Bibliography

[MORRISON96] Philip J. Morrison, class notes for PHY 385K: Classical Mechanics, The University of Texas at Austin (Spring, 1996).

Bibliography

Index

<table>
<thead>
<tr>
<th>Term</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>ac Stark shift</td>
<td>34, 46, 52, 162, 170, 174, 177, 179</td>
</tr>
<tr>
<td>accelerator modes</td>
<td>109–111, 128</td>
</tr>
<tr>
<td>acousto-optic modulator</td>
<td>70, 71, 74, 79, 80, 83, 85, 163, 175–179, 185</td>
</tr>
<tr>
<td>adiabatic approximation</td>
<td>40, 46–50, 56, 60, 168</td>
</tr>
<tr>
<td>amplitude-modulated pendulum</td>
<td>10, 11, 36, 206–246, 291–303</td>
</tr>
<tr>
<td>Anderson localization</td>
<td>16, 119–120</td>
</tr>
<tr>
<td>anharmonicity</td>
<td>193–195</td>
</tr>
<tr>
<td>anomalous diffusion</td>
<td>111, 113</td>
</tr>
<tr>
<td>Arnol’d diffusion</td>
<td>205</td>
</tr>
<tr>
<td>atom interferometer</td>
<td>32, 246</td>
</tr>
<tr>
<td>atom optics</td>
<td>32–37</td>
</tr>
<tr>
<td>quantum chaos</td>
<td>35–37</td>
</tr>
<tr>
<td>avoided crossing</td>
<td></td>
</tr>
<tr>
<td>three-level</td>
<td>218, 220, 222, 232–241</td>
</tr>
<tr>
<td>two-level</td>
<td>46, 64, 203</td>
</tr>
<tr>
<td>Baker–Campbell–Hausdorff relation</td>
<td>156</td>
</tr>
<tr>
<td>ballistic-expansion measurement</td>
<td>35, 96, 136–137, 185, 192</td>
</tr>
<tr>
<td>band structure</td>
<td>41, 62–64, 189</td>
</tr>
<tr>
<td>barrier tunneling</td>
<td>200–205</td>
</tr>
<tr>
<td>benzophenone</td>
<td>206</td>
</tr>
<tr>
<td>Blackman pulse</td>
<td>173–174</td>
</tr>
<tr>
<td>Bloch theorem</td>
<td>63</td>
</tr>
<tr>
<td>Bragg scattering</td>
<td>41, 58–61, 63–65, 200, 222–226</td>
</tr>
<tr>
<td>rate, 61, 223–225</td>
<td></td>
</tr>
<tr>
<td>break time, see quantum break time</td>
<td></td>
</tr>
<tr>
<td>CCD camera</td>
<td>87, 93, 135, 137–138, 192</td>
</tr>
<tr>
<td>chaos, 2–6</td>
<td></td>
</tr>
<tr>
<td>applications of</td>
<td>3</td>
</tr>
<tr>
<td>definition, 3–5</td>
<td></td>
</tr>
<tr>
<td>chaos-assisted tunneling</td>
<td>18, 37, 65, 200, 218–241</td>
</tr>
<tr>
<td>experiments, 219–220, 222–241</td>
<td></td>
</tr>
<tr>
<td>schematic picture</td>
<td>199</td>
</tr>
<tr>
<td>Chebyshev filter</td>
<td>244, 246–248</td>
</tr>
<tr>
<td>Chirikov-Taylor map, see standard map</td>
<td></td>
</tr>
<tr>
<td>Chladni figures</td>
<td>14</td>
</tr>
<tr>
<td>classical limit</td>
<td>23</td>
</tr>
<tr>
<td>coherence time</td>
<td>131</td>
</tr>
<tr>
<td>collisions</td>
<td>54–55</td>
</tr>
<tr>
<td>conductance fluctuations</td>
<td>18, 20, 32</td>
</tr>
<tr>
<td>Conoptics, Inc.</td>
<td>70, 73, 79, 186, 188</td>
</tr>
<tr>
<td>control electronics</td>
<td>98–99</td>
</tr>
<tr>
<td>correlations</td>
<td>106–109, 127–131, 153–158</td>
</tr>
<tr>
<td>noise effects</td>
<td>111–113, 129–131, 155, 158</td>
</tr>
<tr>
<td>Correspondence Principle</td>
<td>22</td>
</tr>
<tr>
<td>DBR laser, see diode laser, distributed</td>
<td></td>
</tr>
<tr>
<td>Bragg reflector</td>
<td></td>
</tr>
<tr>
<td>dc Stark shift</td>
<td>257–258, 279</td>
</tr>
<tr>
<td>decay rate, natural</td>
<td>46, 168</td>
</tr>
<tr>
<td>decoherence</td>
<td>22–32, 124–127, 131</td>
</tr>
<tr>
<td>experiments, 31–32, 36, 131–149, 200,</td>
<td></td>
</tr>
<tr>
<td>243–246</td>
<td></td>
</tr>
<tr>
<td>density operator</td>
<td>24, 48</td>
</tr>
<tr>
<td>diffusion</td>
<td>16, 17, 23, 26, 30, 34, 36, 37,</td>
</tr>
<tr>
<td>106–113</td>
<td></td>
</tr>
<tr>
<td>quantum</td>
<td>37, 102, 149–153</td>
</tr>
</tbody>
</table>
quasilinear, 107
diode laser
distributed Bragg reflector, 68–75, 79
grating stabilized, 75–80
dipole force, 34–35
dipole moment, 34, 262, 268
effective, 54, 260–261, 268
dipole operator, 41, 258–261
Doppler broadening, 71
Doppler shift, 57, 72, 170, 177
double-well potential, 200–205, 211
dressed states, 46, 51, 203
dynamical localization, 16, 35, 65, 102,
119–121
destruction of, 124–127, 131–149
dynamical tunneling, 37, 59, 200, 204–218,
222
experiments, 206–218
Edmund Scientific, 76
Ehrenfest equations, 194
Ehrenfest time, 23, 29
electro-optic modulator, 73, 171, 175, 176,
178, 186–189, 192, 198
piezoelectric resonance, 188–189, 198
electronics, photograph, 159
Environmental Optical Sensors, Inc., 73
experiment, classical model of, 131–138
Fabry-Perot cavity, 83
festina lente regime, 163
finite-pulse effects, 114–116, 133–134
Floquet exponent, 63
Floquet state, 118, 120, 129, 205, 220–222,
232–243
Floquet theorem, 63
flux tube, 237
fractional kinetics, 111
frequency-modulation spectroscopy, 73
Greene’s number, 106, 281
Hamiltonian systems, 7–14
Husimi distribution, 31
hyperfine structure, 53, 253–265, 276, 277
in involution, 12, 15
integrable systems, 12–13
quantum systems, 14–15
IntraAction Corp., 70, 83, 177
ion trap, 32, 33, 246
island of stability, 13, 35, 106, 107, 109,
200, 205, 208–211, 216–218, 232,
233, 236–239, 281, 291
KAM surface, 13, 106, 115, 204, 205, 242,
281
KAM theorem, 3, 13
kicked particle, 65, 120, 122
kicked rotor, 36, 65, 102–158, 206–207
Hamiltonian, 15, 102, 104, 105, 115
knife-edge measurement, 88
Laboratoire Kastler Brossel, 69
ladder structure, 58, 65, 120, 122, 213
laser cooling, 33
lattice cooling, 160–165
level statistics, 20
linear systems, 11
Liouville distribution, 28
Littrow laser, see diode laser, grating
stabilized
Lorenz, Edward, 3
Lévy flights, 110, 111
Macintosh, 98
magnetic-field coils, 92–93, 98
applications, 33
dark MOT, 163
momentum distribution in, 96, 107
master equation, 26, 27, 30, 47–49
measurement sequence, 94–98
Melles Griot, 70
momentum boundary, 114–116
momentum-shift operator, 48, 58, 169
Monte Carlo simulations, 131–149
MOT, see magneto-optic trap
Moyal bracket, 15, 28, 195
National Instruments Corp., 98, 99
New Focus, Inc., 73, 76, 87
Newport Corp., 87
nonlinear resonance, 13
old quantum theory, 14
optical Bloch equations, 48, 51, 171, 261
adiabatic ramp, 162, 164, 182, 189, 192
amplitude stability, 86–87, 141
intensity calibration, 87–88, 192–198
phase stability, 86, 127, 187–189
schematic picture, 39
optical molasses, 33, 53, 125, 126, 134, 180
optical pumping, 53, 165, 181–185, 262–266
optical table, photograph, 67
pendulum, 40
Hamiltonian, 8
phase space, 8
quantum, 57–65
periodic boundary conditions, 41, 65, 211
perturbative noise, 127
phase portrait, 7
phase space, 7–10, 246
amplitude-modulated pendulum, 10,
11, 200, 207–209, 292–303
cake, 334
definition, 7
pendulum, 8
standard map, 1, 101, 283–289
photon-recoil momentum, 34, 169, 211, 252
Poincaré surface of section, see phase space
Poincaré, Henri, 2–3, 6
Poincaré–Birkhoff theorem, 13, 281
pointer basis, 26
Poisson bracket, 12, 15, 28
polarization-gradient cooling, 162
POSTSCRIPT, 281, 291
Princeton Instruments, 93, 94, 98
quantum billiard experiments, 21
quantum break time, 23, 117, 128
quantum chaology, 18
quantum chaos, 14–22
atom optics, 35–37
experiments, 20–21
usefulness, 21–22
quantum effective potential, 193–197
quantum resonance, 35, 37, 119–124
antiresonance, 124
quantum systems
chaos in, 19
sensitivity to perturbation, 18
quantum-state preparation, 189–192, 200, 208, 211
quasiaccelerator modes, 109
quasienergy, 118, 120, 220
quasienergy state, see Floquet state
quasimomentum, 63, 232
Rabi frequency, 42, 46, 54–56, 167, 261
generalized, 46, 204
Raman, 59, 169
Raman cooling, 185–186
recoil frequency, 58–63, 103, 170, 253
resonant tunneling diode, 20, 220
retunneling, 206
Rodenstock Precision Optics, Inc., 69
rotating-wave approximation, 41, 42, 44
rubidium clock, 98, 176, 177
Rydberg atoms, 20, 32, 219
saturated absorption spectroscopy, 71–75, 79–80
saturation parameter, 52
scaled units
amplitude-modulated pendulum, 206–207, 223
kicked rotor, 103–104
pendulum, 57, 193, 223
SDL, Inc., 68, 69
separatrix, 9
shadowing, 5
Shepelyansky scaling, 128, 129
sodium experiment, 35, 36
Sorbothane, 79, 93, 94, 187
spontaneous emission, 34, 36, 45, 48–51, 55, 261–262
diffusion caused by, 50, 55
standard map, 104–113, 153–158, 281, 289
definition, 5
numerical instability, 6
quantization, 15, 117–119
Stanford Research Systems, Inc., 74, 98, 177
stimulated Raman transition, 52, 58, 160, 165–186, 211, 212
stimulated Rayleigh transition, 52
stochastic dipole force, 51, 55
surface of section, see phase space
systematic effects, see experiment, classical model of
Talbot effect, 122
Ti:sapphire laser, 68, 73, 81–88, 163, 175
time reversal, 16, 17
symmetry, 211
time-evolution operator, 117, 118
Trek, Inc., 76
tunneling, see barrier tunneling, dynamical tunneling, and chaos-assisted tunneling
unitary transformation, 43
vacuum system, 89–91
wave chaos, 14, 21, 206
wawemeter, 83
Wigner function, 28–31, 195–197, 208–211
Zeeman shift, 177, 179, 184, 185, 255–257, 278, 279
Vita

Daniel Adam Steck was born on April 20, 1973 in Dayton, Ohio to Raymond and Shitsuko Steck. He graduated from Archbishop Alter High School in Kettering, Ohio in 1991, and received the degree of Bachelor of Science in Physics and Mathematics from the University of Dayton in 1995. The following fall, he joined the research group of Mark G. Raizen in the Department of Physics at The University of Texas at Austin to perform research on quantum chaos in optical lattices, which is the subject of this dissertation.

Permanent address: 1501 Chelman Pl.
Miamisburg, Ohio 45342-3840

This dissertation was typeset with \LaTeX\ by the author.

\LaTeX\ is a document preparation system developed by Leslie Lamport as a special version of Donald Knuth’s \TeX\ Program.