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1 Diffraction by a Phase Object

We describe the phase object (BEC) by the deviation δn(x, y, z) of the local index n(x, y, z) from unity:

δn(x, y, z) := n(x, y, z) − 1. (1)

In the thin-lens approximation, we can integrate over the propagation direction (z) of the probe, and consider
only the 2-dimensional index profile:

δnz(x, y) :=
∫

δn(x, y, z) dz. (2)

This phase shift imparts momentum to the light as follows: in the scalar-wave approximation, the mean-square
transverse wave vector 〈k2

T〉 due to the relative phase shift of exp[ikδnz(x, y)] (k is the total wave vector) is
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1
|E|2

∫
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y)E(x, y) dx dy

= −
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e−ikδnz (∂2
x + ∂2
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= k2

∫ [
(∂xδnz)2 + (∂yδnz)2

]
dx dy.

(3)

Here we have dropped terms of the form ∂2
xδnz, which do not contribute if we assume that δnz is purely real (i.e.,

we ignore absorption effects).
To make this expression more concrete, we can consider a Gaussian approximation to the true BEC atomic

distribution,
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δφa
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]
, (4)

where δφa is the integrated phase shift:

δφa :=
∫

δn(x, y, z) dx dy dz. (5)

Then we can write
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y)k2
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(6)

for the optical transverse momentum in the Gaussian approximation.
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This momentum is similarly imparted to the atomic cloud, and the atomic momentum diffusion is given by
〈h̄2k2

T〉 multiplied by the incident photon flux. Thus we can write

D =
Ih̄

Nω
〈k2

T〉 (7)

for the momentum diffusion rate per atom, where I is the probe intensity, ω is the optical frequency, and N is
the number of atoms in the condensate.

2 Atomic Parameters

We can write the local index as (see, for example, Cohen-Tannoudji, Dupont-Roc, and Grynberg, Atom-Photon
Interactions, p. 604)

δn = −nd|d|2
2ε0h̄

∆
∆2 + Γ2/4 + Ω2/2

, (8)

where nd is the local number density, d is the appropriate dipole moment (here, approximately the effective dipole
moment for far-detuned, linearly polarized light, see “Rubidium 87 D Line Data” for details). In the far-detuned
limit, the integrated phase shift is then

δφa = − N |d|2
2ε0h̄∆

. (9)

Thus the diffusion rate in the Gaussian approximation is

D = (h̄2k2)
N |d|4
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, (10)

which has an overall scaling similar to spontaneous scattering, I/∆2.

3 Signal/Noise

From the Kadlecek et al. paper, the signal/noise ratio is given by

S/N = φ
√

2ηNp, (11)

where Np is the number of photons striking a particular CCD pixel, η is the CCD quantum efficiency, we consider
only the limit of large reference-beam intensity, and we have reduced the value quoted here by a factor of

√
2

from the value quoted in the paper, as is appropriate for spatial-heterodyne mode (since we must average over
the heterodyne phase in the mean-square sense). This expression is also valid only for small local phase shifts φ;
for large φ, we must average also over φ, and in this case the signal/noise is given by the same expression, but
with φ replaced by 1. To evaluate the signal/noise ratio, we simply note that the typical phase shift is

φ ≈ − N |d|2k
2ε0h̄∆σxσy

, (12)

and the photon number is

Np =
ItexpApix

h̄ω
, (13)

where texp is the exposure time of the image, and Apix is the effective CCD pixel area, taking into account any
magnification in the imaging system. Thus in the small φ regime, where the experiment is likely to operate, the
signal/noise ratio scales as

√
I/∆2.
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