[
d
√
2λ
]


1

2π

∫ ∞
−∞

dk C =
1

2
√
2λ

 −se−√2λ (2d0+d) +
(
2λ+ s− 2

√
λ(λ+ s)

)
e−
√
2λ d

(2λ+ s) sinh
[
d
√
2λ
]
+ 2
√
λ(λ+ s) cosh

[
d
√
2λ
]


1

2π

∫ ∞
−∞

dkD =
1√

2(λ+ s)

 s sinh
[
d
√
2λ
]
e−2

√
2(λ+s) d0

(2λ+ s) sinh
[
d
√
2λ
]
+ 2
√
λ(λ+ s) cosh

[
d
√
2λ
]
 .

(22.564)

Then since

f(0) =



A+
1

λ+ s+ k2/2
(0 > d0 + d)

B + C +
1

λ+ k2/2
(d0 < 0 < d0 + d)

D +
1

λ+ s+ k2/2
(0 < d0),

(22.565)

and we want to calculate

L(λ, s; d, d0) =
1√
2π

∫ ∞
−∞

dk f(0) =

∫ ∞
0

dt√
t
e−λt

〈〈
exp

(
− s1(−∞,d0]∪[d0+d,∞)

[
Bt(t

′)
])〉〉

Bt

, (22.566)
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and so

L(λ, s; d, d0) =



√
π

λ+ s

1 +
s sinh

[
d
√
2λ
]
e2

√
2(λ+s) (d0+d)

(2λ+ s) sinh
[
d
√
2λ
]
+ 2
√
λ(λ+ s) cosh

[
d
√
2λ
]
 (d0 + d < 0)

√
π

λ

1−
s cosh

[
(2d0 + d)

√
2λ
]
−
(
2λ+ s− 2

√
λ(λ+ s)

)
e−
√
2λ d

(2λ+ s) sinh
[
d
√
2λ
]
+ 2
√
λ(λ+ s) cosh

[
d
√
2λ
]

 (d0 < 0 < d0 + d)

√
π

λ+ s

1 +
s sinh

[
d
√
2λ
]
e−2

√
2(λ+s) d0

(2λ+ s) sinh
[
d
√
2λ
]
+ 2
√
λ(λ+ s) cosh

[
d
√
2λ
]
 (d0 > 0).

(22.567)
Eliminating the hyperbolic functions in favor of exponentials, we have

L(λ, s; d, d0) =



√
π

λ+ s

 1 +
s
(
1− e−2

√
2λ a
)
e2

√
2(λ+s) (d0+d)

Λ+ − Λ−e−2
√
2λ d

 (d0 + d < 0)

√
π

λ

 1−
s
(
1 + e−2

√
2λ(2d0+d)

)
e2
√
2λ d0 − 2Λ−e

−2
√
2λ d

Λ+ − Λ−e−2
√
2λ d

 (d0 < 0 < d0 + d)

√
π

λ+ s

 1 +
s
(
1− e−2

√
2λ d
)
e−2

√
2(λ+s) d0

Λ+ − Λ−e−2
√
2λ d

 (d0 > 0),

(22.568)
where the symbols

Λ± := (2λ+ s)± 2
√
λ(λ+ s)

=
(√

λ+ s±
√
λ
)2 (22.569)

encapsulate much of the dependence on λ and s. Recalling the TE reflection coefficient (22.274)

rTE(λ;χ) =

√
λ−
√
λ+ χ√

λ+
√
λ+ χ

, (22.570)

we can see that
r 2

TE(λ; s) =
Λ−
Λ+

, (22.571)

and
s

Λ+
=

(√
λ+ s+

√
λ
)(√

λ+ s−
√
λ
)

Λ+
= −rTE(λ; s).

(22.572)

Then we can rewrite Eq. (22.568) as

L(λ, s; d, d0) =



√
π

λ+ s

1−
rTE(λ; s)

(
1− e−2

√
2λ d
)
e2

√
2(λ+s) (d0+d)

1− r 2
TE(λ; s) e

−2
√
2λ d

 (d0 + d < 0)

√
π

λ

1 +
rTE(λ; s)

(
1 + e−2

√
2λ(2d0+d)

)
e2
√
2λ d0 + 2r 2

TE(λ; s) e
−2
√
2λ d

1− r 2
TE(λ; s) e

−2
√
2λ d

 (d0 < 0 < d0 + d)

√
π

λ+ s

1−
rTE(λ; s)

(
1− e−2

√
2λ d
)
e−2

√
2(λ+s) d0

1− r 2
TE(λ; s) e

−2
√
2λ d

 (d0 > 0),

(22.573)
now in terms of Fresnel coefficients.
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22.12.1.2 Mellin Transform

Our next goal here is to compute the integral

ĨD(s, χ; d, d0) =

∫ ∞
0

dT
T 1+D/2

〈〈
e−s{T+χTds[BT ]} − e−s{T +χT 1(−∞,d0]∪[d0+d,∞)[0]}

〉〉
, (22.574)

where the second term is a renormalization against separated plates, which in each region means considering
the case where the interfaces are displaced far away from the point of consideration (i.e., the source point of
the Brownian bridges). We will proceed in analogy to Section 22.7.2. First, we will make the replacements
s −→ sχ and λ −→ λ+ s, which from Eq. (22.566) means we have now computed

L(λ+ s, sχ; d, d0) =

∫ ∞
0

dT√
T
e−λT

〈〈
e−s{T+χTds[BT ;d,d0]}

〉〉
BT

. (22.575)

Note that we must compare this to the reference case

L0(λ+ s, sχ; d, d0) =

∫ ∞
0

dT√
T
e−λT

〈〈
e−s{T+χT 1(−∞,d0]∪[d0+d,∞)[0]}

〉〉
BT

, (22.576)

which again corresponds to taking the limit as the interfaces move far away from the source point (the origin)
in L(λ + s, sχ; d, d0). In each region this corresponds to the limit where all of the exponential factors that
depend on d or d0 vanish. This allows us to drop the leading terms in Eq. (22.568):

L−(λ, s; d, d0) := L(λ, s; d, d0)−
√

π

λ+ s[Θ(d) + Θ(−d0 − d)]

=



−
√

π

λ+ s

 rTE(λ; s)
(
1− e−2

√
2λ d
)
e2

√
2(λ+s) (d0+d)

1− r 2
TE(λ; s) e

−2
√
2λ d

 (d0 + d < 0)

√
π

λ

 rTE(λ; s)
(
1 + e−2

√
2λ(2d0+d)

)
e2
√
2λ d0 + 2r 2

TE(λ; s) e
−2
√
2λ d

1− r 2
TE(λ; s) e

−2
√
2λ d

 (d0 < 0 < d0 + d)

−
√

π

λ+ s

 rTE(λ; s)
(
1− e−2

√
2λ d
)
e−2

√
2(λ+s) d0

1− r 2
TE(λ; s) e

−2
√
2λ d

 (d0 > 0).

(22.577)
Then, as in Eq. (22.321), we can compute the integral (22.574) as

ĨD(s, χ; d, d0) =
1

Γ
[
(D + 1)/2

] ∫ ∞
0

dλλ(D−1)/2L−(λ+ s, sχ; d, d0), (22.578)

which for now we will leave in terms of the cumbersome expression (22.577).

22.12.1.3 Inverse Moments

In analogy to Eq. (22.324), we will now compute the integral

ID,α(d, d0) =
∫ ∞
0

dT
T 1+D/2−α

〈〈
1

(T + χTds[BT ; d, d0])
α −

1(
T + χT 1(−∞,d]∪[d+a,∞)

[
0
])α
〉〉
, (22.579)

using the transformation (22.326):

ID,α(d, d0) =
1

Γ(α)

∫ ∞
0

ds sα−1ĨD−2α(d, d0). (22.580)
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With Eq. (22.578), this becomes

ID,α(d, d0) =
1

Γ(α)Γ
[
(D + 1)/2− α

]∫ ∞
0

ds sα−1
∫ ∞
0

dλλ(D−1)/2−αL−(λ+ s, sχ; d, d0). (22.581)

We then carry out the other transformations in Section 22.7.3. First letting λ −→ λ− s and then λ −→ λs,

ID,α(d, d0) =
1

Γ(α)Γ
[
(D + 1)/2− α

] ∫ ∞
0

ds sD/2−1
∫ ∞
1

dλ (λ− 1)(D−1)/2−α
[√

sL−(λs, sχ; d, d0)
]
. (22.582)

Then letting s −→ s/8,

ID,α(d, d0) =
√
π

23D/2Γ(α)Γ
[
(D + 1)/2− α

] ∫ ∞
0

ds sD/2−1
∫ ∞
1

dλ (λ− 1)(D−1)/2−α

×
[√

(s/8π)L−(λs/8, sχ/8; d, d0)
]
.

(22.583)

The last factor is[√
(s/8π)L−(λs/8, sχ/8; d, d0)

]

=



− 1√
λ+ χ

 rTE(λ;χ)
(
1− e−

√
sλ d
)
e
√
s(λ+χ) (d0+d)

1− r 2
TE(λ;χ) e

−
√
sλ d

 (d0 + d < 0)

1√
λ

 rTE(λ;χ)
(
1 + e−

√
sλ(2d0+d)

)
e
√
sλ d0 + 2r 2

TE(λ;χ) e
−
√
sλ d

1− r 2
TE(λ;χ) e

−
√
sλ d

 (d0 < 0 < d0 + d)

− 1√
λ+ χ

 rTE(λ;χ)
(
1− e−

√
sλ d
)
e−

√
s(λ+χ) d0

1− r 2
TE(λ;χ) e

−
√
sλ d

 (d0 > 0),

(22.584)
by making the replacements in Eq. (22.577).

22.12.1.4 Spatial Integration and Renormalization

The next step is to compute the integral of the function ID,α(d, d0) in Eq. (22.583) over all d0, which
corresponds to the component of the x0 integral normal to the interfaces. All the d0-dependent components
are in the factor in Eq. (22.584), so we will focus on this last part. We will call the integrals over the
respective regions of the three piecewise parts II, III, and IIII, in the order the components are listed in
Eq. (22.584). Beginning with the third section,

IIII = −
rTE(λ;χ)

(
1− e−

√
sλ d
)

√
λ+ χ

[
1− r 2

TE(λ;χ) e
−
√
sλ d
] ∫ ∞

0

dd0 e
−
√
s(λ+χ) d0

= −
rTE(λ;χ)

(
1− e−

√
sλ d
)

√
s(λ+ χ)

[
1− r 2

TE(λ;χ) e
−
√
sλ d
] .

(22.585)

By symmetry, the first section is equivalent:
II = IIII. (22.586)
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Finally, in the middle region we have

III =
rTE(λ;χ)

√
λ
[
1− r 2

TE(λ;χ) e
−
√
sλ d
] ∫ 0

−d
dd0

[(
1 + e−

√
sλ(2d0+d)

)
e
√
sλ d0 + 2rTE(λ;χ) e

−
√
sλ d

]
=

rTE(λ;χ)
√
λ
[
1− r 2

TE(λ;χ) e
−
√
sλ d
] ∫ 0

−d
dd0

[(
e
√
sλ d0 + e−

√
sλ(d0+d)

)
+ 2rTE(λ;χ) e

−
√
sλ d

]
=

rTE(λ;χ)
√
λ
[
1− r 2

TE(λ;χ) e
−
√
sλ d
][ 2√

sλ

(
1− e−

√
sλ d
)
+ 2d rTE(λ;χ) e

−
√
sλ d

]
=

2rTE(λ;χ)[
1− r 2

TE(λ;χ) e
−
√
sλ d
][ 1√

s λ

(
1− e−

√
sλ d
)
+

d√
λ
rTE(λ;χ) e

−
√
sλ d

]
.

(22.587)

The sum over all three regions is therefore

II + III + IIII =
2rTE(λ;χ)[

1− r 2
TE(λ;χ) e

−
√
sλ d
][( 1√

s λ
− 1√

s(λ+ χ)

)(
1− e−

√
sλ d
)
+

d√
λ
rTE(λ;χ) e

−
√
sλ d

]

=
2rTE(λ;χ)

√
λ
[
1− r 2

TE(λ;χ) e
−
√
sλ d
][√λ

s

(
1

λ
− 1

λ+ χ

)(
1− e−

√
sλ d
)
+ d rTE(λ;χ) e

−
√
sλ d

]
.

(22.588)
Anticipating the final result, note that we normally define the Casimir energy (22.553) to be zero when
the separation between objects becomes large. Note, though, that Eq. (22.588), which encapsulates all the
spatial dependence of the energy (22.553), does not have this property, since it does not vanish as d −→∞.
The renormalization is only necessary for the first term, and has the form

1− e−
√
sλ d

1− r 2
TE e

−
√
sλ d
− 1 =

[
r 2

TE − 1
]
e−
√
sλ d

1− r 2
TE e

−
√
sλ d

, (22.589)

Thus, after renormalization, Eq. (22.588) becomes

(II + III + IIII)renorm

=
2rTE(λ;χ)

√
λ
[
1− r 2

TE(λ;χ) e
−
√
sλ d
][√λ

s

(
1

λ
− 1

λ+ χ

)[
r 2

TE(λ;χ)− 1
]
e−
√
sλ d + d rTE(λ;χ) e

−
√
sλ d

]
.

(22.590)
We can simplify this further by using

√
λ[r 2

TE(λ;χ)− 1]

rTE(λ;χ)

(
1

λ
− 1

λ+ χ

)
=
[
rTE(λ;χ)− r−1TE (λ;χ)

]( χ√
λ(λ+ χ)

)
=

[√
λ−
√
λ+ χ√

λ+
√
λ+ χ

−
√
λ+
√
λ+ χ√

λ−
√
λ+ χ

](
χ√

λ(λ+ χ)

)
=

[
−4
√
λ(λ+ χ)

−χ

](
χ√

λ(λ+ χ)

)
=

4√
λ+ χ

,

(22.591)

where we used the explicit form (22.570) for the reflection coefficient. Thus, we have

(II + III + IIII)renorm =
2r 2

TE(λ;χ) e
−
√
sλ d

√
λ
[
1− r 2

TE(λ;χ) e
−
√
sλ d
][ 4√

s(λ+ χ)
+ d

]
(22.592)
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as the simplified form of Eq. (22.590). Then we can write out the original result that we were trying to
calculate∫ ∞

−∞
dd0 ID,α(d, d0) =

√
π

23D/2Γ(α)Γ
[
(D + 1)/2− α

] ∫ ∞
0

ds sD/2−1
∫ ∞
1

dλ (λ− 1)(D−1)/2−α

× 2r 2
TE(λ;χ) e

−
√
sλ d

√
λ
[
1− r 2

TE(λ;χ) e
−
√
sλ d
][d+ 4√

s(λ+ χ)

]
(22.593)

from Eq. (22.583), again after renormalization.

22.12.1.5 Casimir Energy

Now we will assemble all the parts to obtain the Casimir energy. We started with the path-integral expression
(22.553), which we can write as

E(TE)

EM = − h̄c

2(2π)D/2

∫
dD−2x0

∫
dd0 ID,1/2(d, d0), (22.594)

in terms of the integral (22.579). Note that we have split the original x0 integral into the d0 integration
normal to the interfaces, and the rest of the D− 2 integrals, where the integrand is constant. Thus, we may
define the (divergent) (D − 2)-dimensional ‘‘area’’

A :=

∫
dD−2x0, (22.595)

and then write the Casimir energy density as

E(TE)

EM

A
= − h̄c

2(2π)D/2

∫ ∞
−∞

dd0 ID,1/2(d, d0). (22.596)

Then using Eq. (22.593) with α = 1/2, we have

E(TE)

EM

A
= − h̄c

(16π)D/2Γ(D/2)

∫ ∞
0

ds sD/2−1
∫ ∞
1

dλ
(λ− 1)D/2−1

√
λ

[
r 2

TE(λ;χ) e
−
√
sλ d

1− r 2
TE(λ;χ) e

−
√
sλ d

] [
d+

4√
s(λ+ χ)

]
.

(22.597)
which has already been renormalized (shifted) such that this energy vanishes as d −→∞. Then using

∂λrTE(λ;χ) = ∂λ

√
λ−
√
λ+ χ√

λ+
√
λ+ χ

= − rTE√
λ(λ+ χ)

(22.598)

and

∂λ

[
r 2

TE(λ;χ) e
−
√
sλ d
]
= 2rTE(λ;χ) e

−
√
sλ d∂λrTE(λ;χ)−

d

2

√
s

λ
r 2

TE(λ;χ) e
−
√
sλ d

= −
√
s

λ

r 2
TE(λ;χ)

2
e−
√
sλ d

(
d+

4√
s(λ+ χ)

)
,

(22.599)

Eq. (22.597) becomes

E(TE)

EM

A
=

2h̄c

(16π)D/2Γ(D/2)

∫ ∞
0

ds sD/2−3/2
∫ ∞
1

dλ (λ− 1)D/2−1 ∂λ
[
r 2

TE(λ;χ) e
−
√
sλ d
]

1− r 2
TE(λ;χ) e

−
√
sλ d

= − 2h̄c

(16π)D/2Γ(D/2)

∫ ∞
0

ds sD/2−3/2
∫ ∞
1

dλ (λ− 1)D/2−1∂λ log
[
1− r 2

TE(λ;χ) e
−
√
sλ d
]
.

(22.600)
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Integrating by parts, we then have

E(TE)

EM

A
=

(D − 2)h̄c

(16π)D/2Γ(D/2)

∫ ∞
0

ds sD/2−3/2
∫ ∞
1

dλ (λ− 1)D/2−2 log
[
1− r 2

TE(λ;χ) e
−
√
sλ d
]
.

(TE dielectric Casimir energy) (22.601)
Note that we can rescale s −→ s/d2 to separate out the distance dependence as

E(TE)

EM

A
=

(D − 2)h̄c

(16π)D/2Γ(D/2)dD−1

∫ ∞
0

ds sD/2−3/2
∫ ∞
1

dλ (λ− 1)D/2−2 log
[
1− r 2

TE(λ;χ) e
−
√
sλ
]
.

(TE dielectric Casimir energy) (22.602)
In the general, dispersive case, however, the reflection coefficient also depends on s, and this rescaling can’t
be done (indicating a crossover between different power-law potentials). Often these results are differentiated
with respect to d to give a Casimir force (pressure).

For 3D electromagnetism (D = 4), this becomes

E(TE)

EM

A
=

h̄c

128π2

∫ ∞
0

ds
√
s

∫ ∞
1

dλ log
[
1− r 2

TE(λ;χ) e
−
√
sλ d
]

=
h̄c

128π2d3

∫ ∞
0

ds
√
s

∫ ∞
1

dλ log
[
1− r 2

TE(λ;χ) e
−
√
sλ
]
.

(TE dielectric Casimir energy, 3D) (22.603)
To check the obvious special cases, for strong coupling (χ −→∞), we have rTE = −1 and thus

E(TE)

EM

A
=

h̄c

128π2d3

∫ ∞
0

ds
√
s

∫ ∞
1

dλ log
[
1− e−

√
sλ
]

=
h̄c

128π2d3

(
−4π4

45

)
,

(22.604)

and thus we have the strong-coupling result25

E(TE)

EM

A
= − π2h̄c

1440d3
.

(TE dielectric Casimir energy, 3D strong coupling) (22.605)
For small χ, we have rTE = −χ/4λ, and using this in Eq. (22.603) after expanding the logarithm,

E(TE)

EM

A
= − h̄cχ2

2048π2d3

∫ ∞
0

ds
√
s

∫ ∞
1

dλ

λ2
e−
√
sλ

= − h̄cχ2

2048π2d3

(
8

5

)
,

(22.606)

and so the weak-coupling result is26

E(TE)

EM

A
= − h̄cχ2

1280π2d3
.

(TE dielectric Casimir energy, 3D weak coupling) (22.607)
Note that this goes as χ2 to lowest order, with one factor of χ to leading order for each of the two surfaces in
the interaction. The O(χ) terms—corresponding to the one-body energies—were lost in the renormalization
when we subtracted away the d −→∞ limit.

25See, e.g., Julian Schwinger, ‘‘Casimir energy for dielectrics,’’ Proceedings of the National Academy of Sciences 89, 4091
(1992) (doi: 10.1073/pnas.89.9.4091).

26Julian Schwinger, op. cit.

http://dx.doi.org/10.1073/pnas.89.9.4091
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22.12.1.6 Small-χ Limit

The above calculation was fairly cumbersome, so to get a more intuitive look, we will consider the dilute-
medium limit. In the limit of small χ, the path integral (22.553) becomes

E(TE)

EM = − h̄c

2(2π)D/2

∫ ∞
0

dT
T 1+D/2

∫
dD−1x0

〈〈
1− 1

2
〈χ〉x(τ) +

3

8
〈χ〉2x(τ)

〉〉
x(τ)

, (22.608)

where we have expanded to second order in χ. Again, this is because we are interested in an interaction
energy between two bodies. This is perhaps more clear if we label the susceptibilities of the two bodies as χ1

and χ2; then the term we seek is of the form χ1χ2, while the O(χ1) and O(χ2) terms are one-body energies
that drop out in the renormalization. Thus, dropping the (obvious) background and one-body contributions,
we have the weak-coupling result

E(TE)

EM = − 3h̄c

16(2π)D/2

∫ ∞
0

dT
T 1+D/2

∫
dD−1x0

〈〈
〈χ〉2x(τ)

〉〉
x(τ)

.

(Casimir energy, scalar EM, TE polarization, small χ) (22.609)
The factor of 3/8 here is similar to the analogous factor of 3/4 that we obtained in the Casimir–Polder
potential: the first factor of 1/2 from the functional derivative in Eq. (22.182), and the remaining 3/2 from
making the small-χ expansion as in Eq. (22.226).

In fact, in evaluating the path integral, it is best to emphasize the two-body interaction by letting
χ = χ1 + χ2, and again drop the one-body contributions of the form χ 2

1 and χ 2
2 to obtain

E(TE)

EM = − 3h̄c

8(2π)D/2

∫ ∞
0

dT
T 1+D/2

∫
dD−1x0

〈〈
〈χ1〉x(τ)〈χ2〉x(τ)

〉〉
x(τ)

.

(Casimir energy, scalar EM, TE polarization, small χ) (22.610)
Note that since there are two terms in χ2 corresponding to the two-body interaction, we obtain the factor of
2 that brings this path integral in line with the analogous Casimir–Polder path integral (22.226). Now this
path integral is linear in both χ1 and χ2 separately. Thus, we can take a Green-function approach, letting

χ2(r) = χ2

∫
χ2

dD−1r′ δ(r− r′), (22.611)

where we assume χ2 models a dielectric body that is uniform over some region in space, and the integral
extends over this region. Then the path integral (22.610) becomes

E(TE)

EM = − 3h̄cχ2

8(2π)D/2

∫
χ2

dD−1r′
∫ ∞
0

dT
T 1+D/2

∫
dD−1x0

〈〈
〈χ1〉x(τ)〈δ(x− r′)〉x(τ)

〉〉
x(τ)

. (22.612)

This has precisely the same form as the Casimir–Polder path integral (22.206), once expanded to lowest
order in χ, where χ refers to χ1, and χ2 is equivalent to α0/ε0. Thus, the delta function is removed in the
same way as in the Casimir–Polder calculation, and we have

E(TE)

EM

A
= − 3h̄cχ2

8(2π)D/2

∫ ∞
d

dz

∫ ∞
0

dT
T 1+D/2

〈〈
〈χ1〉x(τ)

〉〉
x(τ)

, (22.613)

where we are taking χ1 to correspond to the region z < 0, and χ2 to z > d for the two-plane interaction, and
we have already divided through by the divergent transverse-integral factor to give the energy per unit area.
Then we can set D = 4 and adapt the weak-coupling Casimir–Polder result by comparing Eqs. (22.226) and
(22.236) to write ∫ ∞

0

dT
T 3

〈〈
〈χ〉x(τ)

〉〉
x(τ)

=
χ

40z4
. (22.614)
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Thus, Eq. (22.613) becomes

E(TE)

EM

A
= −3h̄cχ1χ2

1280π2

∫ ∞
d

dz

z4
= − h̄cχ1χ2

1280π2d3
. (22.615)

Finally setting χ1 = χ2 = χ, we see that we have obtained the small-χ limit (22.607) of our earlier calculation.

22.12.1.7 Casimir–Polder Potential: Two Parallel Planes

As a by-product of the Casimir-energy analysis above, we can also immediately obtain the Casimir–Polder
potential for an atom in the vicinity of the same two dielectric planes. For example, to obtain the potential
between two dielectric planes, we can start with Eqs. (22.583) and (22.584) in the middle region to write the
integral

ID,α(d, d0) =
√
π

23D/2Γ(α)Γ
[
(D + 1)/2− α

] ∫ ∞
0

ds sD/2−1
∫ ∞
1

dλ
(λ− 1)(D−1)/2−α√

λ

×

 rTE(λ;χ)
(
1 + e−

√
sλ(2d0+d)

)
e
√
sλ d0 + 2r 2

TE(λ;χ) e
−
√
sλ d

1− r 2
TE(λ;χ) e

−
√
sλ d

 .

(22.616)

Then using Eq. (22.332),

V (TE)

CP (z) =
h̄cα0

4(2π)D/2ε0
ID,3/2(z), (22.617)

we can write-the Casimir–Polder potential as

V (TE)

CP (z) =
h̄cα0

23D/2+1(2π)D/2Γ(D/2− 1)ε0

∫ ∞
0

ds sD/2−1
∫ ∞
1

dλ
(λ− 1)D/2−2

√
λ

×

 rTE(λ;χ)
(
e
√
sλ d0 + e−

√
sλ(d0+d)

)
+ 2r 2

TE(λ;χ) e
−
√
sλ d

1− r 2
TE(λ;χ) e

−
√
sλ d

 .

(22.618)

Note here that d > 0 and d0 < 0. Thus, it is more natural to set z = −d0 > 0 as the atomic distance to the
left-hand interface, with d the interface separation, and 0 < z < d:

V (TE)

CP (z) =
h̄cα0

23D/2+1(2π)D/2Γ(D/2− 1)ε0

×
∫ ∞
0

ds sD/2−1
∫ ∞
1

dλ
(λ− 1)D/2−2

√
λ

 rTE(λ;χ)
(
e−
√
sλ z + e−

√
sλ(d−z)

)
1− r 2

TE(λ;χ) e
−
√
sλ d

 .

(22.619)

Note that we have dropped the r 2
TE term in the numerator of the last factor, which is independent of the

atomic position z, and only contributes to the Casimir energy between the interfaces. Also, notice that in
the limit d −→ ∞, only the first term in the numerator of the last factor stays, and we can do the integral
over s; the result is just the one-interface energy (22.336).

In general the integrals here are difficult to carry out, but they simplify in the case of perfectly
conducting walls, where rTE(λ;χ) = −1. Then Eq. (22.619) becomes

V (TE)

CP (z) = − h̄cα0

23D/2+1(2π)D/2Γ(D/2− 1)ε0

∫ ∞
1

dλ
(λ− 1)D/2−2

√
λ

∫ ∞
0

ds sD/2−1

 e−
√
sλ z + e−

√
sλ(d−z)

1− e−
√
sλ d

 ,

(22.620)
where we have changed the order of integration. Carrying out the s integration,

V (TE)

CP (z) = − h̄cα0

23D/2+1(2π)D/2Γ(D/2− 1)ε0

∫ ∞
1

dλ
(λ− 1)D/2−2

√
λ

 2Γ(D)

dDλD/2

(
ζ(D, z/d) + ζ(D, 1− z/d)

) ,
(22.621)
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where ζ(z, a) is the generalized zeta function. Cleaning this up, we have the result

V (TE)

CP (z) = − (D − 2)Γ[(D + 1)/2]h̄cα0

4(4π)D/2
√
πε0dD

∫ ∞
1

dλ (λ− 1)D/2−2λ−(D+1)/2
[
ζ(D, z/d) + ζ(D, 1− z/d)

]
, (22.622)

where we used Eq. (22.335) to simplify the gamma functions. Carrying out the remaining integral,

V (TE)

CP (z) = − (D − 2)Γ(D/2− 1)h̄cα0

8(4π)D/2ε0dD

[
ζ(D, z/d) + ζ(D, 1− z/d)

]
.

(TE Casimir–Polder potential between dielectric planes) (22.623)
Now for the 3D case, we take D = 4:

V (TE)

CP (z) = − h̄cα0

64π2ε0d4

[
ζ(4, z/d) + ζ(4, 1− z/d)

]
. (22.624)

The generalized zeta functionis related to the polygamma function ψ(n)(z) by

ψ(n)(z) = (−1)n+1n! ζ(n+ 1, z), (22.625)

or in the present case,
ψ(3)(z) = 6 ζ(4, z). (22.626)

Thus,
V (TE)

CP (z) = − h̄cα0

384π2ε0d4

[
ψ(3)(z/d) + ψ(3)(1− z/d)

]
. (22.627)

Finally, using the formula27

ψ(n)(1− z) + (−1)n+1ψ(n)(z) = (−1)nπ∂ nz cotπz, (22.628)

or specifically,

ψ(3)(z) + ψ(3)(1− z) = −π∂ 3
z cotπz = 2π4 (2 + cos 2πz)

sin4 πz
, (22.629)

we have

V (TE)

CP (z) = − π
2h̄cα0

192ε0d4

[
2 + cos(2πz/d)

sin4(πz/d)

]
.

(TE Casimir–Polder potential between dielectric planes, 3D) (22.630)
Note that for small z/d, the last factor reduces to 3(d/πz)4, and then this result reduces to the one-interface,
strong-coupling result (22.223).

Of course, we can also include the z-independent ‘‘Lamb-shift’’ component (the final term scaling as
r 2

TE) from (22.618),

V (TE)

L (z) =
h̄cα0

23D/2+1(2π)D/2Γ(D/2− 1)ε0

∫ ∞
0

ds sD/2−1
∫ ∞
1

dλ
(λ− 1)D/2−2

√
λ

 2r 2
TE(λ;χ) e

−
√
sλ d

1− r 2
TE(λ;χ) e

−
√
sλ d

 .

(22.631)
In the perfect-conductor limit, we have

V (TE)

L (z) =
h̄cα0

23D/2(2π)D/2Γ(D/2− 1)ε0

∫ ∞
1

dλ
(λ− 1)D/2−2

√
λ

∫ ∞
0

ds sD/2−1

 e−
√
sλ d

1− e−
√
sλ d

 . (22.632)

The s integral gives the factor 2d−Dλ−D/2Γ[D]ζ[D],

V (TE)

L (z) =
h̄cα0Γ[D]ζ[D]

23D/2−1(2π)D/2Γ(D/2− 1)ε0dD

∫ ∞
1

dλ (λ− 1)D/2−2λ−D/2−1, (22.633)

27Milton Abramowitz and Irene A. Stegun, Handbook of Mathematical Functions (Dover, 1965), p. 260, Eq. (6.4.7).
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and the λ integral gives a factor 4/D(D − 2):

V (TE)

L (z) =
h̄cα0Γ[D − 1]ζ[D]

23D/2−3(D − 2)(2π)D/2Γ(D/2− 1)ε0dD
. (22.634)

For D = 4, we have

V (TE)

L (z) =
π2h̄cα0

2880ε0d4
, (22.635)

and thus Eq. (22.630) becomes

V (TE)

CP (z) =
π2h̄cα0

192ε0d4

[
1

15
− 2 + cos(2πz/d)

sin4(πz/d)

]
,

(TE Casimir–Polder potential between dielectric planes, 3D) (22.636)
including the z-independent potential shift between the plates.

22.12.2 TM Path Integral

For the TM polarization, we will return to Eq. (22.551), which is

E(TM)

EM = − h̄c

2(2π)D/2

∫ ∞
0

dT
T 1+D/2

∫
dD−1x0

〈〈
〈εr〉−1/2x(τ) e

−T〈VTM〉x(τ)

〉〉
x(τ)

(Casimir energy, scalar EM) (22.637)
for the pure-dielectric case (µr = 1), and where the TM potential is

VTM(r) :=
1

2

[(
∂z log

√
εr
)2 − ∂ 2

z log
√
εr

]
,

(22.638)
(matter-induced potentials)

if we assume the only variation in the dielectric occurs along the z-direction. The calculation here is analogous
to the Casimir–Polder calculation of Section 22.9.

22.12.2.1 Small-χ Expansion

We will start with a weak-coupling expansion analogous to the TE calculation in Section 22.12.1.6 and the
TM Casimir–Polder calculation of Section 22.4.5. Again, we will expand the energy to second order in χ,
with εr = 1 + χ. Starting with the potential,

VTM(r) =
1

8

[(
∂zχ

)2 − 2∂ 2
z χ+ ∂ 2

z χ
2
]
+O(χ3), (22.639)

the energy (22.551) becomes

E(TM)

EM = − h̄c

2(2π)D/2

∫ ∞
0

dT
T 1+D/2

∫
dD−1x0

〈〈(
1− 1

2
〈χ〉x(τ) +

3

8
〈χ〉2x(τ)

)
×
(
1 +
T
8

[〈
(∂zχ)

2
〉

x(τ) − 2∂ 2
z 〈χ〉x(τ) + ∂ 2

z

〈
χ2
〉

x(τ)

]
+
T 2

32

[
∂ 2
z 〈χ〉x(τ)

]2)〉〉
= − h̄c

2(2π)D/2

∫ ∞
0

dT
T 1+D/2

∫
dD−1x0

×

〈〈
1− 1

2
〈χ〉x(τ) +

3

8
〈χ〉2x(τ) +

T
8

[〈
(∂zχ)

2
〉

x(τ) − 2∂ 2
z 〈χ〉x(τ) + ∂ 2

z

〈
χ2
〉

x(τ)

]
+
T 2

32

[
∂ 2
z 〈χ〉x(τ)

]2
− T

8
〈χ〉x(τ) ∂

2
z 〈χ〉x(τ)

〉〉
.

(22.640)
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To obtain the lowest-order interaction between the surfaces, we will again set χ = χ1 + χ2, discarding all
terms that are not of the form 〈χ1〉〈χ2〉. We will also discard the

〈
(∂zχ)

2
〉

and
〈
χ2
〉

terms, since these will
vanish provided the two bodies do not overlap. First tossing out these latter terms and the first-order terms
in χ,

E(TM)

EM = − h̄c

2(2π)D/2

∫ ∞
0

dT
T 1+D/2

∫
dD−1x0

〈〈
3

8
〈χ〉2x(τ) +

T 2

32

[
∂ 2
z 〈χ〉x(τ)

]2
− T

8
〈χ〉x(τ) ∂

2
z 〈χ〉x(τ)

〉〉
,

(22.641)
and now labeling the individual bodies, we have

E(TM)

EM = − h̄c

2(2π)D/2

∫ ∞
0

dT
T 1+D/2

∫
dD−1x0

〈〈
3

4
〈χ1〉x(τ)〈χ2〉x(τ)

+
T 2

16

[
∂ 2
z 〈χ1〉x(τ)

][
∂ 2
z 〈χ2〉x(τ)

]
− T

8
〈χ1〉x(τ) ∂

2
z 〈χ2〉x(τ) −

T
8
〈χ2〉x(τ) ∂

2
z 〈χ1〉x(τ)

〉〉
.

(Casimir energy, scalar EM, TM polarization, small χ) (22.642)
Note that the first term is simply the TE energy, which we have already computed. For convenience we will
repeat here the calculation following Eq. (22.610), where we compute the interaction of a small element of
the χ2 body with the χ1 body, and then integrate over the profile of the χ2 body. Thus we have the integral
(here with α = 0)

I(D,α; d) := ∂ αz1

∫ ∞
0

dT
T 1+D/2

∫
dz0

〈〈
〈χ1〉x(τ)〈χ2〉x(τ)

〉〉
x(τ)

= χ2

∫ ∞
d

dz ∂ αz

∫ ∞
0

dT
T 1+D/2

〈〈
〈χ1〉x(τ)

〉〉
x(τ)

,

(22.643)

where z1 is the location of the boundary of the χ1 region. Now following the small-χ calculation of the TM
atom–wall potential in Section 22.4.5,

I(D,α; d) = χ1χ2

∫ ∞
d

dz ∂ αz

∫ ∞
0

dT
T 1+D/2

〈〈
〈Θ(z)〉x(τ)

〉〉
x(τ)

= χ1χ2

∫ ∞
d

dz ∂ αz

∫ ∞
0

dT
T 1+D/2

〈〈
Ts

[
B(t);

z√
T

]〉〉
x(τ)

= χ1χ2

∫ ∞
d

dz ∂ αz z
−D
∫ ∞
0

dT
T 1+D/2

〈〈
Ts

[
B(t);

1√
T

]〉〉
x(τ)

= (−1)αΓ(D + α)

Γ(D)
χ1χ2

∫ ∞
d

dz z−(D+α)

∫ ∞
0

dT
T 1+D/2

〈〈
Ts

[
B(t);

1√
T

]〉〉
x(τ)

= (−1)αΓ(D + α− 1)χ1χ2

Γ(D)dD+α−1

∫ ∞
0

dT
T 1+D/2

〈〈
Ts

[
B(t);

1√
T

]〉〉
x(τ)

= (−1)αΓ(D + α− 1)χ1χ2

2D/2Γ(D)dD+α−1

∫ ∞
0

dT
T 1+D/2

〈〈
Ts

[
B(t);

1√
2T

]〉〉
x(τ)

= (−1)αΓ(D + α− 1)χ1χ2

2D/2Γ(D)dD+α−1

∫ ∞
0

dT
T 1+D/2

〈〈
Ts

[
B(t);

1√
2T

]〉〉
x(τ)

= (−1)α Γ(D/2)Γ(D + α− 1)χ1χ2

2D/2+1(D + 1)Γ(D)dD+α−1 .

(22.644)

For D = 4 and α = 0, this is

I(D = 4, α = 0; d) =
χ1χ2

120d3
, (22.645)
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so that the first term in the Casimir energy (22.646) leads to

E(TE)

EM

A
= − 3h̄c

8(2π)D/2

∫ ∞
0

dT
T 1+D/2

∫
dD−1x0

〈〈
〈χ1〉x(τ)〈χ2〉x(τ)

〉〉
= − 3h̄c

8(2π)D/2
I(D,α; d)

= − h̄cχ1χ2

1280π2d3
,

(22.646)

in agreement with the prior calculation (22.615). The last two terms in Eq. (22.642) then have the form

E3,4 = − h̄c

2(2π)D/2

∫ ∞
0

dT
T 1+D/2

∫
dD−1x0

〈〈
− T

8
〈χ2〉x(τ) ∂

2
z 〈χ1〉x(τ)

〉〉
= − h̄c

2(2π)D/2

(
−1

8
I(D − 2, 2; d)

)
= − h̄c

2(2π)D/2

(
−1

8

Γ[(D − 2)/2]Γ(D − 1)χ1χ2

2D/2(D − 1)Γ(D − 2)dD−1

)
,

(22.647)

and the second term in Eq. (22.642) has the form

E2 = − h̄c

2(2π)D/2

∫ ∞
0

dT
T 1+D/2

∫
dD−1x0

〈〈
T 2

16

[
∂ 2
z 〈χ1〉x(τ)

][
∂ 2
z 〈χ2〉x(τ)

]〉〉
= − h̄c

2(2π)D/2

(
1

16
I(D − 4, 4; d)

)
= − h̄c

2(2π)D/2

(
1

16

Γ[(D − 4)/2]Γ(D − 1)χ1χ2

2D/2−1(D − 3)Γ(D − 4)dD−1

)
,

(22.648)

where we integrated by parts in the second step, and we have implicitly carried out dimensional regularization
in the last step. Assembling all the pieces,

E(TM)

EM = − h̄cχ1χ2

2(2π)D/2dD−1

(
3

4

Γ(D/2)Γ(D − 1)

2D/2+1(D + 1)Γ(D)
+

1

16

Γ[(D − 4)/2]Γ(D − 1)

2D/2−1(D − 3)Γ(D − 4)
− 1

4

Γ[(D − 2)/2]Γ(D − 1)

2D/2(D − 1)Γ(D − 2)

)
= − h̄cχ1χ2

2(2π)D/2dD−1

(√
πΓ(D − 1)[4D(D − 1)− 5]

Γ[(D + 3)/2]

)
(22.649)

The quantity in parenthesis is 43/480 for D = 4, so the small-χ Casimir energy is

E(TM)

EM = −43h̄cχ1χ2

3840π2d3

(Casimir energy, scalar EM, TM polarization, small χ) (22.650)
Note that this effect is substantially stronger than the TE contribution in Eq. (22.615). Combining the two
polarizations, we obtain

EEM = E(TE)

EM + E(TM)

EM = −23h̄cχ1χ2

1920π2d3

(Casimir energy, small χ) (22.651)
for the total Casimir potential in the weak-coupling limit.

22.12.2.2 Feynman–Kac Formula

To proceed with the calculation for arbitrary dielectric strength, will begin in analogy to Section 22.12.1.1
by considering the path integral

L(λ, s; d, d0) :=

∫ ∞
0

dt√
t
e−λt

〈〈
exp

(
− sTds

[
Bt(t

′); d, d0

])〉〉
Bt

, (22.652)
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as in Eq. (22.652), but also involving the TM potential as in ???????, Here, we are again using the double-
sojourn time, defined in Eq. (22.555) by

Tds[Bt; d, d0] :=

∫ t

0

dt′ 1(−∞,d0]∪[d0+d,∞)

[
Bt(t

′)
]
. (22.653)

22.13 Exercises

Problem 22.1
Beginning with the electric-field energy (22.47)

HE =
1

2

∫
d3r φ(r) ρ(r), (22.654)

separate the free and bound charge densities, ρ = ρfree + ρP, and use

ρP := −∇ ·P (22.655)

to introduce the dielectric polarization. Show that the result you obtain is not the correct energy for
a linear dielectric.

Problem 22.2
Consider a scalar field that obeys the wave equation

∇2φ = µ0ε∂
2
t φ. (22.656)

Write down the plane-wave solutions and dispersion relation for this wave equation.

Problem 22.3
Consider again the scalar wave equation (22.656). We will identify the ‘‘electromagnetic fields’’

E := −∂tφ, B := ∇φ. (22.657)

Now start with the Lagrangian

L =
ε0
2

∫
d3r

[
ε

ε0
(∂tφ)

2 − c2(∇φ)2
]
, (22.658)

and work out the Hamiltonian, both in canonical coordinates and in terms of the fields.

Problem 22.4
Quantize the wave equation in Problem 22.2, by decomposing the Hamiltonian from Problem 22.3 into
normal modes. In doing this, you should develop the conjugate normal-mode operators

φk =

√
h̄

2ωkε0
[fk(r) ak + H.c.]

πk = −i ε(r)
ε0

√
h̄ωkε0

2
[fk(r) ak −H.c.] ,

(22.659)

with second-quantized field operators

φ =
∑
k

φk, π =
∑
k

πk, (22.660)
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and where the mode functions fk(r) satisfy the orthonormality condition∫
d3r

ε(r)
ε0

fk(r)f∗k′(r) = δkk′ , (22.661)

as is analogous to the full electromagnetic case.

Problem 22.5
For the quantized scalar field coupled to a dielectric, as in Problem 22.4, show that the vacuum energy
is given by the expression

EEM(r) = 〈0|HEM|0〉 =
∑
k

∫
d3r

h̄ωk
2

ε(r)
ε0
|fk(r)|2 . (22.662)

Problem 22.6
A dielectric film (slab) of thickness d surrounded by vacuum is described in ordinary electromagnetism
by the field reflection coefficient28

r(TM,TE)

film (θ, ω) =
rTM,TE(θ, ω) (1− eiφ)
1− r 2

TM,TE(θ, ω) e
iφ

(22.663)

for the two polarizations in terms of the appropriate Fresnel coefficients for the incident reflection,
where the round-trip phase φ in the film is given by

φ = 2kd

√
n2(ω)− sin2 θ, (22.664)

and k is the optical wave number and n is the refractive index. The other parameters here are the
refractive index n(ω) of the film and the film thickness d.
Show that, in the limit of a very thin film, and at normal incidence, that the reflection coefficient is
given by

rfilm = i
kdχ

2
(22.665)

Problem 22.7
Using the reflection coefficient from Problem 22.6, use a mode summation for the 1D version of the
scalar field in Problem 22.4 and the formula

V (TE)

CP = −1

2
α0〈E〉2 (22.666)

in terms of the vacuum expectation value to compute the (TE component of the) Casimir–Polder
potential for an atom a distance z from a very thin dielectric thin film of thickness d. Your result
should be

V (TE)

CP (z) = − h̄cα0dχ

32πε0z3
. (22.667)

28Daniel A. Steck, Classical and Modern Optics, available online at http://steck.us/teaching.

http://steck.us/teaching
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Problem 22.8
In analogy with Problem 22.7, use a mode-summation approach to compute the (TE component of
the) Casimir–Polder potential in 1D electromagnetism for an atom a distance z away from a dielectric
half space of susceptibility χ, in the limit χ� 1. Your result should be

V (TE)

CP (z) = − h̄cα0χ

64πε0z2
. (22.668)

Problem 22.9
In analogy with Problem 22.7, use a mode-summation approach to compute the (TE component of
the) Casimir–Polder potential in 1D electromagnetism for an atom a distance z away from a planar,
perfect conductor.

Problem 22.10
Use the weak-coupling path integral [Eq. (22.226)]

V (TE)

CP (r) = − 3h̄cα0

8(4π)D/2ε0

∫ ∞
0

dT
T 1+D/2

〈〈
〈χ〉x(τ)

〉〉
x(τ)

(22.669)

to compute the (TE component of the) Casimir–Polder potential for an atom a distance z from a very
thin dielectric thin film of thickness d and susceptibility χ. Show that your results are consistent with
Problem 22.7 in one dimension.

Problem 22.11
Use the TE-polarization path integral [Eq. (22.197)]

V (TE)

CP (r) = h̄cα0

4(2π)D/2ε0

∫ ∞
0

dT
T 1+D/2

〈〈
〈εr〉−3/2x(τ)

〉〉
x(τ)

(22.670)

to compute the TE component of the Casimir–Polder potential for an atom at a distance z from a thin
dielectric plane of the form

εr(z) = 1 + χ̂δ(z) (22.671)

for the case D = 4. Show that your results are consistent in the appropriate limit with the results of
Problem 22.10.

Problem 22.12
Using the path integral (22.553) for the TE component of the Casimir energy

E(TE)

EM = − h̄c

2(2π)D/2

∫ ∞
0

dT
T 1+D/2

∫
dD−1x0

〈〈
〈εr〉−1/2x(τ)

〉〉
x(τ)

, (22.672)

for a pair of thin dielectric planar membranes separated by distance d:

εr(z) = 1 + χ̂δ(z) + χ̂δ(z − d). (22.673)

Begin by defining the ‘‘double-local time’’

`dl[Bt; d, d0] :=

∫ t

0

dt′
(
δ
[
Bt(t

′)− d0
]
+ δ
[
Bt(t

′)− d− d0
])
, (22.674)
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and then use the Feynman–Kac formula to compute the path integral

L(λ, s; d, d0) :=

∫ ∞
0

dt√
t
e−λt

〈〈
exp

(
− s`dl

[
Bt(t

′); d, d0

])〉〉
Bt

, (22.675)

which can be transformed into the Casimir energy (22.672), following the procedure of Section 22.12.1.
Analyze the energy in the limits of large and small d, noting any pathologies that you find.

Problem 22.13
Recalculate the path integral

L(λ; d,Ξ) :=

∫ ∞
0

dt√
t
e−λt

〈〈
exp

(
−N[Bt; d,Ξ]

)〉〉
Bt

, (22.676)

where

N[Bt; d,Ξ] := lim
a−→0

M[Bt; d,Ξ, a]

=
Ξ

2

∫ t

0

dt′
{
Ξδ2

[
Bt(t

′)− d
]
− δ′

[
Bt(t

′)− d
]}

M[Bt; d,Ξ, a] :=

∫ t

0

dt′ VTM

[
Bt(t

′)
]

=
Ξ

2a

∫ t

0

dt′
{
Ξ

a
1[d,d+a]

[
Bt(t

′)
]
+ δ
[
Bt(t

′)− (d+ a)
]
− δ
[
Bt(t

′)− d
]}

=
Ξ

2a

{
Ξ

a
Ts

(
Bt; [d, d+ a]

)
+ `
(
Bt; d+ a

)
− `
(
Bt; d

)}
,

(22.677)

by using the Feynman–Kac formula (22.299), but taking g(x) = δ(x) to directly pin W (t) to the origin.

Problem 22.14
Give integral expressions for the Casimir–Polder potential (both polarizations) in 2D electromagnetism
for an atom on the vacuum side of a planar, dielectric interface. Obtain explicit expressions for the
strong- and weak-coupling limits.

Problem 22.15
Evaluate the derivative-free TM path integral (22.479)

V (TM)

CP (r) = − h̄cα0

4(2π)D/2ε0

∫ ∞
0

dT
T 1+D/2

〈〈(
〈εr〉−3/2x(τ) + 2(D − 2)〈εr〉−1/2x(τ)

)
e−T〈VTM〉x(τ)

〉〉
x(τ)

(22.678)

for an atom near one planar, dielectric interface in the limit of small χ. Do this by expanding the path
integral to first order in χ right at the beginning.

Problem 22.16
The goal of this problem is to review the techniques for analytically summing the worldline path
integral for a perfectly conducting plane, for the TE-polarization field.
(a) Starting with the Green-function form of the Feynman–Kac diffusion equation [Eq. (22.300),

f ′′(x) = 2
[
λ+ sV (x)

]
f(x)− 2g(x), (22.679)
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set g(x) = δ(x) and V (x) = 0 to find the Green function in free space.
(b) Then find the Green function in the presence of a perfectly conducting boundary at x = d, using
the image method to satisfy the Dirichlet boundary condition.
(c) Use the result to compute the Casimir–Polder potential, assuming TE polarization, following the
general method for computing the potential at a dielectric interface from Section 22.7.
(d) Repeat the calculation in steps (a)–(c), but using the full 3D Green function solution (i.e., keep
the ‘‘ignorable’’ transverse dimensions explicitly).
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Numerical Methods in Quantum Optics





Chapter 23

Welcome to the Machine

23.1 Finite Representations of Real Numbers

Almost all digital computers store numbers as binary strings of zeros and ones. Representing an integer in
binary form is straightforward assuming you understand binary vs. decimal counting. The only subtle point
is whether the integer is signed or unsigned. The only difference is in the interpretation of the sign bit. For
example, a 32-bit unsigned integer can range from 0 to 232 − 1 = 4 294 967 295. By contrast, in a 32-bit
signed integer, which ranges from −231 = −2 147 483 648 to 231−1 = 2 147 483 647, the idea is the same, but
the first bit is interpreted as the sign bit (with a one representing a negative integer). That is, any integer
greater than 231 − 1 is simply wrapped by subtracting 232. Indeed, integer arithmetic is always performed
modulo the range of the integer type, so that in unsigned 32-bit arithmetic, 4 294 967 295+1 = 0. Note that
modern Fortran has its own processor-independent integer model that is somewhat more restrictive than
this (i.e., integers are always signed), but Fortran integers can effectively always be used in the same ways
as C integers, with the right interpretation.

Fixed-point arithmetic is the simplest way to represent real numbers. Basically, fixed-point numbers
are integers with a decimal place stuck in some fixed position. Thus, they are in some sense a reinterpretation
of integers. Addition is straightforward, whereas multiplication is a bit more complicated. Even though fixed-
point arithmetic is typically very fast, the limited dynamic range of fixed-point numbers usually leads to
serious problems with accuracy, and consequently they are only used in specialized applications.

The floating-point number is the standard on modern computing machines. A floating point number
is decomposed into two parts, a mantissa and an exponent. For example, the real number 328.925 is
represented in floating-point arithmetic in usual scientific notation as

3.28925× 102, (23.1)

or in computer-style notation as 3.28925E2 (in Fortran the E can be changed to a D to denote a double-
precision number, which we will discuss below). The mantissa and exponent are then simply represented
as integers, with a fixed decimal place associated with the mantissa; note that for a binary representation,
the exponent is chosen such that the mantissa is in the range [1, 2). There are many ways to decide how
to associate binary data for floating-point numbers, but by far the most common standard is dictated by
the IEEE Standard for Binary Floating-Point Arithmetic (ANSI/IEEE Std 754-1985). IEEE single precision
allocates 32 bits for a floating-point number. Without going into too much detail, one bit represents the sign,
8 bits represent the exponent, and the rest represent the mantissa. IEEE single precision is characterized by
the following values:

• ‘‘machine epsilon’’ (epsilon(1.0) in Fortran 90) of 1.1920929E-7

• smallest positive number (tiny(1.0) in Fortran 90) of 1.1754944E-38

• largest number (huge(1.0) in Fortran 90) of 3.4028235E+38
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Here machine epsilon is a measure of the precision of the representation, and is defined as the
smallest number that, when added to 1, returns a number different from 1. Thus, single precision gets
about 7 significant digits, and ranges through roughly 10±38. (Actually, nonzero values closer to zero can be
represented, but are not usually accessible in Fortran.)

IEEE double precision extends this range considerably, and is characterized by the following values:

• machine epsilon (epsilon(1.0D0) in Fortran 90) of 2.220446049250313E-16

• smallest positive number (tiny(1.0D0) in Fortran 90) of 2.2250738585072014E-308

• largest number (huge(1.0D0) in Fortran 90) of 1.7976931348623157E+308

Thus, we get about 16 significant digits and a range through about 10±308. There are two perfectly reasonable
but opposite philosophies considering the choice of precision. The first goes: ‘‘modern computers are so fast
that you may as well just use double precision just to be safe.’’ Actually, as 64-bit processors become more
common, the speed penalty for using double precision instead of single precision is shrinking. However,
the other philosophy is ‘‘if you need double precision, your algorithm is probably flawed; single precision is
almost always sufficient.’’ You’ll just have to decide for yourself, but it is generally useful to write your code
such that it is easy to switch precision. In Fortran 90, you do this by defining a parameter wp (for ‘‘working
precision’’ as

integer, parameter :: wp = selected_real_kind(p=14)

to select double precision. Then, whenever you declare a variable, use this parameter, as in declaring
variables such as real(wp) :: a, b, in specifying numbers such as a = 1.0_wp, and in rounding, such as
a = real(b, kind=wp). To switch to single precision, simply change p=14 to p=4 (meaning ‘‘I want at least
14 digits of precision’’ and ‘‘at least 4 digits of precision, please’’) as the argument to selected_real_kind
above.

23.2 Machine Structure and Optimization

Here we will discuss just a few of the basic features of modern processors that relate to high-performance
numerical computing. This is an area that is complicated, varies widely among processor vendors, and
evolves rapidly, and so a general and introductory discussion of this sort must necessarily sacrifice detail
and completeness.1 However, knowledge of some basic concepts is invaluable in tuning your codes for high
performance.

23.2.1 Memory Hierarchy

The first thing to understand is how the processor accesses, stores, and manipulates information. There is a
hierarchy of locations in which information can be stored. Here, we list these in decreasing order of access
speed, and conversely, increasing order of size.

• Registers. The registers are the memory locations for the data on which the processor is currently
working. There are typically of the order of 10 registers on a processor, and obviously they must
operate at the nominal execution speed of the processor. A typical machine instruction for a floating-
point operation might involve, say, taking the contents of registers 0 and 1, multiplying them together,
and storing the result in register 0. In the past, a special register called the accumulator was typically
the register that was always involved in any particular operation and also the destination for the result
of any operation. Now the term is less common, but one or two registers are still typically of more
importance than the rest.
For numerical calculations, it is useful to note that on some processors, the registers handle more
data than regular memory addresses. For example, even when processing 64-bit data, the registers

1For more detailed discussions, see Kevin Dowd and Charles Severance, High-Performance Computing, 2nd ed. (O’Reilly,
1998). While this reference is somewhat dated, it is clear and readable, and still contains a great deal of relevant information.
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might be designed be 80-bit or 128-bit ‘‘extended precision’’ registers (as happens, for example, on
modern Intel processors). Thus, if you compute the sum of many numbers, the processor can keep the
intermediate sums with extra precision to reduce roundoff error, particularly in cases where the sum
is sensitive to the order of addition due to roundoff errors. This also helps reduce unexpected effects
due to unintended reordering of operations at the compiler or processor levels.

• Cache. Next comes a small area of high-speed memory called cache memory. The idea is that the
main memory, where large quantities of data can be stored is quite slow, but the processor needs to
take in and push out data very quickly. Cache is the intermediate area that the processor can use on
short time scales. Think of it as a small pile of papers on your desk that you want quick access to,
compared to main memory, which is more like the filing cabinet. Because this memory is so fast, it is
quite expensive, and thus its size is quite limited. Modern designs also use multiple levels of cache: L1
(‘‘level 1’’) cache is the fastest and smallest, typically being on the order of a few to a few hundred KB,
and talks directly to the cpu; L2 cache is larger and slower, typically on the order of a few hundred
KB or larger; and some designs even incorporate an L3 cache.
Cache is a particularly important concept in modern computers, because the processors must not be
kept waiting for the information they need. Of course, the cache can only keep a small subset of the
total data in main memory on hand, but if it doesn’t have a particular piece of data when the processor
requests it, the computation stalls while the data are fetched from a higher-level cache or even main
memory. One fairly obvious strategy that helps here is to process data in fairly small-sized chunks
such that ‘‘blocks’’ of the calculation can fit entirely in cache. Of course, most calculations where you
care about speed will not fit in cache, and manually breaking up calculations into cache-sized chunks
is difficult and guaranteed to render your code unreadable or at least ugly.
The other strategy requires a bit more understanding about how cache works. Essentially, the various
elements of cache are copies of various elements of main memory. However, if each location in cache
were a copy of a completely independent location in main memory, we would need another bank of
fast memory, the same size as the cache, just so we would know which main memory entry each cache
entry referred to. To reduce this memory overhead, cache elements are grouped into cache lines,
so that when one datum from memory is needed, a whole line’s worth of data are actually fetched
from memory. Thus, as long as you have to fetch all the data together, you may as well make the best
possible use of them. The basic strategy is this: stick to unit-stride access as much as possible. That
is, if you are processing long arrays of data, try to access the elements only sequentially, if at possible.
The canonical example here is in computing the sum of a matrix. In Fortran, a two-dimensional array
A is stored in memory by column, or such that A(1,1) and A(2,1) are adjacent in memory, while A(1,1)
and A(1,2) are separated in memory by at least the length of the first array dimension. Thus, for
example, what might seem a reasonable method for computing the array sum,

s = 0
do j = 1, m

do k = 1, n
s = s + A(j, k)

end do
end do

is actually a bad idea, because the access in memory in the inner loop has a stride of (at least) m. In the
worst, case, an entire line of cache must be fetched for each addition operation, slowing things down
considerably. Fortunately, this problem is easily fixed by switching the order of the loops:

s = 0
do k = 1, n

do j = 1, m
s = s + A(j, k)

end do
end do
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The access here is now unit-stride, and this makes optimal use of the cache since (almost) all the
fetched data are used in the sum. Most compilers will detect the problem in the former code sample
and change it to the latter, depending on the level of optimization you request (after all, you might
want the former calculation due to some issue with roundoff errors, since the results of the two codes
are not guaranteed to be identical). In a more modern approach, as in Fortran 90, you can simply use
an intrinsic such as sum, as in

s = sum(A)

or

s = sum( A(1:m, 1:n) )

to accomplish the same calculation, but explicitly giving the compiler freedom to choose the best way
to perform the sum. If an intrinsic does not exist to do what you want, there are other constructs such
as the forall loop in Fortran 95, which can be used to indicate that there is no dependency among
the iterations of multiple loops, so that the compiler can perform the operations in any (presumably
optimal) order.
The problems with cache can be even a bit more insidious than what we have indicated. To see why,
consider a slightly different code that performs a sum over the second dimension of an array:

dimension A(2048, 128)
do j = 1, 2048

do k = 1, 128
A(j,1) = A(j,1) + A(j, k)

end do
end do

If A is stored contiguously in memory, then the elements A(j,k) for the same j but different k are
separated by powers of two. But to perform the calculation, lines of cache are fetched, corresponding
to A(j,k) for the same k but different j, which is not so useful. In a fully associative cache, a line
in cache can be associated with any line in memory, and many lines of cache can be fetched on the
first iteration of the j loop, so that they will be reused later on subsequent iterations. However, to
reduce complexity and cost, most cache is set-associative, which means that a line in cache can only
map to particular lines in memory, and conversely a line in memory can only map to a few (say two
or four) cache lines. Typically, a cache line maps to locations in memory that are widely spaced by
some number of lines given by a power of two. The problem in the above example is that the full
array itself has as its first dimension a large power of two. All of the A(j,k) for fixed j are needed
at the same time, but many will overlap to the same few lines of cache. A line of cache has to be
fetched for each k, but they all can’t be stored in cache. So the same lines need to be refetched on
subsequent iterations of the j loop, and in the worst case, a line of cache must be fetched for each
addition operation. So even if the relevant data could have fit in cache, the power-of-two associativity
caused fetched data to be flushed before it was needed, so that the cache needed to fetch it again. This
behavior is called cache thrashing and can be highly detrimental to the performance of your code.
In addition to unit stride access, cache thrashing can sometimes be avoided (as in this example) by
padding the first array dimensions to some larger (non-power-of-two) value, to avoid problems with
associativity. (An appropriate change in the example would be 2048 −→ 2048 + 128.) In general,
you should avoid accessing data with large, power-of-two strides (some traditional FFT algorithms are
notorious for doing just this).

• Main Memory. Most of your data reside in main memory during a calculation, which can be large
(in the range of tens of GB on the best single-box machines). However, it is slow, which is the point of
having cache. The strategies we discussed for cache also apply here, since main memory is often also
banked. That is, sequential chunks in memory can come from different banks of memory to reduce
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latency when fetching data quickly. The number of banks is typically a power of two, so power-of-two
strides are bad here as well, and clearly unit stride is best: after accessing one bank for data, you would
then access the next bank for the next piece of data, giving the first some time to recover and prepare
for the next fetch before you bother it again.

• Storage. Of course, memory for even more data in the longer term comes in the form of disks,
tapes, and so on. These are really slow, and if you have to use slow storage on the fly because your
computation is so large then you’re really in trouble.

23.2.2 Pipeline

One crucially important concept in understanding modern, ultrahigh-speed processors is the processor
pipeline. Let’s consider an analogy to motivate the pipeline. Suppose you have a ‘‘clothes-cleaning ma-
chine.’’ It’s quite nice, you just pop in a load of clothes, and then it proceeds to wash, dry, iron, and fold
them for you. Suppose each of these tasks takes the machine 15 minutes. Then the rate at which the machine
washes clothes is 1 load/hour. Of course, that’s not very efficient, since while the clothes are being dried, the
machinery related to washing the clothes sits idle. But if you have a lot of laundry to do, you’d want a more
clever design for a machine would divide the machine into 4 units, one for each task. Each task still takes 15
minutes, and after you put in your first load of laundry, it’s an hour before you see a set of spanking-fresh
linens. But after the first load finishes washing and goes to the dryer, you can start the second load of clothes
right away. In all you can have a total of 4 loads of laundry ‘‘in flight,’’ and after a delay of one hour, you
effectively are finishing one load of laundry every 15 minutes, or four times faster than the first machine.
This is the essence of pipelining: dividing the work up into stages, so that several different instructions can
be processed in different parts of the ‘‘assembly line’’ at once. It should be apparent that dividing up tasks
into smaller pieces allow for longer pipelines, and thus for faster processors. Indeed, the recent offerings from
Intel bear this out, with pipelines of 10 stages for the Pentium III, 20 stages for the Pentium 4, 31 stages for
the Xeon Nocona (with processor speeds currently in the high 3 GHz range). By contrast, the older 8086
used no pipeline at all, and executed one instruction per cycle with no latency.

The crucial point here is this: the pipeline is your friend only when full. With a full 31-stage pipeline, it
appears (after a delay of 31 clock cycles) that one instruction is being executed per cycle. However, suppose
that successive instructions depend on each other, so that the next instruction can’t be started until the
previous one is finished (say, as in iterating a map of the form xn+1 = (axn)(mod b), which you might do
to implement a random-number generator). In this case, it takes 31 clock cycles to execute each operation,
because no pipelining is possible, and you’ve effectively just cut the processor speed down by a factor of 31.
That’s bad. In fact, you can see why cache thrashing is even worse on a fast processor: not only does the
processor have to wait for the memory fetch, but the problem could be compounded if no other instructions
are ready to go, since the pipeline will drain.

Modern processors implement a bunch of tricks, many of which are aimed at keeping the pipeline
packed with instructions, to keep the performance high. We will discuss them below. But it is important to
note that with speed limitations on memory (especially main memory), and with constraints on instruction
sets, and so on, it is typically very hard to keep a processor working at its ‘‘theoretical peak.’’ For example,
Intel Xeon processors can theoretically execute 1 floating-point operation (flop) per processor cycle, with
register, cache, and other overhead it is often difficult to execute flops on more than, say, 30% of the processor
cycles. You should definitely keep this in mind when tuning your codes with hardware performance counters
(see below), so you don’t have unrealistic goals for your flop counts.

There is a particular class of processor, the vector processor (as opposed to the above cache-based,
or scalar, processors), that is optimized for just one task: take contiguous chunks of data, and perform
the same mathematical operation on all the data, and do this quickly. These are very good for scientific
computation, again provided you use unit strides in your calculation. In these processors, it is much more
realistic to achieve flop rates nearing the 100% ideal. However, these days, such processors are expensive
and normally relegated to the best supercomputers (i.e., computers that aren’t sitting on your desktop). So
it’s important to learn to deal with the constraints of the cheaper (and ubiquitous) scalar processor.
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However, it is difficult to do much in a code to avoid ‘‘bubbles’’ in the pipeline, beyond what you
would already do to make a ‘‘cache-friendly’’ code. This is especially true since pipelines vary greatly
among processors, with most processors having multiple pipelines (say, to handle integer and floating-point
instructions separately). You have to rely heavily on good compilers to provide a mix of instructions to
the processor without a lot of dependencies to keep the pipelines working. Some rather simple tricks, like
Intel’s ‘‘hyperthreading technology,’’ rely on executing multiple codes at once, so the different codes fill in
each others’ pipeline bubbles, so at least the processor is staying more busy overall, even if each code is not
executing faster.

23.2.2.1 Out-of-Order Execution

One of the tricks implemented by all of the fastest modern processors is out-of-order execution. The
concept is fairly simple: as the machine instructions are being sent to the pipelines for execution, they
are first held in a buffer (of something like 100 instructions), and then analyzed for dependencies. If the
processor detects an instruction that depends on the result of another instruction (either also in the buffer or
already in the pipeline), it is free to dynamically reorder the instructions so that the dependent instruction
is moved back in the queue so the pipeline isn’t idle while the instruction waits. This helps the execution
speeds greatly, but makes it difficult to analyze how a set of machine instructions will actually be executed
(especially if you’re trying to hand-code an optimized routine in machine language, or trying to disassemble
some compiled code to analyze its performance). Again, there isn’t much for you to do here, you have to
hope your compiler is good enough to provide a good mix of instructions for the out-of-order buffer to work
with.

23.2.2.2 Loop Unrolling

Very often, you need to perform a repeated computation on multiple elements on an array:

do j = 1, n
a(j) = a(j) * b(j)

end do

The key idea here is that at each loop iteration, the processor must execute a branch (if/then) instruction
to decide if the next iteration should be performed. This is particularly bad if the processor waits for each
branch instruction to be carried out before starting the next loop multiplication, since effectively all benefits
of having a pipeline are lost. (Branch prediction, described below, helps this somewhat.) Thus, it would
help to rewrite the loop as

do j = 1, n, 4
a(j) = a(j) * b(j)
a(j+1) = a(j+1) * b(j+1)
a(j+2) = a(j+2) * b(j+2)
a(j+3) = a(j+3) * b(j+3)

end do

This loop is said to have been ‘‘unrolled four times.’’ Now there is no branch separating the instructions in
the loop, and four iterations of the original loop can be pipelined right away without any branch overhead.
Of course, the code here assumes that n is a multiple of 4; the unrolled loop is more complicated for arbitrary
n. The tradeoff here is that the resulting code is larger than the original. The benefits also decrease as the
loop is unrolled more, so excessive loop unrolling is not useful. Generally, this is handled by the compiler
optimizer, and not in your code, so your code stays readable. However it is useful to know that a loop can
be unrolled only if its iterations are independent. In certain constructions, for example with pointers, the
compiler may not be able to ‘‘prove’’ that the iterations are independent, and thus not optimize it. For
example, consider this loop:

real, dimension(n) :: a, b
integer, dimension(n) :: c
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do j = 1, n
a(c(j)) = a(c(j)) * b(j)

end do

If you know that the array c is a permutation of the set {1, . . . , n}, then the loop can still be unrolled.
However, a compiler would likely assume that values in the c array could have been repeated, and thus not
optimized the loop. In this case, a compiler directive would help by telling the compiler that it can assume
the loop iterations to be independent. In the HPF (High-Performance Fortran) language, this would look
like this:

!hpf$ independent
do j = 1, n
a(c(j)) = a(c(j)) * b(j)

end do

This also occurs in the original loop, if it is in a subroutine (this is valid Fortran 90):

subroutine foo(a, b, n)
integer :: n, j
real, dimension(n), intent(inout) :: a, b
do j = 1, n

a(j) = a(j) * b(j)
end do

end subroutine foo

The problem could arise in some languages if the two arrays overlap in memory, for example if the two
arguments are overlapping parts of the same array, as in call foo(c(2:6), c(1:5), 5). In this case, the
results depend on the order in which the loop iterations are executed, since the value of elements of b
are changing. Actually, this problematic call is explicitly disallowed in Fortran 90: array arguments must
not overlap if they are defined or modified by the subroutine. Fortran 90 tends to make choices to favor
optimization over flexibility, and the loop could be unrolled by the compiler in this example. However, in
most other languages (like C), the call would be acceptable and thus the compiler would not unroll the loop.

23.2.2.3 Branch Prediction

As we mentioned above, branch instructions (i.e., instructions to jump to different parts of a program
depending on some condition, as in an if or case statement) are problematic for pipelined machines, since in
principle instructions after the branch can’t be executed until the result from the branch condition is known.
Actually, you could start executing instructions before the branch result is known: just pick one outcome,
and start executing the appropriate instructions, hoping to win if the processor guesses the right outcome
in advance. This trick is called speculative execution. The problem is that canceling (or retiring) the
finished and in-flight instructions in the case of a wrong guess involves a lot of overhead, and unless the
processor has a good way to accurately guess the result of the branch condition, speculative execution could
actually slow things down. Thus enters the art of branch prediction. Again, the prediction in modern
processors must be good, since in some processors the cost of a mispredicted branch is stalling and flushing
the entire pipeline to clear the false branch.

Branch-prediction algorithms are numerous and can be quite complex2 As a simple example, we’ll
consider branch prediction with a dynamically updated Moore machine.3 We’ll do this for a three-bit
machine, so consider the following table of ‘‘addresses’’ three bits long:

2For nice coverage see the Wikipedia entry ‘‘Branch Predictor,’’ http://en.wikipedia.org/wiki/Branch_predictor.
3Edward F. Moore, ‘‘Gedanken-experiments on Sequential Machines,’’ Automata Studies (Annals of Mathematical

Studies) 34, 129 (1956).

http://en.wikipedia.org/wiki/Branch_predictor
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b1 b2 b3 output
0 0 0 x
0 0 1 x
0 1 0 x
0 1 1 x
1 0 0 x
1 0 1 x
1 1 0 x
1 1 1 x

The outputs are initially undetermined (corresponding to some default value of, say, 0). The 0’s correspond
to ‘‘branch true,’’ and the 1’s correspond to ‘‘branch false.’’ Then the output is the prediction given the
last three branch results. That is, if the last three branches were true, false, and false, then our prediction
for the next branch would be the ‘‘100’’ output. Correspondingly, after the real branch result is known,
the result is recorded at the same place in the table. Clearly, if the branch result is always the same thing,
this algorithm will predict it perfectly after four possible mispredictions (settling into either the 000 or 111
output). Suppose now that branches come in some more complicated pattern like 1000100010001000 . . ., and
suppose we always default with 0. Shortly, the table will settle down to this:

b1 b2 b3 output
0 0 0 1
0 0 1 0
0 1 0 0
0 1 1 x
1 0 0 0
1 0 1 x
1 1 0 x
1 1 1 x

That is, after a transient of 4 branches, some of which are default mispredictions, the predictor predicts the
pattern perfectly. Larger predictors will obviously predict longer-period patterns, but may take longer to
‘‘lock on.’’ Basically, regular branch patterns are easy to predict, whereas any change in pattern (e.g., at
the end of a loop) or branching on a random number can seriously hurt your performance if done too often.

23.2.2.4 Addition, Multiplication, and Division

One more thing we can discuss are the basic types of floating-point operations that you want to do. Additions
are typically the easiest, with multiplications next, and divisions are by far the hardest. Most modern
processors are set up to churn out (with pipelining) one floating-point operation per cycle, such as one
addition. Many also can do one floating-point multiplication per cycle (per pipeline). However, there are
many variations on this theme. Modern Intel Xeon processors can only pipeline one multiplication every
other cycle; however, on the cycles between multiplications, you are allowed to pipeline an addition with no
extra cost. That’s a sense in which additions are ‘‘cheaper’’ than multiplications (additions can be pipelined
on every cycle). Other processors are set up to do one multiplication per cycle, but they can also do an
addition at the same time as a multiplication in a single ‘‘multadd’’ operation. Thus, mixing floating-point
multiplications and additions together can take advantage of hardware capabilities and result in very good
efficiency.

Divisions are extremely bad: for example, a double-precision division on an Intel Xeon can be finished
every 38 processor cycles, compared to 2 for multiplication. Many optimizing compilers have options to
substitute computing b−1 and then multiplying by a to compute a/b, although the result may be less
accurate than the divide. (Similarly, it is useful to know that it is usually possible to compute inverse
square roots very quickly, and some processors have special instructions to compute the sine and cosine
of a number at the same time.) It is usually best to keep your code readable and let the compiler make
the appropriate transformations: most compilers can easily change a statement like a/2 to 0.5*a. However,
compilers occasionally miss operations, and these concepts can be useful in speeding things up.
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23.2.3 Avoiding Overhead

As we mentioned above in loop unrolling, we can greatly increase performance by decreasing overhead
operations. Here we will briefly discuss a couple of situations where it is possible to profitably decrease
overhead.

23.2.3.1 Procedure Inlining

One place where much overhead can be eliminated is in the calling of a procedure (a function or a subroutine).
Whenever a procedure is called, the code must jump to a new section, with some provisions for where to
return at the completion of the procedure, as well as possible setup of temporary variables and arrays. If the
program spends a lot of time in the procedure, then the overhead may not be a big deal. However, consider
the loop in this code example:

do j = 1, n
a(j) = a(j) + foo(a(j))
b(j) = b(j) + bar(a(j), b(j))

end do

If foo and bar are relatively small functions, then the function-call overhead can be quite substantial. Further-
more, the computations in the two procedures cannot be rearranged to improve performance (i.e., instructions
from one procedure could fill a pipeline bubble in the other), if the procedures are compiled separately.

An easy solution is to simply take the contents of the two procedures and paste them directly into the
loop to eliminate the function calls. This trick is called procedure inlining. Obviously, manually inlining
procedures will make your code a whole lot less readable, and inlining almost always increases the size of
your code. Inlining is best done at the compiler level, and even then it should be limited to certain cases,
such as procedure calls in the innermost loops of your code. For example, if inlining expands the code for a
loop to the point where it no longer fits into instruction cache (if there are many copies of a procedure), then
inlining may slow things down. It is also worth noting that compilers have trouble inlining under certain
conditions. For example, it is difficult for a compiler to inline a procedure when it is defined in a different
file from which it is called (e.g., when it is in a library). To inline such separated procedures, it must defer
most of the optimizations until the linking phase, and a number of compilers now do this.

23.2.3.2 Compiler Issues

Compiler vendors must work very hard to get their codes to implement the tricks we have discussed here
(as well as many, many more). If your primary goal is speed at any cost you should note this: simple, old
features of a language will be the best supported in a compiler in terms of optimization or just plain working,
while using new, advance, fancy-schmancy features in your code will tend to inhibit optimization or even
cause you to send a bug report to the vendor! For example, suppose you are integrating the Schrödinger
equation, and in your subroutine to evaluate the time derivative of the wave-function array psi, you try to
keep things organized by using a function call to compute the result of applying an operator A on ψ in one
of the terms of the Schrödinger equation ∂tψ = Aψ + · · · :

psidot = psidot + A_on_psi(psi)

In Fortran 90, this is an allowed construction: a function can return an array as a result, which here is then
added to the psidot array. However, even otherwise excellent compilers can miss the fact that a temporary
array to store the result of the function call to A_on_psi can in fact be eliminated. If this procedure is called
often (as is likely in a code that evolves the Schrödinger equation), it is likely to speed things up by using a
much less elegant subroutine call, which adds the term Aψ to psidot:

call add_A_on_psi(psidot)

The point is that the procedure should be inlined in either case, but when the new feature (array-valued
functions), the optimizer support won’t be as good. The same goes for user-defined data types, pointers, and
virtually anything object-oriented. Of course, there are good reasons for the existence of these features: they
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make your code more readable and elegant. There is usually a tradeoff between speed and general elegance
when programming.

23.2.4 Parallel Programming

Optimizing parallel codes is an advanced topic, and way beyond the scope of this discussion, even as it
becomes more relevant with multicore computers and wider availability of computing clusters. We’ll just
stick to crude, obvious observations here. Basically, parallel programming involves communication between
processors. In the best case of symmetric multiprocessor (SMP) computing, the processors are all part of
the same computer, or ‘‘box,’’ and share the same memory. Communication is simple, since the processors
have access to the same pool of memory. In the worst case of parallel processing, as in many clusters, the
computers must talk over standard networks. In any case, communication is much slower than the crunching
that happens on a single computer. Your goal is to minimize the communication, or at least organize it to
make it as efficient as possible (e.g., into occasional, large ‘‘bursts’’ to minimize effects of network latency).
Parallel programming is complex and subtle. The quantum optician who doesn’t wish to spend all of his/her
time writing code would do well to learn a data-parallel language such as High-Performance Fortran (HPF),
where in many cases a well-written Fortran 90 code can be changed to a parallel code only by adding some
compiler directives as comments in the Fortran 90 file.

23.2.5 Tuning Your Code

So, how do you increase the speed of your code? We’ll only say a couple of superficial things here to get
you started. The most important thing to do is to get a good compiler, and investigate all of its options.
Good compilers support the above optimizations and many more, but usually only if you explicitly enable
them. Good compilers will also let you write nice-looking, readable code without worrying about speed. For
example, in this loop,

do j = 1, n
a(j) = 2 * n * a(j)

end do

it is possible to save on almost half of the multiplications by precomputing the constant product 2*n (the
loop invariant):

two_n = 2 * n
do j = 1, n
a(j) = two_n * a(j)

end do

However, this slightly obfuscates things, and anyway almost any worthwhile compiler will take care of this
for you.

The basic strategy for writing a good, fast code is this:

• Write a readable, working code, not worrying about performance.

• Use a profiler, a program that runs your code and tells you where your code is spending its execution
time. Usually it will give you something like a percentage of time in each subroutine. A free and
commonly available program is gprof.

• If you identify one or a few routines in which the code is spending most of its time, then concentrate
on optimizing those. If you can’t identify any such routine, it may not be worth the effort. (If you
work very hard to double the speed of a routine that accounts for 1% of the total execution time, the
net speedup will be truly unimpressive!)

• If you have to resort to obfuscating a routine to speed it up, consider maintaining two versions: a
readable one and a fast one. Or at least put the readable version in the comments.
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• Make sure to test each change you make, to make sure it is really helping.

If possible, you should also use hardware performance counters to diagnose and characterize the
performance of your code. Most processors have counters for performance-related events such as floating-
point operations, cache misses, and so on. Unfortunately, tools for accessing these counters are often less
convenient and less available than their profiling counterparts (in some operating systems, accessing the
counters requires kernel-level access and thus recompiling the kernel to enable them).
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Ordinary Differential Equations

Here we’ll cover some of the basic ideas for numerically solving ordinary differential equations, particularly
for solving equations of motion for the dynamical evolution of a system. We won’t be aiming for completeness
in this vast area, but rather we will just cover some of the important and useful methods. First, however,
we need a few mathematical preliminaries that will allow us to quantify how much of an error we’re making
when generating a numerical—and hence approximate—solution to an ODE.

24.1 Convergence

24.1.1 Sequences

First, let’s start off with the notion of a sequence. A real-valued sequence is a function x : Z+ −→ R, where
Z+ denotes the set of positive integers. The sequence is commonly written using the subscript notation
xn. That is, the sequence associates a real number with every positive integer. The generalization of the
real-valued sequence to complex values and n-tuples is obvious in the ideas of convergence to follow, so long
as an appropriate ‘‘distance,’’ such as the Euclidean metric, is used.

A sequence xn is said to converge to x (denoted xn −→ x or limn→∞ xn = x) if for every ε > 0, there
is an N ∈ Z+ such that if n > N , then |xn − x| < ε. In this case, x is the limit of the sequence xn. If the
sequence does not converge to a limit, then the sequence is said to diverge, in which case there are still a
couple of possibilities. If for any x ∈ R, there is an N ∈ Z+ such that if n > N , then xn > x, then the
sequence xn is said to diverge to ∞. Similarly, if for the same conditions xn < x, then the sequence xn is
said to diverge to −∞. If the sequence neither converges nor diverges to ±∞, it is said to oscillate.

As a quick example, let’s prove formally that the sequence xn = 1/n converges to zero. We start
by letting ε > 0. Choose N to be the smallest integer larger than 1/ε so that 1/N < ε. If n > N , then
|xn − 0| = xn = 1/n < 1/N < ε. Thus xn −→ 0.

24.1.2 O and o

Now supposing that we have a sequence, we can address the question of how the sequence behaves asymp-
totically by comparing the two sequences. Thus, let xn and yn be two sequences, not necessarily convergent.
Then we write

yn = O(xn), (24.1)

read as ‘‘yn is big Oh of xn’’ or ‘‘yn is of the order of xn,’’ if there is a K > 0 and an N ∈ Z+, such that
if n > N , then |yn/xn| < K. On the other hand, if the sequence (yn/xn) −→ 0, then yn evidently converges
more quickly than xn, and we write

yn = o(xn). (24.2)

This statement is read as ‘‘yn is little oh of xn,’’ or ‘‘yn is dominated by xn.’’ Note that the notation
here can be deceptive, because the statement xn = O(yn) does not imply that yn = O(xn).
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24.1.2.1 Example

To illustrate these definitions, consider the sequence xn = 3 + 3n+ 5n2.

1. Then xn = O(n2), because we can pick N = 1 and K = 11, and then xn/n
2 = (3/n2 + 3/n + 5) <

3 + 3 + 5 = 11 = K for any n > 1 = N .

2. Similarly, xn = o(n3), because xn/n3 = (3/n3 + 3/n2 + 5/n) −→ 0 as n −→∞.

24.1.3 Convergence and Scaling of Functions

These same notions of convergence also apply to limits of functions. In particular, when we say that

lim
x→x0

f(x) = y, (24.3)

we mean that for every sequence xn −→ x0, the corresponding sequence f(xn) −→ y. If it turns out that
y = f(x0), then we say the function f is continuous at x0. If we consider only sequences of numbers larger
than the limit, xn − x = |xn − x|, then the same definition gives the limit from above

lim
x→x+

0

f(x) = y+, (24.4)

while if we consider only sequences of numbers smaller than the limit, x − xn = |x − xn|, then the same
definition gives the limit from below

lim
x→x−

0

f(x) = y−, (24.5)

assuming these limits exist. The function is then continuous if the limits agree, y+ = y−.
The concepts of O and o can similarly be extended to functions of a continuum. In particular, we can

write
f(x) = O[g(x)] as x −→ x0 (24.6)

if and only if for every convergent sequence xn −→ x0, f(xn) = O[g(xn)]. In particular, this is equivalent to
the condition that each sequence |f(xn)/g(xn)| is eventually bounded,

lim
n→∞

∣∣∣∣f(xn)g(xn)

∣∣∣∣ <∞. (24.7)

and thus we may equivalently write

lim
x→x0

∣∣∣∣f(x)g(x)

∣∣∣∣ <∞. (24.8)

For the little o, we can similarly write
f(x) = o[g(x)] (24.9)

if and only if for every divergent sequence xn −→ ∞, f(xn) = o[g(xn)]. From the above definitions of
convergence, this latter statement is equivalent to the statement that limx→∞ f(x)/g(x) = 0. Note that
there is only a sense of ‘‘little oh’’ dominance of functions as the argument increases without bound.

24.1.3.1 Truncation Error

The O notation is particularly useful for representing the error in a truncated series expansion, or the
truncation error. That is, suppose we write the series expansion of the exponential function near x = 0 as

e−x = 1− x+
x2

2!
+O(x3). (24.10)

Since the remaining terms in the expansion are −x3/3!, x4/4!, and so on, we can compactly represent them
by simply noting that all the unwritten terms are O(x3). This gives a rough idea of how the truncation error
scales with x. The same idea obviously applies to asymptotic expansions about the point at ∞.
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24.1.3.2 Example

Again, as a simple example, consider f(x) = 2 + 5x+ 7x2.

1. As x −→ 0, f(x) = O(x0), because f(x)/x0 = 2 + 5x+ 7x2 −→ 2 as x −→ 0.

2. As x −→∞, f(x) = O(x2), because f(x)/x2 = 2/x2 + 5/x+ 7 −→ 7 as x −→∞.

3. Also, f(x) = o(x3) because f(x)/x3 = 2/x3 + 5/x2 + 7/x −→ 0 as x −→∞.

24.2 Euler Methods

Consider an ordinary differential equation of the form

ẏ(t) = f(y(t), t) (24.11)

that we wish to solve. The Euler method is the simplest way to generate the solution y(t) to the ODE.
The idea is to consider the Taylor expansion of the evolved solution

y(t+∆t) = y(t) + ∆t ẏ(t) +O(∆t2)

= y(t) + ∆t f(y(t), t) +O(∆t2).
(24.12)

Thus, the Euler method consists of making the approximation

y(t+∆t) ≈ y(t) + ∆t f(y(t), t),
(24.13)

(Euler method)

to obtain the advanced solution y(t + ∆t), since the function f and the present solution y(t) are known.
This process is iterated to generate the further advanced solutions y(t+2∆t), y(t+3∆t), and so on. Pretty
simple, and pretty easy to implement on a computer. This is the simplest example of a finite-difference
method, since finite time steps are taken to approximate the continuous solution.

In a slightly more compact notation, we may write the Euler method as the recurrence equation

yn+1 = yn +∆t f(yn, tn).
(24.14)

(Euler method)

Here, we have defined tn := n∆t and yn := y(tn).
Of course, this same method can be applied to system of coupled ODEs. If we have a set of ODEs of

the form
ẏα(t) = fα(y(t), t), (24.15)

then the finite-step update equations are

yα(t+∆t) ≈ yα(t) + ∆t fα(y(t), t), (24.16)

which is a pretty obvious generalization of the scalar case. In this sense, the Euler method may be applied
generally to any problem, since any ODE can be decomposed into a system of first-order ODEs (an nth-
order ODE decomposes into n coupled, first-order ODEs). However, typically a somewhat fancier method
is usually appropriate.

24.2.1 Local and Global Truncation Error

Evidently, the error in taking a single step in the Euler method is O(∆t2), as we see from Eq. (24.12). Thus,
we say that the local trunction error of the Euler method is O(∆t2).

The global truncation error refers to the error in generating the solution over a fixed interval, say
from 0 to t in time. This takes N = t/∆t steps, and in the worst case when the local truncation errors add,
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the accumulated error in taking the N steps is O(N ∆t2) = O(∆t). This is a reasonable assumption, since
the errors are not random, but are predictably related to the form of f(y(t), t) and the solution y(t). In
any case, in principle the solution converges to the true one as ∆t −→ 0. The Euler method is said to be
a first-order method, meaning that the local truncation is correct to first order in ∆t, or that the global
truncation error is first order in ∆t.

24.2.2 Implicit Euler Method and Stiff Equations

An alternative to the expansion in Eq. (24.12) is to expand y(t) about t+∆t:

y(t) = y(t+∆t)−∆t ẏ(t+∆t) +O(∆t2)

= y(t+∆t)−∆t f(y(t+∆t), t+∆t) +O(∆t2).
(24.17)

Thus, an alternative stepping scheme is the implicit Euler method, given by rearranging the expansion
as

y(t+∆t) ≈ y(t) + ∆t f(y(t+∆t), t+∆t).
(24.18)

(implicit Euler method)

In the compact notation mentioned above, we can also write this as

yn+1 = yn +∆t f(yn+1, tn+1).
(24.19)

(implicit Euler method)

This is the same as the Euler method in Eq. (24.13), except that the derivative function is evaluated at the
advanced time, f(y(t + ∆t), t + ∆t), instead of at the old time, f(y(t), t). The problem with this is that
evolving y(t) to y(t+∆t) requires knowing y(t+∆t) already, which is of course why the method is implicit.
There are a few ways to solve this equation at each time step. For example, the most straightforward is to
use y(t) as a guess for y(t + ∆t), and plug it into f(y(t + ∆t), t + ∆t). Then generate the next guess for
y(t+∆t). Plug it back in, and keep guessing until the process converges to a solution, which is the one you
want. This procedure is called fixed-point iteration, since the iteration converges to the desired steady
state, or fixed point.

Obviously, the implicit Euler method is a lot more work than the explicit counterpart, so why bother?
What we gain in exchange for the extra effort is improved stability properties. Consider the simple model
problem

ẏ = −α y, (24.20)

where α is some large, positive constant. Obviously the solution is simply

y(t) = y0 e
−αt. (24.21)

The (explicit) Euler method gives the update method

yn+1 = yn −∆t α yn = (1− α∆t) yn. (24.22)

Clearly, this method has rather serious problems if α∆t > 1, since the solution y1 will be negative if y0
is positive, which definitely shouldn’t happen: the the analytic solution says the initially positive solution
should stay that way. It’s pretty clear that in fact the solution will oscillate about zero, changing sign on
each iteration. Things get even worse if α∆t > 2, since now the coefficient of yn has a modulus of more
than unity, and thus |yn| diverges to ∞. If α is large, then it may take very small step sizes ∆t to obtain
a stable recurrence. Even in more complicated systems of equations, the interesting dynamics may happen
on relatively long time scales, but the step size may be limited to a short time interval by a fast decay (as
in a set of rate equations with vastly different decay rates) to obtain a stable solution. Such a system of
equations is called a stiff system.

The implicit Euler method helps here, since the recursion now becomes

yn+1 = yn −∆t α yn+1, (24.23)



24.3 Runge–Kutta Methods 1121

which when solved for yn+1 becomes
yn+1 =

yn
1 + α∆t

. (24.24)

This recurrence is clearly stable (and not oscillatory) for any ∆t > 0, a distinct improvement over the explicit
case. Of course, for a large step the solution still wouldn’t be very accurate. Often it’s the case that with
an explicit method, a time step small enough to get an accurate solution also is small enough to guarantee
stability. However, it sometimes helps to use an implicit method if a larger time step than would be explicitly
stable gives an adequately accurate solution.

The implicit Euler method is also called the backward Euler method, while the explicit Euler
method is called the forward Euler method. Again, the improved stability properties inherited by the
implicit method here also generally apply to more complicated implicit methods. Note that when going to
the effort of using an implicit method, it is probably worth using a better method than the simple implicit
Euler method.

24.3 Runge–Kutta Methods

Now we will seek finite-difference methods for solving ODEs that are higher order, or that is to say methods
that have global truncation errors that are O(∆tn) with n > 1. Of course, these methods will be more
complicated, so again, why bother? Obviously, with a higher-order method, the step size ∆t needed to
generate a solution with a particular accuracy will be larger than for a lower-order method. Often it is the
case that the number of steps required for a high-order method is drastically smaller than for a low-order
method, and there is correspondingly a large overall savings in computer time to obtain a particular level
of accuracy. Furthermore, with a low-order method, it may not even be possible to achieve decent accuracy
with a low-order method. In principle, by making the step size very small, you could achieve any desired
accuracy with the Euler method. However, when the finite differences start becoming comparable to machine
epsilon, machine rounding errors will dominate any truncation errors, providing an effective accuracy bound
for a given numerical precision. A high-order method helps here because the step size to achieve a good
accuracy will be much larger than for the low-order method. The accumulation of many small differences is
replaced by a more complicated sequence of larger finite differences, which are less susceptible to roundoff
errors.

24.3.1 Second-Order Methods

To construct a second-order method, consider the following forward and backward Taylor expansions, ex-
panded to higher order:

y(t+∆t) = y(t) + ∆t ẏ(t) +
∆t2

2!
ÿ(t) +

∆t3

3!

___
y (t) +

∆t4

4!
y(4)(t) +O(∆t5)

y(t−∆t) = y(t)−∆t ẏ(t) +
∆t2

2!
ÿ(t)− ∆t3

3!

___
y (t) +

∆t4

4!
y(4)(t) +O(∆t5)

(24.25)

Subtracting these, we find

y(t+∆t)− y(t−∆t) = 2∆t ẏ(t) + 2
∆t3

3!

___
y (t) +O(∆t5), (24.26)

and now letting ∆t −→ t+∆t and then ∆t −→ ∆t/2,

y(t+∆t) = y(t) + ∆t ẏ(t+∆t/2) +
∆t3

4 · 3!
___
y (t) +O(∆t5). (24.27)

Thus, the finite-difference method

y(t+∆t) ≈ y(t) + ∆t f(y(t+∆t/2), t+∆t/2)

yn+1 ≈ yn +∆t f(yn+1/2, tn+1/2)
(24.28)
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is O(∆t3) (i.e., locally second-order accurate). It also has what turns out to be the useful property that all
even powers in the expansion of the error term vanish. This is because of the symmetry of the expression
about the middle time tn+1/2. However, it requires that we know the intermediate solution yn+1/2, which
of course we don’t know, and we wouldn’t even necessarily want to know it if we are trying to generate the
solution samples yn.

To deal with the intermediate value, we need to come up with an approximation for it. There are a
number of ways to do this, each leading to different methods. One possibility is to take half of an Euler step
to compute yn+1/2 and then use this result in the formula (24.28). Thus noting the two formulae

y(t+∆t/2) = y(t) + (∆t/2) f(y(t), t) +O(∆t2)

y(t+∆t) = y(t) + ∆t f(y(t+∆t/2), t+∆t/2) +O(∆t3),
(24.29)

we can write
dn = yn + (∆t/2) f(yn, tn) = yn+1/2 +O(∆t2)

yn+1 = yn +∆t f(dn, tn+1/2) +O(∆t3),
(24.30)

since the error in using d2 in place of yn+1/2 is O(∆t2), and with the extra factor of ∆t leads to an over-
all O(∆t3) error. This leads to the midpoint method, an example of a second-order Runge–Kutta
method:

dn = yn +
∆t

2
f(yn, tn)

yn+1 = yn +∆t f(dn, tn+1/2).

(24.31)
(Runge–Kutta method, order 2)

Again, the local truncation error is O(∆t3), while the global truncation error is O(∆t2). There are other
Runge–Kutta methods that achieve second-order accuracy, which involve different choices for intermediate
steps.

24.3.1.1 Variations

The above choice of the second-order Runge–Kutta method is by no means unique.1 We can parameterize
second-order Runge–Kutta methods more generally as

dn = yn + (a∆t) f(yn, tn)

yn+1 = yn + b1 ∆t f(yn, tn) + b2 ∆t f(dn, tn + c∆t).

(general Runge–Kutta method, order 2) (24.32)
That is dn is the result yn+a of taking an Euler step of a∆t. The final solution yn+1 is a linear combination
of taking a normal Euler step from (yn, tn) and an Euler step from (yn+a, tn+c). To see how we can obtain
more second-order methods, we can write out the Taylor expansions of these evolution equations as

dn = yn + a∆t f(yn, tn)

yn+1 = yn + b1 ∆t f(yn, tn)

+ b2 ∆t f(yn, tn) + b2 c∆t
2 ∂tf(yn, tn) + b2 a∆t

2 f(yn, tn) ∂yf(yn, tn) +O(∆t3).

(24.33)

Comparison to the exact Taylor expansion of yn+1

yn+1 = yn +∆t ẏn +
∆t2

2
ÿn +O(∆t3)

= yn +∆t f(yn, tn) +
∆t2

2
∂tf(yn, tn) +

∆t2

2
f(yn, tn) ∂yf(yn, tn) +O(∆t3),

(24.34)

1For a detailed treatment, see Arieh Iserles, A First Course in the Numerical Analysis of Differential Equations, (Cambridge,
1996).
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and matching terms up to O(∆t2) leads to the conditions

b1 + b2 = 1, b2 c =
1

2
, a = c.

(order 2 Runge–Kutta conditions) (24.35)
Any method of the form (24.32) with coefficients satisfying these three conditions is second order, which
clearly leaves much wiggle room. Thus, we may regard the general order-two method as parameterized by
the single parameter a:

dn = yn + (a∆t) f(yn, tn)

yn+1 = yn +

(
1− 1

2a

)
∆t f(yn, tn) +

1

2a
∆t f(dn, tn + a∆t).

(general Runge–Kutta method, order 2) (24.36)
The midpoint method (24.31) corresponds to a = 1/2. The choice that minimizes the coefficient of the
O(∆t3) error turns out to be2 a = 2/3.

24.3.2 Fourth-Order and General Schemes

To construct higher-order general schemes, recall that to evolve yn+1 from yn, we are performing the integral
from tn to tn+1:

yn+1 = yn +

∫ tn+1

tn

dt′ f(y(t′), t′). (24.37)

In constructing the second-order method above, we chose∫ tn+1

tn

dt′ f(y(t′), t′) = f(yn+1/2, tn+1/2)∆t+O(∆t3), (24.38)

as we showed in Eq. (24.27). The midpoint approximation is one of the simplest choices to represent the
integral. We could of course sample the interval (tn, tn+1) with additional points, hoping to approximate
the integral more exactly using a higher-resolution discrete sum, thus ending up with higher order methods.
Thus, we can for example write

yn+1 ≈ yn +∆t
∑
α

bα f(y(tn + cα∆t), tn + cα∆t), (24.39)

where the coefficients bα and cα are to be determined to give the best possible approximation to the integral.
Of course, more terms in the sum should lead to higher-order methods. And, of course, the problem with this
scheme are that the solution at the intermediate times tn+ cα∆t is not known, and thus must be estimated
numerically.

Following the idea from the second-order case, we write down approximations for each of the interme-
diate solutions, and then compute a linear combination of the intermediate solutions to obtain an accurate
estimate for yn+1. Choosing c1 = 0 to include the (known) initial point in the linear combination, we may

2Anthony Ralston, ‘‘Runge–Kutta Methods with Minimum Error Bounds,’’ Mathematics of Computation 16, 431 (1962).

http://links.jstor.org/sici?sici=0025-5718%28196210%2916%3A80%3C431%3ARMWMEB%3E2.0.CO%3B2-7
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write down the general form for the Runge–Kutta methods as

d1 = yn

d2 = yn + a21 ∆t f(yn, tn)

d3 = yn + a31 ∆t f(yn, tn) + a32 ∆t f(d2, tn + c2 ∆t)

d4 = yn + a41 ∆t f(yn, tn) + a42 ∆t f(d2, tn + c2 ∆t) + a43 ∆t f(d3, tn + c3 ∆t)
...

dm = yn +∆t

m−1∑
α=1

amα f(dα, tn + cα∆t)

yn+1 = yn +∆t

m∑
α=1

bα f(dα, tn + cα∆t).

(24.40)

This set of formulae is commonly rewritten in the form

k1 = ∆t f(yn, tn)

k2 = ∆t f(yn + a21k1, tn + c2 ∆t)

k3 = ∆t f(yn + a31k1 + a32k2, tn + c3 ∆t)

k4 = ∆t f(yn + a41k1 + a42k2 + a43k3, tn + c4 ∆t)
...

km = ∆t f

(
yn +

m−1∑
α=1

amα, tn + cm∆t

)
yn+1 = yn +

m∑
α=1

bαkα,

(general form for Runge–Kutta methods) (24.41)
which is somewhat more efficient in terms of coding.

The coefficients for fairly low-order systems can be chosen by matching the Taylor expansions of these
formulae with the exact Taylor expansion, just as in the second-order case. This is cumbersome, and more
elegant methods are available for constructing high-order methods.3 Here we will just quote some results at
fourth order, where there is a good compromise between complexity of the method and accuracy. One very
popular method is the ‘‘classical’’ fourth-order Runge–Kutta method, which takes four intermediate steps
and can be written explicitly as

k1 = ∆t f(yn, tn)

k2 = ∆t f

(
yn +

k1
2
, tn +

∆t

2

)
k3 = ∆t f

(
yn +

k2
2
, tn +

∆t

2

)
k4 = ∆t f(yn + k3, tn +∆t)

yn+1 = yn +
k1
6

+
k2
3

+
k3
3

+
k4
6
.

(classical fourth-order Runge–Kutta method) (24.42)
Again, it is possible to choose the coefficients to not only cancel errors up to fourth order, but also to

3Arieh Iserles, op. cit.
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minimize the coefficient of the O(∆t5) error term.4

k1 = ∆t f(yn, tn)

k2 = ∆t f(yn + a21k1, tn + c2 ∆t)

k3 = ∆t f(yn + a31k1 + a32k2, tn + c3 ∆t)

k4 = ∆t f(yn + a41k1 + a42k2 + a43k3, tn +∆t)

yn+1 = yn + b1k1 + b2k2 + b3k3 + b4k4.

(fourth-order Runge–Kutta) (24.43)
The coefficients for the time increments are the free parameters, and are given by

c2 =
2

5
≈ 0.4000 0000 0000 0000

c3 =
7

8
− 3
√
5

16
≈ 0.4557 3725 4218 7894,

(fourth-order Runge–Kutta coefficients) (24.44)
while the coefficients for the linear combination are

b1 =
263 + 24

√
5

1812
≈ 0.1747 6028 2262 6904

b2 =
125(1− 8

√
5)

3828
≈ −0.5514 8066 2878 7329

b3 =
1024

4869
√
5− 10038

≈ 1.2055 3559 9396 5235

b4 =
1

9/2 + 3/
√
5

≈ 0.1711 8478 1219 5190,

(fourth-order Runge–Kutta coefficients) (24.45)
and the coefficients for intermediate linear combinations of solutions are

a21 =
2

5
≈ 0.4000 0000 0000 0000

a31 =
3(476

√
5− 963)

1024
≈ 0.2969 7760 9247 7536

a32 =
5(757− 324

√
5)

1024
≈ 0.1587 5964 4971 0358

a41 =
2094

√
5− 3365

6040
≈ 0.2181 0038 8225 9205

a42 = −975 + 3046
√
5

2552
≈ −3.0509 6514 8692 9308

a43 =
32(14595 + 6374

√
5)

240845
≈ 3.8328 6476 0467 0103.

(fourth-order Runge–Kutta coefficients) (24.46)
This method produces an error bound about half that of the classical formula (24.42), though it takes
somewhat more effort to program and a few extra arithmetic operations.

24.3.3 Implicit Runge–Kutta Methods

The Runge–Kutta methods we have considered so far are explicit. Looking for example at Eq. (24.40), the
mth intermediate solution dm only depends on the previous dj where j < m. Of course this constraint can

4Anthony Ralson, op. cit.
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be relaxed, and each dm can depend on function evaluations at every other dm. This generalization leads to
implicit Runge–Kutta (Gauss–Legendre) methods. For example, the two-stage scheme

d1 = yn + a11 ∆t f(yn, tn + c1 ∆t) + a12 ∆t f(d2, tn + c2 ∆t)

d2 = yn + a21 ∆t f(yn, tn + c1 ∆t) + a22 ∆t f(d2, tn + c2 ∆t)

yn+1 = yn + b1 ∆t f(d1, tn + c1 ∆t) + b2 ∆t f(d2, tn + c2 ∆t).

(two-stage implicit Runge–Kutta method) (24.47)
with coefficients

a11 =
1

4
a12 =

1

4
−
√
3

6

a21 =
1

4
+

√
3

6
a22 =

1

4

b1 =
1

2
b2 =

1

2

c1 =
1

2
−
√
3

6
c2 =

1

2
+

√
3

6
(fourth-order implicit Runge–Kutta coefficients) (24.48)

turns out to have fourth-order accuracy.5 This seems more compact than the four-stage explicit Runge–Kutta
methods above, but of course there is extra complexity associated with functional iteration or whatever is
used to deal with the implicit equations. However, the implicit method should be more stable and robust
than the explicit counterpart, and better able to deal with stiff problems.

24.3.4 Adaptive Stepping

An important concept in numerical integration is adaptive time stepping. The idea is that, along with
estimating the solution, we can also estimate the error in the solution. Then, assuming we have some goal to
achieve for the local accuracy (truncation error), or tolerance, we can perform a sort of feedback to the step
size to just meet the specified tolerance. In other words, if the error is too large, then the step is rejected,
and a smaller step is taken. If the error estimate is below tolerance, then the next time step is chosen to be
larger, so that the desired accuracy is achieved with the minimum level of work.

This strategy has two main advantages. First, it removes the problem of choosing a sensible step size
from the user, since the algorithm handles this automatically. This reduces potential for user error and
wasted cpu cycles. More importantly, it may be that in some solutions, the nature of the solution may be
continually in flux, with long steps appropriate during slowly varying intervals, and short steps necessary
during periods of intense action. If the quiet intervals are large, the time savings gained by using an adaptive
method can be substantial.

In the case of Runge–Kutta methods, the methods we have outlined don’t already have an error
estimate built in. Thus, we must do extra work. For example, after computing yn+1 from yn by one Runge–
Kutta step, we could recompute it using two half-steps, using the same algorithm. This is the strategy
used, for example, in Richardson extrapolation (Section 26.3). However, the more common method used
with Runge–Kutta integrators is to use two different methods of different order. A very popular choice
is called the (explicit) Runge–Kutta–Fehlberg method,6 where a fourth-order and a fifth-order method
are computed simultaneously on each time step, and the difference between the two acts as an estimate
for the O(∆t5) truncation error of the fourth-order method. The Runge–Kutta–Fehlberg method cleverly
arranges both methods to make use of the same set of function evaluations, to minimize the extra effort
beyond the basic fourth-order method. Such methods are called embedded, because for example the fourth-
order method is ‘‘embedded’’ within the fifth-order method. Because we know how the error scales, it is
reasonably straightforward to decide how to rescale the step size to achieve the desired error tolerance.

5Arieh Iserles, op. cit.
6Erwin Fehlberg, ‘‘Low-Order Classical Runge-Kutta Formulas with Stepsize Control and their Application to some Heat

Transfer Problems,’’ NASA Technical Report R-315 (1969), Table III. See also Arieh Iserles, op. cit., p. 84.

http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19690021375_1969021375.pdf
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Adjusting the time step is fairly straightforward with explicit Runge–Kutta methods, because the solution
yn+1 only depends on yn. This property does not hold for the predictor-corrector methods below, and they
are concomitantly much more complicated to code as adaptive-step methods.

The fixed-step Runge–Kutta methods are fairly straightforward to code, but the extra overhead in-
volved with the adaptive methods makes them slightly more complicated to code. Fortunately, there are
free, high-quality implementations available, such as RKSUITE on Netlib.7

Now the adaptive-step method will obviously generate a solution that is not uniformly sampled in
time, whereas often a uniform sampling is desirable. There are two main ways to deal with this. One is to go
ahead and generate the solution with nonuniform samples, and then use numerical interpolation (e.g., cubic
splines) to transfer the solution to the desired set of sample times. Another popular method is to decide on
the desired sample times in advance, and then call the integrator to evolve the solution forward from one
sample time to the next. The integrator steps adaptively to the next time, and terminates at the desired
output time by adjusting its final step to exactly hit the output time. The integrator subroutine is thus
called once for each output time step (whereas in the former method, the integrator subroutine is called only
once for the whole solution). The latter method is especially common in compiled languages (e.g., Fortran
or C), as opposed to ‘‘canned’’ languages like Octave.

24.4 Multistep and Predictor–Corrector Methods

Another important class of higher-order numerical methods goes by the name of multistep methods. The
idea is that, as in the Runge–Kutta methods, to achieve higher order you need to estimate the solution at
multiple points in time. Runge–Kutta methods do this by estimating the solution at several intermediate
times between t and t+∆t. Multistep methods, however, use the additional points in the past, say at t−∆t,
t− 2∆t, and so on, to achieve the higher order. We won’t go into the derivation of these methods here,8 but
for example, the second-order Adams–Bashforth method is

yn+1 = yn +∆t

[
3

2
f(yn, tn)−

1

2
f(yn−1, tn−2)

]
, (24.49)

while the third-order method is

yn+1 = yn +∆t

[
23

12
f(yn, tn)−

4

3
f(yn−1, tn−2) +

5

12
f(yn−2, tn−2)

]
. (24.50)

Common implicit versions of these methods are Adams–Moulton methods and backward differentia-
tion formulae, which are better when improved stability is needed or when solving stiff problems.

Implementations of these methods can be complicated, especially in implementing adaptive-step ver-
sions. Since the next step may rely on several steps in the past, changing future time steps require either
interpolating the past solution onto the new time grid or using much more complicated formulae that can
handle nonuniform time steps. Further, imagine: how would you start a high-order multistep method, given
only initial data y(t0)? You could, for example step backwards using a low-order method (e.g., Euler) to
generate the past steps. Sophisticated implementations start with the Euler method, and increase the or-
der as the solution proceeds, adaptively choosing both the order of the method and the stepsize needed to
maximize efficiency at the desired error tolerance.

Multistep methods find their biggest utility in predictor–corrector methods. The basic idea is to use
two methods, one explicit and one implicit, such as an Adams–Bashforth and an Adams–Moulton method of
the same order, and run them together. The explicit method (the predictor), generates the updated solution
at the future time, which is then used as a starting point for iterating the implicit method (the corrector)
to convergence. The difference between the two, or perhaps whether or not the iteration converges quickly
enough, is used to determine whether or not the current step size is adequate. There are a number of different

7http://www.netlib.org/ode/rksuite/
8See Arieh Iserles, A First Course in the Numerical Analysis of Differential Equations, (Cambridge, 1996), Chapter 2.

http://www.netlib.org/ode/rksuite/
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strategies here, but these methods are again quite complicated to implement. Fortunately, high-quality, open-
source integrators are available, such as the venerable ODEPACK9 and others10 at Netlib. These methods
have the advantage of efficiently producing solutions of very high accuracy. However, they perform best
on very smooth solutions. In cases where certain errors are involved in computing the derivative function
(as when lookup tables are used), these methods may not perform so well. They may also not perform
well in cases where the integrator must be restarted often, as when the solution has discontinuities (as in
quantum-jump trajectories), since the restarting overhead can be substantial. In these cases it better to fall
back to the less elegant but more robust Runge–Kutta methods.

24.5 Exercises

Problem 24.1
An alternate definition of the limit of a function is as follows. We say

y = lim
x→x0

f(x) (24.51)

if for every ε > 0, there is a δ > 0 such that if |x − x0| < δ then |f(x) − f(xn)| < ε. Essentially,
this is saying that a sufficiently small perturbation to x can make an arbitrarily small perturbation to
f(x). Show that this ‘‘ε-δ’’ definition of the limit is equivalent to the definition in terms of limits of
sequences.

9http://www.netlib.org/odepack/
10http://www.netlib.org/ode/

http://www.netlib.org/odepack/
http://www.netlib.org/ode/


Chapter 25

Fourier Transforms

Fourier transforms are the basis for a number of powerful analytical tools for analyzing linear (and sometimes
nonlinear) systems. But they are also important numerical tools, in part because they can be performed
accurately and very efficiently. Knowing how to use them both analytically and numerically is a good way
to get deep intuition into physical systems, in particular dynamical systems, and allows for the construction
for sophisticated numerical analysis techniques.

There are numerous conventions for the Fourier transform, and we will discuss a few of them. For the
sake of concreteness, we will consider the usual time-frequency convention for the Fourier transform F of a
function f(t)

F [f ] (ω) ≡ f̃(ω) =
∫ ∞
−∞

f(t) eiωtdt
(25.1)

(Fourier-transform definition)

and the inverse Fourier transform

F−1
[
f̃
]
(t) ≡ f(t) = 1

2π

∫ ∞
−∞

f̃(ω) e−iωtdω.

(inverse-Fourier-transform definition) (25.2)
We will then discuss adaptations to other normalization conventions.

25.1 Sampling Theorem

A critical aspect of the numerical computation of a Fourier transform is adapting the integral transform
to a finite sample of the data. The sampling theorem provides the basis for doing this, especially for
understanding the errors involved in doing so. To understand the sampling theorem, suppose that the
spectrum of f(t) has compact support—that is, suppose that f̃(ω) vanishes for |ω| > ωc, where ωc is some
‘‘cut-off frequency.’’ Then defining the unit-rectangular-pulse function by

rect(t) :=

 1 if |t| < 1/2
1/2 if |t| = 1/2
0 if |t| > 1/2,

(25.3)

we can write the compact-support condition for the spectrum as

f̃(ω) = f̃(ω) rect
(
ω

2ωc

)
. (25.4)

Recall (Section 17.1.2) that the convolution theorem for functions f(t) and g(t) reads

F [f ∗ g] = F [f ]F [g], (25.5)
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where ‘‘∗’’ denotes the convolution operation

(f ∗ g)(t) :=
∫ ∞
−∞

f(t′)g(t− t′) dt′. (25.6)

We will also later need the frequency-domain version, which reads

F−1
[
f̃ ∗ g̃

]
= 2πF−1

[
f̃
]
F−1 [g̃] (25.7)

for frequency-domain functions f̃(ω) and g̃(ω), where the extra factor of 2π is due to the same factor in
the inverse transform (25.2). Applying the original form (25.5) of the convolution theorem to the compact-
support condition (25.4), we may write

f(t) =
ωc

π
sincωct ∗ f(t),

(25.8)
(prelude to sampling theorem)

where sincx := sinx/x, and we have used the inverse Fourier transform

F−1[rect(ω)] = 1

2π
sinc (t/2). (25.9)

Thus, we see that f(t) is an invariant under convolution with the sinc function.

25.1.1 Critical Sampling

Now suppose we discretely sample the function f(t) at uniform time intervals ∆t. That is, we represent f(t)
by the countable set of values

fj := f(j∆t) = f(tj), (25.10)
where the sample times are tj = j∆t. In particular, suppose that we represent the function f(t) by the
weighted comb function

f (∆t)(t) :=

∞∑
j=−∞

fj ∆t δ(t− j∆t). (25.11)

This is a function that (1) is determined only by the samples fj , and (2) has the same coarse-grained area
as f(t), at least to O(∆t2). To compute the Fourier transform of this function, note that we may rewrite it
as the product of f(t) and the usual comb function:

f (∆t)(t) = f(t)∆t

∞∑
j=−∞

δ(t− j∆t). (25.12)

Now using the fact that the Fourier transform of a comb function is a comb function,

F

 ∞∑
j=−∞

δ(t− j∆t)

 =
2π

∆t

∞∑
j=−∞

δ

(
ω − 2πj

∆t

)
, (25.13)

we can use the convolution theorem in the form (25.7) to write the Fourier transform of f (∆t)(t) as the
convolution of f̃(ω) with a comb function:

f̃ (∆t)(ω) = f̃(ω) ∗

 ∞∑
j=−∞

δ

(
ω − 2πj

∆t

) . (25.14)

This spectrum is periodic in frequency due to convolution with the comb function. Now suppose we choose
the sampling interval ∆t such that it is determined by the cut-off frequency by

ωc =
π

∆t
. (25.15)
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Then

f̃ (∆t)(ω) = f̃(ω) ∗

 ∞∑
j=−∞

δ (ω − 2ωcj)

 , (25.16)

and we see that now the spacing between the ‘‘teeth’’ of the comb function is 2ωc, the same as the width of
the (two-sided) spectrum f̃(ω). This means that, provided we are interested in the range |ω| < ωc, only one
of the delta functions effectively contributes (in particular, j = 0), and thus

f̃ (∆t)(ω) =
[
f̃ ∗ δ

]
(ω) = f̃(ω) (|ω| < ωc). (25.17)

Another way to state this is that for any frequency, ω, the spectra satisfy

f̃ (∆t)(ω) rect
(
ω

2ωc

)
= f̃(ω) rect

(
ω

2ωc

)
= f̃(ω).

(equivalence of sample-reconstructed and original spectra) (25.18)
Thus, we see that the Fourier transforms of f(t) and f (∆t)(t) are the same. In other words, the samples fj ,
where the sampling interval satisfies the condition (25.15) for critical sampling of the signal, are sufficient
to completely reconstruct the spectrum f̃(ω), and thus the original function f(t). This is essentially the
content of the sampling theorem, without going into the precise conditions for its validity (as is usual in a
physicist’s treatment of the subject).

Of course, what this means is that a function whose spectrum has compact support is in some sense
a very special function. However, so long as the weight of an arbitrary spectrum is very small outside the
range (−ωc, ωc), the error in the reconstruction of the spectrum is correspondingly very small. The other
situation in which this works is if the spectrum f̃(ω) is periodic in ω, since we can see from Eq. (25.16) that
the reconstructed spectrum is periodic with period 2ωc. This makes sense, as we know from Fourier theory
that a function that is either defined on a bounded interval or is periodic can be represented by a Fourier
series, rather than a Fourier transform. Thus, in writing down Eq. (25.11), we have essentially written down
the Fourier series for f̃(ω), but in the language of a Fourier transform.

25.1.2 Reconstruction

The sampling theorem also provides a direct way to ‘‘reconstruct’’ the original function from its samples.
We assume the spectrum has compact support—otherwise, a periodic spectrum implies that the modulated
comb (25.11) is in fact the true form of f(t)—and then combine the compact-support condition (25.4) with
the reconstructed-spectrum condition (25.18) to write

f̃(ω) = f̃ (∆t)(ω) rect
(
ω

2ωc

)
. (25.19)

Using the convolution theorem (25.5), we can thus write the inverse transform of this equation as

f(t) = f (∆t)(t) ∗
[ωc

π
sinc (ωct)

]
, (25.20)

where we have again used the inverse Fourier transform (25.9). Writing this out in terms of the samples,

f(t) =

∞∑
j=−∞

fj∆t
ωc

π
δ(t− tj) ∗ sinc (ωct). (25.21)
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Again using the critical-sampling condition (25.15) and carrying out the convolution, this relation becomes
the Whittaker–Shannon sampling interpolation formula:1

f(t) =

∞∑
j=−∞

fj sinc [ωc(t− tj)] =
∞∑

j=−∞
fj sinc [π(t− tj)/∆t]

(Whittaker–Shannon sampling interpolation formula) (25.22)
The sinc functions are used to interpolate the function between the samples, and again, if the signal is
bandwidth-limited and critically sampled, this reconstruction formula is exact. Note that the function
sinc [ωc(t− tj)] is zero for any tk where j 6= k, and is unity at tj , so the construction is obviously correct at
the sample times. What is less obvious is the exactness of the formula between the sample times.

25.2 Discrete Fourier Transform

Any real-world numerical calculation of a Fourier transform will obviously require operations on finite data
sets. By sampling the temporal signal, we have reduced the information from a function f(t) on an un-
countable set to a function fj on a countable (discrete) set, but we must further reduce the information to a
finite set. Of course, since sampling implied a spectrum of finite width, we can obtain a finite set simply by
also sampling the frequency spectrum to obtain samples f̃k = f̃(k∆ω) of the frequence spectrum at uniform
frequency intervals ∆ω. This is equivalent to a truncation of the time samples, so that the time samples only
occur within some frequency interval. Again, this will amount to the assumption that the temporal signal
is either a pulse with compact support, or that it is periodic.

When time and frequency are both sampled, we can use the arguments above to impose constraints
on the sample intervals and ranges. For example, as above, when the signal is temporally sampled with N
points with interval ∆t, we may regard the signal as extending from t = 0 to t = 2tmax, where

tmax =
N

2
∆t. (25.23)

Note the factor of 2 here, since the sampling in both time and frequency imply the assumption that the
sampled function f(t) is periodic. Thus, we can also regard the signal as extending from t = −tmax to
t = tmax, which is why we have set up our notation this way. The sampling interval ∆t, from our arguments
in the last section, implies a maximum frequency

ωmax =
π

∆t
, (25.24)

which is called the Nyquist frequency, or the largest frequency that is critically sampled. Thus, the
spectrum extends in frequency from ω = −ωmax to ω = ωmax. To have the same information, there will
also be N samples in frequency, N/2 of which correspond to the range from ω = 0 to ωmax, so that the
frequency-sampling interval is

∆ω =
2ωmax

N
=

2π

N∆t
=

π

tmax
. (25.25)

Thus, given the two free parameters, the total time 2tmax for the sample and the total number of samples
N , the above three formulae give the rest of the discretization parameters ∆t, ∆ω, and ωmax.

To avoid all these details of time and frequency scales, the discrete Fourier transform (DFT) is
defined to have the simple dimensionless form

Fk =

N−1∑
j=0

fje
2πijk/N ,

(25.26)
(discrete Fourier transform)

1The history of the sampling theorem is somewhat involved and unclear (convoluted?). For a nice overview see the Wikipedia
entry, ‘‘Nyquist–Shannon sampling theorem,’’ http://en.wikipedia.org/wiki/Nyquist-Shannon_sampling_theorem.

http://en.wikipedia.org/wiki/Nyquist-Shannon_sampling_theorem


25.2 Discrete Fourier Transform 1133

and essentially amounts to multiplying the fj vector by the matrix exp(2πijk/N). The inverse of this
transform will obviously have the opposite sign in the exponential:

f̂j =
N−1∑
k=0

Fke
−2πijk/N .

(discrete inverse Fourier transform, unscaled) (25.27)
However, this transformation does not exactly invert the DFT, because the inverted numbers are a factor of
N larger than the originals,

f̂j = Nfj . (25.28)

This follows from the identity
N−1∑
k=0

e2πijk/Ne−2πij
′k/N = Nδjj′ , (25.29)

which is obvious for j = j′, and in the case j 6= j′ can be seen to vanish because the left-hand side amounts
to a sum over all Nth roots of unity. Thus, the inverse DFT is often defined with this factor of N :

fj =
1

N

N−1∑
k=0

Fke
−2πijk/N .

(discrete inverse Fourier transform, scaled) (25.30)
Unfortunately, there is no standard convention over which inverse, (25.27) or (25.30) is implemented as the
‘‘inverse Fourier transform.’’ The unnormalized form (25.27) is commonly implented in low-level languages
such as Fortran and C (a sensible choice since the user usually needs to multiply by extra normalization
factors anyway), while the ‘‘normalized’’ inverse transform (25.30) is implemented in MATLAB and Octave.
For any particular implementation of the DFT, you should consult the documentation, or just test the DFT,
followed by an inverse DFT, on an array of ones to see if you get back the array with an extra factor of N ,
or if you get back the original array.

To map our desired integral Fourier transforms onto the above DFTs, we start by writing down the
truncated form for the approximation (25.12) for f(t), corresponding to N samples:

f (∆t,N)(t) = f(t)∆t

N−1∑
j=0

δ(t− j∆t). (25.31)

The sum could equally well run over positive and negative times, since the function is effectively assumed to
be periodic anyway. Now putting this into the Fourier-transform formula (25.1), we find

f̃(ω) ≈
∫ ∞
−∞

f (∆t,N)(t)eiωtdt

=

∫ ∞
−∞

f(t)∆t

N−1∑
j=0

δ(t− tj)eiωtdt

=

N−1∑
j=0

f(tj)e
iωtj∆t.

(25.32)

The last expression is the usual discrete approximation for an integral, applied to the Fourier integral. The
approximation formula usually has O(∆t2) error, but in view of the sampling theorem, the error is really due
just to the truncation, and can thus be much smaller than O(∆t2), as we will discuss below. In particular,
at the N frequencies ωk = k∆ω,

f̃k ≡ f̃(ωk) =
N−1∑
j=0

fje
iωktj∆t. (25.33)
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Noting that from Eq. (25.25), tjωk = jk∆t∆ω = 2πjk/N .

f̃k ≡ f̃(ωk) = ∆t

N−1∑
j=0

fje
2πijk/N . (25.34)

Thus, apart from the factor of ∆t, we have exactly that the DFT formula (25.26) approximates the Fourier
integral, in the sense that

f̃k = Fk∆t.
(25.35)

(DFT as approximation to Fourier integral)

so that we must multiply by ∆t after applying the DFT to obtain the approximation to the Fourier integral.
Similarly, if we adapt the inverse transform (without the factor of N) to the spectrum samples f̃k, we

find

fj =
∆ω

2π

N−1∑
k=0

f̃ke
−2πijk/N . (25.36)

That is, putting in the f̃k for the Fk in the inverse DFT formula (25.27), the actual inverse transform samples
are given by multiplying the results of the inverse DFT by ∆ω:

fj = f̂j
∆ω

2π
.

(inverse DFT as approximation to Fourier integral) (25.37)
Of course, the factor of 2π here is the same factor in the inverse Fourier integral (25.2).

25.2.1 Periodicity and Transform Ordering

One thing that should be clear from the above expressions is that the zero-frequency and zero-time com-
ponents (f̃0 and f0, respectively) occur at the beginning of their respective arrays. This may seem odd, as
the frequency spectrum has both positive and negative frequencies. Of course, the frequency spectrum is
assumed by the DFT to be periodic with period 2ωmax, which corresponds to a shift by N in the index.
Thus, rather than thinking of the ordering

f̃0, f̃1, . . . , f̃N−1 (25.38)

where again f̃j = f̃(ωj) = f̃(j∆ω), we can recognize that the right half of the array is ‘‘wrapped,’’ and thus
we may regard the elements in the same order as

f̃0, f̃1, . . . , f̃N/2−1, f̃−N/2, f̃−N/2+1, . . . , f̃−2, f̃−1. (25.39)

Here, we have implicitly assumed that N is even, which is almost always the case in practice. It is often
convenient to have the zero frequency actually in the center of the array, in which case we simply swap the
left and right halves of the array to obtain

f̃−N/2, f̃−N/2+1, . . . , f̃−2, f̃−1, f̃0, f̃1, . . . , f̃N/2−1. (25.40)

Note the asymmetry here, since f−N/2 appears at the left boundary, while fN/2−1 appears at the right.
However, the N -periodic nature of the discrete spectrum means that f̃N/2 = f̃−N/2, so in principle we can
copy the left boundary onto the right boundary.

The same ordering comments apply to the temporal signal. A straight signal out of your digital
sampling oscilloscope would have the form

f0, f1, . . . , fN−1 (25.41)

where again fj = f̃(tj) = f̃(j∆t). Of course, you can just plug this into the DFT formula and then get
a spectrum of the form (25.38). On the other hand, you might have something like a correlation function
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that satisfies g(−τ) = g∗(τ), in which case it would be nice to impose this constraint explicitly by including
the negative-time values. This is also easy to do, since the temporal array is also N -periodic (with period
N∆t = 2tmax in time), so that the same array can be interpreted as

f0, f1, . . . , fN/2−1, f−N/2, f−N/2+1, . . . , f−2, f−1. (25.42)

For the correlation function, then we would impose the constraint f−N = f∗N . You can also swap the left
and right halves to get a properly time-ordered array after all the DFT operations are done, and again it is
still true that fN/2 = f−N/2.

25.3 Aliasing

As we can see from the sampling theorem, the only error that we are introducing here is the fact that we
are assuming f(t) and f̃(ω) both have compact support (or equivalently, are periodic). If both had compact
support, the DFT would be exact (at least up to rounding errors, if the DFT is performed on a computer).
However, very few functions have compact support in both the time and frequency domain: remember that
having compact support in one domain is equivalent to convolution with a sinc function in the other, and
sincx only falls off like 1/x. Thus, the set of all functions for which the DFT can be exact is the set of
all functions on a compact domain whose Fourier series are eventually zero (i.e., truncated). This set is
obviously of zero measure in the space of all functions that we would want to transform.

So, then, what is the error associated with the DFT? For a general time signal f(t) sampled with time
interval ∆t, in general the true spectrum f̃(ω) will have some contributions beyond the Nyquist frequency
ωmax. Since the frequency spectrum is assumed by the DFT to be periodic with period 2ωmax, the parts
beyond ωmax are spuriously ‘‘folded’’ into the computed spectrum. This effect is illustrated here for a
Gaussian spectrum centered at ω = 0.

max-ow wmaxw

Gaussian

aliased
spectrum

Another way to see why this must be is that the DFT (25.26) is a unitary transformation on N points
(except for the factor N−1/2), and thus the total power of the sampled time signal must be equivalent to the
total power of the sampled frequency spectrum—the discrete form of Parseval’s theorem—whether or not
the spectrum ‘‘fits’’ within the range ±ωmax. Yet another good way to visualize this is to look at a harmonic
wave that is not critically sampled. Recall that a frequency is critically sampled if it is sampled at least twice
per period. However, if the sampling is below the critical rate, the samples will be indistinguishable from
those from a lower-frequency harmonic wave (not to mention an infinity of yet higher-frequency harmonic
waves).

This problem even occurs in the time domain in the laboratory on digital sampling oscilloscopes: if you’re
measuring a fast sin wave on such a scope, and you’re seeing a wave with a frequency way lower than you
expect, try cranking the ‘‘time/div’’ knob to see if you get a more appropriate (non-aliased) signal on a
faster time scale. (Incidentally, this is the same effect that makes vibrating objects appear to be stationary
or oscillate slowly with a strobe light, or that makes spinning wheels, propellers, and helicopter blades appear
to precess slowly or even backwards on film or television.2) Of course, the same comments apply to starting

2For a good example, see http://www.youtube.com/watch?v=eJ6vadFVjYg.

http://www.youtube.com/watch?v=eJ6vadFVjYg
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off with a frequency spectrum, and then using the inverse DFT to obtain a time signal (say, a correlation
function): aliasing can still occur in the time domain.

The point of all this is, to get accurate results with the DFT, say, when you are computing the spectrum
of a pulse, you must pick your time grid such that the pulse and the spectrum fit well within 2tmax and 2ωmax,
respectively. That is, near the outer boundaries of the ω and t grids, the signals in both domains should
have fallen very close to zero, so you can neglect the power that falls outside the boundaries. Sometimes,
you want to compute the DFT of a signal that doesn’t fall off, such as a stationary, fluctuating signal. In this
case you should still choose an appropriate sampling rate to avoid spectral aliasing, and realize that there
may be some artifacts if the signal is not exactly periodic (as when sampling a sin wave, when the length of
the sample does not match the period of the wave). The artifacts should be minor, however, so long as the
sampling time is long compared to the correlation time of the signal.

25.4 Fast Fourier Transform

A main reason why the DFT is such an important computational tool is that it can be done so efficiently.
From the DFT formulae (25.26) and (25.27), the DFT can be viewed as a multiplication of a matrix and
a vector, and so for an array of length N , the computational effort (number of multiplications) should be
O(N2). However, using a class of algorithms called Fast Fourier Transforms (FFTs) can do the same
calculation in only O(N logN) operations. By far the most common algorithms are specific to the case where
N is a power of 2, in which case the operation count is O(N log2N). Note that it is generally best to stick
with these power-of-2 algorithms, and just live with this constraint on N : your data arrays can generally be
interpolated or padded with zeros to get an appropriate array length. This savings in computational effort
is huge: on the computer I’m typing on right now, an FFT of a half-million (524288 = 219), 64-bit data
points takes about 0.3 s. Using the scalings above, a direct implementation of the DFT formula would take
on the order of 2.4 hours for the same calculation! You might think that a couple of hours isn’t so bad, but
it is common for many FFTs to be needed in a single calculation. Also, because of the reduced operations
count, round-off error does not accumulate nearly as much as in the straight DFT, and FFT algorithms are
generally highly accurate. The FFT algorithms are so important that ‘‘FFT’’ is commonly used in place of
‘‘DFT.’’

The first FFT algorithm dates back to Gauss in 1805, but was not widely known until it was redis-
covered by Cooley and Tukey3 in 1965 (the Cooley-Tukey algorithm is a recursive method and remains a
popular algorithm).4 Many other algorithms beyond the Cooley-Tukey method are possible. We will not
go into the details of various FFT algorithms,5 since different implementations have different advantages,
especially regarding accuracy and execution time on different architectures.6 In this case, it is generally best
to stick to algorithms written by specialists for reliability and good performance. Compiler vendors often
provide highly optimized versions, but otherwise FFTPACK7 and FFTW8 are well-known libraries.

3James W. Cooley, John W. Tukey, ‘‘An Algorithm for the Machine Calculation of Complex Fourier Series,’’ Mathematics
of Computation 19, 297 (1965).

4For a nice overview of FFT algorithms, accuracy, and history, see the Wikipedia entry ‘‘Fast Fourier transform,’’
http://en.wikipedia.org/wiki/Fast_Fourier_transform. Another good source, particularly for history and algorithm de-
tails is the Wikipedia entry ‘‘Cooley-Tukey FFT algorithm,’’ http://en.wikipedia.org/wiki/Cooley-Tukey_FFT_algorithm.

5For the basic idea, see William H. Press, Brian P. Flannery, Saul A. Teukolsky, William T. Vetterling, Numerical Recipes
in FORTRAN: The Art of Scientific Computing, 2nd ed. (Cambridge, 1992), Section 12.2, p. 498 (doi: 10.2307/2003354).

6For an example of how much a careful choice of method can make a big difference in execution time, see David H. Bailey,
‘‘A High-Performance FFT Algorithm for Vector Supercomputers,’’ International Journal of Supercomputer Applications 2, 82
(1988) (doi: 10.1177/109434208800200106). An algorithm that performs reasonably well with large arrays on modern cache-
based computers is the Stockham FFT (implemented in FFTPACK), detailed in Paul N. Swarztrauber, ‘‘FFT algorithms for
vector computers,’’ Parallel Computers 1, 45 (1984). For comparisons among many algorithms, see the benchFFT home page,
http://www.fftw.org/benchfft/.

7http://www.netlib.org/fftpack/
8http://www.fftw.org/

http://en.wikipedia.org/wiki/Fast_Fourier_transform
http://en.wikipedia.org/wiki/Cooley-Tukey_FFT_algorithm
http://dx.doi.org/10.2307/2003354
http://dx.doi.org/10.1177/109434208800200106
http://www.fftw.org/benchfft/
http://www.netlib.org/fftpack/
http://www.fftw.org/
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25.5 Conventions

We have seen above how to use the general DFT formulae to construct numerical approximations to Fourier
integral transforms. But keeping track of all the different sign, normalization, and ordering conventions
can be a pain, so we go through a few examples here, considering bits of pseudocode appropriate for MAT-
LAB/Octave and Fortran 90/95. For MATLAB/Octave we will consider the built-in functions fft and ifft,
which implement the formulae (25.26) and (25.30), respectively. In Fortran, we will use a fictitious (but typ-
ical) subroutine fft(isign, data), where data is the data array (both input and output), and isign
specifies the sign of the transform exponent, so that isign=1 specifies the ‘‘forward’’ transform (25.26), while
isign=-1 specifies the inverse transform (25.27). We will only consider one-dimensional transforms here,
since the generalization to higher dimensions is reasonably obvious.

25.5.1 Temporal Signals

The simplest case we will consider is computing the energy spectrum |f̃(ω)|2 of a temporal signal f(t), or
the power spectrum |f̃(ω)|2/T , where T is the duration of the sample. The DFT formula (25.26) is easily
adapted to this case for computing f̃(ω), since we simply need to multiply by ∆t to obtain the correct
scaling:

f̃k = Fk∆t =

N−1∑
j=0

fje
2πijk/N

∆t. (25.43)

The resulting spectrum array will have its zero frequency component first, with the negative frequencies
in the last half of the array. The negative frequencies can be discarded in the power spectrum, since they
will just be a mirror reflection of the positive frequencies. In the MATLAB/Octave code below, we simply
compute the Fourier transform of the signal array sig of length N, and multiply by dt. The result is stored
in the temporary array spec (also of length N), and after the negative frequencies are discarded, the result is
squared and scaled, and is then stored in energyspec or powerspec, which is of length N/2. The scaling factor
is N*dt, which is the total time T of the sample, and we cast the vector scaling as a multiplication to avoid
many slower divisions. A frequency grid w is also generated for illustration, using Eqs. (25.23)-(25.25), so
that the resulting array could be plotted with plot(w, pwrspectrunc, '-').

% dt is the time sampling interval
spec = fft(sig) * dt;
energyspec = abs(spec(1:N/2)).^2;
powerspec = abs(spec(1:N/2)).^2 * (1/(N*dt));
% w is the vector of frequencies
wmax = pi/dt;
dw = 2*wmax/N;
w = (0:dw:(wmax-dw))';

Below is the equivalent code in Fortran 90/95. Note that the variable declarations are not included, but
some things to note: wp is a parameter declaring the floating-point precision (e.g., declare as

integer, parameter :: wp = selected_real_kind(p=14)

for double precision on IEEE machines); sig is a real (kind=wp) array of length N; spec is a complex (kind=wp)
array of length N; powerspec, energyspec, and w are real (kind=wp) arrays of length N/2; and note the trick of
using π = 4 tan−1(1).

! dt is the time sampling interval
spec(1:N) = sig(1:N) * dt
call fft( 1, spec)
energyspec(1:N/2) = abs(spec(1:N/2))**2
powerspec(1:N/2) = abs(spec(1:N/2))**2 * (1/(N*dt))
! w is the vector of frequencies
pi = atan(1.0_wp)*4
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wmax = pi/dt
dw = 2*wmax/N
w = (/ (real(j,kind=wp)*dw, j=0,N/2-1) /)

Typically then the values w and pwrspectrunc would then be dumped to a file or standard output for further
processing.

In either case, to be accurate and avoid artifacts, the length of the sample of f(t) should be well beyond
the correlation time. This could be checked, for example, by computing the correlation function from the
power spectrum (see below) and verifying that it decays to zero before the array ends.

25.5.2 Temporal Correlation Functions

As a more complicated example, suppose you have computed a correlation function g(τ) for τ ≥ 0, and now
want to compute the corresponding power spectrum. Your data array is of length N . Before starting, to
minimize artifacts it is useful to ‘‘enforce’’ the periodicity by pasting the complex-conjugated mirror image
of the correlation function onto the end of the array, to obtain a ‘‘periodic’’ array of length 2N . (There
should be no discontinuity at the pasting point in the middle of the new array, because the samples should
have decayed to zero by then.) Note one subtlety: we should paste all the original samples except the t = 0
sample, since we don’t want to duplicate it, and this requires pasting in an extra zero. That’s because the
new array should be 2N -periodic, and so the t = 0 (first) element should repeat in the (2N + 1)th place.
Again, we can adapt the DFT formula (25.26) for this purpose,

g̃k = Gk∆t =

2N−1∑
j=0

fje
2πijk/2N

∆τ, (25.44)

so that again after computing the DFT we simply multiply by ∆τ . Note that we have 2N in place of the
usual N , since we have doubled the array length before the transform. Also, to center the dc component in
the middle of the array, we swap the two halves of the transform with the fftshift function. To recover the
correlation function from the power spectrum samples g̃k, we adapt the inverse DFT formula (25.30)

gj =

[
1

2N

2N−1∑
k=0

g̃ke
−2πijk/2N

]
2N∆ω

2π
. (25.45)

The difference here is that we need to multiply by ∆ω instead of ∆τ for the frequency integral, undo
the factor of 2N in the inverse DFT, and divide by 2π for the time-frequency normalization convention
of Eq. (25.2). This is the proper approach in MATLAB/Octave, where the ifft function implements the
bracketed transform in Eq. (25.45).

% dtau is the time sampling interval
gext = [g(1:N); 0; conj(g(N:-1:2))];
pwrspec = fftshift(fft(gext)) * dtau;
% w is the vector of frequencies
wmax = pi/dtau;
dw = 2*wmax/(2*N);
w = (-wmax:dw:(wmax-dw))';
% to recover g from pwrspec
gext = ifft(fftshift(pwrspec))*2*N*dw/(2*pi);
g = gext(1:N);

In Fortran 90/95, though, typical implementations leave out the factor of 2N , so we are performing an
inverse DFT as in Eq. (25.27):

gj =

[
2N−1∑
k=0

g̃ke
−2πijk/2N

]
∆ω

2π
. (25.46)
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Thus, we need not multiply by 2N after the DFT. Also, note that swapping the two halves of the frequency
array is conveniently performed with the Fortran intrinsic cshift (cyclic array shift, specifically for half the
array length).

! dtau is the time sampling interval
pwrspec = 0
pwrspec(1:N) = g(1:N)
pwrspec(N+2:2*N) = conjg(g(N:2:-1))
call fft( 1, pwrspec)
pwrspec = cshift(pwrspec, N) * dtau
! w is the vector of frequencies
pi = atan(1.0_wp)*4
wmax = pi/dtau
dw = 2*wmax/(2*N)
w = (/ (real(j-N,kind=wp)*dw, j=0,2*N-1) /)
! to recover g from pwrspec (destroys pwrspec in the process)
pwrspec = cshift(pwrspec, N)
call fft(-1, pwrspec)
g(1:N) = pwrspec(1:N) * dw / (2*pi)

In the above code, pwrspec and g are complex (kind=wp) arrays of length 2N, unless you are using an FFT
routine especially adapted for real inputs and outputs.

25.5.3 Standard Frequency

Often in DFT applications, we will want to deal with the standard frequency ν instead of the angular
frequency ω = 2πν, in which case the alternate Fourier transform becomes

f̄(ν) =

∫ ∞
−∞

f(t)ei2πνtdt, (25.47)

and the inverse Fourier transform becomes

f(t) =

∫ ∞
−∞

f̄(ν)e−i2πνtdt. (25.48)

That is, there is no longer the factor of 1/2π scaling the inverse transform, and now there are explicit factors
of 2π in the exponents. Everything is the same as in the ω–t convention, except the Nyquist frequency is
now

νmax =
ωmax

2π
=

1

2∆t
, (25.49)

and the frequency-sampling interval is

∆ν =
∆ω

2π
=
ωmax

πN
=

1

N∆t
=

1

2tmax
. (25.50)

Other than these changes in the frequency grid, the only other difference in the above code snippets is that
the division by 2π after the inverse DFT should be omitted.

25.5.4 Wave Functions

To transform a wave function between position and momentum space—as is useful, for example, in impl-
menting split-operator methods for evolving the Schrödinger equation, as in Chapter 26—the conventions
are a bit different than for time and frequency. To compute the Fourier transform of ψ(x) to obtain the
momentum-space version φ(p), the integral is

φ(p) =
1√
2πh̄

∫ ∞
−∞

ψ(x)e−ipx/h̄dx, (25.51)
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while the inverse Fourier transform is

ψ(x) =
1√
2πh̄

∫ ∞
−∞

φ(p)eipx/h̄dp. (25.52)

Note the symmetric normalization and the presence of the extra h̄. Furthermore, the x = 0 and p = 0
components are generally at the center of the wave-function arrays, so the array halves must be swapped
both before and after the transform. We can adapt the inverse DFT (25.30) for the Fourier transform here,
because of the opposite sign convention of the phase factors,

φk =

 1

N

N−1∑
j=0

ψje
−2πijk/N

 N∆x√
2πh̄

, (25.53)

as well as the DFT (25.26) for the inverse Fourier transform,

ψj =

[
N−1∑
k=0

φke
2πijk/N

]
∆p√
2πh̄

. (25.54)

Also, since p/h̄ plays the role of frequency, the relations between the increments are as follows, if we take
the number N of grid points and the extent of the grid from −xmax to xmax to be fixed:

∆x =
2xmax

N

pmax =
h̄π

∆x

∆p =
2pmax

N
=

2πh̄

N∆x
.

(25.55)

Thus, the MATLAB/Octave code would read as follows:

% specify N and xmax for the x grid
% x is the x grid
dx = 2*xmax/N;
x = (-xmax:dx:(xmax-dx))';
phi = fftshift(ifft(fftshift(psi))) * N * dx / sqrt(2*pi*hbar);
% p is the vector of momenta
pmax = hbar*pi/dx;
dp = 2*pmax/N;
p = (-pmax:dp:(pmax-dp))';
% to recover psi from phi
psi = fftshift(fft(fftshift(phi))) * dp / sqrt(2*pi*hbar);

In Fortran 90/95, we again simply specify the sign of the exponent for the transform, and forget about extra
factors of N .

! specify N and xmax for the x grid
! x is the x grid
dx = 2*xmax/N;
x = (/ (real(j-N/2,kind=wp)*dx, j=0,N-1) /)
phi = cshift(psi, N/2)
call fft(-1, phi)
phi = cshift(phi, N/2) * dx / sqrt(2*pi*hbar)
! p is the vector of momenta
pi = atan(1.0_wp)*4
pmax = hbar*pi/dx;
dp = 2*pmax/N;
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p = (/ (real(j-N/2,kind=wp)*dp, j=0,N-1) /)
! to recover psi from phi
phi = cshift(psi, N/2)
call fft( 1, psi)
psi = cshift(psi, N/2) * dp / sqrt(2*pi*hbar)

In this code, psi and phi are obviously complex arrays of length N.

25.6 Discrete Wigner Transform

Recall from Section 4.3 that the Wigner transform of a wave function ψ(x) is

W (x, p) =
1

2πh̄

∫ ∞
−∞

dx′e−ipx
′/h̄ψ(x+ x′/2)ψ∗(x− x′/2). (25.56)

We can simply regard W (x, p) as a (quantum) Fourier transform of the form

W (x, p) =
1√
2πh̄

∫ ∞
−∞

dξ e−ipξ/h̄f(ξ), (25.57)

where the function to be transformed in

f(ξ) =
1√
2πh̄

ψ(x+ ξ/2)ψ∗(x− ξ/2). (25.58)

However, because of the appearance of x′/2 in the argument of ψ, if ψ(x) is sampled with N samples with
an interval of ∆x, the appropriate sampling interval to use for the Fourier transform is ∆ξ = n∆x, where
n is even and n ≥ 2. Since ψ(x) is assumed to fall off to zero at the ends of the sampling range, we can
always pad ψ with zeros such that f(ξ) is always defined from −nxmax to nxmax, and thus that f(ξ) is still
represented by N samples. Then we have the following modified parameters for the grid for W (x, p):

∆x =
2xmax

N

pmax =
h̄π

∆ξ
=

h̄π

n∆x

∆p =
2pmax

N
=

2πh̄

N∆ξ
=

2πh̄

Nn∆x
.

(25.59)

The Fourier transform must be repeated for each point in the x grid from −xmax to xmax −∆x in steps of
∆x. Of course, you can skip some of these position values, as when making a three-dimensional plot, it is
generally best to keep the density of points the same in both the position and momentum directions. In any
case, we can write the explicit formula for the discrete Wigner transform as

W (xj , pk) =
∆ξ

2πh̄

N/2−1∑
l=−N/2

e−2πikl/Nψ(xj + l∆ξ/2)ψ∗(xj − l∆ξ/2), (25.60)

where xj = j∆x and pk = k∆p (with j and k running from −N/2 to N/2 + 1), and again ∆ξ = n∆x with
the even integer n ≥ 2. Note that with this ordering of l, the zero-momentum component is in the center of
the array, so array-swapping operations as in Section 25.5.4 are necessary to use the DFT/FFT formulae to
evaluate the summations here.

For the discrete Wigner transform, the MATLAB/Octave code would read as follows (NN corresponds
to N above):

n = 4; % must be even and >= 2; controls aspect ratio of Wigner transform
NN = length(psi);
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NN2 = 2^floor(log2(NN)+0.49);
if (NN ~= NN2), error('input length not a power of 2'); end

Wout = zeros(NN,NN);
for j=1:NN,
% order of indices is p, x for faster access
extent = floor(min(j-1,NN-j)*2/n);
lbd = j - extent*n/2;
ubd = j + extent*n/2;
lbdp = NN/2 - extent + 1;
ubdp = NN/2 + extent + 1;
Wout(lbdp:ubdp,j) = psi(ubd:(-n/2):lbd) .* conj(psi(lbd:(n/2):ubd));

end %for j
Wout = fftshift(ifft(fftshift(Wout)));

% transpose to x,p order, if desired, and scale
Wout = real(Wout)'*(dx*n*NN/(2*pi*hbar));

In Fortran 90/95, we again refer to the fictitious routine fft(isign, data). The wave-function input is in the
array psi of length NN, and the output array W is a real array of dimension(NN,NN). The intermediate-storage
array Wtmp is complex and of dimension(NN,NN). The variables lbd, ubd, lbdp, ubdp, rstep, and fstep are all
of type integer, and pi is of type real.

NN = size(psi)
pi = 4*atan(-1.0_wp)
if ( iand(NN, NN-1) .ne. 0 ) then

write(0,*) "Error: array length not power of 2"
stop

end if
if ( size(W,1) .ne. NN .or. size(W,2) .ne. NN ) then

write(0,*) "Error: input and output array sizes do not match"
stop

end if
if ( iand(n, 1) .ne. 0 .or. n .lt. 2 ) then

write(0,*) "Error: n not even and positive"
stop

end if

Wtmp = 0;
do j = 1, NN

! order of indices is p, x for faster access
! do shifted copy
extent = floor(min(j-1,NN-j)*2/n*(1+epsilon(1.0_wp)))
lbd = j - extent*n/2
ubd = j + extent*n/2
lbdp = NN/2 - extent + 1
ubdp = NN/2 + extent + 1
rstep = -n/2
fstep = n/2
Wtmp(lbdp:ubdp,j) = psi(ubd:lbd:rstep) * conjg(psi(lbd:ubd:fstep))

! do FT
Wtmp(:,j) = cshift(Wtmp(:,j), NN/2)
call fft(-1, Wtmp(:,j))
Wtmp(:,j) = cshift(Wtmp(:,j), NN/2)

end do

! transpose to x,p order and scale
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W = transpose(real(Wtmp)) * (n*dx/(2*pi*hbar))





Chapter 26

Split-Operator Methods

The method of operator splitting is a general technique for making the evolution of a system numerically
tractable.1 In general, the evolution (e.g., the equations of motion) of a system can be represented in
terms of an operator (e.g., a matrix for a linear system). In some situations there may exist approximate
decompositions of the operator into parts that are particularly simple to compute, and this is the essence
of operator splitting. The unitary evolution of a quantum system according to the Schrödinger equation
is particularly suited for operator-splitting methods, since the unitary time-evolution operator can often be
decomposed into products of simple operators.

26.1 Splitting the Unitary Evolution Operator

Consider the Schrödinger equation in one dimension for a particle in a potential V (x):

ih̄∂tψ(x, t) = Hψ(x, t) =

[
p2

2m
+ V (x)

]
ψ(x, t), (26.1)

where, as usual,
p = −ih̄∂x. (26.2)

We will now develop the split-operator exponential method as the basis for generating the time-
dependent solutions ψ(x, t) for this Schrödinger equation. The general idea is to note that for the time-
independent Hamiltonian, we can write the evolution of the wave function over a time ∆t as

ψ(x, t+∆t) = e−iH∆t/h̄ψ(x, t). (26.3)

In general, the matrix exponential of H is difficult to calculate, since it is not in general diagonal in either the
position or the momentum representation. However, often—as is the case for the particle Hamiltonian—the
Hamiltonian is of the general form

H(x, p) = T (p) + V (x), (26.4)
so that it splits into two parts, each of which is diagonal in either the position or the momentum basis. From
the Baker–Campbell–Hausdorff expansion2 for arbitrary operators A and B,

eAeB = exp
(
A+B +

1

2
[A,B] +

1

12
[A, [A,B]] +

1

12
[[A,B], B] + . . .

)
, (26.5)

we can see that
e−iH∆t/h̄ = e−iT (p)∆t/h̄e−iV (x)∆t/h̄ +O(∆t2). (26.6)

1Hans De Raedt, ‘‘Product Formula Algorithms for Solving the Time Dependent Schrödinger Equation,’’ Computer Physics
Reports 7, 1 (1987) (doi: 10.1016/0167-7977(87)90002-5).

2R. M. Wilcox, ‘‘Exponential Operators and Parameter Differentiation in Quantum Physics,’’ Journal of Mathematical
Physics 8, 962 (1967) (doi: 10.1063/1.1705306).

http://dx.doi.org/10.1016/0167-7977(87)90002-5
http://dx.doi.org/10.1063/1.1705306
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In fact, a symmetrized splitting is even more accurate:

e−iH∆t/h̄ = e−iV (x)∆t/2h̄e−iT (p)∆t/h̄e−iV (x)∆t/2h̄ +O(∆t3). (26.7)

Note that the errors here are regarded as asymptotic, since there is no guarantee that the BCH expansion
converges. These factorizations (the second, more accurate one being our preference) imply the following
numerical method to evolve the wave function ψ(x, t) to ψ(x, t+∆t):3

1. Compute the half-step for the spatial part:

ψ(x) −→ e−iV (x)∆t/2h̄ψ(x). (26.8)

The exponential operator is diagonal in the position representation, so this is easy.

2. Compute the Fourier transform φ(p) of the new wave function:

ψ(x) −→ φ(p) = F [ψ(x)]. (26.9)

In view of fast-Fourier-transform (FFT) numerical algorithms, this operation can be done efficiently.

3. Now apply the ‘‘drift’’ part of the evolution operator:

φ(p) −→ e−iT (p)∆t/h̄φ(p). (26.10)

The exponential operator is diagonal in the momentum representation, so this is also easy.

4. Compute the inverse Fourier transform ψ(x) of the updated wave function:

φ(p) −→ ψ(x) = F−1[φ(p)]. (26.11)

5. Finally, compute the last half-step for the spatial part, now that we are back in the representation
where it is diagonal:

ψ(x) −→ e−iV (x)∆t/2h̄ψ(x). (26.12)

This procedure is then repeated for many time steps ∆t until the desired final time is reached. The local
error in each step is O(∆t3), but because the number of steps until the final time is O(∆t−1), the global
error of the final solution is O(∆t2).

Note that this type of symmetrized splitting works for more general splittings. For example, the
decomposition

H = H1 +H2 +H3 (26.13)

leads to the operator splitting

e−iH∆t/h̄ = e−iH1∆t/2h̄e−iH2∆t/2h̄e−iH3∆t/h̄e−iH2∆t/2h̄e−iH1∆t/2h̄ +O(∆t3). (26.14)

It can be shown that this type of symmetric operator splitting has O(∆t3) error for decompositions of H
into any finite set of terms Hj , and the overall accuracy is still preserved even if we can only approximately
compute each Hj with an error of O(∆t3).

3This type of split-operator Fourier transform algorithm was first proposed by J. A. Fleck, Jr., J. R. Morris, and M. D. Feit,
‘‘Time-Dependent Propagation of High Energy Laser Beams through the Atmosphere,’’ Applied Physics 10, 129 (1976); M. D.
Feit, J. A. Fleck, Jr., and A. Steiger, ‘‘Solution of the Schrödinger Equation by a Spectral Method,’’ Journal of Computational
Physics 47, 412 (1982) (doi: 10.1016/0021-9991(82)90091-2).

http://dx.doi.org/10.1016/0021-9991(82)90091-2
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26.2 Time-Dependent Potentials

To handle a time-dependent potential V (x, t), the time-evolution operator has the same form except for the
replacement

V (x)∆t −→
∫ t+∆t

t

dt′ V (x, t′), (26.15)

since we recall from Section 4.2.1 that the unitary time-evolution operator (from time t to t+∆t) now has
the form

U(t+∆t, t) = exp

[
− i
h̄

∫ t+∆t

t

dt′H(t′)

]
, (26.16)

if we assume the Hamiltonian commutes with itself at different times. The simplest approximation is to take∫ t+∆t

t

dt′ V (x, t′) = V (x, τ)∆t+O(∆t2), (26.17)

where we may take τ to be any time in the interval [t, t+∆t] without changing the order of the approximation
(that is, with the exception of τ = ∆t/2, which we return to below). However, the accuracy here suffers, as
then the factorized unitary evolution operator becomes

exp

[
− i
h̄

∫ t+∆t

t

dt′H(t′)

]
= e−iV (x,τ)∆t/2h̄e−iT (p)∆t/h̄e−iV (x,τ)∆t/2h̄ +O(∆t2). (26.18)

It is better to use an approximation for the integral of V (x, t) accurate to second order, as in the trapezoidal
rule: ∫ t+∆t

t

dt′ V (x, t′) = [V (x, t) + V (x, t+∆t)]
∆t

2
+O(∆t3). (26.19)

This expression then gives the more accurate splitting

exp

[
− i
h̄

∫ t+∆t

t

dt′H(t′)

]
= e−i[V (x,t)+V (x,t+∆t)]∆t/4h̄e−iT (p)∆t/h̄e−i[V (x,t)+V (x,t+∆t)]∆t/4h̄ +O(∆t3).

(26.20)
However, it turns out to have the same order of accuracy if we instead use the simpler splitting

exp

[
− i
h̄

∫ t+∆t

t

dt′H(t′)

]
= e−iV (x,t+∆t)∆t/2h̄e−iT (p)∆t/h̄e−iV (x,t)∆t/2h̄ +O(∆t3), (26.21)

where we evaluate the potential at the beginning and end points of the time interval in the two spatial
half-steps. This splitting follows from the BCH expansion, which implies that

ehA1ehBehA2 = exp
(
h(A1 +A2 +B) +

h2

2
[A1 −A2, B] +

h2

2
[A1, A2] +O(h3)

)
= eh(A+B) +O(h3),

(26.22)
where the last equality follows if A1 +A2 = A+O(h2), A1−A2 = O(h), and [A1, A2] = 0. Note that taking
τ = ∆t/2 in the above first-order method above corresponds to the midpoint rule of integration:∫ t+∆t

t

dt′ V (x, t′) = V (x, t+∆t/2)∆t+O(∆t3). (26.23)

Thus, we may also take

exp

[
− i
h̄

∫ t+∆t

t

dt′H(t′)

]
= e−iV (x,t+∆t/2)∆t/2h̄e−iT (p)∆t/h̄e−iV (x,t+∆t/2)∆t/2h̄ +O(∆t3), (26.24)

or

exp

[
− i
h̄

∫ t+∆t

t

dt′H(t′)

]
= e−iT (p)∆t/2h̄e−iV (x,t+∆t/2)∆t/h̄e−iT (p)∆t/2h̄ +O(∆t3), (26.25)

as symmetric, second-order splittings.
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26.3 Richardson Extrapolation

Now we will introduce the generally applicable method of Richardson extrapolation4 to develop yet
higher-order approximations. First, notice again that the global error associated with the splitting (26.21)
is O(∆t2), one order lower than that of the local truncation error. We then take Richardson’s ansatz that
the global error of the numerical solution takes the form

ψ̃∆t(x, t)− ψ(x, t) = e2(x, t)∆t
2 + e4(x, t)∆t

4 + e6(x, t)∆t
6 + . . . , (26.26)

where ψ(x, t) is the exact solution, ψ̃∆t(x, t) is the numerical approximation generated with time steps of ∆t,
and the en(x, t) are functions independent of the time step ∆t. Note that only the even-order terms appear
here; we leave it as an exercise to give an argument for this, but it is important to note that this expansion
is valid for evolution via the second-order, symmetric splitting above. Thus, by computing the solution at
time t with multiple step sizes (say, ∆t, ∆t/2, ∆t/3), we can devise the proper linear combinations of these
solutions that will cancel the error terms, and thus generate methods of higher global order. For example,
a fourth-order method follows from using step sizes of ∆t and ∆t/2,

4

3
ψ̃∆t/2(x, t)−

1

3
ψ̃∆t(x, t) = ψ(x, t) +O(∆t4). (26.27)

The error term e2 (which has been cancelled in the method here) can also be estimated by
4

3

[
ψ̃∆t(x, t)− ψ̃∆t/2(x, t)

]
= ∆t2 e2(x, t) +O(∆t4). (26.28)

A sixth-order method follows from using step sizes of ∆t, ∆t/2, and ∆t/3:
1

24
ψ̃∆t(x, t)−

16

15
ψ̃∆t/2(x, t) +

81

40
ψ̃∆t/3(x, t) = ψ(x, t) +O(∆t6), (26.29)

in which case the smallest cancelled error term e4 is estimated by

−13

24
ψ̃∆t(x, t) +

32

3
ψ̃∆t/2(x, t)−

81

8
ψ̃∆t/3(x, t) = ∆t4 e4(x, t) +O(∆t6). (26.30)

These methods follow from writing out the Richardson expansions for ψ(t + ∆t) in powers of ∆t (for all
the step sizes), setting up the equations as a linear system, and then solving them for the ‘‘true’’ solution
and the error coefficients. Higher order methods are, of course, possible, but at some point become too
computationally expensive to be worthwhile.

Thus, we can construct a fourth-order [i.e., global error of O(∆t4)] method as follows:
1. Start with the simulated state ψ̃(x, t) at time t.

2. Compute ψ̃(x, t+∆t) using a single step of ∆t, using the O(∆t3) operator splitting (26.21). Call this
ψ̃∆t(x, t+∆t).

3. Compute ψ̃(x, t+∆t) using a two steps of ∆t/2, using the same operator splitting. Call this ψ̃∆t/2(x, t+
∆t).

4. Combine the two results as in Eq. (26.27) to obtain the updated state:

ψ̃(x, t+∆t) =
4

3
ψ̃∆t/2(x, t+∆t)− 1

3
ψ̃∆t(x, t+∆t) +O(∆t4). (26.31)

Then iterate this method until the desired final time. The global error of the solution will then be O(∆t4).
The sixth-order method is a straightforward generalization of this procedure (the same is true of higher-order
methods). The advantage of the higher-order methods, of course, is the possibility for improved accuracy
for a given step size, and thus a larger step size (and, ideally, less work) for a given accuracy goal. On the
other hand, the second-order method is unitary (i.e., it explicitly preserves the norm of ψ), while the fourth-
and sixth-order methods are not.

4L. F. Richardson, ‘‘On the Approximate Arithmetical Solution by Finite Differences of Physical Problems Involving Differ-
ential Equations, with an Application to the Stresses in a Masonry Dam,’’ Proceedings of the Royal Society of London. Series
A, Containing Papers of a Mathematical and Physical Character 83, 335 (1910).
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26.3.1 Numerical Test

To illustrate these methods, we will try them out on the harmonic oscillator, with Hamiltonian

H =
p2

2
+
x2

2
, (26.32)

using a Gaussian wave packet with initially σx = σp = 1/
√
2 (h̄ = 1 in these units), and the center of the

wave packet is initially x0 = 0 and p0 = 20. The grid consisted of 1024 points, with a range in momentum
of ±pmax = ±16

√
2π and a grid spacing ∆p =

√
2π/32 (with the same range and spacing for the position

grid). The evolved wave packet at time t = 4π (i.e., two complete oscillations) is compared with the initial
wave packet, and according to the exact solution these should be exactly equal. Below is plotted the rms
error as a function of the step size ∆t, defined as

δψrms =
1

N

√√√√ N∑
j=1

∣∣∣φ̂j − φj∣∣∣2, (26.33)

where φ(p) is the exact momentum-space wave function, φj ≡ φ(pj) is the exact result on the grid, where
pj is the momentum of the jth grid point, φ̂j is the numerical approximation to φj , and N is the number of
grid points.
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The results for methods of orders 2, 4, and 6 are plotted along with lines to indicate scaling according to ∆t2,
∆t4, and ∆t6. From the plot, it is easy to see that the second-order method scales nicely as ∆t2 until the
error is quite large. The fourth-order method also scales as ∆t4 once the error is sufficiently small. However,
there is a strong deviation for large step sizes, where it is no longer possible to ignore the higher-order terms
in the Taylor expansions, and the Richardson steps are far from unitary. For sufficiently small steps, the
fourth-order scaling also breaks down as rounding errors dominate the rms error (note that the rounding
error increases as the number of steps increases). For the same step, the fourth-order method also shows
far better accuracy than the second-order method. The sixth-order method is qualitatively similar to the
fourth-order method, with the same instability and roundoff behaviors, but there seems to be no regime in
which the scaling is ∆t6. Strangely, the scaling seems to be somewhat faster. Note that the sixth-order
method is correspondingly more accurate in the regime of ‘‘sensible’’ step sizes, and achieves a much better
accuracy at the ‘‘sweet spot’’ of best accuracy compared to fourth-order.

Thus we see that for a given step size, a higher-order method performs much better than a lower-order
counterpart, provided the step size is small enough. However, a higher-order step costs more than a lower-
order step in terms of computer time, simply because it involves more substeps. Plotted below is the same
performance data, but now the error is plotted as a function of the execution time on a computer.
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Obviously, the execution time will vary widely depending on problem-specific optimizations, language and
compilers, and other details. For this test, the methods were implemented in the Octave language, with
no special effort to optimize the methods (i.e., substeps that could have been combined into larger steps to
save time were not combined, and so on), to give the highest-order methods the least ‘‘advantage.’’ The
cpu times shown are nominally in seconds, but again this would vary widely depending on the hardware,
language, and compiler used. However, it is clear that for a given (high) accuracy, the savings in cpu time
in using a high-order method are enormous, potentially measured in orders of magnitude.

26.4 Unitary Evolvers

It is possible to construct higher-order, explicitly unitary split-operator methods. Let’s start with the case
of a time-independent Hamiltonian. Then we can write the second-order approximation for the unitary
evolution operator U(t, t+∆t) ≡ U(∆t) as

Ũ(∆t) ≡ Ũ (2)(∆t) := e−iV (x)∆t/2h̄e−iT (p)∆t/h̄e−iV (x)∆t/2h̄ = U(∆t) +O(∆t3). (26.34)

Then the idea is to look for ordered products that give order m approximations to the unitary evolution
operator:

Ũ (m)(∆t) =
∏
j

Ũ(sj ∆t) = U(∆t) +O(∆tm+1). (26.35)

That is, to search for products that give better approximations (m > 2) to the evolution operator. Clearly,
these approximations are still unitary.

26.4.1 Hierarchical Construction

There are multiple strategies for doing this, but one particularly useful strategy is the following hierarchical
construction.5 The construction is that given the (m− 1)th approximant Ũ (m−1)(∆t), we can construct the
mth approximant by choosing

Ũ (m)(∆t) =

r∏
j=1

Ũ (m−1)(sj ∆t), (26.36)

5Masuo Suzuki, ‘‘Fractal Decomposition of Exponential Operators with Applications to Many-Body Theories and Monte
Carlo Simulations,’’ Physics Letters A 146, 319 (1990) (doi: 10.1016/0375-9601(90)90962-N); G. Dattoli, L. Giannessi, M.
Quattromini, and A. Torre, ‘‘Symmetric decomposition of exponential operators and evolution problems,’’ Physica D 111, 129
(1998) (doi: 10.1016/S0167-2789(97)80008-5).

http://dx.doi.org/10.1016/0375-9601(90)90962-N
http://dx.doi.org/10.1016/S0167-2789(97)80008-5
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provided the step factors sj satisfy the two conditions
r∑
j=1

sj = 1,

r∑
j=1

smj = 0. (26.37)

The first condition assures that the total effect of the approximant is to evolve the system by a time step ∆t,
since the approximant is the composition of r total substeps. The second condition ensures the cancellation
of the order m error terms, which we can see by noting the form

U(∆t) = e−iH∆t/h̄ =

r∏
j=1

exp
(
− iH
h̄
sj ∆t

)
= Ũ (m)(∆t) +O(∆tm+1) (26.38)

of the evolution operator, and then substituting the (m− 1)th approximant

exp
(
− iH
h̄
sj ∆t

)
= Ũ (m−1)(sj ∆t) + gm(H/h̄) (sj ∆t)

m
+O(∆tm+1), (26.39)

where gm is an undetermined function representing the uncontrolled error at the mth order. We thus conclude
that

U(∆t) =

r∏
j=1

Ũ (m−1)(sj ∆t) + gm(H/h̄)

r∑
j=1

(sj ∆t)
m
+O(∆tm+1) = Ũ (m)(∆t) +O(∆tm+1), (26.40)

in which case the order m error term vanishes if we require the conditions (26.37) to be satisfied.
In fact, recalling from the above argument that the global error expansion involves only even powers

of ∆t, it similarly follows that if U(∆t) and the Ũ (m)(∆t) are unitary, and the splittings are time-reversal
symmetric,

Ũ (m)(∆t) Ũ (m)(−∆t) = 1, (26.41)
then the local truncation error of Ũ (m)(∆t) involves only odd powers of ∆t. Thus, the recursive method
steps two orders at a time, so long as the decompositions are symmetric:

Ũ (m+1)(∆t) =

r∏
j=1

Ũ (m−1)(sj ∆t). (26.42)

This is true providing that (26.37) are satisfied as well as the symmetry condition

sj = sj−r+1 (26.43)

for all j.
To construct a specific method we can use the splitting

Ũ (2m)(∆t) = Ũ (2m−2)(s∆t) Ũ (2m−2)[(1− 2s)∆t] Ũ (2m−2)(s∆t), (26.44)

where s satisfies
2s2m−1 + (1− 2s)2m−1 = 0. (26.45)

Requiring s to be a real root gives
s =

1

2− 2m−1
√
2
. (26.46)

Thus, a fourth-order method is6

Ũ (4)(∆t) = Ũ (2)(s4 ∆t) Ũ
(2)[(1− 2s4)∆t] Ũ

(2)(s4 ∆t), (26.47)
6Michael Creutz and Andreas Gocksch, ‘‘Higher-order hybrid Monte Carlo algorithms,’’ Physical Review Letters 63, 9 (1989)

(doi: 10.1103/PhysRevLett.63.9). Haruo Yoshida, ‘‘Construction of higher order symplectic integrators,’’ Physics Letters A
150, 262 (1990) (doi: 10.1016/0375-9601(90)90092-3); Etienne Forest and Ronald D. Ruth, ‘‘Fourth-Order Symplectic Integra-
tion,’’ Physica D 43, 105 (1990); J. Candy and W. Rozmus, ‘‘A symplectic integration algorithm for separable Hamiltonian
functions,’’ Journal of Computational Physics 92, 230 (1991) (doi: 10.1016/0021-9991(91)90299-Z); André Bandrauk and Hai
Shen, ‘‘Improved exponential split operator method for solving the time-dependent Schrödinger equation,’’ Chemical Physics
Letters 176, 428 (1991) (doi: 10.1016/0009-2614(91)90232-X).

http://dx.doi.org/10.1103/PhysRevLett.63.9
http://dx.doi.org/10.1016/0375-9601(90)90092-3
http://dx.doi.org/10.1016/0021-9991(91)90299-Z
http://dx.doi.org/10.1016/0009-2614(91)90232-X
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where s4 and 1− 2s4 are given by setting m = 2 in (26.46)

s4 =
1

2− 3
√
2
≈ 1.3512 0719 1959 6576 3405

1− 2s4 =
− 3
√
2

2− 3
√
2
≈ −1.7024 1438 3919 3152 6810.

(26.48)

Similarly, iterating this procedure produces the sixth-order method

Ũ (6)(∆t) = Ũ (4)(s6 ∆t) Ũ
(4)[(1− 2s6)∆t] Ũ

(4)(s6 ∆t), (26.49)

where s6 and 1− 2s6 are given by setting m = 3 in (26.46)

s6 =
1

2− 5
√
2
≈ 1.1746 7175 8089 3633 8450

1− 2s6 =
− 5
√
2

2− 5
√
2
≈ −1.3493 4351 6178 7267 6899.

(26.50)

Of course, it is straightforward to compute the coefficients for the higher-order methods.
Let’s compare these methods to the Richardson-extrapolation methods. The fourth-order Richardson

method requires three applications of Ũ (2)(∆t) for various step sizes for either the Richardson or unitary
method. For the particular decomposition (26.4) of the Hamiltonian, note that some of the potential op-
erators can be combined in both cases, but the number of Fourier transforms is the same. The sixth-order
Richardson method, on the other hand, requires six applications of Ũ (2)(∆t) for the Richardson method,
compared to nine applications for the unitary method. Thus, at higher orders, unitarity comes at the expense
of extra computational effort. Unitarity may well be a desireable property of an integration method, since
it preserves a known invariant. However, one may take the opposite view, and advocate a method that does
not preserve unitarity, since the computed norm of the wave function can act as a diagnostic for the overall
accuracy of the solution. On the other hand, at high orders, the methods may become quite unstable for
large step sizes, since the assumption that the error terms are small breaks down.

26.4.1.1 High-Order Methods with Reduced Substep Intervals

One potential concern of the methods based on the unitary three-term recursion (26.44) is that the step-size
factors s2m and 1− 2s2m, by examination of Eq. (26.46), can be seen to always be ‘‘oversteps,’’

s2m > 1

1− 2s2m < −1,
(26.51)

so that the middle ‘‘backwards’’ step is necessary to compensate for the forward steps. The cancellation
required by these large steps may cause problems with stability and accuracy of the solutions. It is possible to
find other hierarchical constructions that have smaller steps, but at the expense of additional computational
effort to achieve the same order. For example, the five-factor symmetric decomposition7

Ũ (2m)(∆t) = Ũ (2m−2)(s∆t) Ũ (2m−2)(s∆t) Ũ (2m−2)[(1− 4s)∆t] Ũ (2m−2)(s∆t) Ũ (2m−2)(s∆t), (26.52)

is of the same form as Eq. (26.40), and thus s satisfies

4s2m−1 + (1− 4s)2m−1 = 0, (26.53)

or explicitly,
s =

1

4− 2m−1
√
4
. (26.54)

7G. Dattoli, op. cit.
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so that the step factors s and 1− 4s satisfy the bounds

1

3
< s2m <

1

2

|1− 4s2m| <
2

3
,

(26.55)

Specifically, the fourth-order values are

s4 =
1

4− 3
√
4
≈ 0.4144 9077 1794 3757 3714

1− 4s4 =
− 3
√
4

4− 3
√
4
≈ −0.6579 6308 7177 5029 4856,

(26.56)

and the sixth-order values are

s6 =
1

4− 5
√
4
≈ 0.3730 6582 7733 2728 2478

1− 4s6 =
− 5
√
4

4− 5
√
4
≈ −0.4922 6331 0933 0912 9910.

(26.57)

Again, at fourth order, the method here requires five applications of Ũ (2)(∆t), compared to three for either
the Richardson or the three-factor unitary method. At sixth-order, the method here requires 25 unitary
factors, compared to nine for the three-factor construction and six for the Richardson method. Going to
higher orders by this route is computationally rather expensive, so the benefits must be carefully weighed
against the extra cost in terms of time.8

26.4.1.2 High-Order Minimal-Product Methods

In defining the sixth-order unitary methods above, we saw that their computational effort went far beyond
that of the Richardson method. It is also possible to skip any hierarchical construction and search for high-
order methods directly in terms of products of Ũ (2)(∆t), and thereby generate methods that use products of
fewer operators. This is possible because there are fewer constraints on the relative time steps within each
factor. This is done by directly computing the error terms in the BCH expansion. For example, seven-factor,
sixth-order symmetric splittings of the form

Ũ (6)(∆t) = Ũ (2)(w3 ∆t) Ũ
(2)(w2 ∆t) Ũ

(2)(w1 ∆t) Ũ
(2)(w0 ∆t) Ũ

(2)(w1 ∆t) Ũ
(2)(w2 ∆t) Ũ

(2)(w3 ∆t), (26.58)

can be constructed, but in general the equations to be solved to determine the wj factors are complicated,
and the solutions must be found numerically. One such method has9

w1 ≈ −1.1776 7998 4178 87
w2 ≈ 0.2355 7321 3359 357
w3 ≈ 0.7845 1361 0477 560,

(26.59)

with w0 = 1−2(w1+w2+w3). Again, this has 7 unitary factors, as compared to the 6 required by Richardson
extrapolation of the same order; evidently, the preservation of unitarity still demands some additional work.

Additionally, 15-factor, eighth-order symmetric splitting of the form

Ũ (8)(∆t) = Ũ (2)(w7 ∆t) . . . Ũ
(2)(w1 ∆t) Ũ

(2)(w0 ∆t) Ũ
(2)(w1 ∆t) . . . Ũ

(2)(w7 ∆t), (26.60)
8There may also be advantages to further requiring that the steps all be positive. See Siu A. Chin and C. R. Chen, ‘‘Fourth

order gradient symplectic integrator methods for solving the time-dependent Schödinger equation,’’ Journal of Chemical Physics
114, 7338 (2001) (doi: 10.1063/1.1362288).

9Haruo Yoshida, op. cit.; Yoshida gives two other sixth-order methods in this reference.

http://dx.doi.org/10.1063/1.1362288


1154 Chapter 26. Split-Operator Methods

can be constructed, but in general the equations to be solved to determine the wj factors are complicated,
and the solutions must be found numerically. An example is10

w1 ≈ 0.3117 9081 2418 427
w2 ≈ −1.5594 6803 8214 47
w3 ≈ −1.6789 6928 2596 40
w4 ≈ 1.6633 5809 9633 15
w5 ≈ −1.0645 8714 7891 83
w6 ≈ 1.3693 4946 4168 71
w7 ≈ 0.6290 3065 0210 433,

(26.61)

with w0 = 1−2(w1+w2+w3+w4+w5+w6+w7). Again, this splitting has 15 unitary factors, as compared
to the 10 required by Richardson extrapolation of the same order.

26.4.1.3 High-Order Treatment of Time-Dependent Potentials

The same strategies above for unitary, high-order product methods apply to cases of time-dependent poten-
tials, so long as we again make the generalization

V (x)∆t −→
∫ t+∆t

t

dt′ V (x, t′), (26.62)

in each factor
Ũ (2)(∆t) −→ Ũ (2)(t+∆t, t) (26.63)

that composes the higher order methods, so long as we define the time interval for each factor appropriately.11

In fact, we can use the splitting (26.21) as our fundamental second-order factor to handle the time-dependent
potentials, since it has the right order of accuracy and possesses time-reversal symmetry:

Ũ (2)(t+∆t, t) = e−iV (x,t+∆t)∆t/2h̄e−iT (p)∆t/h̄e−iV (x,t)∆t/2h̄ = U(t+∆t, t) +O(∆t3). (26.64)

Thus, for example, the fourth-order symplectic method (26.47) becomes

Ũ (4)(t+∆t, t) = Ũ (2)(t+ s4 ∆t, t) Ũ
(2)[t+ (1− s4)∆t, t+ s4 ∆t] Ũ

(2)(t+∆t, t+ (1− s4)∆t), (26.65)

so that the fourth-order operator is the composition of the three second-order operators, and the time
intervals covered by each second-order operator is the same as before. The other methods above generalize
in the same way.

26.4.1.4 Numerical Test: Fourth Order

Using the same test problem as for the Richardson-extrapolation test, we can compare different fourth-order
methods above: the Richardson-extrapolation method, the unitary hierarchical method of Section 26.4.1,
and the unitary reduced-step method of Section 26.4.1.1.

10Haruo Yoshida, op. cit.; Yoshida gives four other eighth-order methods in this reference.
11André Bandrauk and Hai Shen, ‘‘Exponential split operator methods for solving coupled time-dependent Schrödinger

equations,’’ Journal of Chemical Physics 99, 1185 (1993) (doi: 10.1063/1.465362).

http://dx.doi.org/10.1063/1.465362
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As a function of step size, the Richardson and reduced-step methods are clearly superior to the hierarchical
method in this test, with the reduced-step unitary method having the highest accuracy. Of course, both
unitary methods do not suffer from the instability for large step sizes, but this is in the regime of poor
accuracy anyway. The Richardson method is the best of the methods in terms of roundoff error. However,
there is a wide range of complexity among the different methods, so it is useful to consider the accuracy as
a function of cpu time.
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Perhaps counterintuitively, despite the extra complexity, the reduced-step method does quite well, with the
Richardson method narrowly being the most efficient in terms of cpu time for high accuracy.

26.4.1.5 Numerical Test: Sixth Order

Similarly, we can compare the various sixth-order algorithms: Richardson-extrapolation, the unitary hierar-
chical method of Section 26.4.1, the unitary reduced-step-size method of Section 26.4.1.1, and the unitary
minimal-product method of Section 26.4.1.2.
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The Richardson method is notable here as, oddly, the only one that does not scale at sixth order, but also
achieves the best overall accuracy at the optimal step size. The reduced-step method clearly achieves the
largest step size for a given accuracy of all the methods. However, recall that with 25 second-order substeps,
it is also by far the most computationally expensive on each step, so it is important to consider cpu time for
any target accuracy.
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However, we see that the reduced-step method compares quite favorably with the other unitary methods.
Despite its complexity, it seems to be a reasonable choice. However, for high accuracies it still seems
to be edged out by the Richardson method. It could be that in more complicated problems, the stability
properties of the reduced-step unitary method are beneficial enough to make it the method of choice, although
Richardson extrapolation certainly seems to be a generally useful and simple method.

26.4.2 Nonlinear Schrödinger Equations

One can also consider nonlinear Schrödinger equations with potentials of the form

V (x, ψ, t) = V (x, t) + g|ψ(x, t)|2, (26.66)

which lead to cubically nonlinear terms in the Schrödinger equation. The Gross–Pitaevskii equation is
precisely of this form, and models the evolution of a Bose–Einstein condensate: the nonlinear term models



26.4 Unitary Evolvers 1157

energy shifts due to two-body collisions, so that there is an extra spatial potential proportional to the
condensate number density. Clearly, we can adapt the above methods if we take the order-two operator to
be

Ũ (2)(t+∆t, t) = e−iV [x,ψ(x,t+∆t),t+∆t]∆t/2h̄e−iT (p)∆t/h̄e−iV [x,ψ(x,t),t]∆t/2h̄ = U(t+∆t, t) +O(∆t3). (26.67)

The problem here is that we need to know ψ(x, t+∆t) to construct the leftmost factor, but that’s what we’re
trying to calculate. Thus, we have an implicit method. The simplest way to handle this is to use functional
iteration (or perturbation theory, if you want to think of it that way): simply compute ψ(x, t + ∆t), but
using as a guess the partially evolved wave function

ψguess(x, t) = e−iT (p)∆t/h̄e−iV [x,ψ(x,t),t]∆t/2h̄ψ(x, t). (26.68)

Then use the result as a guess to recompute ψ(x, t + ∆t), and so on until the procedure converges. This
strategy is certainly ‘‘safe’’ in adapting the above procedures, since the nonlinear potential amounts to an
ordinary time-dependent potential, so long as we can calculate the potential at any time.

However, things turn out to be a bit easier than this, at least at low orders.12 Observe that

|ψ(x, t+∆t)|2 = |U(t+∆t, t)ψ(x, t)|2 = |ψ(x, t)|2 +O(∆t2). (26.69)

Since in the methods above, |ψ(x, t)|2 is always multiplied by ∆t2, so with an error of O(∆t3), we can
evaluate ψ(x, t) in the nonlinear potential at any other time up to ∆t away. What this means, is that even
with a single iteration—that is, using ψguess(x, t) in place of ψ(x, t+∆t) in (26.67)—the order of the method
is not changed. (Recall that this was not true of the ordinary potential V (x, t), which had to be evaluated
at the proper points.) Thus, we have an explicit, second-order method for evolving the GPE.

However, the explicit method here seems to lack time-reversal symmetry, and so it is not obvious how
useful it is to compose higher-order methods. An intermediate strategy between the explicit and implicit
methods is to iterate the implicit scheme once, for a Runge–Kutta style approximation to a symmetric
splitting. (Note that iterating an implicit method a fixed number of times is in fact an explicit scheme, but
may approximate the implicit scheme well.) However, it has been shown13 that the simple explicit scheme
above works to construct a fourth-order method. It is not clear if the simple explicit strategy works at higher
orders, and if higher-order methods are to be used, it is worth checking the sensitivity of the solution to the
number of iterations.

26.4.3 Symplectic Integration

The high-order unitary methods above are also important in classical mechanics, when simulating trajectories
of Hamiltonian systems. Rather than conserving the norm of a wave function, the methods applied in this
context conserve phase-space volumes, and in the case of autonomous Hamiltonian systems, they do a better
job of conserving total energy.14 For example, such methods are important in celestial mechanics, where it
is desireable to obtain highly accurate, long-term solutions to Newton’s equations without spurious damping
effects.

Recall from Section 4.4.3.2 that Hamilton’s equations can be written

∂tzα = {zα,H}P = Ωαβ
∂H

∂zβ
, (26.70)

where {f, g}P is the Poisson bracket, the 2N canonically conjugate coordinates are combined as

zα := (x1, . . . , xN , p1, . . . , pN ), (26.71)
12A. D. Bandrauk and Hai Shen, ‘‘High-order split-step exponential methods for solving coupled nonlinear Schrödinger

equations,’’ Journal of Physics A: Mathematical and General 27, 7147 (1994) (doi: 10.1088/0305-4470/27/21/030); Juha
Javanainen and Janne Ruostekoski, ‘‘Symbolic calculation in development of algorithms: split-step methods for the Gross-
Pitaevskii equation,’’ Journal of Physics A: Mathematical and General 39, L179 (2006) (doi: 10.1088/0305-4470/39/12/L02).

13Juha Javanainen and Janne Ruostekoski, op. cit.
14For further reading and the source of some of the notation here, see Denis Donnelly and Edwin Rogers, ‘‘Symplectic

integrators: An introduction,’’ American Journal of Physics 73, 938 (2005) (doi: 10.1119/1.2034523).

http://dx.doi.org/10.1088/0305-4470/27/21/030
http://dx.doi.org/10.1088/0305-4470/39/12/L02
http://dx.doi.org/10.1119/1.2034523
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and Ωαβ is the canonical cosymplectic form,

(Ωαβ) :=

(
0n In
−In 0n

)
, (26.72)

with In denoting the n× n identity matrix and 0n the n× n null matrix.
Suppose we write the Poisson bracket as a differential operator,

∂tzα = DHzα, (26.73)

where for any phase-space function f(z),

DHf(z) = {f,H}P =
∂f

∂zα
Ωαβ

∂H

∂zβ
. (26.74)

Noting that DH acts individually on each component of zα, we can simply write the vector relation

∂tz = DHz, (26.75)

The formal solution of Eq. (26.75) is in terms of the exponentiated operator:

z(t) = eDHtz(0). (26.76)

Now we will specialize to one degree of freedom, where the generalization to higher dimensions is simple. If
the Hamiltonian splits into the form

H(x, p) = T (p) + V (x) (26.77)

as before, then the Poisson-bracket operator takes the explicit form

DH = T ′(p)∂x − V ′(x)∂p =: DT +DV (26.78)

of the sum of two noncommuting operators, since [DV , DT ] = T ′(p)V ′′(x) − V ′(x)T ′′(p) does not vanish in
general. We can thus use exactly the above theory to split the exponential operator exp(DH ∆t) for evolution
over a short time ∆t into simpler parts of the form exp(DT ∆t) and exp(DV ∆t), where the effects of each
component operator can be written explicitly. Thus, the partial kinetic solution is

eDT∆tz(t) = e∆t T
′(p)∂x

[
x(t)
p(t)

]
=

[
x(t) + T ′[p(t)]∆t

p(t)

]
, (26.79)

while the partial potential solution is

eDV ∆tz(t) = e−∆t V
′(x)∂p

[
x(t)
p(t)

]
=

[
x(t)

p(t)− V ′[x(t)]∆t

]
. (26.80)

Since we can write out the explicit effect of each operator on z(t), there is no need to implement Fourier
transforms between operators, as in the quantum-mechanical case. However, the splittings above still provide
numerical methods of the same orders as before.

26.4.3.1 Euler–Cromer Method

The simplest splitting we can use is the first-order splitting (26.6), which here bcomes

eDH∆t = eDT∆teDV ∆t +O(∆t2). (26.81)

Writing this out explicitly,

eDH∆tz(t) = eDT∆teDV ∆t

[
x(t)
p(t)

]
+O(∆t2) =

[
x(t) + T ′[p(t+∆t)]∆t
p(t)− V ′[x(t)]∆t

]
+O(∆t2) (26.82)
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Written out as a mapping, this method becomes

xj+1 = xj + T ′(pj+1)∆t

pj+1 = pj − V ′(xj)∆t,
(26.83)

where xj := x(j∆t) and pj := p(j∆t). This first-order method is the Euler–Cromer method. We can
see that this method is first-order accurate and half-implicit, but it easy to iterate since you just compute
the new pj+1 before you compute the new xj+1. This mapping is a canonical transformation, since the
transformation zj −→ zj+1 preserves the cosymplectic form:

Ωαβ =
∂(zj+1)α
∂(zj)µ

Ωµν
∂(zj+1)β
∂(zj)ν

. (26.84)

This follows from writing out the Jacobian matrix

∂(zj+1)

∂(zj)
=

[
1− T ′′(pj+1)V

′′(xj)∆t
2 T ′′(pj+1)∆t

−V ′′(xj)∆t 1

]
(26.85)

and multiplying out the matrix product to see that Ωαβ is unchanged:[
1− T ′′(pj+1)V

′′(xj)∆t
2 T ′′(pj+1)∆t

−V ′′(xj)∆t 1

] [
0 1
−1 0

] [
1− T ′′(pj+1)V

′′(xj)∆t
2 −V ′′(xj)∆t

T ′′(pj+1)∆t 1

]
=

[
0 1
−1 0

]
.

(26.86)
Also, directly from the fact that the Jacobian determinant is unity,

det ∂(zj+1)

∂(zj)
= det

[
1− T ′′(pj+1)V

′′(xj)∆t
2 T ′′(pj+1)∆t

−V ′′(xj)∆t 1

]
= 1, (26.87)

we see explicitly the preservation of phase-space areas. Since these maps correspond to canonical trans-
formations, they are symplectic map and thus this approximation scheme is a symplectic integrator.
Compared to the Euler method, for approximately harmonic oscillation, the Euler–Cromer method produces
bounded energy errors, while the Euler method produces asymptotically growing errors.

We can obviously interchange the order of the operators in (26.82) to obtain another first-order sym-
plectic algorithm. The mapping for this method analogous to Eqs. (26.83) is

xj+1 = xj + T ′(pj)∆t

pj+1 = pj − V ′(xj+1)∆t,
(26.88)

and it follows in the same way as the Euler–Cromer method that this mapping is symplectic.

26.4.3.2 Verlet Method

It is thus straightforward to construct a second-order symplectic method by using the symmetric splitting
(26.7), which adapted to symplectic integration becomes

eDH∆t = eDV ∆t/2eDT∆teDV ∆t/2 +O(∆t3). (26.89)

The mapping for this splitting can be rewritten as

eDH∆t =
[
eDV ∆t/2eDT∆t/2

] [
eDT∆t/2eDV ∆t/2

]
+O(∆t3), (26.90)

and thus corresponds to a composition of an Euler–Cromer step as in Eqs. (26.83) with a ‘‘reverse’’ Euler–
Cromer step as in Eqs. (26.88), both of step size ∆t/2. The composition of symplectic maps is still symplectic,
and thus we have a second-order symplectic method.
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To write out the mapping explicitly, first we write out the composition of the two maps (26.83) and
(26.88), each for a half step:

xj+1/2 = xj + T ′(pj+1/2) (∆t/2)

pj+1/2 = pj − V ′(xj) (∆t/2)
xj+1 = xj+1/2 + T ′(pj+1/2) (∆t/2)

pj+1 = pj+1/2 − V ′(xj+1) (∆t/2).

(26.91)

Eliminating the intermediate step, we find

xj+1 = xj + T ′[pj − V ′(xj)∆t/2]∆t

pj+1 = pj −
V ′(xj) + V ′(xj+1)

2
∆t.

(26.92)

For the important ‘‘particle’’ case of T (p) = p2/2, the mapping becomes

xj+1 = xj + pj ∆t− V ′(xj)∆t

pj+1 = pj −
V ′(xj) + V ′(xj+1)

2
∆t.

(26.93)

This is the velocity form of the Verlet method, or the velocity Verlet method. The original form for
the Verlet method15 follows from using the other possible form of the symmetric splitting, where the ‘‘drift’’
operator is applied first and last. This amounts to the replacements x −→ p, p −→ x, T −→ −V , and
V −→ −T in Eqs. (26.92):

xj+1 = xj +
T ′(pj) + T ′(pj+1)

2
∆t

pj+1 = pj − V ′[xj + T ′(pj)∆t/2]∆t.
(26.94)

Again, if T (p) = p2/2, the mapping becomes

xj+1 = xj +
pj + pj+1

2
∆t

pj+1 = pj − V ′[xj + pj ∆t/2]∆t.
(26.95)

Notice that in both cases, each variable is evolved according to a method symmetric about the middle time
∆t/2, either by computing the average function value (fj + fj+1)/2, which approximates the middle value
fj+1/2, or by evaluating a function after taking half of an Euler-type step. The second-order nature of these
approximations follow from the two second-order integral approximations∫ t+∆t

t

f(t′) dt′ = f(t+∆t/2)∆t+O(∆t3)

=
f(t) + f(t+∆t)

2
∆t+O(∆t3),

(26.96)

which both appear in the Verlet methods.

26.4.3.3 Higher Order Methods

The nice thing about symplectic methods here is that we have already worked out the theory to extend the
second-order methods to higher order. Because of the time-reversal symmetry noted above for the Verlet
method, the local truncation error only involves odd powers of ∆t (or the global error involves only even

15Loup Verlet, ‘‘Computer ‘Experiments’ on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules,’’
Physical Review 159, 98 (1967) (doi: 10.1103/PhysRev.159.98).

http://dx.doi.org/10.1103/PhysRev.159.98
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powers of ∆t). All the techniques above for the split-operator Fourier-transform method thus work to extend
the Verlet method, if we replace each application of Ũ (2)(s∆t) by a Verlet step (in either form, as long as
we stick to the same form) of s∆t. It is not useful to write out the explicit algorithms here, since in general
one would simply code a subroutine to take a Verlet step and then call it multiple times on each time step of
∆t—say, three times for the fourth-order method with step sizes s4∆t, (1− 2s4)∆t, and s4∆t corresponding
to the three-step method of Eqs. (26.47).

26.4.3.4 Time-Dependent Potentials

In principle, the above assumption of a time-independent Hamiltonian is not restrictive, since any Hamilto-
nian system of N degrees of freedom with explicit time dependence is formally equivalent to a Hamiltonian
system ofN+1 degrees of freedom with a time-independent Hamiltonian. (Thus, an explicitly time-dependent
system of N degrees of freedom is often said to have ‘‘N 1

2 degrees of freedom.’’) However, it is useful to
generalize the above methods for time-dependent Hamiltonians anyway as a more direct method for handling
explicit time dependence. To handle explicitly the case of time-dependent potentials, we make the same ad-
justments as for the unitary methods to evaluate the potential at the proper time. Thus, the Euler–Cromer
method (26.83) is not sensitive to the precise time of evaluation, and for example becomes

xj+1 = xj + T ′(pj+1)∆t

pj+1 = pj − V ′(xj , tj)∆t.
(26.97)

For the Verlet methods, we can take in analogy with Eq. (26.21) the splitting

eDH∆t =
[
eDV (t+∆t)∆t/2eDT∆t/2

] [
eDT∆t/2eDV (t)∆t/2

]
+O(∆t3), (26.98)

where DV (t) has the potential evaluated at time t, so that the velocity Verlet method (26.92) becomes

xj+1 = xj + T ′[pj − V ′(xj , tj)∆t/2]∆t

pj+1 = pj −
V ′(xj , tj) + V ′(xj+1, tj+1)

2
∆t,

(26.99)

and the usual Verlet method becomes

xj+1 = xj +
T ′(pj) + T ′(pj+1)

2
∆t

pj+1 = pj − V ′[xj + T ′(pj)∆t/2, tj+1/2]∆t,
(26.100)

preserving the second-order accuracy of the methods in the explicitly time-dependent case.
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26.5 Exercises

Problem 26.1
Verify the factorizations of Eqs. (26.6) and (26.7) using the BCH formula.

Problem 26.2
Justify the following statement: despite the different local errors, the error in the evolution of the
quantum state according to the two splittings, Eqs. (26.6) and (26.7), after many steps is approximately
the same.

Problem 26.3
Why do only the even-order error terms appear in the Richardson expansion (26.26)?

Problem 26.4
Verify that the Richardson-extrapolation formulae (26.27), (26.28), (26.29), and (26.30) are correct
and have the advertised accuracy.



Chapter 27

Stochastic Differential Equations

Now we will consider the numerical solution to stochastic differential equations (SDEs) of the form

dy = α(y, t) dt+ β(y, t) dW, (27.1)

where dW (t) is the Wiener process as usual (see Chapter 17). We will stick to considering only Itō SDEs
for simplicity. Because of the unusual and singular nature of dW (t), the methods that apply to ODEs
(Chapter 24) do not work well here, and we will have to develop new methods. We will also see that
accurately solving SDEs is much more difficult than ODEs. However, we will then have the formalism to
put stochastic Schrödinger and master equations (Chapters 18 and 19) on the computer.1

27.1 Stochastic Euler Method

The simplest numerical method we considered in solving ODEs was the Euler method (24.2). This applies
to Eq. (27.1) when β = 0, in which case the update equation is

yn+1 = yn + α(yn, tn)∆t+O(∆t2), (27.2)

where again the solution is evolved in finite time steps of ∆t, and we are using the condensed notation
yn := y(n∆t) and tn := n∆t. We can try extending this method to the SDE (27.1) by taking the same
linear approximation to the stochastic term, to arrive at the stochastic Euler method (often called the
Euler–Maruyama method):2

yn+1 = yn + α(yn, tn)∆t+ β(yn, tn)∆Wn.
(27.3)

(stochastic Euler method)

We are defining the time increment as before, and the Wiener increment ∆Wn is defined in an analogous
way:

∆tn :=

∫ tn+1

tn

dt′

∆Wn :=

∫ tn+1

tn

dW (t′).

(27.4)
(time increments)

Of course, ∆tn ≡ ∆t is independent of n, so we need not indicate explicit time dependence. The key,
however, is that the approximation works when α and β vary slowly over the interval [tn, tn+1], and thus

1One of the best and most complete references on this subject is Peter E. Kloeden and Eckhard Platen, Numerical Solution
of Stochastic Differential Equations, 3rd ed. (Springer, 2000).

2Gisirō Maruyama, ‘‘Continuous Markov Processes and Stochastic Equations,’’ Rendiconti del Circolo Matematico di Palermo
4, 48 (1955).
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when we try to compute the solution

yn+1 = yn +

∫ tn+1

tn

dt′ α(y(t′), t′) +

∫ tn+1

tn

dW (t′)β(y(t′), t′), (27.5)

we can, to first approximation, treat α and β as constants and pull them out of their respective integrals,
which precisely yields Eq. (27.3).

27.1.1 Truncation Error

Recall the Itō chain rule (17.193) for a function f(y), where y(t) satisfies the SDE (27.1):

df(y) =

[
f ′(y)α(y, t) +

1

2
f ′′(y)β2(y, t)

]
dt+ f ′(y)β(y, t) dW. (27.6)

Integrating this expression from t′ = t0 to t,

f(y(t)) = f(y(t0)) +

∫ t

t0

[
f ′(y)α(y, t′) +

1

2
f ′′(y)β2(y, t′)

]
dt′ +

∫ t

t0

f ′(y)β(y, t′) dW (t′). (27.7)

Now we can let f(y) −→ α(y, t), f(y) −→ β(y, t), and t0 −→ tn, and then put the two resulting expressions
in Eq. (27.5) to obtain

yn+1 = yn + α(yn, tn)∆t+ β(yn, tn)∆Wn

+

∫ tn+1

tn

dt′
∫ t′

tn

dt′′
[
α′(y, t′′)α(y, t′′) +

1

2
α′′(y, t′′)β2(y, t′′)

]
+

∫ tn+1

tn

dt′
∫ t′

tn

dW (t′′)α′(y, t′′)β(y, t′′)

+

∫ tn+1

tn

dW (t′)

∫ t′

tn

dt′′
[
β′(y, t′′)α(y, t′′) +

1

2
β′′(y, t′′)β2(y, t′′)

]
+

∫ tn+1

tn

dW (t′)

∫ t′

tn

dW (t′′)β′(y, t′′)β(y, t′′).

(27.8)
The primes here are equivalent to the partial derivatives ∂y. Again, we can pretend that the α and β
functions are constant over the short time interval ∆t. Then we have simple integrals of the form∫ tn+1

tn

dt′
∫ t′

tn

dt′′;

∫ tn+1

tn

dt′
∫ t′

tn

dW (t′′);

∫ tn+1

tn

dW (t′)

∫ t′

tn

dt′′;

∫ tn+1

tn

dW (t′)

∫ t′

tn

dW (t′′), (27.9)

to deal with. The first integral is just ∆t2/2, or for our purposes, simply O(∆t2). Similarly, if we proceed
with counting each ∆W on average as equivalent to ∆t1/2, the second and third integrals are O(∆t3/2), and
the last integral is O(∆t1). Clearly, any error in treating α and β as constants will result in higher-order
errors, so the truncation error here is O(∆t). Thus, we may again write the stochastic Euler method as

yn+1 = yn + α(yn, tn)∆t+ β(yn, tn)∆Wn +O(∆t).
(27.10)

(stochastic Euler method)

The local truncation error here is, as we see, much worse than the deterministic Euler method (27.2). To
estimate the global truncation error, again suppose we use this method to evolve the solution out to a fixed
final time t in N steps of ∆t = t/N . The local truncation error on each step is O(∆t), due essentially to
the stochastic term. The dominant errors will thus be random and uncorrelated, so we consider the error
in a random walk of N steps of mean size of order t/N , which will scale as

√
N(t/N) = t/

√
N = O(∆t1/2).

Thus the global error of the stochastic Euler scheme converges very badly, as O(∆t1/2). This is indicative
of the fact that stochastic differential equations are much more difficult to solve than the deterministic
counterparts. In any case, as in the ODE case, we call this method an O(∆t1/2) method, because the local
truncation is correct to this order, or equivalently, the global error is O(∆t1/2).
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27.2 Milstein Method

To construct the next, relatively simple, higher-order method, we note that the only term we neglected in
Eq. (27.8) that was O(∆t) was the last one, involving the double integral

∫ tn+1

tn

dW (t′)

∫ t′

tn

dW (t′′) =

∫ tn+1

tn

dW (t′) [W (t′)−W (tn)]

=
1

2

∫ tn+1

tn

{
d[W (t′)]2 − dt

}
−W (tn)

∫ tn+1

tn

dW (t′)

=
1

2

[
W 2(tn+1)−W 2(tn)

]
− ∆t

2
−W (tn)∆W (tn)

=
1

2
[W (tn+1) +W (tn)]∆W (tn)−

∆t

2
−W (tn)∆W (tn)

=
1

2
[W (tn+1)−W (tn)]∆W (tn)−

∆t

2

=
1

2

{
[∆W (tn)]

2 −∆t
}
,

(27.11)

where we used the Itō rule d(W 2) = 2W dW + dW 2 = 2W dW + dt in the second step. The idea behind the
Milstein method3 is to keep this correction term, keeping in mind that the factor we just worked out is
multiplied by β(y, tn)β′(y, tn), which we are treating as constant to this order of approximation:

yn+1 = yn + α(yn, tn)∆t+ β(yn, tn)∆Wn +
1

2
β(yn, tn)β

′(yn, tn)
(
∆W 2

n −∆t
)
+O(∆t3/2).

(Milstein method) (27.12)
Again, the prime refers to partial differentiation with respect to yn. Clearly the local truncation error is
O(∆t3/2), since we have ignored the two integrals in Eqs. (27.9) of the same order. By the same argument
as for the Euler method, the global error is a factor of ∆t1/2 worse, or O(∆t), which is the same global error
as the deterministic Euler method.

27.2.1 Multiplicative vs. Additive Noise

Note that the correction term in the Milstein method (27.12) is of the form ββ′, and thus is only required for
multiplicative noise (where β is a function of y). For additive noise (β independent of y), the correction term
vanishes, and the stochastic Euler method has O(∆t) global error. In general, we expect additive noise to be
easier to solve numerically than multiplicative noise, and one strategy to improve the accuracy of numerical
methods is to use the Lamperti transform (Section 17.7.4.2) to change a multiplicative-noise process to an
additive process, assuming that the transform can be inverted to give the original solution.

27.3 Stochastic Taylor Expansion

What we have written down in Eq. (27.8) is something like a Tayler expansion for yn+1 in terms of yn.
Again, treating α and β as constants, essentially what we have is a Taylor expansion, neglecting O(∆t3/2)
terms. The full Taylor expansion is given by iterating the above procedure, for example using Eq. (27.7) to
replace the functions α and β evaluated at time t′′. This procedure obviously introduces triple stochastic
integrals; the next iteration introduces quadruple integrals, and so forth.

3G. N. Mil’shtein, ‘‘Approximate Integration of Stochastic Differential Equations,’’ Theory of Probability and its Applications
19, 557 (1974).
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27.3.1 Single and Double Integrals

The first thing that is clear is that we will need to employ a hierarchy of stochastic integrals. The ones we
have considered so far are the single integrals

(I0)n :=

∫ tn+1

tn

dt′ = ∆t

(I1)n :=

∫ tn+1

tn

dW (t′) = ∆Wn,

(27.13)

as well as the double integrals

(I00)n :=

∫ tn+1

tn

dt′
∫ t′

tn

dt′′ =
∆t2

2

(I10)n :=

∫ tn+1

tn

dt′
∫ t′

tn

dW (t′′)

(I01)n :=

∫ tn+1

tn

dW (t′)

∫ t′

tn

dt′′ = ∆t∆Wn − (I10)n = (I0)n(I1)n − (I10)n

(I11)n :=

∫ tn+1

tn

dW (t′)

∫ t′

tn

dW (t′′) =
∆W 2

n

2
− ∆t

2
.

(27.14)

The first and the last integral we worked out before, and the third integral follows from

(I01)n =

∫ tn+1

tn

dW (t′) (t′ − tn)

=

∫ tn+1

tn

dW (t′) t′ − tn∆Wn

= [t′W (t′)]
tn+1

tn
−
∫ tn+1

tn

dt′W (t′)− tn∆Wn

= tn+1W (tn+1)− tnW (tn)−
∫ tn+1

tn

dt′ [W (t′)−W (tn)]−∆tW (tn)− tn∆Wn

= tn+1W (tn+1)− tnW (tn+1)− (I10)n −∆tW (tn)

= ∆tW (tn+1)− (I10)n −∆tW (tn)

= ∆t∆Wn − (I10)n,

(27.15)

where we integrated by parts in the third step. Note that all the double integrals can be reduced to expressions
in terms of single integrals and (I10)n; however, this last double integral is irreducible in the sense that it
cannot be written only in terms of single integrals. We can thus characterize it more completely. It is clearly
Gaussian, as from its definition it is a sum over independent, Gaussian random variables. It has mean,
variance, and covariance with ∆Wn given by

〈〈(I10)n〉〉 = 0〈〈
(I10)

2
n

〉〉
=

∆t3

3

〈〈(I10)n∆Wn〉〉 =
∆t2

2
.

(27.16)
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The mean is obvious, as (I10)n is again the sum over independent, Gaussian random variables of zero mean.
The variance and covariance we leave as an exercise (Problem 27.1). For the purposes of simulation, given
two independent, standard-normal random numbers z1 and z2 (i.e., variance 1 and mean 0), it is not hard
to verify that the linear combinations

∆Wn =
√
∆t z1

(I10)n =
∆t3/2

2

(
z1 +

z2√
3

) (27.17)

have the correct statistics for the two desired quantities. However, we will return to more useful strategies
for computing these numbers below.

27.3.2 Multiple Itō Integrals

The notation here generalizes readily to further multiple integrals. In the case of I0, the zero subscript
indicates a simple integration of dt over the time interval; for I1, the unit subscript indicates a simple
integration of dW (t) instead. For the double-integrals, the subscripts have the same meaning, but the result
of integrating according to the first index is integrated again according to the second integral; thus, I10
means to integrate dW , and then integrate the result with a the differential dt. In the general case, with
Ij1j2j3...jn , where jα ∈ {0, 1}, we again integrate dt or dW according to the value of j1, then integrate the
result over dt or dW according to the value of j2, and so on.

Clearly, when we iterate the procedure leading to Eq. (27.8) to generate the stochastic Taylor expansion,
we are generating on the very next iteration triple integrals, such as I110. Roughly speaking, when counting
order we should count each 1 as a 1/2 order, while a 0 is a full extra order. Thus, the Taylor expansion to
order ∆t involves I0, I1, and I11. To order ∆t3/2, the expansion also involves I10, I01, and I111; while to
order ∆t2, the expansion also involves I00, I110, I101, I011, and I1111. It is not hard to see that the stochastic
Taylor expansion is much more complicated than the regular Taylor expansion: the regular Taylor expansion
only involves I0, I00, I000, and so on. In terms of actual calculations, there is the additional complication
that at higher orders, new random quantities are introduced that cannot be expressed entirely in terms
of lower-order quantities. Again, these integrals may be written in terms of other integrals, although this
becomes complicated where many indices are involved; however, it can be shown that4

(∆W )jIj1...jn =

n∑
i=0

Ij1...ji−1jji+1...jn +

n∑
i=1

j δjji∆W Ij1...ji−10ji+1...jn , (27.18)

where recall that j and all ji are either 0 or 1.
It is precisely the existence of extra terms that causes traditional numerical methods for ODEs to

fail in general for SDEs. In certain special cases (such as additive noise), ordinary methods may provide
better performance (since certain terms in the stochastic Taylor expansion will vanish). However, in general
different methods must be developed to handle SDEs at ‘‘high’’ order.5

4Kloeden and Platen, op. cit., Proposition 5.2.3, p. 170.
5see Kevin Burrage, Pamela Burrage, Desmond J. Higham, Peter E. Kloeden, and Eckhard Platen, ‘‘Comment on ’Numerical

methods for stochastic differential equations,’ ’’ Physical Review E 74, 068701 (2006) (doi: 10.1103/PhysRevE.74.068701), which
is a comment on the use of standard Runge–Kutta methods for SDEs by Joshua Wilkie, ‘‘Numerical methods for stochastic
differential equations,’’ Physical Review E 70, 017701 (2004) (doi: 10.1103/PhysRevE.70.017701).

http://dx.doi.org/10.1103/PhysRevE.74.068701
http://dx.doi.org/10.1103/PhysRevE.70.017701
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27.3.3 Expression for the Taylor Expansion

As we have indicated thus far, the stochastic Taylor expansion is quite complicated. We will simply state
the result here for the Itō–Taylor expansion6 for the solution y(t) to the scalar SDE (27.1), which is

y(t) = y(t0) +

∞∑
n=1

1∑
j1...jn=0

Ij1...jnfj1...jn ,
(27.19)

(Itō–Taylor expansion)

where the multiple stochastic integrals Ij1...jn are defined over the time interval from t0 to t, and the coefficient
functions are defined recursively in terms of the functions with one index removed:

fj1...jn = Lj1fj2...jn , (27.20)

The lowest-order case of f (with all indices removed) is defined by f = y, and the operators Lj are defined
by

L0 = ∂t + α∂y +
1

2
β2∂ 2

y

L1 = β∂y.
(27.21)

Thus, for example,
f0 = L0y = α

f1 = L1y = β

f11 = L1f1 = β∂yβ

f01 = L0f1 = ∂tβ + α∂yβ +
1

2
β2∂ 2

y β.

(27.22)

Clearly, these coefficient functions become much more complicated as the order increases. However, it
should also be reasonably clear how this expansion comes about by the iterated application of the Itō integral
forumula. This is one case where Stratonovich calculus is fairly nice: the corresponding Stratonovich formulae
for the multiple integrals and coefficients are simplified, for example, by the absence of the final term in the
expression for L0.

27.3.4 Multiple Wiener Processes

As you can imagine, a vector SDE driven by multiple Wiener processes dWk is way more complicated than
the scalar case. In particular, the multiple integrals must be generalized to indices beyond 0 and 1, so
that there are many more terms in the Taylor expansion, and the differential operators must be similarly
generalized. In any case, some extensions of the methods we show below to vector Wiener processes are
given by Kloeden and Platen7

27.4 Stochastic Runge–Kutta Methods

The Milstein method (27.12) is the simplest example of ‘‘Taylor’’ methods that explicitly cancel the higher-
order terms in the Itō–Tayler expansion. The problem with these methods is that they require not only
specifying the functions α and β in the SDE (27.1), but also their derivatives. In the Milstein case, we have
to specify β′, but for higher-order methods, more and more derivatives must be specified. This is not a
problem in principle, but merely for convenience of the user.

Instead, we can try an approach following the ODE case of Runge–Kutta methods, where multiple
function evaluations with different arguments are used to estimate the information that would otherwise

6Kloeden and Platen, op. cit., Section 5.5, p. 181. The Itō–Taylor expansion given in this reference is much more rigorous
than what we have written here; here, we have written what amounts to an infinite number of iterations of the Itō integral
formula. Truncations of the expansion should in principe be done carefully.

7Kloeden and Platen, op. cit.
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be supplied by the derivatives. Again, though, these are not the same Runge–Kutta methods as in the
deterministic case, but different methods designed to cancel error terms in the Itō–Taylor expansion above.
We will simply quote two Itō methods here.8 An O(∆t) method (i.e., a stochastic Runge–Kutta method of
comparable accuracy to the Milstein method) is

dn = yn + α(yn, tn)∆t+ β(yn, tn)
√
∆t

yn+1 = yn + α(yn, tn)∆t+ β(yn, tn)∆Wn +
1

2
√
∆t

[β(dn, tn+1)− β(yn, tn)][∆W 2
n −∆t].

(stochastic Runge–Kutta method, order 1) (27.23)
An O(∆t3/2) method is

d1± = yn + α(yn, tn)∆t± β(yn, tn)
√
∆t

d2± = d1+ ± β(d1+, tn+1)
√
∆t

yn+1 = yn + β(yn, tn)∆Wn +
1

2
√
∆t

[α(d1+, tn+1)− α(d1−, tn−1)] (I10)n

+
1

4
[α(d1+, tn+1) + 2α(yn, tn) + α(d1−, tn−1)] ∆t

+
1

4
√
∆t

[β(d1+, tn+1) + β(d1−, tn−1)]
(
∆W 2

n −∆t
)

+
1

2∆t
[β(d1+, tn+1)− 2β(yn, tn) + β(d1−, tn−1)] [∆Wn∆t− (I10)n]

+
1

4∆t
[β(d2+, tn+1)− β(d2−, tn−1)− β(d1+, tn+1) + β(d1−, tn−1)]

(
∆W 2

n

3
−∆t

)
∆Wn.

(stochastic Runge–Kutta method, order 3/2) (27.24)
At the time of writing, there seems to have been no true O(∆t2) methods that have been reported for the
general (multiplicative noise) case.

To see the relative performance of the schemes we have presented thus far, we test them on the sample
problem9

dy = −(a+ b2y)(1− y2) dt+ b(1− y2) dW, (27.25)

where a and b are constants. This is a multiplicative SDE with the analytic solution

y(t) =
(1 + y0) exp[−2at+ 2bW (t)] + y0 − 1)

(1 + y0) exp[−2at+ 2bW (t)] + 1− y0)
. (27.26)

For this calculation we took a = b = 1 and y0 = 0. The base step size was ∆t = 0.00015, with the other
runs having the same base step size reduced by powers of 2, down to ∆t = 0.00015/215. The solutions were
computed from t = 0 out to t = 0.045 (300 of the largest steps), and the rms error was computed for a single
trajectory in each case. Every calculation was performed on the same Brownian path W (t) (see below).
The following plot compares the accuracy of the stochastic Euler method (27.3), the O(∆t) Runge–Kutta
method (27.23), and the O(∆t3/2) Runge–Kutta method (27.24).

8Kloeden and Platen, op. cit.; P. E. Kloeden and E. Platen, ‘‘Higher-Order Implicit Strong Numerical Schemes for Stochastic
Differential Equations,’’ Journal of Statistical Physics 66, 283 (1992) (doi: 10.1007/BF01060070).

9K. Burrage and P. M. Burrage, ‘‘High strong order explicit Runge–Kutta methods for stochastic ordinary differential
equations,’’ Applied Numerical Mathematics 22, 81 (1996); Peter E. Kloeden and Eckhard Platen, Numerical Solution of
Stochastic Differential Equations, 3rd ed. (Springer, 2000).

http://dx.doi.org/10.1007/BF01060070


1170 Chapter 27. Stochastic Differential Equations

10
-8.6

10
-3.6

Dt

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-13

r
m

s
 e

r
r
o
r

10
-12

10
-11

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

order 0.5

order 1.0

order 1.5

The scaling behavior in each case is clear, though again the convergence is slow compared to ODEs, and
the step sizes required to achieve high accuracy are quite small. Note that in the O(∆t3/2) case, rounding
dominates the error at the smallest step sizes. In terms of cpu time, the higher order methods are again
superior in this problem.
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In this case, each method takes a similar amount of time for a given time step ∆t. This is because the test
SDE is very simple, and the cpu effort is dominated by random-number generation and construction of the
Brownian path. For very complicated SDEs, there will obviously be more of a difference in run times between
the different methods. However, it is clear that higher-order methods still provide substantial benefit despite
the added complexity.

27.5 Implicit Schemes

As we discussed in Section 24.2.2, implicit methods have some advantages in certain classes of deterministic
ODEs. It is therefore natural to try to construct similar implicit methods for SDEs. Unfortunately, we can
quickly run into problems. Consider the simple SDE

dy = −ay dt− by dW (27.27)
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with constant coefficients a and b. The stochastic Euler method for this SDE reads

yn+1 = yn − ayn∆t− byn∆Wn. (27.28)

The obvious generalization of the impicit Euler method for deterministic ODEs is to evaluate the functions
on the right-hand side at time tn+1 instead of t:

yn+1 = yn − ayn+1 ∆t− byn+1 ∆Wn. (27.29)

Note that ∆Wn is unchanged, because it must be chosen according to the convention for Itō SDEs. Solving
this equation for yn+1,

yn+1 =
yn

1 + a∆t+ b∆Wn
. (27.30)

Clearly there is a problem here: ∆Wn is a stochastic variable that can take on essentially any value with
nonzero probability, and typically takes on values of the order of

√
∆t. For small ∆t it may thus happen

that the denominator can come very close to zero, when ∆Wn takes on values near −(a/b)∆t. Thus we lose
the stability properties we gained in the deterministic case, due just to the stochastic nature of the Wiener
process. The problem is apparently just with the stochastic part of the equation. There is no problem, for
example, if we choose a hybrid scheme where the deterministic step is taken implicitly, but the stochastic
parts are treated explicitly, as in

yn+1 = yn − ayn+1 ∆t− byn∆Wn (27.31)

for the example problem, which becomes

yn+1 =
yn

1 + a∆t
− byn∆Wn. (27.32)

which has no special problems with small denominators.
Again, we will simply quote two implicit Itō methods here,10 corresponding to the explicit O(∆t) and

O(∆t3/2) methods above. An O(∆t) method (i.e., a stochastic Runge–Kutta method of comparable accuracy
to the Milstein method) is

dn = yn + α(yn, tn)∆t+ β(yn, tn)
√
∆t

yn+1 = yn +
1

2
[α(yn, tn) + α(yn+1, tn+1)] ∆t+ β(yn, tn)∆Wn

+
1

2
√
∆t

[β(dn, tn+1)− β(yn, tn)][∆W 2
n −∆t].

(implicit stochastic Runge–Kutta method, order 1) (27.33)
Here, we have taken a simple average of α(yn, tn) and α(yn+1, tn+1). Of course, any weighted average could

10Kloeden and Platen, op. cit.; P. E. Kloeden and E. Platen, ‘‘Higher-Order Implicit Strong Numerical Schemes for Stochastic
Differential Equations,’’ Journal of Statistical Physics 66, 283 (1992) (doi: 10.1007/BF01060070).

http://dx.doi.org/10.1007/BF01060070


1172 Chapter 27. Stochastic Differential Equations

be taken, interpolating between explicit and fully implicit. Similarly, an O(∆t3/2) method is

d1± = yn + α(yn, tn)∆t± β(yn, tn)
√
∆t

d2± = d1+ ± β(d1+, tn+1)
√
∆t

yn+1 = yn + β(yn, tn)∆Wn +
1

2
[α(yn+1, tn+1) + α(yn, tn)] ∆t

+
1

4
√
∆t

[β(d1+, tn+1) + β(d1−, tn−1)]
(
∆W 2

n −∆t
)

+
1

2∆t
[β(d1+, tn+1)− 2β(yn, tn) + β(d1−, tn−1)] [∆Wn∆t− (I10)n]

+
1

2
√
∆t

[α(d1+, tn+1)− α(d1−, tn−1)]
[
(I10)n −

∆Wn∆t

2

]
+

1

4∆t
[β(d2+, tn+1)− β(d2−, tn−1)− β(d1+, tn+1) + β(d1−, tn−1)]

(
∆W 2

n

3
−∆t

)
∆Wn.

(stochastic Runge–Kutta method, order 3/2) (27.34)
This form is specific to the choice of a half ‘‘degree of implicitness’’ (that is, an average of α at the present
and advanced times). When comparing these methods to the corresponding explicit methods in the last
section on the example problem (27.25), the performance is about the same (with a slight advantage in
the order 1 case) for a given time step, and the cpu time is again about the same since the calculation is
dominated by the random-number generation, not by the implementation of the finite-difference formulae or
by the functional iteration in the implicit schemes.

Of course, similar tricks can be done with any of the schemes we have presented so far: the deterministic
step can be taken with high-order deterministic methods (such as fourth-order Runge–Kutta), so long as the
stochastic parts are treated according to SDE-adapted methods as presented here.

The formulae here and in the last section have been implemented in a publicly-available Fortran 90
module.11 This module includes the facilities described below to generate consistent Brownian paths with
different step sizes, and a sample code implementing the test problem above is included.

27.6 Strong and Weak Convergence

Up until now, we have been considering a particular kind of convergence of solutions of SDEs, strong
convergence. This means we are considering pathwise convergence of solutions. If ỹ(t;∆t) is a finite-
difference approximation to the true solution y(t) to the SDE (27.1), then the method for generating ỹ(t;∆t)
is of strong order γ if at fixed t,

〈〈y(t)− ỹ(t;∆t)〉〉 = O(∆tγ).
(27.35)

(strong convergence condition)

The order here again refers to the scaling behavior of the global error. Another less-demanding convergence
criterion refers to convergence of ensemble means. The same numerical method is said to have weak order
δ if for every polynomial g(y),

〈〈g(y(t))〉〉 − 〈〈g(ỹ(t;∆t))〉〉 = O(∆tδ)
(27.36)

(weak convergence condition)

at fixed time t. Strong convergence at order γ implies weak convergence of at least the same order. For
example, we argued that the stochastic Euler method has strong order 1/2. This is due to an error term
proportional to I11, which has zero mean; when considering expectation values, this error term is wiped
out, and the stochastic Euler scheme is actually of weak order 1.12 The Milstein method turns out to have

11SDERK90, available online at http://atomoptics.uoregon.edu/~dsteck/computer.html.
12G. N. Milshtein, ‘‘A Method of Second-Order Accuracy Integration of Stochastic Differential Equations,’’ Theory of Prob-

ability and its Applications 23, 396 (1978) (doi: 10.1137/1123045).

http://atomoptics.uoregon.edu/~dsteck/computer.html
http://dx.doi.org/10.1137/1123045
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both strong and weak order 1.13 Since we are normally thinking about solutions to SDEs as individually
interesting objects (modeling individual realizations of a continuous measurement process, for example), we
will generally be concerned with the more difficult case of strong convergence.

27.7 Consistent Brownian Paths

In considering the strong convergence of the solution to an SDE, it is in general easy to check the convergence
where the exact solution is known, as in the test problem above. However, this is obviously more difficult
in the generic case where the exact solution is not known. In deciding whether or not to accept a particular
numerical solution, in the deterministic case you would usually just run the integration again, but with a
different step size (say half the original step size). If the two solutions match to within some tolerance,
then you can accept the solution. But this is trickier with SDEs. Suppose that you use a random number
generator to generate a sequence of Wiener increments

∆W0, ∆W1, ∆W2, . . . , (27.37)

where
〈〈
∆W 2

n

〉〉
= ∆t. To cut the step size in half and rerun things, first of all, the same set of random

numbers must be used, otherwise the two runs will not in general be well correlated. But even if we use the
same set of random numbers to generate the new Wiener increments,

∆W
(1/2)
0 , ∆W

(1/2)
1 , ∆W

(1/2)
2 , ∆W

(1/2)
3 , ∆W

(1/2)
4 , ∆W

(1/2)
5 , . . . , (27.38)

where 〈〈(∆W (1/2)
n ) 2〉〉 = ∆t/2, we will still have problems, because the increments don’t line up: the first

random number in the two cases generated ∆W0 and ∆W
(1/2)
0 , while the second random number generated

∆W1 and ∆W
(1/2)
1 . However, ∆W1 and ∆W

(1/2)
1 don’t correspond to the same absolute time. In fact, for

consistency, what we require is

∆W0 = ∆W
(1/2)
0 +∆W

(1/2)
1 ; ∆W1 = ∆W

(1/2)
2 +∆W

(1/2)
3 ; ∆W3 = ∆W

(1/2)
4 +∆W

(1/2)
5 , (27.39)

and so on. These conditions allow both sequences to correspond to time integrals (I1)n of the same ideal,
particular realization of the Wiener process W (t), which we will refer to as a particular Brownian path.
Thus, what we require is a procedure for constructing sequences of Wiener increments with different step
sizes, but corresponding to different paths.

One convenient method for doing this is to start with the sequence of Wiener increments ∆Wn on the
coarser time step ∆t, and then to refine it consistently onto the finer time grid of step ∆t/2.14 That is, given
a Gaussian Wiener increment ∆Wn with variance ∆t, we will use another Gaussian random variable z of
unit variance (i.e., standard normal) to generate two new, uncorrelated Gaussian random numbers ∆W

(1)
n

and ∆W
(2)
n , each of variance ∆t/2 and satisfying ∆W

(1)
n + ∆W

(2)
n = ∆Wn. These conditions are clearly

satisfied if we choose15

∆W
(1)
n =

1

2
∆Wn +

√
∆t

2
z

∆W
(2)
n =

1

2
∆Wn −

√
∆t

2
z.

(27.40)
(refinement of Brownian path)

This procedure may obviously be iterated to obtain consistent Brownian paths with yet smaller time steps
(by powers of two), creating a tree structure of Wiener increments, with different levels corresponding to
different step sizes.

13G. N. Milshtein, op. cit.
14J. G. Gaines and T. J. Lyons, ‘‘Variable Step Size Control in the Numerical Solution of Stochastic Differential Equations,’’

SIAM Journal on Applied Mathematics 57, 1455 (1997) (doi: 10.1137/S0036139995286515).
15Paul Lévy, Processus Stochastiques et Mouvement Brownien (Gauthier–Villars, 1948).

http://dx.doi.org/10.1137/S0036139995286515
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∆W0

∆W
1/2
0

∆W
1/4
0 ∆W

1/4
1

∆W
1/2
1

∆W
1/4
2 ∆W

1/4
3

∆W1

∆W
1/2
2

∆W
1/4
4 ∆W

1/4
5

∆W
1/2
3

∆W
1/4
6 ∆W

1/4
7

Descending one level on this Brownian tree involves generating a new random number for each Wiener
increment on the coarser level, and then combining them as in Eqs. (27.40) to generate the Wiener increments
on the finer level. This procedure may be continued indefinitely to consistently realize Brownian paths with
arbitrarily fine steps.

This procedure allows you, for example, to run one simulation with one time step ∆t and another
∆t/2 on the same Brownian path, and then compare the two runs to estimate the numerical error. Or you
can run many different step sizes and examine the convergence behavior of the solution. Consistency of the
Brownian path is also an essential first step in implementing adaptive time-step methods for SDEs, which are
much more difficult than for ODEs. (The stochastic Euler method, for example, as a basis for an adaptive
method can lead to convergence to a wrong solution!16)

27.7.1 Consistent Multiple Itō Integrals

One remaining point to address is that for the order 3/2 Runge–Kutta methods, we also need to refine (I10)n
consistently onto finer time grids. One conceptually simple way to generate the (I10)n in the first place is
to generate the Wiener increments on a finer scale than needed for the integration. That is, if we intend
to generate a finite-difference solution to an SDE with time step ∆t, Wiener increments ∆Wn, and multiple
integrals (I10)n, then we should start by generating finer Wiener increments δWn for step size δt < ∆t.
A reasonable choice in practice would be, say, δt = ∆t/20 (although this also works if δt = ∆t/2). Then
compute ∆Wn by the simple sum,

∆Wn =

Nδ∑
j=1

δWj , (27.41)

where Nδ is the number of temporal substeps per integration step (20 or 2, as we mentioned above). This
expression is exact, and hasn’t gotten us anything because we could have just picked ∆Wn directly. The
point is that we may also compute (I10)n via the deterministic Euler method

(I10)n =

∫ tn+1

tn

dt′W (t′) ≈ δt
Nδ∑
j=2

(
j∑

k=1

δWk

)
. (27.42)

We would normally count the global error of this approximation as O(δt) = O(∆t) if we keep Nδ fixed.
However, (I10)n itself is O(∆t3/2), and so accounting for the coefficient of the global error term, the error
in the approximation (27.42) is O(∆t3/2δt) = O(∆t5/2). Thus, this approximation is easily adequate for
the order 1.5 methods (27.24) and (27.34). Furthermore, from the last section we know how to refine the
increments δWn onto a finer time grid, and thus we can consistently generate the (I10)n also with finer time
steps on the same Brownian path.

16Gaines and Lyons, op. cit.
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27.7.1.1 Lévy Areas

A better approximation to the integral (I10)n is to compute the Lévy area17

(Aij)n :=
1

2

(∫ tn+1

tn

dW (j)(t′)

∫ t′

t

dW (i)(t′′)−
∫ tn+1

tn

dW (i)(t′)

∫ t′

t

dW (j)(t′′)

)
=

1

2
[(Iij)n − (Iji)n] ,

(Lévy area) (27.43)
where in the notation here, dW 0 ≡ dt and dW 1 ≡ dW . We can also approximate this by the (stochastic)
Euler scheme (which is equivalent to the Milstein scheme for these integrals),

(Aij)n ≈
1

2

(
Nδ∑
p=2

δW (j)
p

p−1∑
q=1

δW (i)
q −

Nδ∑
p=2

δW (i)
p

p−1∑
q=1

δW (j)
q

)
. (27.44)

In particular, the Lévy area that we want to approximate is

(A10)n ≈
1

2

(
Nδ∑
p=2

δt

p−1∑
q=1

δWq −
Nδ∑
p=2

δWp

p−1∑
q=1

δt

)

=
δt

2

(
Nδ∑
p=2

p−1∑
q=1

δWq −
Nδ∑
p=2

δWp(p− 1)

)
.

(27.45)

Then since
(A10)n =

1

2
[(I10)n − (I01)n] = (I10)n −

1

2
∆t∆Wn, (27.46)

where we used Eqs. (27.14), we can compute (I10)n based on this approximation to the Lévy area.
To see why the Lévy area is better despite the extra complication of the formula, we can compute the

variance of the numerical approximant (27.42) to (I10)n:

〈〈
(Î10)

2
n

〉〉
= δt2

[
(Nδ − 1)2

〈〈
δW 2

1

〉〉
+ (Nδ − 1)2

〈〈
δW 2

2

〉〉
+ (Nδ − 2)2

〈〈
δW 2

3

〉〉
+ · · ·+ (1)2

〈〈
δW 2

Nδ

〉〉]
= δt3

(Nδ − 1)2 +

Nδ−1∑
j=1

j2


= δt3

[
N 3
δ

3
+
N 2
δ

2
− 11Nδ

6
+ 1

]
=

∆t3

3

[
1 +

3

2

δt

∆t
− 11

2

(
δt

∆t

)2

+ 3

(
δt

∆t

)3
]
.

(27.47)
Here, we used Nδ δt = ∆t. The variance should be ∆t3/3, as we wrote in Eq. (27.16). Thus, this numerical
approximation gets variance of the generated (I10)n’s wrong by an O(δt/∆t) bias.

17Gaines and Lyons, op. cit.



1176 Chapter 27. Stochastic Differential Equations

For the Lévy area, we can also compute the variance of the numerical approximant:

〈〈
(Â10)

2
n

〉〉
=
δt2

4

[
(Nδ − 1)2

〈〈
δW 2

1

〉〉
+ (Nδ − 1− 1)2

〈〈
δW 2

2

〉〉
+ (Nδ − 2− 2)2

〈〈
δW 2

3

〉〉
+ · · ·+ (1− (Nδ − 1))2

〈〈
δW 2

Nδ

〉〉 ]
=
δt3

4

(Nδ − 1)2 +

Nδ−1∑
j=1

[j − (Nδ − j)]2


=
δt3

4

[
N 3
δ

3
− 4Nδ

3
+ 1

]
=

∆t3

12

[
1− 4

(
δt

∆t

)2

+ 3

(
δt

∆t

)3
]
.

(27.48)

The true variance of the Lévy area is

〈〈
(A10)

2
n

〉〉
=
〈〈
(I10)

2
n

〉〉
+
∆t2

4

〈〈
∆W 2

n

〉〉
−2

∆t

2
〈〈(I10)n∆Wn〉〉 =

∆t3

3
+
∆t2

4
∆t−2

∆t

2

∆t2

2
=

1

12
∆t3, (27.49)

and thus the approximant biases the variance by an error of O[(δt/∆t)2]. Since we can compute the integral
(I10)n directly from the Lévy area by adding a quantity that can be computed exactly, the bias to the
variance of (I10)n by this method is only O[(δt/∆t)2], which is one order better than the previous method.

27.7.1.2 Direct Refinement

Another method for directly refining ∆Wn and (I10)n onto a finer temporal grid, in the spirit of Eqs. (27.40),
is to combine them directly with two independent, standard-normal random numbers z1 and z2, according
to the linear transformation18



∆W
(1)
n

(I10)
(1)
n

∆W
(2)
n

(I10)
(2)
n


=



0 −
√
∆t

4
−1

4

3

2∆t

∆t3/2

8
√
3

0 −∆t

8

1

2

0

√
∆t

4

5

4
− 3

2∆t

−∆t3/2

8
√
3

∆t3/2

8

∆t

4
−1

4





z1

z2

∆Wn

(I10)n


.

(refinement of Brownian path) (27.50)
Here, the ∆W

(1)
n and ∆W

(2)
n are the Wiener increments for the two subintervals of duration ∆t/2, and

(I10)
(1)
n and (I10)

(2)
n are the corresponding double integrals. This method obviously has the advantage of

fewer extra random numbers generated and fewer arithmetic operations for each refinement, compared to
the Lévy-area method above. This method also has no bias in terms of the variance of the refined variables.

To see where this method comes from, consider the inverse problem, which is that if you have a
Wiener path defined on a fine time grid, how do you define the Wiener path on a coarser subgrid? The
transformation for the coarse increments ∆W are easy to compute by summing the finer increments, but
the transformations for the multiple integrals are more complicated. Consider the multiple integrals over
the time interval [0, t], which is divided into N subintervals of time ∆ = t/N . Then the multiple integrals

18Kevin Burrage, Pamela Burrage, and Taketomo Mitsui, ‘‘Numerical solutions of stochastic differential equations — imple-
mentations and stability issues,’’ Journal of Computational and Applied Mathematics 125, 171 (2000) (doi: 10.1016/S0377-
0427(00)00467-2). Actually, these authors give a more general transformation to two time intervals of nonequal duration.

http://dx.doi.org/10.1016/S0377-0427(00)00467-2
http://dx.doi.org/10.1016/S0377-0427(00)00467-2
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on the full interval in terms of the fine-step integrals may be written (Problem 27.4)

W (t) =

N−1∑
n=0

∆W (n∆t)

(I10)
t
0 =

N−1∑
n=0

[
(I10)

(n+1)∆t
n∆t + (N − 1− n)∆t∆W (n∆t)

]
(I100)

t
0 =

N−1∑
n=0

[
(I100)

(n+1)∆t
n∆t +∆t(N − 1− n)(I10)(n+1)∆t

n∆t +
∆t2

2
(N − 1− n)2∆W (n∆t)

]
(I1000)

t
0 =

N−1∑
n=0

[
(I1000)

(n+1)∆t
n∆t +∆t(N − 1− n)(I100)(n+1)∆t

n∆t

+
∆t2

2
(N − 1− n)2(I10)(n+1)∆t

n∆t +
∆t3

3!
(N − 1− n)3∆W (n∆t)

]
(I11)

t
0 =

N−1∑
n=0

[
(I11)

(n+1)∆t
n∆t +∆W (n∆t)W (n∆t)

]
(I110)

t
0 =

N−1∑
n=0

[
(I110)

(n+1)∆t
n∆t +∆t(N − 1− n)

[
(I11)

(n+1)∆t
n∆t +∆W (n∆t)W (n∆t)

]
+ (I10)

(n+1)∆t
n∆t W (n∆t)

]
.

(coarser Brownian path) (27.51)
Here, the explicit time ranges are specified for each multiple integral for clarity, so that for example

(I10)
t2
t1 :=

∫ t2

t1

dt

∫ t

t1

dW (t′). (27.52)

Then the transformations (27.50) follow from writing each refined variable as a linear combination of the
coarse variables and the extra random variables, and enforcing consistency of Eqs. (27.51) as well as the
proper variances and covariances of the refined variables.

27.8 Random Numbers

The ability to generate quality ‘‘random’’ numbers on a computer is obviously an important part of simulating
stochastic systems. We will thus spend a bit of time surveying some useful techniques towards these goals.

27.8.1 Uniform Distribution

The workhorse of stochastic simulations is a random-number generator that generates numbers uniformly
distributed on the interval [0, 1). These numbers can then be transformed to whatever distribution needed
by various methods. Most compilers and canned software packages already include such a generator, so why
bother thinking about it? First, you might not want to trust just any random-number generator that was
handed to you, since there have historically been problems found with random-number generators, some
subtle.19 Second, it is useful to have a portable random-number generator, which can generate the exact
same sequence of ‘‘random’’ numbers under any compiler/architecture, which is impossible using ‘‘built-
in’’ generators. Doing this generally requires implementing the generator in integer arithmetic to avoid
floating-point rounding variations on different architectures. This is very handy when porting your code to

19Alan M. Ferrenberg, D. P. Landau, and Y. Joanna Wong, ‘‘Monte Carlo simulations: Hidden errors from ‘good’ random
number generators,’’ Physical Review Letters 69, 3382 (1992) (doi: 10.1103/PhysRevLett.69.3382). The authors found that
certain Monte-Carlo methods combined with certain random-number generators (which otherwise passed standard statistical
tests) produced clear systematic errors in the fourth or fifth decimal places of calculated quantities in the 2D Ising model.

http://dx.doi.org/10.1103/PhysRevLett.69.3382
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a new platform: the easiest test is just to run it and verify that you get essentially the same output for a
particular run. This won’t happen if the random numbers are different, however. Finally, having several
known methods available allows you to switch methods to make sure you aren’t seeing any artifacts due to
a particular method.

So just what is a random-number algorithm on a computer? Obviously, it is a deterministic algorithm,
and ultimately, with the finite precision of any computer, the algorithm will be periodic. The idea is to come
up with an algorithm that (1) produces the correct (uniform) distribution, (2) has a period much larger than
the number of pseudorandom numbers needed for simulations, and (3) shows no detectable correlations over
sets of pseudorandom numbers large enough for useful simulations. The algorithm must generally be chosen
carefully to meet these criteria.20 Useful algorithms may be ‘‘seeded’’ with an initial value to produce the
same set of random numbers each time. Also, it is desireable that different seeds correspond to different
random-number sequences (that is, they should start the generator with initial conditions such that the
sequences do not overlap for many iterations. Batteries of statistical tests are available to check the quality
of random-number generators, such as Marsaglia’s ‘‘Diehard Battery’’21 and the battery of tests described by
Knuth.22 We point out three algorithms here that meet all these criteria, plus some methods for improving
the random numbers further.23

27.8.1.1 L’Ecuyer’s Multiple Recursive Generator

A class of computationally very simple methods go by the name of linear congruential generators
(LCGs),24 and implement the recurrence

xn+1 = (axn + c) mod m
(27.53)

(linear conguential generator)
in integer arithmetic. These algorithms, implemented with real numbers, would clearly be simple chaotic
systems, where the state xn is stretched by a, shifted by c, and then folded by m. Of course, in integer
arithmetic, the sequence is periodic, and the constants here must be chosen carefully to give decent per-
formance (clearly a = 1, c = 1, and m = 10 would be a bad choice!). These methods are popular due to
their simplicity, but they can have problems, such as a period that may be short in the context of modern
processors, and they can have some problems with statistical tests25

A multiple recursive generator (MRG) improves on LCGs at the expense of added complexity by
expanding the depth of the recurrence. An MRG of order k has the form

xn+1 = (a1xn + a2xn−1 + · · ·+ akxn−k+1 + c) mod m.

(multiple recursive generator) (27.54)
L’Ecuyer’s combined multiple recursive generator26 uses two MRGs, where the first generator hsa coefficients

m1 = 2 147 483 647 = 231 − 1

a11 = 0

a12 = 63 308

a13 = −183 326

b1 = 0

(27.55)

20For a particularly amusing discussion, see Donald E. Knuth, The Art of Computer Programming, Volume 2: Seminumerical
Algorithms, 3rd ed. (Addison Wesley, 1998), Chapter 3.

21George Marsaglia and Wai Wan Tsang, ‘‘Some difficult-to-pass tests of randomness,’’ Journal of Statistical Software 7, No.
3, 1 (2002).

22Donald E. Knuth, op. cit., Section 3.3, p. 41.
23All of the algorithms described here are implemented in the Fortran 90 module/library RANDOM_PL, available online at

http://atomoptics.uoregon.edu/~dsteck/computer.html. Also implemented are the shuffling and combination algorithms
for any combination of the three generators, as well as facilities for checkpointing, generating vectors of numbers, generating
Gaussian numbers, and running multiple equivalent (but differently seeded) generators in parallel. These algorithms are also
implemented in the SDERK module mentioned above.

24see Donald E. Knuth, op. cit., Sections 3.2 and 3.3 for a detailed discussion of LCGs.
25Donald E. Knuth, op. cit., Sections 3.3.3 and 3.3.4.
26Pierre L’Ecuyer, ‘‘Combined Multiple Recursive Random Number Generators,’’ Operations Research 44, 816 (1996), specif-

ically the generator in Example 4.

http://atomoptics.uoregon.edu/~dsteck/computer.html
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while the second has
m2 = 2 145 483 479

a21 = 86 098

a22 = 0

a23 = −539 608

b2 = 0.

(27.56)

Some of the coeffiecients are zero as a compromise between speed and quality. The idea then is to run both
generators simultaneously and combine their outputs via

xn = (x(1)n + x(2)n ) mod m1. (27.57)

Since the first random-number generator is uniform over the positive range [0,m1−1], we can think of it being
a uniform distribution on the circle. Adding the second random number corresponds to a random rotation
of the circle, which doesn’t affect its distribution. This combination further breaks up any correlations or
problems that might occur with each individual generator. This combined generator has a period of about
2185, and outputs integers in the range [0, 231 − 2], which can then be divided by 231 to produce uniform
random numbers on [0, 1).

This generator can be seeded in an elegant way that guarantees that different seeds will produce
sequences that don’t overlap those of other seeds for a maximally long time. First, six initial numbers are
needed to start the recurrence, so we can just pick them to be some fixed but otherwise arbitrary, ‘‘random’’
numbers. For concreteness, we can choose

x
(1)
1 = 1 852 689 663

x
(1)
2 = 1 962 642 687

x
(1)
3 = 580 869 375

x
(2)
1 = 2 039 711 750

x
(2)
2 = 1 671 394 257

x
(2)
3 = 879 888 250.

(27.58)

Now the idea is that with the MRGs, we can efficiently skip ahead to anywhere in the random sequence via
a divide-and-conquer algorithm.27 To understand this, first note that the MRGs can be implemented as the
linear transformation xn+1

xn
xn−1

 =

 0 1 0
0 0 1
a1 a2 a3

 xn
xn−1
xn−2

 mod m =: A

 xn
xn−1
xn−2

 mod m (27.59)

on the three-dimensional state of the generator. Then advancing the generator forward n times is equivalent
to instead applying the matrix (An) mod m Then since the period is just slightly more than 2184, and if we
seed with a single 32-bit integer, there are 232 possible seed values. Thus, we can start different seeds 2184−32
or 5.7× 1045 iterations apart. Thus if s is the seed value, we must apply the matrices (A2184−32

)s mod m to
the initial state of the random number generators, where s is possibly of the order of 232. This seems like
an absurdly large amount of matrix multiplication just to get started!

The trick behind the divide and conquer algorithm is to compute the large power of the matrix A
recursively, according to

(An) mod m =


A (n = 1)
(AAn−1) mod m (n > 1, n odd)
(An/2An/2) mod m (n > 1, n even).

(divide-and-conquer algorithm) (27.60)
27This algorithm is described in depth by Pierre L’Ecuyer, ‘‘Random Numbers for Simulation,’’ Communications of the ACM

33, 85 (1990) (doi: 10.1145/84537.84555).

http://dx.doi.org/10.1145/84537.84555
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In this way, An may be computed in only O(log2 n) matrix multiplications. Specifically, (A2184−32

) mod m
may be computed in about 152 matrix multiplications. Then the matrix (A2184−32

)s mod m needed to
compute the seed can be computed in at most about 32 extra matrix multiplications, which is certainly
quite feasible.

27.8.1.2 Knuth’s Lagged-Fibonacci Generator

The second generator we mention is Knuth’s subtractive, lagged-fibonacci generator.28 This generator im-
plements the integer recurrence

Xj = (Xj−100 −Xj−37) mod 230,

(lagged–Fibonacci generator) (27.61)
which is obviously a multiple recursive generator. However, to improve the random numbers here, 1009
numbers can be generated at a time, but only the first 100 numbers used (the rest to be discarded). Knuth
provides an algorithm for initializing the first block of values so that the recurrence can take over; this is
done in such a way that each seed in the range [0, 230 − 3 = 1 073 741 821] gives a distinct sequence for
roughly at least the first 270 numbers (but take away a factor of 10 to account for discarding numbers). This
generator has a period of 229 · (2100 − 1), or 1038 numbers, which is quite good (again, take away a factor of
10 to account for discarding numbers). The generator gives a 32-bit integer output in the range [0, 231 − 2]
(note that the least significant bit is always 0, so the number is always odd), which can then be divided by
231 to produce a uniform random number on [0, 1).

27.8.1.3 Mersenne Twister

The Mersenne Twister generator of Matsumoto and Nishimura is rather more complicated than the other
algorithms, being of much higher dimension. Thus we do not describe the algorithm, but refer to the original
reference, where C source code is included.29 The reason we mention it is that it has an incredible period of
219937 − 1, and so by this standard is an extremely good generator, while still being fairly computationally
efficient. The state of this generator is represented by 624 32-bit integers, so the same number of initial
values are required. This method can be seeded by a single number simply by using it as the first integer,
and using a simple LCG method to seed the rest. The period is so long that it is exceedingly unlikely that
two seeds will produce overlapping sequences on any reasonable scale.

27.8.1.4 Randomizing Random Numbers

There are a few methods to try to improve the quality of random-number generators like the ones above.
The first method is to ‘‘shuffle’’ or ‘‘scramble’’ the output of one random-number generator, based on the
output of another.30 The idea is to maintain a ‘‘buffer’’ table of, say, 64 output numbers filled by the
primary generator. Then a random number is chosen from the second generator, and based on this, one
of the numbers in the buffer table is chosen to be the output number, and it is replaced by the primary
generator. This procedure extends the period of the shuffled sequence to be the least common multiple of
the two parent sequences, which for the above methods is to say incredibly long. An alternative is to to a
similar shuffle of a random sequence using its own randomness to choose which element of the shuffle table
to output. This is the Bays–Durham shuffle31 Then for example, the last output random number is used
to select which element of the scramble table to output. Even though only one generator is involved, the
method still improves the ‘‘randomness’’ of the parent generator. Both of these shuffling methods break up
short-range correlations that may exist in the methods above.

28Donald E. Knuth, op. cit., p. 186, Eq. (2) and the following discussion.
29Makoto Matsumoto and Takuji Nishimura, ‘‘Mersenne Twister: A 623-Dimensionally Equidistributed Uniform Pseudo-Ran-

dom Number Generator,’’ ACM Transactions on Modeling and Computer Simulation 8, 3 (1998) (doi: 10.1145/272991.272995).
30Donald E. Knuth, op. cit., p. 33, Algorithm M.
31Carter Bays and S. D. Durham, ‘‘Improving a Poor Random Number Generator,’’ ACM Transactions on Mathematical

Software 2, 59 (1976) (doi: 10.1145/355666.355670); Donald E. Knuth, op. cit., p. 34, Algorithm B.

http://dx.doi.org/10.1145/272991.272995
http://dx.doi.org/10.1145/355666.355670
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The other method for combining two random-number generators is the subtraction we mentioned above
for the L’Ecuyer algorithm. Combining in a second generator can’t make the first one worse, but may help
if it has some subtle defects. Combining three random number generators via subtraction and scrambling
gives the ultimate security for the paranoid computational scientist.

27.8.2 Gaussian Distribution

To pick random deviates from a standard normal distribution, or a Gaussian distribution with zero mean
and unit variance, with probability density

f(x) =
1√
2π
e−x

2/2, (27.62)

it turns out to be convenient to do so by generating two uniform deviates at a time, and then transform
them to Gaussian deviates. The first algorithm we mention for doing this is the Box–Muller method,32

To understand it, we first write the joint distribution for two standard normal deviates as

f(x, y) =
1

2π
e−(x

2+y2)/2, (27.63)

which we can transform to polar coordinates by setting f(x, y) dx dy = fr(r, θ) dr dθ to obtain

fr(r, θ) =
1

2π
r e−r

2/2 (27.64)

via the usual polar transformation. This is still separable, as we may regard the polar distribution to be the
product of

fθ(θ) =
1

2π
, fr(r) = r e−r

2/2, (27.65)

where the first distribution is obviously uniform over [0, 2π). For the second, we may set

du = fr(r) dr = r e−r
2/2 dr = −d

(
e−r

2/2
)
, (27.66)

then it is consistent to identify
u = 1−

(
e−r

2/2
)
, (27.67)

or solving for r,
r =

√
−2 log(1− u). (27.68)

Of course, 1− u has the same distribution as u, so we may as well use it instead:

r =
√
−2 logu. (27.69)

What this means is that if we take u to be a uniform deviate and use this transformation to find r, then
r will have the distribution fr(r) in Eqs. (27.65). The boundary conditions are that u = 1 corresponds to
r = 0 and u = 0 corresponds to r −→∞, with the transformation r(u) being a monotonic (and one-to-one)
function.

So, to summarize the Box–Muller algorithm, we choose U1 and U2 to be uniform deviates on [0, 1),
and set U = U1 and Θ = 2πU2. Then r =

√
−2 logu, and since x = r cos θ and y = r sin θ, then the two

transformed numbers

Z1 =
√
−2 log(1− U1) cos(2πU2), Z2 =

√
−2 log(1− U1) sin(2πU2),

(Box–Muller transformation) (27.70)
32G. E. P. Box, Mervin E. Muller, ‘‘A Note on the Generation of Random Normal Deviates,’’ Annals of Mathematical Statistics

29, 610 (1958).
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are two independent, standard-normal deviates. Note here that we were careful to compute the logarithm
of 1−U1 rather than U1 here—if U1 is uniform on [0, 1) (as is the case for most random-number generators
on computers) it is best to avoid the (rare but problematic) possibility of computing log(0), whereas log(1)
is no problem at all.

An variation on the Box–Muller method is the polar Marsaglia method.33 Suppose w1 and w2 define
the coordinates for a uniformly distributed random number inside the unit circle. Then let R2 =W 2

1 +W 2
2 .

From the usual transformation to polar coordinates, the probability density for R is 2R (the area element
at R has an area that scales as R, and the 2 is fixed by normalization). Then since d(R2) = 2RdR, we can
identify the probability density for R2 as being uniform on [0, 1). Thus, we may transform R to the radius
r in the 2D normal distribution via Eq. (27.69) (identifying R with u). Finally, since sin θ = w2/R and
cos θ = w1/R, we may compute the trigonometric functions in Eq. (27.70) by these simple ratios, so that

Z1 =W1

√
−2 logR2

R2
, Z2 =W2

√
−2 logR2

R2
.

(27.71)
(polar Marsaglia method)

The advantage here is that the sin and cos functions are eliminated, and they may potentially be compu-
tationally expensive. Now the remaining issue is, how to pick W1 and W2? Simply pick the usual uniform
deviates U1 and U2 on [0, 1), and take W1,2 = 2U1,2−1 to create a uniform distribution on the unit box from
[−1, 1) in both directions. Now compute R2 =W 2

1 +W 2
2 . If R2 < 1, then proceed with the transformation;

otherwise pick new deviates U1 and U2 and try again until you end up with a pair inside the unit circle. The
probability on one attempt of succeeding by ending up in the unit circle is π/4 ≈ 78.5%; on average, the
random numbers will need to be picked (1)(π/4)+(2)(1−π/4)(π/4)+(3)(1−π/4)2(π/4)+ · · · = 4/π ≈ 1.27
times to successfully generate the two normal numbers.

In principle, the polar Marsaglia method should be faster than the Box–Muller method because the sin
and cos functions can be expensive to evaluate. However, this is tempered by the presence of a division and
the generation of extra random numbers. To test this, 108 normal deviates were generated on a relatively
modern computer (2.16 GHz Intel Core Duo) in Fortran 90. Using Knuth’s lagged Fibonacci generator, the
polar Marsaglia method is indeed faster by about 10-15%. However, using a more complicated generator
(the L’Ecuyer combined MRG subtractively mixed with the Mersenne twister, then scrambled by Knuth’s
generator), the two methods were about equally fast. Thus, either method is acceptable, and the Box–Muller
method may even be preferable in that the generator will advance by a known number of iterations when
generating normal deviates.

27.8.3 Other Distributions

While not directly useful in simulations of the type of SDEs that we considered at the start of the chapter,
the methods so far for generating random numbers are useful in generating random deviates with other
distributions useful in quantum optics, so it is worth considering these briefly here.

27.8.3.1 Angular Distributions

One useful class of random-deviate distributions are angular distributions, as for choosing random spontaneous-
emission directions. A simple idea here is to simply use the rejection method, as we mentioned above in the
polar Marsaglia method to convert a uniform variate on the unit box to a uniform variate on the unit circle.
In that case, we simply rejected any deviate that fell outside the desired circle. Thus, suppose we have a
distribution function f(θ, φ) that we wish to simulate. Our procedure will be a ‘‘double rejection’’ as follows:

1. Choose three uniform deviates U1, U2, and U3 on [0, 1).

2. Convert them to obtain a uniform deviate in the unit cube (that is, from [−1, 1) in all directions) by
setting X = 2U1 − 1, Y = 2U2 − 1, and Z = 2U3 − 1.

33G. Marsaglia, ‘‘Improving the polar method for generating a pair of random variables,’’ Boeing Scientific Research Labora-
tory report D1-82-0203 (1962); Donald E. Knuth, op. cit., Algorithm P (p. 122).
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3. Obtain a uniform deviate in the unit sphere by rejection: Compute R2 = X2 + Y 2 + Z2 and continue
if R2 ≤ 1 (and also compute R =

√
R2); go back to step 1 otherwise.

4. Convert to spherical coordinates by computing

Θ = tan−1
√
X2 + Y 2

Z

Φ = tan−1 Y
X
.

(27.72)

Note that for computing Φ, the arctangent must be defined such that it can distinguish between
arguments such as (X,Y ) = (1, 1) and (X,Y ) = (−1,−1), which would naively give the same answer.
This is handled in Fortran and other languages by the atan2 function.

5. Obtain a deviate with the desired angular distribution by testing to see if

U4 ≤
f(Θ,Φ)

sup{f(θ, φ), θ ∈ [0, π], φ ∈ [0, 2π]}
, (27.73)

where U4 is another uniform deviate on [0, 1). To save from running the random-number generator
again, we can alternately use R3 in place of U4, since it is likewise a uniform deviate on [0, 1), and it
is independent of the angles. We normalize by the maximum possible value of f(θ, φ) to maximize the
efficiency of the method. If the condition is true, we’re done; if not, start over at step 1.

For example, if we were generating a dipole distribution

f(θ, φ) =
3

8π
sin2 θ, (27.74)

in step 5 we would check to see if
R3 ≤ sin2 Θ, (27.75)

and if so, keep the generated angles. In this example, the success probability for each triple of uniform
deviates U1,2,3 to generate a uniform deviate in the unit sphere is π/6 ≈ 52%. Once this happens, the
probability of generating a deviate with the dipole distribution pattern is 2/3 ≈ 67%, for a combined success
probability of π/9 ≈ 34.9%. The first probability is given by the volume ratio of the unit sphere and cube,
while the second is given by the volume under the ‘‘unwrapped’’ surface sin3 θ (i.e., not the volume inside
the boundary r = sin2 θ), relative to the same volume under the surface sin θ, or simply 4π.

Of course, the normalized values X/R, Y /R, and Z/R give the projections of the unit vector pointing
in the (Θ,Φ) direction along the x, y, and z directions.

A slightly more efficient method generates the angle values more directly. The normalized probability
density for equally-likely emission in any direction is

f(θ, φ) =
sin θ
4π

, (27.76)

with normalization convention ∫ π

0

dθ

∫ 2π

0

dφ f(θ, φ) = 1. (27.77)

That is, the φ variable is already uniform, so we can handle it by picking a uniform deviate u2 and rescaling:
φ = 2πu2. Thus, we need only consider the θ variable, with normalized density

f(θ) =
1

2
sin θ. (27.78)

If we pick a second uniform deviate u1 and equate probability densities via du1 = (1/2) sin θ dθ, note that
this is equivalent to equating the cumulative probability functions. For the uniform deviate, the cumulative
distribution is simply u1, while for θ, the cumulative distribution is

F (θ) =
1

2
− 1

2
cos θ = sin2 θ. (27.79)
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Equating the cumulative distributions, we obtain θ = sin−1√u1. Thus, to summarize, we should choose two
uniform deviates U1 and U2, and then compute the angles via

Θ = sin−1
√
U1, Φ = 2πU2.

(transformation from uniform to angular variables) (27.80)
This saves one uniform random deviate compared to the rejection method (plus any rejected deviates),
although it requires evaluating the more complicated arcsine function.

27.8.3.2 Exponential Distributions

Another simple example is the exponential distribution,

f(x) = γ e−γx, (27.81)

defined on the nonnegative half of the real line. The cumulative density is an exponential rise

F (x) = 1− e−γx, (27.82)

and the inverse of this function gives x in terms of a uniform deviate U :

X = − 1

γ
log(1− U).

(27.83)
(exponential-deviate generation)

Of course, the result is always a positive real number. Also, U can be substituted for U in the logarithm, but
if the random-number generator gives U ∈ [0, 1), the above form guards against the possibility of crashing
the code by computing log(0).

27.8.3.3 Power-Law Distributions

Suppose we have a power-law probability density defined between a and b:

f(x) = ηxγ , 0 < a ≤ x ≤ b. (27.84)

We have chosen the bounds ‘‘safely’’ here, but in some cases they may be negative, too. Here, η is a
normalization factor, given by

η =


γ + 1

bγ+1 − aγ+1
if γ 6= −1

1

log b− log a
if γ = −1.

(27.85)

Note that we can safely take a −→ 0 if γ > −1, otherwise we need a > 0. Similarly, we can safely take
b −→∞ if γ < −1, otherwise we need b <∞. If γ = 1, we strictly need 0 < a < b <∞.

First, in the case γ 6= −1, we have a cumulative distribution

F (x) =
xγ+1 − aγ+1

bγ+1 − aγ+1
(γ 6= −1). (27.86)

Setting this equal to a cumulative distribution u for a uniform deviate, and solving, we find the algorithm

X = γ+1
√
aγ+1 + (bγ+1 − aγ+1)U = γ+1

√
aγ+1(1− U) + bγ+1U (γ 6= −1)

(power-law-deviate generation) (27.87)
for a power-law deviate X in terms of a uniform deviate U . However, if γ = −1, then we have the cumulative
distribution

F (x) =
logx− log a
log b− log a

(γ = −1). (27.88)
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This leads to the transformation

X = exp
[

log a+ (log b− log a)U
]
= exp

[
(1− U) log a+ U log b

]
(γ = −1).

(power-law-deviate generation) (27.89)
In both cases, the transformation is a weighted average of the endpoints (according to the value U), within
a nonlinear transformation (power-law or logarithm).

One context in which the power-law distribution comes up in the Monte-Carlo evaluation of an integral
of the form

I =

∫ ∞
0

dxxγf(x) (γ < −1), (27.90)

where the restriction on γ is just to simplify the following analysis. Clearly, this integral only converges if
f(x) converges to a finite constant as x −→ ∞, and if f(x) converges quickly enough to zero as x −→ 0.
For the power-law distribution to do us any good here we must have a lower bound a > 0. We will thus
further assume that f(x) = 0 for all x < xmin (or at least that the region x < xmin contributes negligibly
to the integral—we can always find some appropriate boundary that satisfies this condition to any desired
precision). Then

I =

∫ ∞
xmin

dxxγf(x) (γ < −1), (27.91)

and thus we can take advantage of the power-law distribution to turn this into an ensemble average,

I = η−1
〈〈
f(x)

〉〉
x
=
−x γ+1

min
γ + 1

〈〈
f(x)

〉〉
x

(γ < −1), (27.92)

where from Eq. (27.87), we generate the values of x according to

X = xmin(1− U)1/(γ+1) (γ < −1). (27.93)

Note again that we could replace 1− U by U to simplify the formula here, but it is safer if U is defined on
[0, 1) to leave it in this form, so that the (rare) occurrence of the value U = 0 does not pose any problem.

27.8.3.4 Gamma Distribution

A more complicated distribution, something of a combination of power-law and exponential distributions, is
the gamma distribution

f(x; γ, β) =
βγ

Γ[γ]
xγ−1e−βx (x > 0, γ > 0, β > 0), (27.94)

named thusly due to the gamma function in the normalization factor. In the case of γ = 1, this is simply an
exponential distribution, as in Eq. (27.81).

One useful interpretation of the gamma distribution comes from the property that if X1 ∼ f(x; γ1, β)
(i.e., X1 is gamma distributed with parameters γ1 and β) and X2 ∼ f(x; γ2, β), then (Problem 27.2)

X = X1 +X2 ∼ f(x; γ1 + γ2, β). (27.95)

Thus, for example, if γ is an integer, the gamma-distributed deviate X can be interpreted as the sum of γ,
independent exponential deviates. This also means that as γ becomes large, f(x; γ, β) should converge to a
Gaussian distribution via the central limit theorem. It is also fairly simple to choose a gamma-distributed
deviate if γ = a is a relatively small integer, since the combination of exponential deviates

X = − 1

β

a∑
j=1

log(1− Uj) = −
1

β
log

 a∏
j=1

(1− Uj)


(gamma-distributed deviate, integer γ) (27.96)
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works, for a uniform deviates Uj . The latter form is more efficient on a computer, since it avoids the
calculation of multiple (expensive) logarithms.

Another useful special case of the gamma distribution occurs for γ = 1/2:

f(x; 1/2, β) =

√
β

πx
e−βx (x > 0, β > 0). (27.97)

Changing variables via x = z2/2 and dx = z dz =
√
2x dz leads to

f(z; 1/2, β) =

√
2β

π
e−βz

2/2 (z > 0, β > 0). (27.98)

This is a Gaussian distribution (or at least the positive half) with variance 1/β. Thus, it is also easy to pick
a gamma-distributed deviate for any half -integer value of γ. That is, if

X =
β

2
Z2 − 1

β

a∑
j=1

log(1− Uj) =
β

2
Z2 − 1

β
log

 a∏
j=1

(1− Uj)

 ,

(gamma-distributed deviate, half-integer γ) (27.99)
where a is a positive integer, Z is a standard-normal deviate, and the Uj are uniform deviates, then X is
distributed according to f(x; γ = a+ 1/2, β).

By the same coordinate change, the γ = 3/2 case,

f(x; 3/2, β) =
2β3/2

√
π

√
x e−βx (x > 0, β > 0), (27.100)

becomes

f(z; 3/2, β) =

√
β3

2π
z2 e−βz

2/2 (z > 0, β > 0). (27.101)

Notice that this is the same as a Gaussian distribution of variance 1/β for three variables x1, x2, and x3,
but transformed into spherical coordinates by z2 = x 2

1 + x 2
2 + x 2

3 . Thus, for γ = 3/2, it is possible to create
a deviate by summing the squares of three normal deviates (with appropriate scaling), or to add the square
of a normal deviate to an exponential deviate as in Eq. (27.99).

For more general γ (i.e., neither integer nor half-integer), it is in general necessary to use more com-
plicated methods, based on various forms of rejection sampling.34

34Luc Devroye, Non-Uniform Random Variate Generation (Springer, 1986), Section IX.3 (ISBN: 0387963057), http://www.
nrbook.com/devroye/.

http://www.amazon.com/gp/search/?field-isbn=0387963057
http://www.nrbook.com/devroye/
http://www.nrbook.com/devroye/


27.9 Exercises 1187

27.9 Exercises

Problem 27.1
Let us define ∆W and I10 over the same time interval ∆t as usual as

∆W :=

∫ ∆t

0

dW (t)

I10 :=

∫ ∆t

0

dt

∫ t

0

dW (t′).

(27.102)

Show that the variance of I10 and its covariance with ∆W are given by Eq. (27.16),

〈〈
I 2
10

〉〉
=

∆t3

3〈〈
I10 ∆W

〉〉
=

∆t2

2

(27.103)

as follows. View I10, defined over a time step ∆t, as the solution of the differential equation

dy =W (t) dt, (27.104)

with initial condition y(0) = 0, such that I10 = y(∆t). Then consider a finite-difference approximation
to the solution by integrating in N steps of duration δt = ∆t/N according to the Euler method (which
becomes exact as N −→∞).

Problem 27.2
Prove the addition property of the gamma distribution [Eq. (27.95)]: if X1 ∼ f(x; γ1, β) (i.e., X1 is
gamma distributed with parameters γ1 and β) and X2 ∼ f(x; γ2, β), where the gamma probability
density is

f(x; γ, β) =
βγ

Γ[γ]
xγ−1e−βx (x > 0, γ > 0, β > 0), (27.105)

then the sum is also gamma-distributed:

X = X1 +X2 ∼ f(x; γ1 + γ2, β). (27.106)

Problem 27.3
A useful probability density for sampling the T integral in worldline path integrals is

f(T ) = (2d2)(D+m)/2

Γ
[
D+m

2

] e−2d
2/T

T 1+(D+m)/2
. (27.107)

Show that this can be transformed to a gamma distribution, and describe the generation of deviates
T for D = 4 and integer m ≥ 0.

Problem 27.4
Derive the equations (27.51) relating the multiple integrals on the full time interval [0, t] to the multiple
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integrals defined on subintervals ∆t = t/N :

W (t) =

N−1∑
n=0

∆W (n∆t)

(I10)
t
0 =

N−1∑
n=0

[
(I10)

(n+1)∆t
n∆t + (N − 1− n)∆t∆W (n∆t)

]
(I100)

t
0 =

N−1∑
n=0

[
(I100)

(n+1)∆t
n∆t +∆t(N − 1− n)(I10)(n+1)∆t

n∆t +
∆t2

2
(N − 1− n)2∆W (n∆t)

]
(I1000)

t
0 =

N−1∑
n=0

[
(I1000)

(n+1)∆t
n∆t +∆t(N − 1− n)(I100)(n+1)∆t

n∆t

+
∆t2

2
(N − 1− n)2(I10)(n+1)∆t

n∆t +
∆t3

3!
(N − 1− n)3∆W (n∆t)

]
(I11)

t
0 =

N−1∑
n=0

[
(I11)

(n+1)∆t
n∆t +∆W (n∆t)W (n∆t)

]
(I110)

t
0 =

N−1∑
n=0

[
(I110)

(n+1)∆t
n∆t +∆t(N − 1− n)

[
(I11)

(n+1)∆t
n∆t +∆W (n∆t)W (n∆t)

]
+ (I10)

(n+1)∆t
n∆t W (n∆t)

]
.

(27.108)
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auxiliary functions

to sine and cosine integrals, 537
averaging operator, 954
avoided crossing, 161

backward differentiation formulae, 1127
backward Euler method, 1121
Baker–Campbell–Hausdorff expansion, 124, 904, 1145
bare states, 161
Bays–Durham shuffle, 1180
beam splitter

relation among coefficients, 512, 683
Bernoulli numbers, 629
Bessel process, 803–807
Bessel’s equation, 413, 455
big-O notation, 1117–1119
Blackman pulse, 277–278
bleaching, 103
Bloch sphere, 166–177
Bloch vector, 168–178
Bloch–Siegert shift, 42, 251–252
Boltzmann statistics, 99
Borel σ-algebra, 866
Born approximation, 145
Born rule, 865
Born–Markov approximation, 145
bound charge density, 579, 1006
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bound current density, 580
boundary crossing, 744–750, 754–757
Box–Muller method, 1181–1182
Bragg scattering, 232–235

rate, 235
branch prediction, 1111–1112
Breit–Rabi formula, 397
Brownian area, 728
Brownian Bridge, 823–824
Brownian bridge, 733–803, 909, 921, 923, 926, 927,

957, 976, 978, 979, 981, 982
boundary crossing, 746–750, 754–757, 981, 982
escape, 750–754
escape probability, 979
local time, 793–803
sojourn time, 773–803

Brownian bridges, 984
Brownian excursion, 734
Brownian meander, 734
Brownian motion, 715–716, 921

reflected, 772–773, 798
skew, 798–803

Brownian path
consistent refinement, 1173–1177

bunching, 73–76

cache, 1107–1108
line, 1107
thrashing, 1108

Cameron–Martin transformation, 945
Cameron–Martin–Girsanov transformation, 945–946
canonical cosymplectic form, 135–137
canonical quantization, 409
canonical transformation, 136–137, 463

generating function, 463
Casimir effect

path integral, 961–985
Casimir energy, 636–645

temperature dependence, 644–645
Casimir–Polder potential, 42, 464, 533–557, 563–578,

596–633
atom–atom potentials, 615–619
comparison to classical dipole, 543–544
dielectric and general media, 596–633
excited levels, 630–633
general planar interface, 601–613
Lifshitz expression, 608
path integral, 961–985
rarefied dielectric, 563–573, 610
spherical cavity, 613–615
temperature dependence, 619–630, 984–985
three atoms, 618–619

Cauchy integral formula, 589, 601, 626

Cauchy principal value, 289, 499, 542, 590, 647–648
Cauchy principle value, 543
Cauchy probability distribution, 700, 706
Cauchy’s integral formula, 633
caustics, 917
cavity damping, 492–493
cavity decay, 146, 491–492, 509–519, 531

decay rate, 516–519
nonexponential, 678

cavity driving field, 491
cavity photon number

measurement of, 492–493
cavity QED coupling constant, 486
center-of-mass coordinates, 475–477
central limit theorem, 693–702
central-limit theorem, 707
Chapman–Kolmogorov equation, 713, 904
characteristic function, 698
chronological operator, 112
Church of the Larger Hilbert Space, 142–143
Clebsch–Gordan coefficients, 304–309
cloning, 131–132
closed set, 866
CNOT gate, 132
coarse-graining approximation, 145
coherence, 63–76

length, 70–72
time, 70–72

coherent population trapping, 273, 283–295
velocity-selective, 286–287

coherent state, 128, 187, 491
collapses and revivals, 487–489
collisions

dephasing due to, 178
commutator

with space-dependent mass, 930
composite systems, 130–131
conditional probability

density, 712
Condon–Shortley phase convention, 307
conductivity, 59
conjugate momentum, 404
constitutive relations, 1005
continuous function, 1118
controlled-NOT gate, 132
convective derivative, 457
convergence

definition, 1117–1119
convolution, 694–702, 705–706

of box functions, 695
of two Gaussians, 696–697
with δ-function, 694–695

convolution kernel, 695
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convolution theorem, 695–696, 1129
cosine integral Ci(x), 537, 574–575
cosymplectic form, 135–137
Coulomb gauge, 401, 422–423, 459
counters, hardware performance, 1115
counting process, 724, 829–831
coupled-mode theory, 511–519
critical sampling, 1130–1131
cross section

absorption, 35, 101
natural, on resonance, 101, 102, 192
scattering, 195–197

crossover resonance, 225–228

D line, 397
dark state, 285
decay rate

modified by macroscopic body, 50–53, 633–636
decay rate, natural, 271
degree of coherence, 94

degree of first-order temporal, 690
first-order, 66
first-order quantum, 682
first-order temporal, 66
second-order quantum, 682
second-order temporal, 72–76

delta function
chain rule, 702, 824–825
derivative of, 790, 824–825
longitudinal, 423–425
transformation for surface constraint, 702–706
transverse, 423–425

density matrix, 109–110
path integral, 924–926

density operator, 107–110
purity, 110, 255

derivative process, 816
detector efficiency, 835–836, 849–851, 874–875
diamagnetic interaction, 473, 475
Dicke superradiance, 298–299
dielectric constant, 581
diffusion

spontaneous emission, 247
diffusion coefficient, 239, 694
diffusion equation, 239
diffusion process, 693
diffusion rate

discontinuity, 798–803
dipole approximation, 151, 460
dipole force, 39–45, 237–238, 254

dressed-atom picture, 256–258
dipole interaction Hamiltonian, 151–157, 457, 460–465,

485–486, 495

dipole matrix element
relation to decay rate, 192

dipole moment
electric, 474
magnetic, 474

dipole operator, 152–153, 229
relation to Bloch vector, 170

direct product, 130–131
direction cosines, 425–426
Dirichlet problem

Laplace equation, 754–756
Poisson equation, 756–757

discrete Fourier Transform, 1132–1143
discrete spectrum, 488
dispersion, 580–581
divergence theorem, 702
divergent sequence, 1117
divide-and-conquer algorithm, 1179–1180
domination

of sequences, 1117
Doppler broadening, 57, 100, 174
Doppler limit, 250–251
Doppler shift, 259, 273, 280
Doppler temperature, 47–49
Doppleron resonance, 224
dressed states, 161–166, 254, 489
drift coefficient, 239
Drude–Lorentz model, 59
dynamical tunneling, 234

effective potential, 150
effective, non-Hermitian Hamiltonian, 185
Einstein A and B coefficients, 98–100, 104–105
Einstein A coefficient, 178
Einstein rate equations, 98–105
EIT, 287–290
electric dipole moment, 474
electric displacement, 435, 579
electric displacement field, 462
electric flux density, 435, 579
electric octupole moment, 474
electric quadrupole moment, 474
electromagnetic field

commutators, 425–430
gauge freedom, 431–434
Hamiltonian structure, 402–405, 431–434
mass coupling, 455–456
quantization, 406–420

electromagnetically induced transparency, 287–290
as position measurement, 895–900

energy spectral density, 64
entanglement, 131–140, 142–143
environment, 143, 144
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error tolerance, numerical, 1126
escape probability, 750–754, 926
Euler method, 1119–1121, 1163

implicit, 1119–1121
stochastic, 1163–1164

Euler’s constant, 537
Euler–Cromer method, 1158–1159, 1161
Euler–Lagrange equation, 403, 405, 451–452, 458
Euler–Maclaurin summation formula, 629
Euler–Maruyama method, 1163–1164
Euler–Mascheroni constant, 575, 667
exchange interaction, 141–142
exponential integral E1(x), 575, 663, 677

Fabry–Perot cavity, 261, 296, 490, 517, 519, 751
Fano profile, 286
far-off resonance trap (FORT), 42
Fermat’s principle, 451
Fermi’s Golden Rule, 509–510, 531
Fermi’s golden rule, 500–502, 633, 635
Feynman–Kac formula, 757–766, 919, 923–924
Feynman–Vernon–Hellwarth representation, 169
fidelity, 117
finesse, 517
finite-difference method, 1119
finite-difference operator, 912
first variation, 402, 406, 910
first-passage time

Brownian bridge, 748–750
Wiener path, 746

fixed-point arithmetic, 1105
fixed-point iteration, 1120
floating-point arithmetic, 1105–1106
fluctuation–dissipation relation, 48, 267, 522, 620–624
fluorescence, resonance, 194–211
Fock state, 187
Fock—Schwinger proper time, 971
Fokker–Planck equation, 238–240, 258–259, 712–714,

822
discontinuity in, 798–803
multidimensional, 714, 822

forbidden transition, 343
forward Euler method, 1121
Fourier Transform

discrete, 1132–1143
Fourier transform, 1129–1143
free charge density, 1006
free spectral range, 517
free-electron gas, 58–60
Fresnel reflection coefficients, 564, 603
FTIR spectroscopy, 67, 94
functional, 402, 406
functional derivative, 402–406, 452, 910

second, 910
functional determinant, 911, 967

as eigenvalue product, 969–971
functional integral, 903–958
fundamental charge, 152

Göppert-Mayer transformation, 462–463
gain coefficient, 105
gamma distribution, 1185
gauge transformation, 461, 463–467
Gaussian fluctuations

complex, 74–76
exponentiated, 95

Gel’fand–Yaglom method, 912–914
general Legendre equation, 412
generalized Rabi frequency, 159
generalized susceptibility, 592–596
generating function

for canonical transformation, 463
generator

for SDE, 713
geometric Brownian motion, 822
geometric optics, 451
Girsanov transformation, 945
Glauber–Sudarshan P function, 129–130
Green function, 646–647, 649–651

classical harmonic oscillator, 646–647
for Schrödinger equation, 649–651

Green tensor, 563, 581–586
for free space, 583–586
Kramers–Kronig relations, 596
planar interface, 603–604
related to field correlation, 595, 596
scattering part, 601

Hamilton’s equations, 404, 405
Hamilton’s principle, 403
Hamiltonian, 404–406
Hanbury-Brown–Twiss experiment, 75–76, 681, 684
hardware performance counters, 1115
harmonic function, 755
harmonic oscillator, 31–36

coherent state, 187
damped, 33–36, 150
Fock state, 187
Green function, 646–647
quantum, 186–191
quantum damped, 187–191, 261, 266–267

heat bath, 144
Heisenberg picture, 112–114
Hellmann–Feynman theorem, 638
Helmholtz equation, 407

Green function, 677, 998–999



Index 1193

scalar vs. vector solutions, 414–418, 454–455
Helmholtz theorem, 421–422
Hermite–Gaussian functions, 121
heterodyne detection, 847–849, 855–859
heterodyne spectroscopy, 79–81
Hilbert transform, 289
homodyne detection, 836–847, 854–855, 857–859, 896

electromagnetically induced transparency, 895–896
Hong–Ou–Mandel dip, 690
Hong–Ou-Mandel effect, 684–690
Husimi distribution, 129

upper bound, 149
hydrogen maser, 174
hyperfine structure, 551–553

IEEE 754 standard, 1105–1106
impedance

of vacuum, 40
implicit Euler method, 1119–1121

stochastic, 1170–1171
indistinguishability, 140–142
inhomogeneous broadening, 174
inlining, procedure, 1113
input–output theory, 519–531
integer arithmetic, computer, 1105
integrated Brownian motion, 728
intensity

of Poisson process, 722
interaction picture, 114, 515

for atom–field interaction, 156–157
interference

between partially coherent sources, 72
coherence, 63–76
two-photon, 684–690
visibility, 69–70

interferometer
Michelson, 66–67, 94

Itō calculus, 708–722
ensemble average, 710–711

Itō rule, 709–710

Jaynes–Cummings model, 485–491, 515
as model for spontaneous emission, 487–489

Johnson noise, 622–624
joint probability density, 713
Jordan–Pauli commutators, 426–428
jump process, 724

Kirkwood distribution, 130
Klein–Gordon equation, 994–998
Knuth lagged Fibonacci generator, 1180
Kolmogorov backward equation, 714, 765–766
Kolmogorov forward equation, 714

Kramers–Heisenberg formula, 596–600
Green tensor, 599–600
polarizability, 596–599

Kramers–Kronig relations, 289, 589–592, 646–647
Green tensor, 596

Kraus operator, 864

L’Ecuyer multiple recursive generator, 1178–1180
Lévy flight, 280
Lévy’s arcsine law, 771–773
ladder operators, 302
ladder structure, 232
lagged Fibonacci generator, 1180
Lagrangian, 403–406

for string, 451–452
Laguerre–Gaussian functions, 121
Lamb dip, 221–228
Lamb shift, 42, 464, 465, 499, 508–509, 533, 536,

557–563, 659, 978
Lamb–Dicke effect, 507
lamp shift, 162
Lamperti transform, 743–744

temporal scaling, 744
Landau–Zener crossing, 162–166, 254–255, 298
Laplace equation, 422, 754–756
Laplace transform, 180–181, 652, 677, 768, 1043–1046
Laplace–Beltrami operator, 931, 933
Laplace–Beltrami ordering, 929
Laplacian

as spherical average, 755–756
spherical coordinates, 411

Larmor precession, 168
laser

Lorenz–Haken model, 261–266
laser medium

three-level, 104–105
Lebesgue measure, 866
level-shift operator, 655
Levi-Civita symbol, 301, 395, 582
light

thermal, 74–76
likelihood-ratio estimator

for derivative, 809
limit

from above, 1118
from below, 1118
of function, 1118
of sequence, 1117

Lindblad form, 185, 862
Lindblad superoperator, 185, 187

interference represented by, 292
line shape, 100

natural, 101
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linear congruential generator, 1178
linewidth

measurement of, 78–93
Liouville distribution, 127
Liouville–von Neumann equation, 108, 180
Liouvillian superoperator, 108, 180
little-o notation, 1117–1119
local interactions, 465–467
local realism, 131
local time, 789–803
long-wavelength approximation, 151, 460
longitudinal decay rate, 178
loop unrolling, 1110–1111
Lorentz force, 457–458

Hamiltonian, 458
Lagrangian, 458

Lorentz model, 33–36, 186–189
damping coefficient, 38–39

Lorentzian
absorption, 35
line shape, 100, 101, 661
lineshape, 68
noise spectrum, 78, 80–85

Lorenz gauge, 401
Lorenz–Haken model, 261–266
low-pass filter, 716
Lévy area, 1174–1176

magic wavelength, 174, 252–253
magnetic dipole moment, 474
magnetic flux density, 435, 579
magnetic-dipole transition, 397
magnetizability, 1014
magnetization field

atomic, 468–469, 473, 480
magneto-optical trap (MOT), 49
Malliavin derivative, 815
Markov approximation, 145, 521
Markovian

evolution, 713
martingale, 711
master equation, 143–148, 185, 187, 508

atom in thermal field, 508
Born–Markov, 143–148, 508
Lindblad form, 862
stochastic, 829–859, 861–864, 871–900
unconditioned, 829

matrix elements
of r and p, 463–464
of atom–field interaction Hamiltonian, 464

Matsubara frequencies, 626
maximum-value process, 772
Maxwell equations, 401–402, 579–580

measurable set, 866
measure, 865–867

positive, 866
measurement record, 831
mechanical effects of light, 228–253
Mellin transform, 1043–1045
Mersenne Twister, 1180
methane-stabilized He–Ne laser, 225
method of images

for diffusion, 801
Michelson interferometer, 66–67, 94
midpoint method, 1122
Milstein method, 1164–1165
minimal coupling, 458–460

Hamiltonian, 460
replacement, 460

mixed state, 107
Mollow triplet, 201–209, 255–256

nonclassical correlations, 208–209
moment-generating function, 1044–1045
moments

inverse, 1044–1045
momentum-shift operator, 232, 272
Moore machine, 1111
Moyal bracket, 127–128, 150
multiple recursive generator, 1178–1180
multipole expansion, 473–475, 583

of localized current, 583–584
multipole fields, vector, 418–420
multistep methods, 1127

Naimark’s theorem, 868
natural line width, 102
Neumark’s theorem, 868
Newton’s Second Law, 404
NIST-7 cesium-beam clock, 174, 255
NIST-F1 cesium fountain clock, 174
no-cloning theorem, 131–132
nonexponential decay, 503–506, 662–671, 675–676

cavity, 678
normal modes

of atom–cavity system, 489
normal-mode decomposition, 406, 968

octupole moment
electric, 474

Ohm’s law, 623
one-photon Rabi frequency, 486, 487, 496
open quantum systems, 142–148
open set, 866
optical Bloch equations, 177–186, 189, 191–194, 230,

275, 500
Torrey’s solutions, 181–185, 255
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optical lattice
accelerating, 259

optical molasses, 46–49
optical theorem, 43–44
optics

geometric, 451
Ornstein–Uhlenbeck process, 714–716

correlation function, 714–715
low-pass filter and, 716

oscillator strength, 35–36
oscillatory sequence, 1117
out-of-order execution, 1110

Paley–Wiener theorem, 506
parabolic-cylinder functions, 165
parallel programming, 1114
parametric downconversion, 684
parity, 152–153
Parseval’s theorem, 72
partition function, 998–999

path integral, 918–927, 932
path integral, 903–959, 961–985

Itō, 937–940, 942–946
ensemble-average normalization, 919–923, 956–958
midpoint, 934–937, 942–946
moment relations, 940–942
Monte–Carlo method, 918–929, 956–958
operator-ordering issues, 929–958
partition function, 918–927
phase-space, 906–907
prepoint, 937–940, 942–946
product ordering, 959
Stratonovich, 934–937, 942–946

Pauli operators, 166
Peres–Horodecki criterion, 132–140
perimittivity

imaginary frequencies, 591–592
permittivity, 581, 586–592

imaginary part as loss, 587–589
phase diffusion, 822–823
phase estimation, 857–859
phase lag

of circuit response, 648
phase modulation, 280, 296
phase noise, 76–95
phase space, 115
phase-space action, 404
photon, 156
photon blockade, 489–490
photon echo, 174–177
photon scattering rate, 42–45
photon-recoil momentum, 272
pipeline, cpu, 1109–1112

Planck blackbody distribution, 100
plasma frequency, 58
plasma model, 58
Poincaré cone condition, 754
Poisson bracket, 127, 128, 135–137, 930
Poisson distribution, 722–724, 822
Poisson equation, 421, 756–757
Poisson process, 722–727, 822, 835, 839

inhomogeneous, 724
intensity, 722
white-noise limit, 724–725

Poisson sum rule, 927
polar Marsaglia method, 1182
polarizability, 32–33, 255

diagonal in principle coordinates, 595
related to dipole correlation, 594, 595
scalar, 595
static, 542

polarization field, 33, 579, 581
atomic, 461, 467–468, 470, 484
coupling to electric field, 60–61
effective sources, 579–580

polarization sum, 425–426
polarizer, 507–508
pole approximation, 656, 658, 659
position measurement

electromagnetically induced transparency, 895–900
probe excitation, 891–895
resonance fluorescence, 881–891

positive map, 861–862
positive measure, 866
positive partial transpose (PPT), 132–140
positive semidefinite, 138
positive semidefinite operator, 133
positive-operator-valued measure, 864–871

imprecise measurement, 869–871
spontaneous emission, 868–869

POVM, 864–871
imprecise measurement, 869–871
spontaneous emission, 868–869

power broadening, 197
power spectral density, 65

one- vs. two-sided, 68–69
Power–Zienau transformation, 460–465, 467, 469–484,

544–548
power-equivalent width, 71
predictor–corrector methods, 1127
probability density

for combinations of random variables, 705–706
probability measure, 867
probe absorption

driven, two-level atom, 211–217, 259–260
problem:magdipdecay, 509
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procedure inlining, 1113
product ordering, 955–959
profiler, 1114
projection theorem, 336–337
projection-valued measure, 865
propagator, 651, 903–958

classical limit, 909–918
free particle, 907–909
imaginary-time, 918–929
semiclassical, 909–918

Purcell factor, 678
pure state, 107
purification, 142–143
purity, 149–150

quadratures, 853–859
quadrupole moment, 484

electric, 474
quantum beats, 291–295

steady-state, 293–297
quantum jumps, 829–836
quantum Langevin equation, 521
quantum measurement, 864

continuous, of position, 871–900
strong, 870
weak, 870

quantum regression theorem, 199–201, 209–210, 213–214,
218, 241–243, 256, 260–261

quantum Zeno effect, 505, 507–508, 674
qubit, 107
quotient

of two normal deviates, 706

Röntgen interaction
center-of-mass, 475–482

Rabi flopping, 157–162, 487, 653–654
damped, 180–185
resolvent approach, 653–654

Rabi frequency, 153–154, 185–186, 229, 230, 270, 487
dependence on photon number, 487
for quadrupole interaction, 484
generalized, 230
Raman, 233, 272

radiation
atom near macroscopic body, 633–636
atom near mirror, 50–53
two atoms, 53–56

radiation pressure, 45–49, 236
radiation reaction, 38–39

Abraham–Lorentz force, 39
radiation, dipole, 36–39, 194–195

angular distribution, 38
Radon–Nikodym derivative, 946

Raman scattering
spontaneous, 671–679

Ramsey fringes, 171–177, 255
random number generation, 1177–1186

angular distributions, 1182–1184
exponential distribution, 1184
gamma distribution, 1185–1186
power-law distribution, 1184–1185

random process
complex Gaussian, 74–76

random walk, 48, 693–702
random-number generation

Gaussian deviates, 1181–1182
normal deviates, 1181–1182
shuffling, 1180–1181
uniform deviates, 1177–1181

rate equations
Einstein’s, 98–105, 178, 191–194

Rayleigh’s formula, 418, 419
recoil energy, 233

Raman, 273
recoil frequency, 234, 235
recoil temperature, 49
recoil velocity, 45
reduced matrix element, 334
reflectance, 441
reflected Brownian motion, 772–773, 798
reflection coefficient, 58, 602–603

Fresnel, 564, 603
Reflection Principle, 745–747
registers, cpu, 1106–1107
regularization

dimensional, 1024
reparameterization independence, 988
reservoir, 143, 144
residue, 589
resolved-sideband Raman cooling, 278–281
resolvent

of the Liouvillian, 181
resolvent operator, 649–677
resonance fluorescence, 194–211, 255–256

as position measurement, 881–891
coherent and incoherent, 197–199

retarded Green function, 650, 651
Richardson extrapolation, 1147–1150, 1152–1154
Riemann sheet, 662
Rihaczek distribution, 130
rotating frame, 154–157, 254, 270–271, 283
rotating-wave approximation, 34, 153, 155, 157, 515,

534
round-trip time, 511
rubidium 87

transition wavelengths and lifetimes, 553–554
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Runge–Kutta methods, 1121–1127
adaptive stepping, 1126
implicit, 1125–1126
second-order, 1122
stochastic, 1168–1172

Runge–Kutta–Fehlberg method, 1126

sample mean, 699
sampling theorem, 1129–1132
saturated-absorption spectroscopy, 221–228

crossover resonance, 225–228
saturation, 102–103
saturation intensity, 103, 105, 192–194

for two-level atom, 41
saturation parameter, 179
saturation spectroscopy, 221–228

crossover resonance, 225–228
scattering cross section, 195–197
scattering rate, photon, 42–45
Schrödinger equation

with curvature, 931
Schrödinger picture, 112–114
Schrödinger–von Neumann equation, 108, 177
Schrödinger-cat state, 133
Schwinger proper time, 971
second

definition of, 174
second quantization, 409, 968–969
second variation, 910
selection rules, 342–344
self-heterodyne spectroscopy, 81–93
separability, 131
shot noise, 725–727
sine integral Si(x), 537, 574–575
single-precision, IEEE, 1105, 1106
singular D function, 427
skew Brownian motion, 798–803
slow light, 290
slowly varying coherences, 167
Smoluchowski equation, 731
Snell’s Law, 565
sojourn time, 766–803
spectral density

of frequency fluctuations, 76
of frequency fluctuations(, 94
of frequency fluctuations), 95
of phase fluctuations, 76
of phase fluctuations(, 94
of phase fluctuations), 95

spherical Bessel functions, 413
spherical cavity modes

normalization, 455–456
scalar, 411–414

vector, 414–418
spherical Hankel functions, 419
spherical harmonics, 412–413
spin echo, 174–177
split-operator methods, 1145–1161
spontaneous decay rate, 186, 498–499

between planar mirrors, 509
near planar mirror, 507, 635–636
with angular-momentum degeneracy, 344–346

spontaneous emission, 98, 146, 246–247, 495–506, 508–509,
658–671

enhanced by cavity, 678
Fermi’s golden rule, 502–503
in stimulated Raman scattering, 273
in thermal field, 508–509
into 1D waveguide, 509
into 2D waveguide, 509
line shape, 659–661
magnetic-dipole, 509
master equation, 499–500
near macroscopic body, 633–636
nonexponential decay, 503–506, 662–671
resolvent operator, 658–671
Weisskopf–Wigner approach, 495–499, 507, 509

spontaneous Raman scattering, 671–679
line shape, 678–679

square-well potential, 926
squeezed state, 454
squeezing, 854
Stückelberg angle, 161, 489
standard deviation, 693, 697

of mean, 699
standard topology, 866
standard-ordered distribution, 130
Stark shift

ac, 162
due to thermal field, 508

stationary noise process, 88
stationary-phase approximation, 909
steady-state quantum beats, 293–297
stiff equation, 1120
stimulated emission, 98
stimulated Raman adiabatic passage, 290–291, 298
stimulated Raman cooling, 278–281
stimulated Raman transition, 232, 269–283, 298

velocity selection, 274–280
STIRAP, 290–291, 298
stochastic derivative, 815
stochastic differential equation, 708–722, 1163–1177

implicit methods for, 1170–1172
stochastic force

on damped particle, 727–733
stochastic master equation, 829–864, 871–900
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diffusion form, 836–847
jump form, 829–836, 860
linear, 877–881
multiple observers, 849–851, 874–875
position measurement, 861–900

stochastic Schrödinger equation, 831–832, 843, 860,
871–873

stochastic Taylor expansion, 1165–1168
stochastic-dipole force, 238–246

dressed-state model, 244–245
Stokes relations, 512
Stratonovich calculus, 716–722, 944–946, 950–953

validity of chain rule in, 720–721
strong convergence

SDE methods, 1172–1173
strong coupling, 491
strong measurement, 870
Struve function, 276
subradiance, 56, 298–299
superradiance, 52, 56, 298–299
survival probability, 517
susceptibility, 33, 435, 581, 1005

generalized, 592–596
magnetic, 1005

symmetrized ordering, 953–955, 955, 959
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