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Barrier Tunneling

• Phase-space tunneling is related to tunneling in the
     double well potential

• Coupling (via the finite barrier) between the two wells leads
    to broken degeneracy and doublet structure

• Tunneling (Rabi oscillations) occur as the doublet states
    dephase

• Symmetry is important for tunneling, causes degeneracy
    in uncoupled limit (resonant Rabi oscillations)

• Uncoupled limit: degenerate energy doublets



Phase Space

• Graphical representation of the equations of motion

• Pendulum phase space:

• Integrable systems: trajectories confined to surfaces of
     lower dimension in phase space



Double-Well Phase Space

• Can think of barrier tunneling in phase space

• Classical transport is forbidden: trajectories cannot cross
     invariant surfaces

• Quantum transport allowed: quantum paths can cross
     invariant surfaces, but are exponentially suppressed

ω ∼ exp(-1/h—)• Leads to universal scaling:



Optical Lattices and Atom Optics

• Formed by retroreflecting a laser beam -- standing wave

     -  stationary, 1-D sinusoidal intensity pattern:

• Far-detuned regime:

     -  spontaneous (random) scattering negligible

     -  intensity pattern creates spatial potential

• Atomic motion equivalent to pendulum:



Amplitude Modulation

• Full amplitude modulation of standing wave intensity:

• Can rewrite potential as sum of 3 terms:

     - one stationary and two moving lattices (pendula)

• Phase space contains three pendulum-like features:

• Want to look for tunneling between two symmetry-related
     structures
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Chaos in Phase Space
• As α (well depth) increases, competition between the
      three modes of motion leads to chaos:

α = 0.6

α = 2.0

α = 6.0



Dynamical Tunneling

• In our system, islands play the role of the two wells

     - Islands case localization of Floquet states

     - Transport out of islands is classically forbidden

• This tunneling is dynamical tunneling: transport is
     forbidden by the dynamics, not a potential barrier

• Simplest picture: tunneling between symmetric islands
     proceeds as symmetric/antisymmetric Floquet-state
     pair dephase

• Predicted by Davis and Heller, 1981

• Also under study by NIST/U. Queensland collaboration



“Simple” Experiment

• Simplified approach: cool cesium atoms in a 3-D optical
     lattice to 400 nK (∆p = 1.4h—kL)
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• Adiabatically turn on 1-D standing wave

     - size is three times that of a
         minimum-uncertainty packet

p

x
• Boost wave packet to match island
     velocity

or “how not to observe tunneling”
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• Modulate lattice to realize amplitude modulated pendulum...



Measurement Sequence

1.  Magneto-optic trap/
preparation (5 s)

3.  Time-Dependent
Optical Lattice

(1 ms)

4.  Free expansion
(15 ms)

5.  Freezing optical molasses/
imaging (1 ms)

• Technique for measuring momentum distributions/energies

2.  (State Preparation)
(1 ms)



Tunneling in Phase Space?

• Experimental momentum distributions vs. time:



Symmetries

• Classical symmetry: satisfied due to island structure in
     phase-space

• Quantum symmetry: quantum mechanics imposes an
     additional symmetry

     - atoms change momentum in multiples of 2h—kL
     - tunneling requires that states are coupled to their
         reflections about p = 0 via these discrete steps

• Consequence: only certain “integer states” can tunnel

• Analogous to asymmetric double well or broken time-
     reversal symmetry

• Requires subrecoil velocity selection

0 1 2-1-2

∆p = 2h—kL ∆p = 2h—kL

p/2h—kL



Raman Velocity Selection

• Use stimulated, two-photon transition between cesium
     ground states:

F=4, m=0
F=3, m=0

• If the two beams are counterpropagating, the atomic
     momentum enters into the resonance condition:

ω™ - ω™ = 2π · 9.2 GHz +o  pøø ø ø øøooh—kL
o · 4ω®

• Velocity selection procedure:

     1.  Optically pump to F = 4, m = 0

     2.  Tag atoms with proper velocity into F = 3

     3.  Push away F = 4 atoms with resonant light

• Result: subrecoil atoms near p = 0
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State Preparation
• Create localized state while preserving subrecoil structure
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1.  Begin with subrecoil sample from
      Raman tagging

2.  Turn on 1-D standing wave adiabatically

      - atoms become localized in the
           lattice wells, also heating

      - subrecoil slices within overall
           profile ⇒ coherence over
           several wells

      - minimum uncertainty for deep wells
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3.  Sudden shift of standing-wave phase

      - using phase modulator before
           standing-wave retroreflector

4.  Free evolution of atoms in optical
       lattice

      - nearly harmonic evolution until
           p is maximized



Initial Condition in Phase Space
• Initial conditions with Raman ∆p = 0.03!2h—kL
• Other parameters: α = 10.5, k— = 2.08



Tunneling in Phase Space
• Experimental momentum distributions vs. time, this time
     with Raman ∆p = 0.03!2h—kL (800 µs tag):

• Four oscillations before damping away

• Coherent, 16-photon transition

• Parameters: α = 10.5, k— = 2.08
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Island Dependence
• Verify that tunneling is indeed related to classical island
     structure, by inserting delay time after state preparation:
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Raman Tagging Effects

• Shift locations of velocity slices within overall shape by
     changing Raman detuning:
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• Vary width of Raman velocity selection:

• Incomplete tunneling due mostly to Raman tag width



Chaos-Assisted Tunneling

• Tunneling is “assisted” by the chaos in the sense that
     tunneling can be greatly enhanced by the presence
     of chaos
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• Enhancement can be understood in two ways:

     - Quantum paths: paths through chaotic region are not
         attenuated as strongly as those that cross KAM tori

     - Avoided crossings: tunneling doublet can interact
         with a third chaotic state, prying apart the doublet

• Should be strong fluctuations in the tunneling rate as
     parameters vary; no universal dependence



Bragg Scattering

• This tunneling is reminiscent of another form of tunneling
     in optical lattices: Bragg scattering

• Dynamical tunneling in a stationary (integrable) lattice:
     atom can reverse direction quantum mechanically but
     not classically

• Two-state process: transition between two symmetric
     plane-wave states

• Intermediate states are negligibly populated:

ωL
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p = 0

Lp = 2h—kLp = -2h—k
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Comparison with Integrable Tunneling
• Natural integrable counterpart of tunneling: Bragg scattering
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• Consider time-averaged
    potential dynamics:
    pendulum

• Classical transport in
    pendulum forbidden by
    separatrix

• Bragg scattering provides
    similar transport mechanism
    in momentum

• 8th order Bragg period
    for α = 10.5, k— = 2.1
    is 1 s

• Also 32-photon tunneling

• 16th order Bragg period
    for α = 11.2, k— = 1.0
    is 20 yr

• No Bragg oscillations
    over time of experiment



Tunneling Variation
• Study dependence of tunneling on α (k— = 2.08)

• Tunneling only visible in a relatively narrow range of α
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Tunneling Rate Variation
• Study dependence on tunneling rate vs. α (k— = 2.08)
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• Also observe both one- and two-frequency behavior
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• Two-frequency behavior consistent with center of avoided
      crossing

• Rate shows overall decrease with α



High Time Resolution
• Sample momentum distribution 10 times/modulation period

• Measurement spans 1 tunneling period, α = 7.7, k— = 2.08

• Oscillations on 3 time scales:

     1.  longest is tunneling

     2.  shortest is classical island motion

     3.  intermediate is influence of third level



Continuous Phase Space Evolution
• Islands move continuously between stroboscopic samples

t = 0.0 t = 0.1 t = 0.2

t = 0.5t = 0.4t = 0.3

• Islands move together during first half of modulation cycle:



Strongly Coupled Regime
• Measurement for α = 17, k— = 2.08:

• Fast, irregular oscillations

• Classical islands have broken down

• Quantum states can no longer be
     grouped into doublets



Noise and Decoherence

• Tunneling behavior poses problem for classical limit

   - two-state tunneling: exp(-S/h—) scaling of tunneling rate
       ensures that macroscopic tunneling doesn’t happen

   - three-state tunneling: no universal scaling of tunneling rate,
       so need alternate mechanism for classical behavior
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• Tunneling is a coherent effect, so can be destroyed by
     noise or interaction with the environment (decoherence)

• Study experimentally by adding noise to the optical lattice
     intensity:

H = p ¤/2 + 2α[1 + ε(t)] cos(x) cos ¤(πt)



Amplitude Noise Effects
• Can compare effects for different effective Planck constant k—
    (α = 11.2)

• Noise level is the standard deviation compared to the
     average intensity

• Bandwidth-limited to the same scaled cutoff frequency for
     meaningful comparison
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• Smaller k— is more
     sensitive to the
     noise

k— = 2.08

k— = 1.04



Summary

• Studied chaos-assisted tunneling of cesium atoms in a
    modulated standing wave

• Studied several features of dynamical tunneling:

     - sensitivity to classical phase-space structure

     - sensitivity to momentum class

• Studied several features specific to CAT

     - enhancement relative to integrable tunneling

     - extra oscillation in tunneling process

     - avoided crossing behavior by varying well depth

• Noise effects

     - damping of oscillations, relaxation

     - different sensitivity for different scaled Planck constant


