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Course Notes: The Density Operator

1 Density Operator

Traditionally, the state vector |ψ〉 represents the state of a quantum system. However, we will need a more
general object to represent the quantum state for the purposes of studying light-matter interactions. The
density operator represents the state of a quantum system in a more general way than the state vector, and
equivalently represents an observer’s state of knowledge of a system. It is particularly important to use the
density operator in the quantum theory of open systems, where a quantum system interacts with an external
system whose evolution is unknown, and in the quantum theory of measurement and information.

When a quantum state can be represented by a state vector |ψ〉, the density operator is defined as the
product

ρ := |ψ〉〈ψ|. (1)
(density operator, pure state)

In this case, it is obvious that the information content of the density operator is equivalent to that of the
state vector (except for the overall phase, which is not of physical significance).

The state vector can represent states of coherent superposition. The power of the density operator lies in the
fact that it can represent incoherent superpositions as well. For example, let |ψα〉 be a set of states (without
any particular restrictions). Then the density operator

ρ =
∑

α

Pα|ψα〉〈ψα|
(2)

(density operator, general)

models the fact that we don’t know which of the states |ψα〉 the system is in, but we assign a probability or
weight Pα to the quantum state |ψα〉 in the mixture defined by ρ. Note that the weights obey

∑

α

Pα = 1 (3)

for proper normalization of the density operator. Another way to say it is this: the state vector |ψ〉 represents
a certain intrinsic uncertainty with respect to quantum observables; the density operator can represent
uncertainty beyond the minimum required by quantum mechanics. Equivalently, the density operator can
represent an ensemble of identical systems in possibly different states.

A state of the form (1) is said to be a pure state. One that cannot be written in this form is said to be
mixed.

1.1 Example

As a simple example, consider a qubit, a two-level system with states |0〉 and |1〉. The density operators
corresponding to the eigenstates are |0〉〈0| and |1〉〈1|; clearly these are pure states. Another pure state is
the superposition |ψ〉 = (|0〉 + |1〉)/

√
2, which has the corresponding density operator

ρ =
1

2

(

|0〉〈0| + |1〉〈1| + |0〉〈1| + |1〉〈0|
)

. (4)



The density operator is the sum of the density operators for the eigenstates, plus two extra terms that
indicated the purity of the state or the coherence of the superposition. An example of a mixture of the two
eigenstates comes from simply removing these last two terms:

ρ =
1

2

(

|0〉〈0| + |1〉〈1|
)

. (5)

We can clearly regard this as an mixture of the form (2), where the probabilities are P0,1 = 1/2 for the
eigenstates |ψ0〉 = |0〉 and |ψ1〉 = |1〉. However, we can equally well regard the same mixed state as a
different mixture. That is, defining the mixed state

ρ′ =
1

2

(

|+〉〈+| + |−〉〈−|
)

, (6)

where

|±〉 :=
1√
2

(

|0〉 ± |1〉
)

. (7)

it is not hard to see that ρ = ρ′. Thus we see that we have to be a bit careful with our above statement,
where we said that a mixed state can be regarded as an association of classical probabilities with being in
different pure quantum states. Just given a particular density operator, it is not not in general possible to
uniquely define pure-state decomposition of the form (2). Thus stating that the state is really in a pure
state, but we don’t quite know which one it’s in, implies some extra information that is not contained in the
density operator.

1.2 Evolution

Differentiating the density operator and employing the Schrödinger equation i~∂t|ψ〉 = H |ψ〉, we can write
down the equation of motion for the density operator:

∂tρ = (∂t|ψ〉)〈ψ| + |ψ〉∂t〈ψ|

= − i

~
Hρ+

i

~
ρH

= − i

~
[H, ρ].

(8)
(Schrödinger–von Neumann equation)

This is referred to as the Schrödinger–von Neumann equation. The derivation here assumed a pure
state but carries through in the obvious way for arbitrary density operators. Of course, the point is that
using the density operator allows us to write down more general evolution equations than those implied by
state-vector dynamics. The more general forms are referred to as Liouville–von Neumann equations or
master equations, which we can write in the form

∂tρ = Lρ. (9)
(master equation, generic form)

Here, L is the Liouvillian superoperator. We use the term “superoperator” because the Liouvillian
represents a higher-dimensional object, since it must represent the commutator above (i.e., it “operates
from both sides”). Thinking of the density operator as a two-dimensional matrix as we discuss below, the
Liouvillian is effectively a 4-tensor.
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1.3 Expectation Values

We can compute expectation values with respect to the density operator via the trace operation. The trace of
an operatorA is simply the sum over the diagonal matrix elements with respect to any complete, orthonormal
set of states |β〉:

Tr[A] :=
∑

β

〈β|A|β〉 (10)

An important property of the trace is that the trace of a product is invariant under cyclic permutations of
the product. For example, for three operators,

Tr[ABC] = Tr[BCA] = Tr[CAB].
(11)

(cyclic permutation invariance)

This amounts to simply an interchange in the order of summations. For example, for two operators, working
in the position representation,

Tr[AB] =

∫

dx〈x|AB|x〉

=

∫

dx

∫

dx′ 〈x|A|x′〉〈x′|B|x〉

=

∫

dx′
∫

dx 〈x′|B|x〉〈x|A|x′〉

=

∫

dx′〈x′|BA|x′〉

= Tr[BA].

(12)

Note that this argument assumes sufficiently “nice” operators (it fails, for example, for Tr[xp]). More general
permutations [e.g., of the form (11)] are obtained by replacements of the formB −→ BC. Using this property,
we can obviously write the expectation value with respect to a pure state as

〈A〉 =〈ψ|A|ψ〉 = Tr[Aρ].
(13)

(expectation value, pure state)

This obviously extends to the more general form (2) of the density operator. Taking an additional average
over the ensemble of pure states,

〈〈A〉〉 =
∑

α

Pα〈ψα|A|ψα〉 = Tr[Aρ],
(14)

(expectation value, ensemble)

where the double angle brackets 〈〈〉〉 denote the ensemble average over expectation values. For simplicity we
will drop the extra brackets and simply use single brackets for expectation values with respect to either a
pure state or an ensemble (〈〈〉〉 −→〈〉).

1.4 The Density Matrix

The physical content of the density operator is more apparent when we compute the elements ραα′ of the
density matrix with respect to a complete, orthonormal basis. The density matrix elements are given by

ραα′ := 〈α|ρ|α′〉. (15)
(density matrix)
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To analyze these matrix elements, we will assume the simple form ρ = |ψ〉〈ψ| of the density operator, though
the arguments generalize easily to arbitrary density operators.

The diagonal elements ραα are referred to as populations, and give the measurement probability of the system
in the state |α〉:

ραα = 〈α|ρ|α〉 = |〈α|ψ〉|2 . (16)

The off-diagonal elements ραα′ (with α 6= α′) are referred to as coherences, since they give information about
the relative phase of different components of the superposition. For example, if we write the state vector as
a superposition with explicit phases,

|ψ〉 =
∑

α

|cα|eiφα |α〉, (17)

then the coherences are
ραα′ = |cαcα′ |ei(φα−φ

α
′). (18)

Notice that for a density operator not corresponding to a pure state, the coherences in general will be the
sum of complex numbers corresponding to different states in the incoherent sum. The phases will not in
general line up, so that while |ραα′ |2 = ρααρα′α′ for a pure state, we expect |ραα′ |2 < ρααρα′α′ (α 6= α′) for
a generic mixed state.

1.5 Purity

How can we tell a pure state from a mixed one in general? Notice that the diagonal elements of the density
matrix form a probability distribution. Proper normalization thus requires

Tr[ρ] =
∑

α

ραα = 1.
(19)

(normalization)

We can do the same computation for ρ2, and we will define the purity to be Tr[ρ2]. For a pure state, the
purity is simple to calculate, since ρ2 = |ψ〉〈ψ|ψ〉〈ψ| = ρ:

Tr[ρ2] = Tr[ρ] = 1.
(20)

(purity for pure state)

(In fact ρn = ρ in a pure state for any nonnegative n.) But for mixed states, Tr[ρ2] < 1. For example, for
the density operator in (2),

Tr[ρ2] =
∑

α

P 2
α , (21)

if we assume the states |ψα〉 to be orthonormal. For equal probability of being inN such states, Tr[ρ2] = 1/N .
Intuitively, then we can see that Tr[ρ2] drops to zero as the state becomes more mixed—that is, as it becomes
an incoherent superposition of more and more orthogonal states.

To prove that Tr[ρ2] < 1 for mixed states, first note that ρ is a Hermitian operator (ρ = ρ†). Thus, ρ may
be diagonalized by a unitary transformation, so we may write

ρ′ = SρS†, (22)

where ρ′ is diagonal and S−1 = S†. It is easy to verify that the trace is invariant under unitary transforma-
tions, so

Tr[ρ2] = Tr[ρ′2] =
∑

α

(ρ′αα)2 ≤
(

∑

α

ρ′αα

)2

= 1, (23)
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where we used the Cauchy–Schwarz inequality. A diagonal pure state has only a single nonzero diagonal
element, while a diagonal mixed state necessarily has more than one nonzero diagonal element. Hence, for
a mixed state, Tr[ρ2] < 1. This follows since the diagonal matrix elements are positive,

ραα = 〈α|ρ|α〉 =
∑

k

Pk|〈α|ψ〉k|2 ≥ 0, (24)

and so the equality occurs only for a single term in the sum.
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