# Handbook of Inorganic Chemicals

Pradyot Patnaik, Ph.D.

### **McGraw-Hill**

New York Chicago San Francisco Lisbon London Madrid Mexico City Milan New Delhi San Juan Seoul Singapore Sydney Toronto

#### The McGraw·Hill Companies

#### Library of Congress Cataloging-in-Publication Data

Patnaik, Pradyot. Handbook of inorganic chemicals / Pradyot, Patnaik. p. cm. Includes bibliographical references and index. ISBN 0-07-049439-8 1. Inorganic compounds—Handbooks, manuals, etc. I. Title. QD155.5P37 2002 546—dc21 2002029526

Copyright © 2003 by The McGraw-Hill Companies, Inc. All rights reserved. Printed in the United States of America. Except as permitted under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a data base or retrieval system, without the prior written permission of the publisher.

 $1\ 2\ 3\ 4\ 5\ 6\ 7\ 8\ 9 \quad DOC/DOC \quad 0\ 9\ 8\ 7\ 6\ 5\ 4\ 3\ 2$ 

ISBN 0-07-049439-8

The sponsoring editor for this book was Kenneth McComb, the editing supervisor was Daina Penikas, and the production supervisor was Sherri Souffrance.

Printed and bound by RR Donnelley.

McGraw-Hill books are available at special quantity discounts to use as premiums and sales promotions, or for use in corporate training programs. For more information, please write to the Director of Special Sales, Professional Publishing, McGraw-Hill, Two Penn Plaza, New York, NY 10121-2298. Or contact your local bookstore.



This book is printed on recycled, acid-free paper containing a minimum of 50% recycled, de-inked fiber.

Information contained in this work has been obtained by The McGraw-Hill Companies, Inc. ("McGraw-Hill") from sources believed to be reliable. However, neither McGraw-Hill nor its authors guarantee the accuracy or completeness of any information published herein and neither McGraw-Hill nor its authors shall be responsible for any errors, omissions, or damages arising out of use of this information. This work is published with the understanding that McGraw-Hill and its authors are supplying information but are not attempting to render engineering or other professional services. If such services are required, the assistance of an appropriate professional should be sought.

$$Na_2S_2O_3 + 4Cl_2 + 5H_2O \rightarrow 2NaHSO_4 + 8HCl$$

Sodium thiosulfate reacts with hydrochloric acid, decomposing to sulfur and sulfur dioxide:

$$Na_2S_2O_3 + 2HCl \rightarrow 2NaCl + S + SO_2 + H_2O$$

#### Analysis

Elemental composition: Concentration of sodium thiosulfate in aqueous solution can be measured by titration with a standard solution of potassium iodate, potassium biiodate, or potassium dichromate using starch indicator. The oxidant is added to an acidified solution of excess potassium iodide before titrating with the thiosulfate solution.

## STRONTIUM

## [7440-24-6]

Symbol Sr; atomic number 38; atomic weight 87.621; a Group II A (Group 2) alkaline earth metal positioned between calcium and barium in its group; electron configuration [Kr]5s<sup>2</sup>; valence state +2; atomic radius 2.15Å; ionic radius, Sr<sup>2+</sup> 1.26Å and 1.44Å for coordination numbers 8 and 12 in crystals; standard electrode potential, E° for Sr<sup>2+</sup> + 2e<sup>-</sup>  $\leftrightarrow$  Sr is -2.899V; four stable natural isotopes: Sr-84(0.56%), Sr-86(9.86%), Sr-87(7.00%), Sr-88(82.58%); twenty-three artificial radioactive isotopes in the mass range 76-83, 85, 89-102; the longest-lived radioisotope is the beta emitter Sr-90, t<sub>1/2</sub> 29.1 year; the shortest-lived isotope is the beta-emitter Sr-102, t<sub>1/2</sub> 68ms.

### History, Occurrence, and Uses

William Cruickshank in 1787 and Adair Crawford in 1790 independently detected strontium in the mineral strontianite, small quantities of which are associated with calcium and barium minerals. They determined that the strontianite was an entirely new mineral and was different from baryta and other barium minerals known at the time. In 1808, Sir Humphry Davy isolated strontium by electrolysis of a mixture of moist strontium hydroxide or chloride with mercuric oxide, using a mercury cathode. The element was named after the town Strontian in Scotland where the mineral strontianite was found.

Strontium is found in small quantities in many rocks and soils, mostly associated with calcium and barium. Its abundance in the earth's crust is about 370 mg/kg, about the same as barium. The average concentration of this metal in sea water is about 7.9 mg/L.

The two principal strontium minerals are its carbonate, strontianite,  $SrCO_3$ , and the more abundant sulfate mineral celestite,  $SrSO_4$ .

Elemental strontium has only minor uses, since most applications involve

calcium and barium. Strontium alloys are used as "getters" for vacuum tubes. It is incorporated in glass for making picture tubes for color television. Strontium compounds are used in tracer bullets and in fireworks to produce red signal flares. Strontium titanate is a gemstone. The radioactive strontium-90 with a half-life of 29 years is a high-energy beta emitter. It is a product of nuclear fission. This isotope is a lightweight nuclear-electric power source in space vehicles and remote weather stations.

## **Physical Properties**

Silvery-white metal when freshly cut; rapidly turns yellow on exposure to air forming a thin oxide coating; face-centered cubic structure; malleable, ductile, and somewhat softer than calcium; density 2.64 g/cm<sup>3</sup>; melts at 777°C; vaporizes at 1,382°C; vapor pressure 5 torr at 847°C and 20 torr at 953°C; electrical resistivity 23 microhm-cm at 20°C; thermal neutron absorption cross section 1.21 barns; reacts with water; soluble in ethanol.

#### **Thermochemical Properties**

| $\Delta H_f^{\circ}(cry)$                 | 0.0                       |
|-------------------------------------------|---------------------------|
| $\Delta H_f^{\circ}(gas)$                 | 39.3 kcal/mol             |
| $\Delta G_f^{\circ}(gas)$                 | 31.3 kcal/mol             |
| S°(cry)                                   | 12.5 cal/deg mol          |
| S°(gas)                                   | 39.3 cal/deg mol          |
| $C_{ ho}(cry)$                            | 6.31 cal/deg mol          |
| $C_{ ho}(gas)$                            | 4.97 cal/deg mol          |
| $\Delta \mathrm{H}_\mathrm{fus}$          | 1.78 kcal/mol             |
| Thermal conductivity (at 27°C)            | 0.353 W/cm K              |
| Coefficient of linear expansion (at 25°C) | 22.5x10 <sup>-6</sup> /°C |

#### Production

Strontium and its compounds are mostly derived from celestite, SrSO<sub>4</sub>. The mineral is converted to its carbonate by heating with sodium carbonate. Alternatively, the mineral may be reduced to sulfide by heating with coke. The carbonate or the sulfide is then converted to other strontium salts.

Metallic strontium is produced by electrolysis of a mixed melt of strontium chloride and potassium chloride in a graphite crucible using an iron rod as cathode. The upper cathodic space is cooled and the strontium metal collects over the cooled cathode and forms a stick.

Strontium metal also can be prepared by thermal reduction of its oxide with aluminum. Strontium oxide-aluminum mixture is heated at high temperature in vacuum. Strontium is collected by distillation in vacuum. Strontium also is obtained by reduction of its amalgam, hydride, and other salts. The amalgam is heated and the mercury is separated by distillation. If hydride is used, it is heated at 1,000°C in vacuum for decomposition and removal of hydrogen. Such thermal reductions yield high-purity metal.

## Reactions

Strontium is a reactive metal, similar to calcium. Exposure to air forms strontium oxide, SrO. In finely-divided form, the metal is pyrophoric. It